1/*
2 * Copyright (C) 2007 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39	[TRANS_STATE_RUNNING]		= 0U,
40	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41					   __TRANS_START),
42	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43					   __TRANS_START |
44					   __TRANS_ATTACH),
45	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46					   __TRANS_START |
47					   __TRANS_ATTACH |
48					   __TRANS_JOIN),
49	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50					   __TRANS_START |
51					   __TRANS_ATTACH |
52					   __TRANS_JOIN |
53					   __TRANS_JOIN_NOLOCK),
54	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55					   __TRANS_START |
56					   __TRANS_ATTACH |
57					   __TRANS_JOIN |
58					   __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63	WARN_ON(atomic_read(&transaction->use_count) == 0);
64	if (atomic_dec_and_test(&transaction->use_count)) {
65		BUG_ON(!list_empty(&transaction->list));
66		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67		if (transaction->delayed_refs.pending_csums)
68			printk(KERN_ERR "pending csums is %llu\n",
69			       transaction->delayed_refs.pending_csums);
70		while (!list_empty(&transaction->pending_chunks)) {
71			struct extent_map *em;
72
73			em = list_first_entry(&transaction->pending_chunks,
74					      struct extent_map, list);
75			list_del_init(&em->list);
76			free_extent_map(em);
77		}
78		kmem_cache_free(btrfs_transaction_cachep, transaction);
79	}
80}
81
82static void clear_btree_io_tree(struct extent_io_tree *tree)
83{
84	spin_lock(&tree->lock);
85	while (!RB_EMPTY_ROOT(&tree->state)) {
86		struct rb_node *node;
87		struct extent_state *state;
88
89		node = rb_first(&tree->state);
90		state = rb_entry(node, struct extent_state, rb_node);
91		rb_erase(&state->rb_node, &tree->state);
92		RB_CLEAR_NODE(&state->rb_node);
93		/*
94		 * btree io trees aren't supposed to have tasks waiting for
95		 * changes in the flags of extent states ever.
96		 */
97		ASSERT(!waitqueue_active(&state->wq));
98		free_extent_state(state);
99
100		cond_resched_lock(&tree->lock);
101	}
102	spin_unlock(&tree->lock);
103}
104
105static noinline void switch_commit_roots(struct btrfs_transaction *trans,
106					 struct btrfs_fs_info *fs_info)
107{
108	struct btrfs_root *root, *tmp;
109
110	down_write(&fs_info->commit_root_sem);
111	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
112				 dirty_list) {
113		list_del_init(&root->dirty_list);
114		free_extent_buffer(root->commit_root);
115		root->commit_root = btrfs_root_node(root);
116		if (is_fstree(root->objectid))
117			btrfs_unpin_free_ino(root);
118		clear_btree_io_tree(&root->dirty_log_pages);
119	}
120	up_write(&fs_info->commit_root_sem);
121}
122
123static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
124					 unsigned int type)
125{
126	if (type & TRANS_EXTWRITERS)
127		atomic_inc(&trans->num_extwriters);
128}
129
130static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
131					 unsigned int type)
132{
133	if (type & TRANS_EXTWRITERS)
134		atomic_dec(&trans->num_extwriters);
135}
136
137static inline void extwriter_counter_init(struct btrfs_transaction *trans,
138					  unsigned int type)
139{
140	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
141}
142
143static inline int extwriter_counter_read(struct btrfs_transaction *trans)
144{
145	return atomic_read(&trans->num_extwriters);
146}
147
148/*
149 * either allocate a new transaction or hop into the existing one
150 */
151static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
152{
153	struct btrfs_transaction *cur_trans;
154	struct btrfs_fs_info *fs_info = root->fs_info;
155
156	spin_lock(&fs_info->trans_lock);
157loop:
158	/* The file system has been taken offline. No new transactions. */
159	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
160		spin_unlock(&fs_info->trans_lock);
161		return -EROFS;
162	}
163
164	cur_trans = fs_info->running_transaction;
165	if (cur_trans) {
166		if (cur_trans->aborted) {
167			spin_unlock(&fs_info->trans_lock);
168			return cur_trans->aborted;
169		}
170		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
171			spin_unlock(&fs_info->trans_lock);
172			return -EBUSY;
173		}
174		atomic_inc(&cur_trans->use_count);
175		atomic_inc(&cur_trans->num_writers);
176		extwriter_counter_inc(cur_trans, type);
177		spin_unlock(&fs_info->trans_lock);
178		return 0;
179	}
180	spin_unlock(&fs_info->trans_lock);
181
182	/*
183	 * If we are ATTACH, we just want to catch the current transaction,
184	 * and commit it. If there is no transaction, just return ENOENT.
185	 */
186	if (type == TRANS_ATTACH)
187		return -ENOENT;
188
189	/*
190	 * JOIN_NOLOCK only happens during the transaction commit, so
191	 * it is impossible that ->running_transaction is NULL
192	 */
193	BUG_ON(type == TRANS_JOIN_NOLOCK);
194
195	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
196	if (!cur_trans)
197		return -ENOMEM;
198
199	spin_lock(&fs_info->trans_lock);
200	if (fs_info->running_transaction) {
201		/*
202		 * someone started a transaction after we unlocked.  Make sure
203		 * to redo the checks above
204		 */
205		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
206		goto loop;
207	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
208		spin_unlock(&fs_info->trans_lock);
209		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
210		return -EROFS;
211	}
212
213	atomic_set(&cur_trans->num_writers, 1);
214	extwriter_counter_init(cur_trans, type);
215	init_waitqueue_head(&cur_trans->writer_wait);
216	init_waitqueue_head(&cur_trans->commit_wait);
217	cur_trans->state = TRANS_STATE_RUNNING;
218	/*
219	 * One for this trans handle, one so it will live on until we
220	 * commit the transaction.
221	 */
222	atomic_set(&cur_trans->use_count, 2);
223	cur_trans->have_free_bgs = 0;
224	cur_trans->start_time = get_seconds();
225	cur_trans->dirty_bg_run = 0;
226
227	cur_trans->delayed_refs.href_root = RB_ROOT;
228	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
229	cur_trans->delayed_refs.num_heads_ready = 0;
230	cur_trans->delayed_refs.pending_csums = 0;
231	cur_trans->delayed_refs.num_heads = 0;
232	cur_trans->delayed_refs.flushing = 0;
233	cur_trans->delayed_refs.run_delayed_start = 0;
234
235	/*
236	 * although the tree mod log is per file system and not per transaction,
237	 * the log must never go across transaction boundaries.
238	 */
239	smp_mb();
240	if (!list_empty(&fs_info->tree_mod_seq_list))
241		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
242			"creating a fresh transaction\n");
243	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
244		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
245			"creating a fresh transaction\n");
246	atomic64_set(&fs_info->tree_mod_seq, 0);
247
248	spin_lock_init(&cur_trans->delayed_refs.lock);
249
250	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
251	INIT_LIST_HEAD(&cur_trans->pending_chunks);
252	INIT_LIST_HEAD(&cur_trans->switch_commits);
253	INIT_LIST_HEAD(&cur_trans->pending_ordered);
254	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
255	INIT_LIST_HEAD(&cur_trans->io_bgs);
256	mutex_init(&cur_trans->cache_write_mutex);
257	cur_trans->num_dirty_bgs = 0;
258	spin_lock_init(&cur_trans->dirty_bgs_lock);
259	list_add_tail(&cur_trans->list, &fs_info->trans_list);
260	extent_io_tree_init(&cur_trans->dirty_pages,
261			     fs_info->btree_inode->i_mapping);
262	fs_info->generation++;
263	cur_trans->transid = fs_info->generation;
264	fs_info->running_transaction = cur_trans;
265	cur_trans->aborted = 0;
266	spin_unlock(&fs_info->trans_lock);
267
268	return 0;
269}
270
271/*
272 * this does all the record keeping required to make sure that a reference
273 * counted root is properly recorded in a given transaction.  This is required
274 * to make sure the old root from before we joined the transaction is deleted
275 * when the transaction commits
276 */
277static int record_root_in_trans(struct btrfs_trans_handle *trans,
278			       struct btrfs_root *root)
279{
280	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
281	    root->last_trans < trans->transid) {
282		WARN_ON(root == root->fs_info->extent_root);
283		WARN_ON(root->commit_root != root->node);
284
285		/*
286		 * see below for IN_TRANS_SETUP usage rules
287		 * we have the reloc mutex held now, so there
288		 * is only one writer in this function
289		 */
290		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
291
292		/* make sure readers find IN_TRANS_SETUP before
293		 * they find our root->last_trans update
294		 */
295		smp_wmb();
296
297		spin_lock(&root->fs_info->fs_roots_radix_lock);
298		if (root->last_trans == trans->transid) {
299			spin_unlock(&root->fs_info->fs_roots_radix_lock);
300			return 0;
301		}
302		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
303			   (unsigned long)root->root_key.objectid,
304			   BTRFS_ROOT_TRANS_TAG);
305		spin_unlock(&root->fs_info->fs_roots_radix_lock);
306		root->last_trans = trans->transid;
307
308		/* this is pretty tricky.  We don't want to
309		 * take the relocation lock in btrfs_record_root_in_trans
310		 * unless we're really doing the first setup for this root in
311		 * this transaction.
