1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "dev-replace.h"
31 
32 #undef DEBUG
33 
34 /*
35  * This is the implementation for the generic read ahead framework.
36  *
37  * To trigger a readahead, btrfs_reada_add must be called. It will start
38  * a read ahead for the given range [start, end) on tree root. The returned
39  * handle can either be used to wait on the readahead to finish
40  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
41  *
42  * The read ahead works as follows:
43  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
44  * reada_start_machine will then search for extents to prefetch and trigger
45  * some reads. When a read finishes for a node, all contained node/leaf
46  * pointers that lie in the given range will also be enqueued. The reads will
47  * be triggered in sequential order, thus giving a big win over a naive
48  * enumeration. It will also make use of multi-device layouts. Each disk
49  * will have its on read pointer and all disks will by utilized in parallel.
50  * Also will no two disks read both sides of a mirror simultaneously, as this
51  * would waste seeking capacity. Instead both disks will read different parts
52  * of the filesystem.
53  * Any number of readaheads can be started in parallel. The read order will be
54  * determined globally, i.e. 2 parallel readaheads will normally finish faster
55  * than the 2 started one after another.
56  */
57 
58 #define MAX_IN_FLIGHT 6
59 
60 struct reada_extctl {
61 	struct list_head	list;
62 	struct reada_control	*rc;
63 	u64			generation;
64 };
65 
66 struct reada_extent {
67 	u64			logical;
68 	struct btrfs_key	top;
69 	int			err;
70 	struct list_head	extctl;
71 	int 			refcnt;
72 	spinlock_t		lock;
73 	struct reada_zone	*zones[BTRFS_MAX_MIRRORS];
74 	int			nzones;
75 	struct btrfs_device	*scheduled_for;
76 };
77 
78 struct reada_zone {
79 	u64			start;
80 	u64			end;
81 	u64			elems;
82 	struct list_head	list;
83 	spinlock_t		lock;
84 	int			locked;
85 	struct btrfs_device	*device;
86 	struct btrfs_device	*devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87 							   * self */
88 	int			ndevs;
89 	struct kref		refcnt;
90 };
91 
92 struct reada_machine_work {
93 	struct btrfs_work	work;
94 	struct btrfs_fs_info	*fs_info;
95 };
96 
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102 
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104 			   struct btrfs_key *top, int level, u64 generation);
105 
106 /* recurses */
107 /* in case of err, eb might be NULL */
__readahead_hook(struct btrfs_root * root,struct extent_buffer * eb,u64 start,int err)108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109 			    u64 start, int err)
110 {
111 	int level = 0;
112 	int nritems;
113 	int i;
114 	u64 bytenr;
115 	u64 generation;
116 	struct reada_extent *re;
117 	struct btrfs_fs_info *fs_info = root->fs_info;
118 	struct list_head list;
119 	unsigned long index = start >> PAGE_CACHE_SHIFT;
120 	struct btrfs_device *for_dev;
121 
122 	if (eb)
123 		level = btrfs_header_level(eb);
124 
125 	/* find extent */
126 	spin_lock(&fs_info->reada_lock);
127 	re = radix_tree_lookup(&fs_info->reada_tree, index);
128 	if (re)
129 		re->refcnt++;
130 	spin_unlock(&fs_info->reada_lock);
131 
132 	if (!re)
133 		return -1;
134 
135 	spin_lock(&re->lock);
136 	/*
137 	 * just take the full list from the extent. afterwards we
138 	 * don't need the lock anymore
139 	 */
140 	list_replace_init(&re->extctl, &list);
141 	for_dev = re->scheduled_for;
142 	re->scheduled_for = NULL;
143 	spin_unlock(&re->lock);
144 
145 	if (err == 0) {
146 		nritems = level ? btrfs_header_nritems(eb) : 0;
147 		generation = btrfs_header_generation(eb);
148 		/*
149 		 * FIXME: currently we just set nritems to 0 if this is a leaf,
150 		 * effectively ignoring the content. In a next step we could
151 		 * trigger more readahead depending from the content, e.g.