312		 *
313		 * Normally we'd use root->last_trans as a flag to decide
314		 * if we want to take the expensive mutex.
315		 *
316		 * But, we have to set root->last_trans before we
317		 * init the relocation root, otherwise, we trip over warnings
318		 * in ctree.c.  The solution used here is to flag ourselves
319		 * with root IN_TRANS_SETUP.  When this is 1, we're still
320		 * fixing up the reloc trees and everyone must wait.
321		 *
322		 * When this is zero, they can trust root->last_trans and fly
323		 * through btrfs_record_root_in_trans without having to take the
324		 * lock.  smp_wmb() makes sure that all the writes above are
325		 * done before we pop in the zero below
326		 */
327		btrfs_init_reloc_root(trans, root);
328		smp_mb__before_atomic();
329		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330	}
331	return 0;
332}
333
334
335int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
336			       struct btrfs_root *root)
337{
338	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
339		return 0;
340
341	/*
342	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
343	 * and barriers
344	 */
345	smp_rmb();
346	if (root->last_trans == trans->transid &&
347	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
348		return 0;
349
350	mutex_lock(&root->fs_info->reloc_mutex);
351	record_root_in_trans(trans, root);
352	mutex_unlock(&root->fs_info->reloc_mutex);
353
354	return 0;
355}
356
357static inline int is_transaction_blocked(struct btrfs_transaction *trans)
358{
359	return (trans->state >= TRANS_STATE_BLOCKED &&
360		trans->state < TRANS_STATE_UNBLOCKED &&
361		!trans->aborted);
362}
363
364/* wait for commit against the current transaction to become unblocked
365 * when this is done, it is safe to start a new transaction, but the current
366 * transaction might not be fully on disk.
367 */
368static void wait_current_trans(struct btrfs_root *root)
369{
370	struct btrfs_transaction *cur_trans;
371
372	spin_lock(&root->fs_info->trans_lock);
373	cur_trans = root->fs_info->running_transaction;
374	if (cur_trans && is_transaction_blocked(cur_trans)) {
375		atomic_inc(&cur_trans->use_count);
376		spin_unlock(&root->fs_info->trans_lock);
377
378		wait_event(root->fs_info->transaction_wait,
379			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
380			   cur_trans->aborted);
381		btrfs_put_transaction(cur_trans);
382	} else {
383		spin_unlock(&root->fs_info->trans_lock);
384	}
385}
386
387static int may_wait_transaction(struct btrfs_root *root, int type)
388{
389	if (root->fs_info->log_root_recovering)
390		return 0;
391
392	if (type == TRANS_USERSPACE)
393		return 1;
394
395	if (type == TRANS_START &&
396	    !atomic_read(&root->fs_info->open_ioctl_trans))
397		return 1;
398
399	return 0;
400}
401
402static inline bool need_reserve_reloc_root(struct btrfs_root *root)
403{
404	if (!root->fs_info->reloc_ctl ||
405	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
406	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
407	    root->reloc_root)
408		return false;
409
410	return true;
411}
412
413static struct btrfs_trans_handle *
414start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
415		  enum btrfs_reserve_flush_enum flush)
416{
417	struct btrfs_trans_handle *h;
418	struct btrfs_transaction *cur_trans;
419	u64 num_bytes = 0;
420	u64 qgroup_reserved = 0;
421	bool reloc_reserved = false;
422	int ret;
423
424	/* Send isn't supposed to start transactions. */
425	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
426
427	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
428		return ERR_PTR(-EROFS);
429
430	if (current->journal_info) {
431		WARN_ON(type & TRANS_EXTWRITERS);
432		h = current->journal_info;
433		h->use_count++;
434		WARN_ON(h->use_count > 2);
435		h->orig_rsv = h->block_rsv;
436		h->block_rsv = NULL;
437		goto got_it;
438	}
439
440	/*
441	 * Do the reservation before we join the transaction so we can do all
442	 * the appropriate flushing if need be.
443	 */
444	if (num_items > 0 && root != root->fs_info->chunk_root) {
445		if (root->fs_info->quota_enabled &&
446		    is_fstree(root->root_key.objectid)) {
447			qgroup_reserved = num_items * root->nodesize;
448			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
449			if (ret)
450				return ERR_PTR(ret);
451		}
452
453		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
454		/*
455		 * Do the reservation for the relocation root creation
456		 */
457		if (need_reserve_reloc_root(root)) {
458			num_bytes += root->nodesize;
459			reloc_reserved = true;
460		}
461
462		ret = btrfs_block_rsv_add(root,
463					  &root->fs_info->trans_block_rsv,
464					  num_bytes, flush);
465		if (ret)
466			goto reserve_fail;
467	}
468again:
469	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
470	if (!h) {
471		ret = -ENOMEM;
472		goto alloc_fail;
473	}
474
475	/*
476	 * If we are JOIN_NOLOCK we're already committing a transaction and
477	 * waiting on this guy, so we don't need to do the sb_start_intwrite
478	 * because we're already holding a ref.  We need this because we could
479	 * have raced in and did an fsync() on a file which can kick a commit
480	 * and then we deadlock with somebody doing a freeze.
481	 *
482	 * If we are ATTACH, it means we just want to catch the current
483	 * transaction and commit it, so we needn't do sb_start_intwrite().
484	 */
485	if (type & __TRANS_FREEZABLE)
486		sb_start_intwrite(root->fs_info->sb);
487
488	if (may_wait_transaction(root, type))
489		wait_current_trans(root);
490
491	do {
492		ret = join_transaction(root, type);
493		if (ret == -EBUSY) {
494			wait_current_trans(root);
495			if (unlikely(type == TRANS_ATTACH))
496				ret = -ENOENT;
497		}
498	} while (ret == -EBUSY);
499
500	if (ret < 0) {
501		/* We must get the transaction if we are JOIN_NOLOCK. */
502		BUG_ON(type == TRANS_JOIN_NOLOCK);
503		goto join_fail;
504	}
505
506	cur_trans = root->fs_info->running_transaction;
507
508	h->transid = cur_trans->transid;
509	h->transaction = cur_trans;
510	h->blocks_used = 0;
511	h->bytes_reserved = 0;
512	h->root = root;
513	h->delayed_ref_updates = 0;
514	h->use_count = 1;
515	h->adding_csums = 0;
516	h->block_rsv = NULL;
517	h->orig_rsv = NULL;
518	h->aborted = 0;
519	h->qgroup_reserved = 0;
520	h->delayed_ref_elem.seq = 0;
521	h->type = type;
522	h->allocating_chunk = false;
523	h->reloc_reserved = false;
524	h->sync = false;
525	INIT_LIST_HEAD(&h->qgroup_ref_list);
526	INIT_LIST_HEAD(&h->new_bgs);
527	INIT_LIST_HEAD(&h->ordered);
528
529	smp_mb();
530	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
531	    may_wait_transaction(root, type)) {
532		current->journal_info = h;
533		btrfs_commit_transaction(h, root);
534		goto again;
535	}
536
537	if (num_bytes) {
538		trace_btrfs_space_reservation(root->fs_info, "transaction",
539					      h->transid, num_bytes, 1);
540		h->block_rsv = &root->fs_info->trans_block_rsv;
541		h->bytes_reserved = num_bytes;
542		h->reloc_reserved = reloc_reserved;
543	}
544	h->qgroup_reserved = qgroup_reserved;
545
546got_it:
547	btrfs_record_root_in_trans(h, root);
548
549	if (!current->journal_info && type != TRANS_USERSPACE)
550		current->journal_info = h;
551	return h;
552
553join_fail:
554	if (type & __TRANS_FREEZABLE)
555		sb_end_intwrite(root->fs_info->sb);
556	kmem_cache_free(btrfs_trans_handle_cachep, h);
557alloc_fail:
558	if (num_bytes)
559		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
560					num_bytes);
561reserve_fail:
562	if (qgroup_reserved)
563		btrfs_qgroup_free(root, qgroup_reserved);
564	return ERR_PTR(ret);
565}
566
567struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
568						   int num_items)
569{
570	return start_transaction(root, num_items, TRANS_START,
571				 BTRFS_RESERVE_FLUSH_ALL);
572}
573
574struct btrfs_trans_handle *btrfs_start_transaction_lflush(
575					struct btrfs_root *root, int num_items)
576{
577	return start_transaction(root, num_items, TRANS_START,
578				 BTRFS_RESERVE_FLUSH_LIMIT);
579}
580
581struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
582{
583	return start_transaction(root, 0, TRANS_JOIN, 0);
584}
585
586struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
587{
588	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
589}
590
591struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
592{
593	return start_transaction(root, 0, TRANS_USERSPACE, 0);
594}
595
596/*
597 * btrfs_attach_transaction() - catch the running transaction
598 *
599 * It is used when we want to commit the current the transaction, but
600 * don't want to start a new one.
601 *
602 * Note: If this function return -ENOENT, it just means there is no
603 * running transaction. But it is possible that the inactive transaction
604 * is still in the memory, not fully on disk. If you hope there is no
605 * inactive transaction in the fs when -ENOENT is returned, you should
606 * invoke
607 *     btrfs_attach_transaction_barrier()
608 */
609struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
610{
611	return start_transaction(root, 0, TRANS_ATTACH, 0);
612}
613
614/*
615 * btrfs_attach_transaction_barrier() - catch the running transaction
616 *
617 * It is similar to the above function, the differentia is this one
618 * will wait for all the inactive transactions until they fully
619 * complete.
620 */
621struct btrfs_trans_handle *
622btrfs_attach_transaction_barrier(struct btrfs_root *root)
623{
624	struct btrfs_trans_handle *trans;
625
626	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
627	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
628		btrfs_wait_for_commit(root, 0);
629
630	return trans;
631}
632
633/* wait for a transaction commit to be fully complete */
634static noinline void wait_for_commit(struct btrfs_root *root,
635				    struct btrfs_transaction *commit)
636{
637	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
638}
639
640int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
641{
642	struct btrfs_transaction *cur_trans = NULL, *t;
643	int ret = 0;
644
645	if (transid) {
646		if (transid <= root->fs_info->last_trans_committed)
647			goto out;
648
649		/* find specified transaction */
650		spin_lock(&root->fs_info->trans_lock);
651		list_for_each_entry(t, &root->fs_info->trans_list, list) {
652			if (t->transid == transid) {
653				cur_trans = t;
654				atomic_inc(&cur_trans->use_count);
655				ret = 0;
656				break;
657			}
658			if (t->transid > transid) {
659				ret = 0;
660				break;
661			}
662		}
663		spin_unlock(&root->fs_info->trans_lock);
664
665		/*
666		 * The specified transaction doesn't exist, or we
667		 * raced with btrfs_commit_transaction
668		 */
669		if (!cur_trans) {
670			if (transid > root->fs_info->last_trans_committed)
671				ret = -EINVAL;
672			goto out;
673		}
674	} else {
675		/* find newest transaction that is committing | committed */
676		spin_lock(&root->fs_info->trans_lock);
677		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
678					    list) {
679			if (t->state >= TRANS_STATE_COMMIT_START) {
680				if (t->state == TRANS_STATE_COMPLETED)
681					break;
682				cur_trans = t;
683				atomic_inc(&cur_trans->use_count);
684				break;
685			}
686		}
687		spin_unlock(&root->fs_info->trans_lock);
688		if (!cur_trans)
689			goto out;  /* nothing committing|committed */
690	}
691
692	wait_for_commit(root, cur_trans);
693	btrfs_put_transaction(cur_trans);
694out:
695	return ret;
696}
697
698void btrfs_throttle(struct btrfs_root *root)
699{
700	if (!atomic_read(&root->fs_info->open_ioctl_trans))
701		wait_current_trans(root);
702}
703
704static int should_end_transaction(struct btrfs_trans_handle *trans,
705				  struct btrfs_root *root)
706{
707	if (root->fs_info->global_block_rsv.space_info->full &&
708	    btrfs_check_space_for_delayed_refs(trans, root))
709		return 1;
710
711	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
712}
713
714int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
715				 struct btrfs_root *root)
716{
717	struct btrfs_transaction *cur_trans = trans->transaction;
718	int updates;
719	int err;
720
721	smp_mb();
722	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
723	    cur_trans->delayed_refs.flushing)
724		return 1;
725
726	updates = trans->delayed_ref_updates;
727	trans->delayed_ref_updates = 0;
728	if (updates) {
729		err = btrfs_run_delayed_refs(trans, root, updates * 2);
730		if (err) /* Error code will also eval true */
731			return err;
732	}
733
734	return should_end_transaction(trans, root);
735}
736
737static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
738			  struct btrfs_root *root, int throttle)
739{
740	struct btrfs_transaction *cur_trans = trans->transaction;
741	struct btrfs_fs_info *info = root->fs_info;
742	unsigned long cur = trans->delayed_ref_updates;
743	int lock = (trans->type != TRANS_JOIN_NOLOCK);
744	int err = 0;
745	int must_run_delayed_refs = 0;
746
747	if (trans->use_count > 1) {
748		trans->use_count--;
749		trans->block_rsv = trans->orig_rsv;
750		return 0;
751	}
752
753	btrfs_trans_release_metadata(trans, root);
754	trans->block_rsv = NULL;
755
756	if (!list_empty(&trans->new_bgs))
757		btrfs_create_pending_block_groups(trans, root);
758
759	if (!list_empty(&trans->ordered)) {
760		spin_lock(&info->trans_lock);
761		list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
762		spin_unlock(&info->trans_lock);
763	}
764
765	trans->delayed_ref_updates = 0;
766	if (!trans->sync) {
767		must_run_delayed_refs =
768			btrfs_should_throttle_delayed_refs(trans, root);
769		cur = max_t(unsigned long, cur, 32);
770
771		/*
772		 * don't make the caller wait if they are from a NOLOCK
773		 * or ATTACH transaction, it will deadlock with commit
774		 */
775		if (must_run_delayed_refs == 1 &&
776		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
777			must_run_delayed_refs = 2;
778	}
779
780	if (trans->qgroup_reserved) {
781		/*
782		 * the same root has to be passed here between start_transaction
783		 * and end_transaction. Subvolume quota depends on this.
784		 */
785		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
786		trans->qgroup_reserved = 0;
787	}
788
789	btrfs_trans_release_metadata(trans, root);
790	trans->block_rsv = NULL;
791
792	if (!list_empty(&trans->new_bgs))
793		btrfs_create_pending_block_groups(trans, root);
794
795	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
796	    should_end_transaction(trans, root) &&
797	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
798		spin_lock(&info->trans_lock);
799		if (cur_trans->state == TRANS_STATE_RUNNING)
800			cur_trans->state = TRANS_STATE_BLOCKED;
801		spin_unlock(&info->trans_lock);
802	}
803
804	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
805		if (throttle)
806			return btrfs_commit_transaction(trans, root);
807		else
808			wake_up_process(info->transaction_kthread);
809	}
810
811	if (trans->type & __TRANS_FREEZABLE)
812		sb_end_intwrite(root->fs_info->sb);
813
814	WARN_ON(cur_trans != info->running_transaction);
815	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
816	atomic_dec(&cur_trans->num_writers);
817	extwriter_counter_dec(cur_trans, trans->type);
818
819	smp_mb();
820	if (waitqueue_active(&cur_trans->writer_wait))
821		wake_up(&cur_trans->writer_wait);
822	btrfs_put_transaction(cur_trans);
823
824	if (current->journal_info == trans)
825		current->journal_info = NULL;
826
827	if (throttle)
828		btrfs_run_delayed_iputs(root);
829
830	if (trans->aborted ||
831	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
832		wake_up_process(info->transaction_kthread);
833		err = -EIO;
834	}
835	assert_qgroups_uptodate(trans);
836
837	kmem_cache_free(btrfs_trans_handle_cachep, trans);
838	if (must_run_delayed_refs) {
839		btrfs_async_run_delayed_refs(root, cur,
840					     must_run_delayed_refs == 1);
841	}
842	return err;
843}
844
845int btrfs_end_transaction(struct btrfs_trans_handle *trans,
846			  struct btrfs_root *root)
847{
848	return __btrfs_end_transaction(trans, root, 0);
849}
850
851int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
852				   struct btrfs_root *root)
853{
854	return __btrfs_end_transaction(trans, root, 1);
855}
856
857/*
858 * when btree blocks are allocated, they have some corresponding bits set for
859 * them in one of two extent_io trees.  This is used to make sure all of
860 * those extents are sent to disk but does not wait on them
861 */
862int btrfs_write_marked_extents(struct btrfs_root *root,
863			       struct extent_io_tree *dirty_pages, int mark)
864{
865	int err = 0;
866	int werr = 0;
867	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
868	struct extent_state *cached_state = NULL;
869	u64 start = 0;
870	u64 end;
871
872	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
873				      mark, &cached_state)) {
874		bool wait_writeback = false;
875
876		err = convert_extent_bit(dirty_pages, start, end,
877					 EXTENT_NEED_WAIT,
878					 mark, &cached_state, GFP_NOFS);
879		/*
880		 * convert_extent_bit can return -ENOMEM, which is most of the
881		 * time a temporary error. So when it happens, ignore the error
882		 * and wait for writeback of this range to finish - because we
883		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
884		 * to btrfs_wait_marked_extents() would not know that writeback
885		 * for this range started and therefore wouldn't wait for it to
886		 * finish - we don't want to commit a superblock that points to
887		 * btree nodes/leafs for which writeback hasn't finished yet
888		 * (and without errors).