152 		 * fetch the checksums for the extents in the leaf.
153 		 */
154 	} else {
155 		/*
156 		 * this is the error case, the extent buffer has not been
157 		 * read correctly. We won't access anything from it and
158 		 * just cleanup our data structures. Effectively this will
159 		 * cut the branch below this node from read ahead.
160 		 */
161 		nritems = 0;
162 		generation = 0;
163 	}
164 
165 	for (i = 0; i < nritems; i++) {
166 		struct reada_extctl *rec;
167 		u64 n_gen;
168 		struct btrfs_key key;
169 		struct btrfs_key next_key;
170 
171 		btrfs_node_key_to_cpu(eb, &key, i);
172 		if (i + 1 < nritems)
173 			btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174 		else
175 			next_key = re->top;
176 		bytenr = btrfs_node_blockptr(eb, i);
177 		n_gen = btrfs_node_ptr_generation(eb, i);
178 
179 		list_for_each_entry(rec, &list, list) {
180 			struct reada_control *rc = rec->rc;
181 
182 			/*
183 			 * if the generation doesn't match, just ignore this
184 			 * extctl. This will probably cut off a branch from
185 			 * prefetch. Alternatively one could start a new (sub-)
186 			 * prefetch for this branch, starting again from root.
187 			 * FIXME: move the generation check out of this loop
188 			 */
189 #ifdef DEBUG
190 			if (rec->generation != generation) {
191 				btrfs_debug(root->fs_info,
192 					   "generation mismatch for (%llu,%d,%llu) %llu != %llu",
193 				       key.objectid, key.type, key.offset,
194 				       rec->generation, generation);
195 			}
196 #endif
197 			if (rec->generation == generation &&
198 			    btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199 			    btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200 				reada_add_block(rc, bytenr, &next_key,
201 						level - 1, n_gen);
202 		}
203 	}
204 	/*
205 	 * free extctl records
206 	 */
207 	while (!list_empty(&list)) {
208 		struct reada_control *rc;
209 		struct reada_extctl *rec;
210 
211 		rec = list_first_entry(&list, struct reada_extctl, list);
212 		list_del(&rec->list);
213 		rc = rec->rc;
214 		kfree(rec);
215 
216 		kref_get(&rc->refcnt);
217 		if (atomic_dec_and_test(&rc->elems)) {
218 			kref_put(&rc->refcnt, reada_control_release);
219 			wake_up(&rc->wait);
220 		}
221 		kref_put(&rc->refcnt, reada_control_release);
222 
223 		reada_extent_put(fs_info, re);	/* one ref for each entry */
224 	}
225 	reada_extent_put(fs_info, re);	/* our ref */
226 	if (for_dev)
227 		atomic_dec(&for_dev->reada_in_flight);
228 
229 	return 0;
230 }
231 
232 /*
233  * start is passed separately in case eb in NULL, which may be the case with
234  * failed I/O
235  */
btree_readahead_hook(struct btrfs_root * root,struct extent_buffer * eb,u64 start,int err)236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237 			 u64 start, int err)
238 {
239 	int ret;
240 
241 	ret = __readahead_hook(root, eb, start, err);
242 
243 	reada_start_machine(root->fs_info);
244 
245 	return ret;
246 }
247 
reada_find_zone(struct btrfs_fs_info * fs_info,struct btrfs_device * dev,u64 logical,struct btrfs_bio * bbio)248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249 					  struct btrfs_device *dev, u64 logical,
250 					  struct btrfs_bio *bbio)
251 {
252 	int ret;
253 	struct reada_zone *zone;
254 	struct btrfs_block_group_cache *cache = NULL;
255 	u64 start;
256 	u64 end;
257 	int i;
258 
259 	zone = NULL;