889		 * We cleanup any entries left in the io tree when committing
890		 * the transaction (through clear_btree_io_tree()).
891		 */
892		if (err == -ENOMEM) {
893			err = 0;
894			wait_writeback = true;
895		}
896		if (!err)
897			err = filemap_fdatawrite_range(mapping, start, end);
898		if (err)
899			werr = err;
900		else if (wait_writeback)
901			werr = filemap_fdatawait_range(mapping, start, end);
902		free_extent_state(cached_state);
903		cached_state = NULL;
904		cond_resched();
905		start = end + 1;
906	}
907	return werr;
908}
909
910/*
911 * when btree blocks are allocated, they have some corresponding bits set for
912 * them in one of two extent_io trees.  This is used to make sure all of
913 * those extents are on disk for transaction or log commit.  We wait
914 * on all the pages and clear them from the dirty pages state tree
915 */
916int btrfs_wait_marked_extents(struct btrfs_root *root,
917			      struct extent_io_tree *dirty_pages, int mark)
918{
919	int err = 0;
920	int werr = 0;
921	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
922	struct extent_state *cached_state = NULL;
923	u64 start = 0;
924	u64 end;
925	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
926	bool errors = false;
927
928	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
929				      EXTENT_NEED_WAIT, &cached_state)) {
930		/*
931		 * Ignore -ENOMEM errors returned by clear_extent_bit().
932		 * When committing the transaction, we'll remove any entries
933		 * left in the io tree. For a log commit, we don't remove them
934		 * after committing the log because the tree can be accessed
935		 * concurrently - we do it only at transaction commit time when
936		 * it's safe to do it (through clear_btree_io_tree()).
937		 */
938		err = clear_extent_bit(dirty_pages, start, end,
939				       EXTENT_NEED_WAIT,
940				       0, 0, &cached_state, GFP_NOFS);
941		if (err == -ENOMEM)
942			err = 0;
943		if (!err)
944			err = filemap_fdatawait_range(mapping, start, end);
945		if (err)
946			werr = err;
947		free_extent_state(cached_state);
948		cached_state = NULL;
949		cond_resched();
950		start = end + 1;
951	}
952	if (err)
953		werr = err;
954
955	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
956		if ((mark & EXTENT_DIRTY) &&
957		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
958				       &btree_ino->runtime_flags))
959			errors = true;
960
961		if ((mark & EXTENT_NEW) &&
962		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
963				       &btree_ino->runtime_flags))
964			errors = true;
965	} else {
966		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
967				       &btree_ino->runtime_flags))
968			errors = true;
969	}
970
971	if (errors && !werr)
972		werr = -EIO;
973
974	return werr;
975}
976
977/*
978 * when btree blocks are allocated, they have some corresponding bits set for
979 * them in one of two extent_io trees.  This is used to make sure all of
980 * those extents are on disk for transaction or log commit
981 */
982static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
983				struct extent_io_tree *dirty_pages, int mark)
984{
985	int ret;
986	int ret2;
987	struct blk_plug plug;
988
989	blk_start_plug(&plug);
990	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
991	blk_finish_plug(&plug);
992	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
993
994	if (ret)
995		return ret;
996	if (ret2)
997		return ret2;
998	return 0;
999}
1000
1001static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1002				     struct btrfs_root *root)
1003{
1004	int ret;
1005
1006	ret = btrfs_write_and_wait_marked_extents(root,
1007					   &trans->transaction->dirty_pages,
1008					   EXTENT_DIRTY);
1009	clear_btree_io_tree(&trans->transaction->dirty_pages);
1010
1011	return ret;
1012}
1013
1014/*
1015 * this is used to update the root pointer in the tree of tree roots.
1016 *
1017 * But, in the case of the extent allocation tree, updating the root
1018 * pointer may allocate blocks which may change the root of the extent
1019 * allocation tree.
1020 *
1021 * So, this loops and repeats and makes sure the cowonly root didn't
1022 * change while the root pointer was being updated in the metadata.
1023 */
1024static int update_cowonly_root(struct btrfs_trans_handle *trans,
1025			       struct btrfs_root *root)
1026{
1027	int ret;
1028	u64 old_root_bytenr;
1029	u64 old_root_used;
1030	struct btrfs_root *tree_root = root->fs_info->tree_root;
1031
1032	old_root_used = btrfs_root_used(&root->root_item);
1033
1034	while (1) {
1035		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1036		if (old_root_bytenr == root->node->start &&
1037		    old_root_used == btrfs_root_used(&root->root_item))
1038			break;
1039
1040		btrfs_set_root_node(&root->root_item, root->node);
1041		ret = btrfs_update_root(trans, tree_root,
1042					&root->root_key,
1043					&root->root_item);
1044		if (ret)
1045			return ret;
1046
1047		old_root_used = btrfs_root_used(&root->root_item);
1048	}
1049
1050	return 0;
1051}
1052
1053/*
1054 * update all the cowonly tree roots on disk
1055 *
1056 * The error handling in this function may not be obvious. Any of the
1057 * failures will cause the file system to go offline. We still need
1058 * to clean up the delayed refs.
1059 */
1060static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1061					 struct btrfs_root *root)
1062{
1063	struct btrfs_fs_info *fs_info = root->fs_info;
1064	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1065	struct list_head *io_bgs = &trans->transaction->io_bgs;
1066	struct list_head *next;
1067	struct extent_buffer *eb;
1068	int ret;
1069
1070	eb = btrfs_lock_root_node(fs_info->tree_root);
1071	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1072			      0, &eb);
1073	btrfs_tree_unlock(eb);
1074	free_extent_buffer(eb);
1075
1076	if (ret)
1077		return ret;
1078
1079	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1080	if (ret)
1081		return ret;
1082
1083	ret = btrfs_run_dev_stats(trans, root->fs_info);
1084	if (ret)
1085		return ret;
1086	ret = btrfs_run_dev_replace(trans, root->fs_info);
1087	if (ret)
1088		return ret;
1089	ret = btrfs_run_qgroups(trans, root->fs_info);
1090	if (ret)
1091		return ret;
1092
1093	ret = btrfs_setup_space_cache(trans, root);
1094	if (ret)
1095		return ret;
1096
1097	/* run_qgroups might have added some more refs */
1098	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1099	if (ret)
1100		return ret;
1101again:
1102	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1103		next = fs_info->dirty_cowonly_roots.next;
1104		list_del_init(next);
1105		root = list_entry(next, struct btrfs_root, dirty_list);
1106		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1107
1108		if (root != fs_info->extent_root)
1109			list_add_tail(&root->dirty_list,
1110				      &trans->transaction->switch_commits);
1111		ret = update_cowonly_root(trans, root);
1112		if (ret)
1113			return ret;
1114		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1115		if (ret)
1116			return ret;
1117	}
1118
1119	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1120		ret = btrfs_write_dirty_block_groups(trans, root);
1121		if (ret)
1122			return ret;
1123		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1124		if (ret)
1125			return ret;
1126	}
1127
1128	if (!list_empty(&fs_info->dirty_cowonly_roots))
1129		goto again;
1130
1131	list_add_tail(&fs_info->extent_root->dirty_list,
1132		      &trans->transaction->switch_commits);
1133	btrfs_after_dev_replace_commit(fs_info);
1134
1135	return 0;
1136}
1137
1138/*
1139 * dead roots are old snapshots that need to be deleted.  This allocates
1140 * a dirty root struct and adds it into the list of dead roots that need to
1141 * be deleted
1142 */
1143void btrfs_add_dead_root(struct btrfs_root *root)
1144{
1145	spin_lock(&root->fs_info->trans_lock);
1146	if (list_empty(&root->root_list))
1147		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1148	spin_unlock(&root->fs_info->trans_lock);
1149}
1150
1151/*
1152 * update all the cowonly tree roots on disk
1153 */
1154static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1155				    struct btrfs_root *root)
1156{
1157	struct btrfs_root *gang[8];
1158	struct btrfs_fs_info *fs_info = root->fs_info;
1159	int i;
1160	int ret;
1161	int err = 0;
1162
1163	spin_lock(&fs_info->fs_roots_radix_lock);
1164	while (1) {
1165		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1166						 (void **)gang, 0,
1167						 ARRAY_SIZE(gang),
1168						 BTRFS_ROOT_TRANS_TAG);
1169		if (ret == 0)
1170			break;
1171		for (i = 0; i < ret; i++) {
1172			root = gang[i];
1173			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1174					(unsigned long)root->root_key.objectid,
1175					BTRFS_ROOT_TRANS_TAG);
1176			spin_unlock(&fs_info->fs_roots_radix_lock);
1177
1178			btrfs_free_log(trans, root);
1179			btrfs_update_reloc_root(trans, root);
1180			btrfs_orphan_commit_root(trans, root);
1181
1182			btrfs_save_ino_cache(root, trans);
1183
1184			/* see comments in should_cow_block() */
1185			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1186			smp_mb__after_atomic();
1187
1188			if (root->commit_root != root->node) {
1189				list_add_tail(&root->dirty_list,
1190					&trans->transaction->switch_commits);
1191				btrfs_set_root_node(&root->root_item,
1192						    root->node);
1193			}
1194
1195			err = btrfs_update_root(trans, fs_info->tree_root,
1196						&root->root_key,
1197						&root->root_item);
1198			spin_lock(&fs_info->fs_roots_radix_lock);
1199			if (err)
1200				break;
1201		}
1202	}
1203	spin_unlock(&fs_info->fs_roots_radix_lock);
1204	return err;
1205}
1206
1207/*
1208 * defrag a given btree.