260 	spin_lock(&fs_info->reada_lock);
261 	ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262 				     logical >> PAGE_CACHE_SHIFT, 1);
263 	if (ret == 1)
264 		kref_get(&zone->refcnt);
265 	spin_unlock(&fs_info->reada_lock);
266 
267 	if (ret == 1) {
268 		if (logical >= zone->start && logical < zone->end)
269 			return zone;
270 		spin_lock(&fs_info->reada_lock);
271 		kref_put(&zone->refcnt, reada_zone_release);
272 		spin_unlock(&fs_info->reada_lock);
273 	}
274 
275 	cache = btrfs_lookup_block_group(fs_info, logical);
276 	if (!cache)
277 		return NULL;
278 
279 	start = cache->key.objectid;
280 	end = start + cache->key.offset - 1;
281 	btrfs_put_block_group(cache);
282 
283 	zone = kzalloc(sizeof(*zone), GFP_NOFS);
284 	if (!zone)
285 		return NULL;
286 
287 	zone->start = start;
288 	zone->end = end;
289 	INIT_LIST_HEAD(&zone->list);
290 	spin_lock_init(&zone->lock);
291 	zone->locked = 0;
292 	kref_init(&zone->refcnt);
293 	zone->elems = 0;
294 	zone->device = dev; /* our device always sits at index 0 */
295 	for (i = 0; i < bbio->num_stripes; ++i) {
296 		/* bounds have already been checked */
297 		zone->devs[i] = bbio->stripes[i].dev;
298 	}
299 	zone->ndevs = bbio->num_stripes;
300 
301 	spin_lock(&fs_info->reada_lock);
302 	ret = radix_tree_insert(&dev->reada_zones,
303 				(unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304 				zone);
305 
306 	if (ret == -EEXIST) {
307 		kfree(zone);
308 		ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309 					     logical >> PAGE_CACHE_SHIFT, 1);
310 		if (ret == 1)
311 			kref_get(&zone->refcnt);
312 	}
313 	spin_unlock(&fs_info->reada_lock);
314 
315 	return zone;
316 }
317 
reada_find_extent(struct btrfs_root * root,u64 logical,struct btrfs_key * top,int level)318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319 					      u64 logical,
320 					      struct btrfs_key *top, int level)
321 {
322 	int ret;
323 	struct reada_extent *re = NULL;
324 	struct reada_extent *re_exist = NULL;
325 	struct btrfs_fs_info *fs_info = root->fs_info;
326 	struct btrfs_bio *bbio = NULL;
327 	struct btrfs_device *dev;
328 	struct btrfs_device *prev_dev;
329 	u32 blocksize;
330 	u64 length;
331 	int nzones = 0;
332 	int i;
333 	unsigned long index = logical >> PAGE_CACHE_SHIFT;
334 	int dev_replace_is_ongoing;
335 
336 	spin_lock(&fs_info->reada_lock);
337 	re = radix_tree_lookup(&fs_info->reada_tree, index);
338 	if (re)
339 		re->refcnt++;
340 	spin_unlock(&fs_info->reada_lock);
341 
342 	if (re)
343 		return re;
344 
345 	re = kzalloc(sizeof(*re), GFP_NOFS);
346 	if (!re)
347 		return NULL;
348 
349 	blocksize = root->nodesize;
350 	re->logical = logical;
351 	re->top = *top;
352 	INIT_LIST_HEAD(&re->extctl);
353 	spin_lock_init(&re->lock);
354 	re->refcnt = 1;
355 
356 	/*
357 	 * map block
358 	 */
359 	length = blocksize;
360 	ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, &length,
361 			      &bbio, 0);
362 	if (ret || !bbio || length < blocksize)
363 		goto error;
364 
365 	if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
366 		btrfs_err(root->fs_info,
367 			   "readahead: more than %d copies not supported",
368 			   BTRFS_MAX_MIRRORS);
369 		goto error;
370 	}
371 
372 	for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
373 		struct reada_zone *zone;
374 
375 		dev = bbio->stripes[nzones].dev;
376 		zone = reada_find_zone(fs_info, dev, logical, bbio);
377 		if (!zone)
378 			break;
379 
380 		re->zones[nzones] = zone;
381 		spin_lock(&zone->lock);
382 		if (!zone->elems)
383 			kref_get(&zone->refcnt);
384 		++zone->elems;
385 		spin_unlock(&zone->lock);
386 		spin_lock(&fs_info->reada_lock);
387 		kref_put(&zone->refcnt, reada_zone_release);
388 		spin_unlock(&fs_info->reada_lock);
389 	}
390 	re->nzones = nzones;
391 	if (nzones == 0) {
392 		/* not a single zone found, error and out */
393 		goto error;
394 	}
395 
396 	/* insert extent in reada_tree + all per-device trees, all or nothing */
397 	btrfs_dev_replace_lock(&fs_info->dev_replace);
398 	spin_lock(&fs_info->reada_lock);
399 	ret = radix_tree_insert(&fs_info->reada_tree, index, re);
400 	if (ret == -EEXIST) {
401 		re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
402 		BUG_ON(!re_exist);
403 		re_exist->refcnt++;
404 		spin_unlock(&fs_info->reada_lock);
405 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
406 		goto error;
407 	}
408 	if (ret) {
409 		spin_unlock(&fs_info->reada_lock);
410 		btrfs_dev_replace_unlock(&fs_info->dev_replace);
411 		goto error;
412 	}
413 	prev_dev = NULL;
414 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(
415 			&fs_info->dev_replace);
416 	for (i = 0; i < nzones; ++i) {
417 		dev = bbio->stripes[i].dev;
418 		if (dev == prev_dev) {
419 			/*
420 			 * in case of DUP, just add the first zone. As both
421 			 * are on the same device, there's nothing to gain
422 			 * from adding both.
423 			 * Also, it wouldn't work, as the tree is per device
424 			 * and adding would fail with EEXIST
425 			 */
426 			continue;
427 		}
428 		if (!dev->bdev) {
429 			/*
430 			 * cannot read ahead on missing device, but for RAID5/6,
431 			 * REQ_GET_READ_MIRRORS return 1. So don't skip missing
432 			 * device for such case.
433 			 */
434 			if (nzones > 1)
435 				continue;
436 		}
437 		if (dev_replace_is_ongoing &&
438 		    dev == fs_info->dev_replace.tgtdev) {
439 			/*
440 			 * as this device is selected for reading only as
441 			 * a last resort, skip it for read ahead.
442 			 */
443 			continue;
444 		}
445 		prev_dev = dev;
446 		ret = radix_tree_insert(&dev->reada_extents, index, re);
447 		if (ret) {
448 			while (--i >= 0) {
449 				dev = bbio->stripes[i].dev;
450 				BUG_ON(dev == NULL);
451 				/* ignore whether the entry was inserted */
452 				radix_tree_delete(&dev->reada_extents, index);
453 			}
454 			BUG_ON(fs_info == NULL);
455 			radix_tree_delete(&fs_info->reada_tree, index);
456 			spin_unlock(&fs_info->reada_lock);
457 			btrfs_dev_replace_unlock(&fs_info->dev_replace);
458 			goto error;
459 		}
460 	}
461 	spin_unlock(&fs_info->reada_lock);
462 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
463 
464 	btrfs_put_bbio(bbio);
465 	return re;
466 
467 error:
468 	while (nzones) {
469 		struct reada_zone *zone;
470 
471 		--nzones;
472 		zone = re->zones[nzones];
473 		kref_get(&zone->refcnt);
474 		spin_lock(&zone->lock);
475 		--zone->elems;
476 		if (zone->elems == 0) {
477 			/*
478 			 * no fs_info->reada_lock needed, as this can't be
479 			 * the last ref
480 			 */
481 			kref_put(&zone->refcnt, reada_zone_release);
482 		}
483 		spin_unlock(&zone->lock);
484 
485 		spin_lock(&fs_info->reada_lock);
486 		kref_put(&zone->refcnt, reada_zone_release);
487 		spin_unlock(&fs_info->reada_lock);