1209 * Every leaf in the btree is read and defragged.
1210 */
1211int btrfs_defrag_root(struct btrfs_root *root)
1212{
1213	struct btrfs_fs_info *info = root->fs_info;
1214	struct btrfs_trans_handle *trans;
1215	int ret;
1216
1217	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1218		return 0;
1219
1220	while (1) {
1221		trans = btrfs_start_transaction(root, 0);
1222		if (IS_ERR(trans))
1223			return PTR_ERR(trans);
1224
1225		ret = btrfs_defrag_leaves(trans, root);
1226
1227		btrfs_end_transaction(trans, root);
1228		btrfs_btree_balance_dirty(info->tree_root);
1229		cond_resched();
1230
1231		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1232			break;
1233
1234		if (btrfs_defrag_cancelled(root->fs_info)) {
1235			pr_debug("BTRFS: defrag_root cancelled\n");
1236			ret = -EAGAIN;
1237			break;
1238		}
1239	}
1240	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1241	return ret;
1242}
1243
1244/*
1245 * new snapshots need to be created at a very specific time in the
1246 * transaction commit.  This does the actual creation.
1247 *
1248 * Note:
1249 * If the error which may affect the commitment of the current transaction
1250 * happens, we should return the error number. If the error which just affect
1251 * the creation of the pending snapshots, just return 0.
1252 */
1253static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1254				   struct btrfs_fs_info *fs_info,
1255				   struct btrfs_pending_snapshot *pending)
1256{
1257	struct btrfs_key key;
1258	struct btrfs_root_item *new_root_item;
1259	struct btrfs_root *tree_root = fs_info->tree_root;
1260	struct btrfs_root *root = pending->root;
1261	struct btrfs_root *parent_root;
1262	struct btrfs_block_rsv *rsv;
1263	struct inode *parent_inode;
1264	struct btrfs_path *path;
1265	struct btrfs_dir_item *dir_item;
1266	struct dentry *dentry;
1267	struct extent_buffer *tmp;
1268	struct extent_buffer *old;
1269	struct timespec cur_time = CURRENT_TIME;
1270	int ret = 0;
1271	u64 to_reserve = 0;
1272	u64 index = 0;
1273	u64 objectid;
1274	u64 root_flags;
1275	uuid_le new_uuid;
1276
1277	path = btrfs_alloc_path();
1278	if (!path) {
1279		pending->error = -ENOMEM;
1280		return 0;
1281	}
1282
1283	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1284	if (!new_root_item) {
1285		pending->error = -ENOMEM;
1286		goto root_item_alloc_fail;
1287	}
1288
1289	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1290	if (pending->error)
1291		goto no_free_objectid;
1292
1293	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1294
1295	if (to_reserve > 0) {
1296		pending->error = btrfs_block_rsv_add(root,
1297						     &pending->block_rsv,
1298						     to_reserve,
1299						     BTRFS_RESERVE_NO_FLUSH);
1300		if (pending->error)
1301			goto no_free_objectid;
1302	}
1303
1304	key.objectid = objectid;
1305	key.offset = (u64)-1;
1306	key.type = BTRFS_ROOT_ITEM_KEY;
1307
1308	rsv = trans->block_rsv;
1309	trans->block_rsv = &pending->block_rsv;
1310	trans->bytes_reserved = trans->block_rsv->reserved;
1311
1312	dentry = pending->dentry;
1313	parent_inode = pending->dir;
1314	parent_root = BTRFS_I(parent_inode)->root;
1315	record_root_in_trans(trans, parent_root);
1316
1317	/*
1318	 * insert the directory item
1319	 */
1320	ret = btrfs_set_inode_index(parent_inode, &index);
1321	BUG_ON(ret); /* -ENOMEM */
1322
1323	/* check if there is a file/dir which has the same name. */
1324	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1325					 btrfs_ino(parent_inode),
1326					 dentry->d_name.name,
1327					 dentry->d_name.len, 0);
1328	if (dir_item != NULL && !IS_ERR(dir_item)) {
1329		pending->error = -EEXIST;
1330		goto dir_item_existed;
1331	} else if (IS_ERR(dir_item)) {
1332		ret = PTR_ERR(dir_item);
1333		btrfs_abort_transaction(trans, root, ret);
1334		goto fail;
1335	}
1336	btrfs_release_path(path);
1337
1338	/*
1339	 * pull in the delayed directory update
1340	 * and the delayed inode item
1341	 * otherwise we corrupt the FS during
1342	 * snapshot
1343	 */
1344	ret = btrfs_run_delayed_items(trans, root);
1345	if (ret) {	/* Transaction aborted */
1346		btrfs_abort_transaction(trans, root, ret);
1347		goto fail;
1348	}
1349
1350	record_root_in_trans(trans, root);
1351	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1352	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1353	btrfs_check_and_init_root_item(new_root_item);
1354
1355	root_flags = btrfs_root_flags(new_root_item);
1356	if (pending->readonly)
1357		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1358	else
1359		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1360	btrfs_set_root_flags(new_root_item, root_flags);
1361
1362	btrfs_set_root_generation_v2(new_root_item,
1363			trans->transid);
1364	uuid_le_gen(&new_uuid);
1365	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1366	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1367			BTRFS_UUID_SIZE);
1368	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1369		memset(new_root_item->received_uuid, 0,
1370		       sizeof(new_root_item->received_uuid));
1371		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1372		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1373		btrfs_set_root_stransid(new_root_item, 0);
1374		btrfs_set_root_rtransid(new_root_item, 0);
1375	}
1376	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1377	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1378	btrfs_set_root_otransid(new_root_item, trans->transid);
1379
1380	old = btrfs_lock_root_node(root);
1381	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1382	if (ret) {
1383		btrfs_tree_unlock(old);
1384		free_extent_buffer(old);
1385		btrfs_abort_transaction(trans, root, ret);
1386		goto fail;
1387	}
1388
1389	btrfs_set_lock_blocking(old);
1390
1391	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1392	/* clean up in any case */
1393	btrfs_tree_unlock(old);
1394	free_extent_buffer(old);
1395	if (ret) {
1396		btrfs_abort_transaction(trans, root, ret);
1397		goto fail;
1398	}
1399
1400	/*
1401	 * We need to flush delayed refs in order to make sure all of our quota
1402	 * operations have been done before we call btrfs_qgroup_inherit.