488 	}
489 	btrfs_put_bbio(bbio);
490 	kfree(re);
491 	return re_exist;
492 }
493 
reada_extent_put(struct btrfs_fs_info * fs_info,struct reada_extent * re)494 static void reada_extent_put(struct btrfs_fs_info *fs_info,
495 			     struct reada_extent *re)
496 {
497 	int i;
498 	unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
499 
500 	spin_lock(&fs_info->reada_lock);
501 	if (--re->refcnt) {
502 		spin_unlock(&fs_info->reada_lock);
503 		return;
504 	}
505 
506 	radix_tree_delete(&fs_info->reada_tree, index);
507 	for (i = 0; i < re->nzones; ++i) {
508 		struct reada_zone *zone = re->zones[i];
509 
510 		radix_tree_delete(&zone->device->reada_extents, index);
511 	}
512 
513 	spin_unlock(&fs_info->reada_lock);
514 
515 	for (i = 0; i < re->nzones; ++i) {
516 		struct reada_zone *zone = re->zones[i];
517 
518 		kref_get(&zone->refcnt);
519 		spin_lock(&zone->lock);
520 		--zone->elems;
521 		if (zone->elems == 0) {
522 			/* no fs_info->reada_lock needed, as this can't be
523 			 * the last ref */
524 			kref_put(&zone->refcnt, reada_zone_release);
525 		}
526 		spin_unlock(&zone->lock);
527 
528 		spin_lock(&fs_info->reada_lock);
529 		kref_put(&zone->refcnt, reada_zone_release);
530 		spin_unlock(&fs_info->reada_lock);
531 	}
532 	if (re->scheduled_for)
533 		atomic_dec(&re->scheduled_for->reada_in_flight);
534 
535 	kfree(re);
536 }
537 
reada_zone_release(struct kref * kref)538 static void reada_zone_release(struct kref *kref)
539 {
540 	struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
541 
542 	radix_tree_delete(&zone->device->reada_zones,
543 			  zone->end >> PAGE_CACHE_SHIFT);
544 
545 	kfree(zone);
546 }
547 
reada_control_release(struct kref * kref)548 static void reada_control_release(struct kref *kref)
549 {
550 	struct reada_control *rc = container_of(kref, struct reada_control,
551 						refcnt);
552 
553 	kfree(rc);
554 }
555 
reada_add_block(struct reada_control * rc,u64 logical,struct btrfs_key * top,int level,u64 generation)556 static int reada_add_block(struct reada_control *rc, u64 logical,
557 			   struct btrfs_key *top, int level, u64 generation)
558 {
559 	struct btrfs_root *root = rc->root;
560 	struct reada_extent *re;
561 	struct reada_extctl *rec;
562 
563 	re = reada_find_extent(root, logical, top, level); /* takes one ref */
564 	if (!re)
565 		return -1;
566 
567 	rec = kzalloc(sizeof(*rec), GFP_NOFS);
568 	if (!rec) {
569 		reada_extent_put(root->fs_info, re);
570 		return -1;
571 	}
572 
573 	rec->rc = rc;
574 	rec->generation = generation;
575 	atomic_inc(&rc->elems);
576 
577 	spin_lock(&re->lock);
578 	list_add_tail(&rec->list, &re->extctl);
579 	spin_unlock(&re->lock);
580 
581 	/* leave the ref on the extent */
582 
583 	return 0;
584 }
585 
586 /*
587  * called with fs_info->reada_lock held
588  */
reada_peer_zones_set_lock(struct reada_zone * zone,int lock)589 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
590 {
591 	int i;
592 	unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
593 
594 	for (i = 0; i < zone->ndevs; ++i) {
595 		struct reada_zone *peer;
596 		peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
597 		if (peer && peer->device != zone->device)
598 			peer->locked = lock;
599 	}
600 }
601 
602 /*
603  * called with fs_info->reada_lock held
604  */
reada_pick_zone(struct btrfs_device * dev)605 static int reada_pick_zone(struct btrfs_device *dev)