1403	 */
1404	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1405	if (ret) {
1406		btrfs_abort_transaction(trans, root, ret);
1407		goto fail;
1408	}
1409
1410	ret = btrfs_qgroup_inherit(trans, fs_info,
1411				   root->root_key.objectid,
1412				   objectid, pending->inherit);
1413	if (ret) {
1414		btrfs_abort_transaction(trans, root, ret);
1415		goto fail;
1416	}
1417
1418	/* see comments in should_cow_block() */
1419	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1420	smp_wmb();
1421
1422	btrfs_set_root_node(new_root_item, tmp);
1423	/* record when the snapshot was created in key.offset */
1424	key.offset = trans->transid;
1425	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1426	btrfs_tree_unlock(tmp);
1427	free_extent_buffer(tmp);
1428	if (ret) {
1429		btrfs_abort_transaction(trans, root, ret);
1430		goto fail;
1431	}
1432
1433	/*
1434	 * insert root back/forward references
1435	 */
1436	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1437				 parent_root->root_key.objectid,
1438				 btrfs_ino(parent_inode), index,
1439				 dentry->d_name.name, dentry->d_name.len);
1440	if (ret) {
1441		btrfs_abort_transaction(trans, root, ret);
1442		goto fail;
1443	}
1444
1445	key.offset = (u64)-1;
1446	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1447	if (IS_ERR(pending->snap)) {
1448		ret = PTR_ERR(pending->snap);
1449		btrfs_abort_transaction(trans, root, ret);
1450		goto fail;
1451	}
1452
1453	ret = btrfs_reloc_post_snapshot(trans, pending);
1454	if (ret) {
1455		btrfs_abort_transaction(trans, root, ret);
1456		goto fail;
1457	}
1458
1459	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1460	if (ret) {
1461		btrfs_abort_transaction(trans, root, ret);
1462		goto fail;
1463	}
1464
1465	ret = btrfs_insert_dir_item(trans, parent_root,
1466				    dentry->d_name.name, dentry->d_name.len,
1467				    parent_inode, &key,
1468				    BTRFS_FT_DIR, index);
1469	/* We have check then name at the beginning, so it is impossible. */
1470	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1471	if (ret) {
1472		btrfs_abort_transaction(trans, root, ret);
1473		goto fail;
1474	}
1475
1476	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1477					 dentry->d_name.len * 2);
1478	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1479	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1480	if (ret) {
1481		btrfs_abort_transaction(trans, root, ret);
1482		goto fail;
1483	}
1484	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1485				  BTRFS_UUID_KEY_SUBVOL, objectid);
1486	if (ret) {
1487		btrfs_abort_transaction(trans, root, ret);
1488		goto fail;
1489	}
1490	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1491		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1492					  new_root_item->received_uuid,
1493					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1494					  objectid);
1495		if (ret && ret != -EEXIST) {
1496			btrfs_abort_transaction(trans, root, ret);
1497			goto fail;
1498		}
1499	}
1500fail:
1501	pending->error = ret;
1502dir_item_existed:
1503	trans->block_rsv = rsv;
1504	trans->bytes_reserved = 0;
1505no_free_objectid:
1506	kfree(new_root_item);
1507root_item_alloc_fail:
1508	btrfs_free_path(path);
1509	return ret;
1510}
1511
1512/*
1513 * create all the snapshots we've scheduled for creation
1514 */
1515static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1516					     struct btrfs_fs_info *fs_info)
1517{
1518	struct btrfs_pending_snapshot *pending, *next;
1519	struct list_head *head = &trans->transaction->pending_snapshots;
1520	int ret = 0;
1521
1522	list_for_each_entry_safe(pending, next, head, list) {
1523		list_del(&pending->list);
1524		ret = create_pending_snapshot(trans, fs_info, pending);
1525		if (ret)
1526			break;
1527	}
1528	return ret;
1529}
1530
1531static void update_super_roots(struct btrfs_root *root)
1532{
1533	struct btrfs_root_item *root_item;
1534	struct btrfs_super_block *super;
1535
1536	super = root->fs_info->super_copy;
1537
1538	root_item = &root->fs_info->chunk_root->root_item;
1539	super->chunk_root = root_item->bytenr;
1540	super->chunk_root_generation = root_item->generation;
1541	super->chunk_root_level = root_item->level;
1542
1543	root_item = &root->fs_info->tree_root->root_item;
1544	super->root = root_item->bytenr;
1545	super->generation = root_item->generation;
1546	super->root_level = root_item->level;
1547	if (btrfs_test_opt(root, SPACE_CACHE))
1548		super->cache_generation = root_item->generation;
1549	if (root->fs_info->update_uuid_tree_gen)
1550		super->uuid_tree_generation = root_item->generation;
1551}
1552
1553int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1554{
1555	struct btrfs_transaction *trans;
1556	int ret = 0;
1557
1558	spin_lock(&info->trans_lock);
1559	trans = info->running_transaction;
1560	if (trans)
1561		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1562	spin_unlock(&info->trans_lock);
1563	return ret;
1564}
1565
1566int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1567{
1568	struct btrfs_transaction *trans;
1569	int ret = 0;
1570
1571	spin_lock(&info->trans_lock);
1572	trans = info->running_transaction;
1573	if (trans)
1574		ret = is_transaction_blocked(trans);
1575	spin_unlock(&info->trans_lock);
1576	return ret;
1577}
1578
1579/*
1580 * wait for the current transaction commit to start and block subsequent
1581 * transaction joins
1582 */
1583static void wait_current_trans_commit_start(struct btrfs_root *root,
1584					    struct btrfs_transaction *trans)
1585{
1586	wait_event(root->fs_info->transaction_blocked_wait,
1587		   trans->state >= TRANS_STATE_COMMIT_START ||
1588		   trans->aborted);
1589}
1590
1591/*
1592 * wait for the current transaction to start and then become unblocked.
1593 * caller holds ref.
1594 */
1595static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1596					 struct btrfs_transaction *trans)
1597{
1598	wait_event(root->fs_info->transaction_wait,
1599		   trans->state >= TRANS_STATE_UNBLOCKED ||
1600		   trans->aborted);
1601}
1602
1603/*
1604 * commit transactions asynchronously. once btrfs_commit_transaction_async
1605 * returns, any subsequent transaction will not be allowed to join.
1606 */
1607struct btrfs_async_commit {
1608	struct btrfs_trans_handle *newtrans;
1609	struct btrfs_root *root;
1610	struct work_struct work;
1611};
1612
1613static void do_async_commit(struct work_struct *work)
1614{
1615	struct btrfs_async_commit *ac =
1616		container_of(work, struct btrfs_async_commit, work);
1617
1618	/*
1619	 * We've got freeze protection passed with the transaction.
1620	 * Tell lockdep about it.
1621	 */
1622	if (ac->newtrans->type & __TRANS_FREEZABLE)
1623		rwsem_acquire_read(
1624		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1625		     0, 1, _THIS_IP_);
1626
1627	current->journal_info = ac->newtrans;
1628
1629	btrfs_commit_transaction(ac->newtrans, ac->root);
1630	kfree(ac);
1631}
1632
1633int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1634				   struct btrfs_root *root,
1635				   int wait_for_unblock)
1636{
1637	struct btrfs_async_commit *ac;
1638	struct btrfs_transaction *cur_trans;
1639
1640	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1641	if (!ac)
1642		return -ENOMEM;
1643
1644	INIT_WORK(&ac->work, do_async_commit);
1645	ac->root = root;
1646	ac->newtrans = btrfs_join_transaction(root);
1647	if (IS_ERR(ac->newtrans)) {
1648		int err = PTR_ERR(ac->newtrans);
1649		kfree(ac);
1650		return err;
1651	}
1652
1653	/* take transaction reference */
1654	cur_trans = trans->transaction;
1655	atomic_inc(&cur_trans->use_count);
1656
1657	btrfs_end_transaction(trans, root);
1658
1659	/*
1660	 * Tell lockdep we've released the freeze rwsem, since the
1661	 * async commit thread will be the one to unlock it.
1662	 */
1663	if (ac->newtrans->type & __TRANS_FREEZABLE)
1664		rwsem_release(
1665			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1666			1, _THIS_IP_);
1667
1668	schedule_work(&ac->work);
1669
1670	/* wait for transaction to start and unblock */
1671	if (wait_for_unblock)
1672		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1673	else
1674		wait_current_trans_commit_start(root, cur_trans);
1675
1676	if (current->journal_info == trans)
1677		current->journal_info = NULL;
1678
1679	btrfs_put_transaction(cur_trans);
1680	return 0;
1681}
1682
1683
1684static void cleanup_transaction(struct btrfs_trans_handle *trans,
1685				struct btrfs_root *root, int err)
1686{
1687	struct btrfs_transaction *cur_trans = trans->transaction;
1688	DEFINE_WAIT(wait);
1689
1690	WARN_ON(trans->use_count > 1);
1691
1692	btrfs_abort_transaction(trans, root, err);
1693
1694	spin_lock(&root->fs_info->trans_lock);
1695
1696	/*
1697	 * If the transaction is removed from the list, it means this
1698	 * transaction has been committed successfully, so it is impossible
1699	 * to call the cleanup function.