606 {
607 	struct reada_zone *top_zone = NULL;
608 	struct reada_zone *top_locked_zone = NULL;
609 	u64 top_elems = 0;
610 	u64 top_locked_elems = 0;
611 	unsigned long index = 0;
612 	int ret;
613 
614 	if (dev->reada_curr_zone) {
615 		reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
616 		kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
617 		dev->reada_curr_zone = NULL;
618 	}
619 	/* pick the zone with the most elements */
620 	while (1) {
621 		struct reada_zone *zone;
622 
623 		ret = radix_tree_gang_lookup(&dev->reada_zones,
624 					     (void **)&zone, index, 1);
625 		if (ret == 0)
626 			break;
627 		index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
628 		if (zone->locked) {
629 			if (zone->elems > top_locked_elems) {
630 				top_locked_elems = zone->elems;
631 				top_locked_zone = zone;
632 			}
633 		} else {
634 			if (zone->elems > top_elems) {
635 				top_elems = zone->elems;
636 				top_zone = zone;
637 			}
638 		}
639 	}
640 	if (top_zone)
641 		dev->reada_curr_zone = top_zone;
642 	else if (top_locked_zone)
643 		dev->reada_curr_zone = top_locked_zone;
644 	else
645 		return 0;
646 
647 	dev->reada_next = dev->reada_curr_zone->start;
648 	kref_get(&dev->reada_curr_zone->refcnt);
649 	reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
650 
651 	return 1;
652 }
653 
reada_start_machine_dev(struct btrfs_fs_info * fs_info,struct btrfs_device * dev)654 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
655 				   struct btrfs_device *dev)
656 {
657 	struct reada_extent *re = NULL;
658 	int mirror_num = 0;
659 	struct extent_buffer *eb = NULL;
660 	u64 logical;
661 	int ret;
662 	int i;
663 	int need_kick = 0;
664 
665 	spin_lock(&fs_info->reada_lock);
666 	if (dev->reada_curr_zone == NULL) {
667 		ret = reada_pick_zone(dev);
668 		if (!ret) {
669 			spin_unlock(&fs_info->reada_lock);
670 			return 0;
671 		}
672 	}
673 	/*
674 	 * FIXME currently we issue the reads one extent at a time. If we have
675 	 * a contiguous block of extents, we could also coagulate them or use
676 	 * plugging to speed things up
677 	 */
678 	ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
679 				     dev->reada_next >> PAGE_CACHE_SHIFT, 1);
680 	if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
681 		ret = reada_pick_zone(dev);
682 		if (!ret) {
683 			spin_unlock(&fs_info->reada_lock);
684 			return 0;
685 		}
686 		re = NULL;
687 		ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
688 					dev->reada_next >> PAGE_CACHE_SHIFT, 1);
689 	}
690 	if (ret == 0) {
691 		spin_unlock(&fs_info->reada_lock);
692 		return 0;
693 	}
694 	dev->reada_next = re->logical + fs_info->tree_root->nodesize;
695 	re->refcnt++;
696 
697 	spin_unlock(&fs_info->reada_lock);
698 
699 	/*
700 	 * find mirror num
701 	 */
702 	for (i = 0; i < re->nzones; ++i) {
703 		if (re->zones[i]->device == dev) {
704 			mirror_num = i + 1;
705 			break;
706 		}
707 	}
708 	logical = re->logical;
709 
710 	spin_lock(&re->lock);
711 	if (re->scheduled_for == NULL) {
712 		re->scheduled_for = dev;
713 		need_kick = 1;
714 	}
715 	spin_unlock(&re->lock);
716 
717 	reada_extent_put(fs_info, re);
718 
719 	if (!need_kick)
720 		return 0;
721 
722 	atomic_inc(&dev->reada_in_flight);
723 	ret = reada_tree_block_flagged(fs_info->extent_root, logical,