1700	 */
1701	BUG_ON(list_empty(&cur_trans->list));
1702
1703	list_del_init(&cur_trans->list);
1704	if (cur_trans == root->fs_info->running_transaction) {
1705		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1706		spin_unlock(&root->fs_info->trans_lock);
1707		wait_event(cur_trans->writer_wait,
1708			   atomic_read(&cur_trans->num_writers) == 1);
1709
1710		spin_lock(&root->fs_info->trans_lock);
1711	}
1712	spin_unlock(&root->fs_info->trans_lock);
1713
1714	btrfs_cleanup_one_transaction(trans->transaction, root);
1715
1716	spin_lock(&root->fs_info->trans_lock);
1717	if (cur_trans == root->fs_info->running_transaction)
1718		root->fs_info->running_transaction = NULL;
1719	spin_unlock(&root->fs_info->trans_lock);
1720
1721	if (trans->type & __TRANS_FREEZABLE)
1722		sb_end_intwrite(root->fs_info->sb);
1723	btrfs_put_transaction(cur_trans);
1724	btrfs_put_transaction(cur_trans);
1725
1726	trace_btrfs_transaction_commit(root);
1727
1728	if (current->journal_info == trans)
1729		current->journal_info = NULL;
1730	btrfs_scrub_cancel(root->fs_info);
1731
1732	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1733}
1734
1735static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1736{
1737	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1738		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1739	return 0;
1740}
1741
1742static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1743{
1744	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1745		btrfs_wait_ordered_roots(fs_info, -1);
1746}
1747
1748static inline void
1749btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1750			   struct btrfs_fs_info *fs_info)
1751{
1752	struct btrfs_ordered_extent *ordered;
1753
1754	spin_lock(&fs_info->trans_lock);
1755	while (!list_empty(&cur_trans->pending_ordered)) {
1756		ordered = list_first_entry(&cur_trans->pending_ordered,
1757					   struct btrfs_ordered_extent,
1758					   trans_list);
1759		list_del_init(&ordered->trans_list);
1760		spin_unlock(&fs_info->trans_lock);
1761
1762		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1763						   &ordered->flags));
1764		btrfs_put_ordered_extent(ordered);
1765		spin_lock(&fs_info->trans_lock);
1766	}
1767	spin_unlock(&fs_info->trans_lock);
1768}
1769
1770int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1771			     struct btrfs_root *root)
1772{
1773	struct btrfs_transaction *cur_trans = trans->transaction;
1774	struct btrfs_transaction *prev_trans = NULL;
1775	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1776	int ret;
1777
1778	/* Stop the commit early if ->aborted is set */
1779	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1780		ret = cur_trans->aborted;
1781		btrfs_end_transaction(trans, root);
1782		return ret;
1783	}
1784
1785	/* make a pass through all the delayed refs we have so far
1786	 * any runnings procs may add more while we are here
1787	 */
1788	ret = btrfs_run_delayed_refs(trans, root, 0);
1789	if (ret) {
1790		btrfs_end_transaction(trans, root);
1791		return ret;
1792	}
1793
1794	btrfs_trans_release_metadata(trans, root);
1795	trans->block_rsv = NULL;
1796	if (trans->qgroup_reserved) {
1797		btrfs_qgroup_free(root, trans->qgroup_reserved);
1798		trans->qgroup_reserved = 0;
1799	}
1800
1801	cur_trans = trans->transaction;
1802
1803	/*
1804	 * set the flushing flag so procs in this transaction have to
1805	 * start sending their work down.
1806	 */
1807	cur_trans->delayed_refs.flushing = 1;
1808	smp_wmb();
1809
1810	if (!list_empty(&trans->new_bgs))
1811		btrfs_create_pending_block_groups(trans, root);
1812
1813	ret = btrfs_run_delayed_refs(trans, root, 0);
1814	if (ret) {
1815		btrfs_end_transaction(trans, root);
1816		return ret;
1817	}
1818
1819	if (!cur_trans->dirty_bg_run) {
1820		int run_it = 0;
1821
1822		/* this mutex is also taken before trying to set
1823		 * block groups readonly.  We need to make sure
1824		 * that nobody has set a block group readonly
1825		 * after a extents from that block group have been
1826		 * allocated for cache files.  btrfs_set_block_group_ro
1827		 * will wait for the transaction to commit if it
1828		 * finds dirty_bg_run = 1
1829		 *
1830		 * The dirty_bg_run flag is also used to make sure only
1831		 * one process starts all the block group IO.  It wouldn't
1832		 * hurt to have more than one go through, but there's no
1833		 * real advantage to it either.
1834		 */
1835		mutex_lock(&root->fs_info->ro_block_group_mutex);
1836		if (!cur_trans->dirty_bg_run) {
1837			run_it = 1;
1838			cur_trans->dirty_bg_run = 1;
1839		}
1840		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1841
1842		if (run_it)
1843			ret = btrfs_start_dirty_block_groups(trans, root);
1844	}
1845	if (ret) {
1846		btrfs_end_transaction(trans, root);
1847		return ret;
1848	}
1849
1850	spin_lock(&root->fs_info->trans_lock);
1851	list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1852	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1853		spin_unlock(&root->fs_info->trans_lock);
1854		atomic_inc(&cur_trans->use_count);
1855		ret = btrfs_end_transaction(trans, root);
1856
1857		wait_for_commit(root, cur_trans);
1858
1859		if (unlikely(cur_trans->aborted))
1860			ret = cur_trans->aborted;
1861
1862		btrfs_put_transaction(cur_trans);
1863
1864		return ret;
1865	}
1866
1867	cur_trans->state = TRANS_STATE_COMMIT_START;
1868	wake_up(&root->fs_info->transaction_blocked_wait);
1869
1870	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1871		prev_trans = list_entry(cur_trans->list.prev,
1872					struct btrfs_transaction, list);
1873		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1874			atomic_inc(&prev_trans->use_count);
1875			spin_unlock(&root->fs_info->trans_lock);
1876
1877			wait_for_commit(root, prev_trans);
1878			ret = prev_trans->aborted;
1879
1880			btrfs_put_transaction(prev_trans);
1881			if (ret)
1882				goto cleanup_transaction;
1883		} else {
1884			spin_unlock(&root->fs_info->trans_lock);
1885		}
1886	} else {
1887		spin_unlock(&root->fs_info->trans_lock);
1888	}
1889
1890	extwriter_counter_dec(cur_trans, trans->type);
1891
1892	ret = btrfs_start_delalloc_flush(root->fs_info);
1893	if (ret)
1894		goto cleanup_transaction;
1895
1896	ret = btrfs_run_delayed_items(trans, root);
1897	if (ret)
1898		goto cleanup_transaction;
1899
1900	wait_event(cur_trans->writer_wait,
1901		   extwriter_counter_read(cur_trans) == 0);
1902
1903	/* some pending stuffs might be added after the previous flush. */
1904	ret = btrfs_run_delayed_items(trans, root);
1905	if (ret)
1906		goto cleanup_transaction;
1907
1908	btrfs_wait_delalloc_flush(root->fs_info);
1909
1910	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1911
1912	btrfs_scrub_pause(root);
1913	/*
1914	 * Ok now we need to make sure to block out any other joins while we
1915	 * commit the transaction.  We could have started a join before setting
1916	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1917	 */
1918	spin_lock(&root->fs_info->trans_lock);
1919	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1920	spin_unlock(&root->fs_info->trans_lock);
1921	wait_event(cur_trans->writer_wait,
1922		   atomic_read(&cur_trans->num_writers) == 1);
1923
1924	/* ->aborted might be set after the previous check, so check it */
1925	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1926		ret = cur_trans->aborted;
1927		goto scrub_continue;
1928	}
1929	/*
1930	 * the reloc mutex makes sure that we stop
1931	 * the balancing code from coming in and moving
1932	 * extents around in the middle of the commit
1933	 */
1934	mutex_lock(&root->fs_info->reloc_mutex);
1935
1936	/*
1937	 * We needn't worry about the delayed items because we will
1938	 * deal with them in create_pending_snapshot(), which is the
1939	 * core function of the snapshot creation.
1940	 */
1941	ret = create_pending_snapshots(trans, root->fs_info);
1942	if (ret) {
1943		mutex_unlock(&root->fs_info->reloc_mutex);
1944		goto scrub_continue;
1945	}
1946
1947	/*
1948	 * We insert the dir indexes of the snapshots and update the inode
1949	 * of the snapshots' parents after the snapshot creation, so there
1950	 * are some delayed items which are not dealt with. Now deal with
1951	 * them.
1952	 *
1953	 * We needn't worry that this operation will corrupt the snapshots,
1954	 * because all the tree which are snapshoted will be forced to COW
1955	 * the nodes and leaves.
1956	 */
1957	ret = btrfs_run_delayed_items(trans, root);
1958	if (ret) {
1959		mutex_unlock(&root->fs_info->reloc_mutex);
1960		goto scrub_continue;
1961	}
1962
1963	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1964	if (ret) {
1965		mutex_unlock(&root->fs_info->reloc_mutex);
1966		goto scrub_continue;
1967	}
1968
1969	/*
1970	 * make sure none of the code above managed to slip in a
1971	 * delayed item
1972	 */
1973	btrfs_assert_delayed_root_empty(root);
1974
1975	WARN_ON(cur_trans != trans->transaction);
1976
1977	/* btrfs_commit_tree_roots is responsible for getting the
1978	 * various roots consistent with each other.  Every pointer
1979	 * in the tree of tree roots has to point to the most up to date
1980	 * root for every subvolume and other tree.  So, we have to keep
1981	 * the tree logging code from jumping in and changing any
1982	 * of the trees.
1983	 *
1984	 * At this point in the commit, there can't be any tree-log
1985	 * writers, but a little lower down we drop the trans mutex
1986	 * and let new people in.  By holding the tree_log_mutex
1987	 * from now until after the super is written, we avoid races
1988	 * with the tree-log code.
1989	 */
1990	mutex_lock(&root->fs_info->tree_log_mutex);
1991
1992	ret = commit_fs_roots(trans, root);
1993	if (ret) {
1994		mutex_unlock(&root->fs_info->tree_log_mutex);
1995		mutex_unlock(&root->fs_info->reloc_mutex);
1996		goto scrub_continue;
1997	}
1998
1999	/*
2000	 * Since the transaction is done, we can apply the pending changes
2001	 * before the next transaction.
2002	 */
2003	btrfs_apply_pending_changes(root->fs_info);
2004
2005	/* commit_fs_roots gets rid of all the tree log roots, it is now
2006	 * safe to free the root of tree log roots
2007	 */
2008	btrfs_free_log_root_tree(trans, root->fs_info);
2009
2010	ret = commit_cowonly_roots(trans, root);
2011	if (ret) {
2012		mutex_unlock(&root->fs_info->tree_log_mutex);
2013		mutex_unlock(&root->fs_info->reloc_mutex);
2014		goto scrub_continue;
2015	}
2016
2017	/*
2018	 * The tasks which save the space cache and inode cache may also
2019	 * update ->aborted, check it.
2020	 */
2021	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2022		ret = cur_trans->aborted;
2023		mutex_unlock(&root->fs_info->tree_log_mutex);
2024		mutex_unlock(&root->fs_info->reloc_mutex);
2025		goto scrub_continue;
2026	}
2027
2028	btrfs_prepare_extent_commit(trans, root);
2029
2030	cur_trans = root->fs_info->running_transaction;
2031
2032	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2033			    root->fs_info->tree_root->node);
2034	list_add_tail(&root->fs_info->tree_root->dirty_list,
2035		      &cur_trans->switch_commits);
2036
2037	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2038			    root->fs_info->chunk_root->node);
2039	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2040		      &cur_trans->switch_commits);
2041
2042	switch_commit_roots(cur_trans, root->fs_info);
2043
2044	assert_qgroups_uptodate(trans);
2045	ASSERT(list_empty(&cur_trans->dirty_bgs));
2046	ASSERT(list_empty(&cur_trans->io_bgs));
2047	update_super_roots(root);
2048
2049	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2050	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2051	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2052	       sizeof(*root->fs_info->super_copy));
2053
2054	btrfs_update_commit_device_size(root->fs_info);
2055	btrfs_update_commit_device_bytes_used(root, cur_trans);
2056
2057	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2058	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2059
2060	spin_lock(&root->fs_info->trans_lock);
2061	cur_trans->state = TRANS_STATE_UNBLOCKED;
2062	root->fs_info->running_transaction = NULL;
2063	spin_unlock(&root->fs_info->trans_lock);
2064	mutex_unlock(&root->fs_info->reloc_mutex);
2065
2066	wake_up(&root->fs_info->transaction_wait);
2067
2068	ret = btrfs_write_and_wait_transaction(trans, root);
2069	if (ret) {
2070		btrfs_error(root->fs_info, ret,
2071			    "Error while writing out transaction");
2072		mutex_unlock(&root->fs_info->tree_log_mutex);
2073		goto scrub_continue;
2074	}
2075
2076	ret = write_ctree_super(trans, root, 0);
2077	if (ret) {
2078		mutex_unlock(&root->fs_info->tree_log_mutex);
2079		goto scrub_continue;
2080	}
2081
2082	/*
2083	 * the super is written, we can safely allow the tree-loggers
2084	 * to go about their business
2085	 */
2086	mutex_unlock(&root->fs_info->tree_log_mutex);
2087
2088	btrfs_finish_extent_commit(trans, root);
2089
2090	if (cur_trans->have_free_bgs)
2091		btrfs_clear_space_info_full(root->fs_info);
2092
2093	root->fs_info->last_trans_committed = cur_trans->transid;
2094	/*
2095	 * We needn't acquire the lock here because there is no other task
2096	 * which can change it.
2097	 */
2098	cur_trans->state = TRANS_STATE_COMPLETED;
2099	wake_up(&cur_trans->commit_wait);
2100
2101	spin_lock(&root->fs_info->trans_lock);
2102	list_del_init(&cur_trans->list);
2103	spin_unlock(&root->fs_info->trans_lock);
2104
2105	btrfs_put_transaction(cur_trans);
2106	btrfs_put_transaction(cur_trans);
2107
2108	if (trans->type & __TRANS_FREEZABLE)
2109		sb_end_intwrite(root->fs_info->sb);
2110
2111	trace_btrfs_transaction_commit(root);
2112
2113	btrfs_scrub_continue(root);
2114
2115	if (current->journal_info == trans)
2116		current->journal_info = NULL;
2117
2118	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2119
2120	if (current != root->fs_info->transaction_kthread)
2121		btrfs_run_delayed_iputs(root);
2122
2123	return ret;
2124
2125scrub_continue:
2126	btrfs_scrub_continue(root);
2127cleanup_transaction:
2128	btrfs_trans_release_metadata(trans, root);
2129	trans->block_rsv = NULL;
2130	if (trans->qgroup_reserved) {
2131		btrfs_qgroup_free(root, trans->qgroup_reserved);
2132		trans->qgroup_reserved = 0;
2133	}
2134	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2135	if (current->journal_info == trans)
2136		current->journal_info = NULL;
2137	cleanup_transaction(trans, root, ret);
2138
2139	return ret;
2140}
2141
2142/*
2143 * return < 0 if error
2144 * 0 if there are no more dead_roots at the time of call
2145 * 1 there are more to be processed, call me again
2146 *
2147 * The return value indicates there are certainly more snapshots to delete, but
2148 * if there comes a new one during processing, it may return 0. We don't mind,
2149 * because btrfs_commit_super will poke cleaner thread and it will process it a
2150 * few seconds later.
2151 */
2152int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2153{
2154	int ret;
2155	struct btrfs_fs_info *fs_info = root->fs_info;
2156
2157	spin_lock(&fs_info->trans_lock);
2158	if (list_empty(&fs_info->dead_roots)) {
2159		spin_unlock(&fs_info->trans_lock);
2160		return 0;
2161	}
2162	root = list_first_entry(&fs_info->dead_roots,
2163			struct btrfs_root, root_list);
2164	list_del_init(&root->root_list);
2165	spin_unlock(&fs_info->trans_lock);
2166
2167	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2168
2169	btrfs_kill_all_delayed_nodes(root);
2170
2171	if (btrfs_header_backref_rev(root->node) <
2172			BTRFS_MIXED_BACKREF_REV)
2173		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2174	else
2175		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2176
2177	return (ret < 0) ? 0 : 1;
2178}
2179
2180void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2181{
2182	unsigned long prev;
2183	unsigned long bit;
2184
2185	prev = xchg(&fs_info->pending_changes, 0);
2186	if (!prev)
2187		return;
2188
2189	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2190	if (prev & bit)
2191		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2192	prev &= ~bit;
2193
2194	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2195	if (prev & bit)
2196		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2197	prev &= ~bit;
2198
2199	bit = 1 << BTRFS_PENDING_COMMIT;
2200	if (prev & bit)
2201		btrfs_debug(fs_info, "pending commit done");
2202	prev &= ~bit;
2203
2204	if (prev)
2205		btrfs_warn(fs_info,
2206			"unknown pending changes left 0x%lx, ignoring", prev);
2207}
2208