724 			mirror_num, &eb);
725 	if (ret)
726 		__readahead_hook(fs_info->extent_root, NULL, logical, ret);
727 	else if (eb)
728 		__readahead_hook(fs_info->extent_root, eb, eb->start, ret);
729 
730 	if (eb)
731 		free_extent_buffer(eb);
732 
733 	return 1;
734 
735 }
736 
reada_start_machine_worker(struct btrfs_work * work)737 static void reada_start_machine_worker(struct btrfs_work *work)
738 {
739 	struct reada_machine_work *rmw;
740 	struct btrfs_fs_info *fs_info;
741 	int old_ioprio;
742 
743 	rmw = container_of(work, struct reada_machine_work, work);
744 	fs_info = rmw->fs_info;
745 
746 	kfree(rmw);
747 
748 	old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
749 				       task_nice_ioprio(current));
750 	set_task_ioprio(current, BTRFS_IOPRIO_READA);
751 	__reada_start_machine(fs_info);
752 	set_task_ioprio(current, old_ioprio);
753 }
754 
__reada_start_machine(struct btrfs_fs_info * fs_info)755 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
756 {
757 	struct btrfs_device *device;
758 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
759 	u64 enqueued;
760 	u64 total = 0;
761 	int i;
762 
763 	do {
764 		enqueued = 0;
765 		list_for_each_entry(device, &fs_devices->devices, dev_list) {
766 			if (atomic_read(&device->reada_in_flight) <
767 			    MAX_IN_FLIGHT)
768 				enqueued += reada_start_machine_dev(fs_info,
769 								    device);
770 		}
771 		total += enqueued;
772 	} while (enqueued && total < 10000);
773 
774 	if (enqueued == 0)
775 		return;
776 
777 	/*
778 	 * If everything is already in the cache, this is effectively single
779 	 * threaded. To a) not hold the caller for too long and b) to utilize
780 	 * more cores, we broke the loop above after 10000 iterations and now
781 	 * enqueue to workers to finish it. This will distribute the load to
782 	 * the cores.
783 	 */
784 	for (i = 0; i < 2; ++i)
785 		reada_start_machine(fs_info);
786 }
787 
reada_start_machine(struct btrfs_fs_info * fs_info)788 static void reada_start_machine(struct btrfs_fs_info *fs_info)
789 {
790 	struct reada_machine_work *rmw;
791 
792 	rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
793 	if (!rmw) {
794 		/* FIXME we cannot handle this properly right now */
795 		BUG();
796 	}
797 	btrfs_init_work(&rmw->work, btrfs_readahead_helper,
798 			reada_start_machine_worker, NULL, NULL);
799 	rmw->fs_info = fs_info;
800 
801 	btrfs_queue_work(fs_info->readahead_workers, &rmw->work);
802 }
803 
804 #ifdef DEBUG
dump_devs(struct btrfs_fs_info * fs_info,int all)805 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
806 {
807 	struct btrfs_device *device;
808 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
809 	unsigned long index;
810 	int ret;
811 	int i;
812 	int j;
813 	int cnt;
814 
815 	spin_lock(&fs_info->reada_lock);
816 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
817 		printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
818 			atomic_read(&device->reada_in_flight));
819 		index = 0;
820 		while (1) {
821 			struct reada_zone *zone;
822 			ret = radix_tree_gang_lookup(&device->reada_zones,
823 						     (void **)&zone, index, 1);
824 			if (ret == 0)
825 				break;
826 			printk(KERN_DEBUG "  zone %llu-%llu elems %llu locked "
827 				"%d devs", zone->start, zone->end, zone->elems,
828 				zone->locked);
829 			for (j = 0; j < zone->ndevs; ++j) {
830 				printk(KERN_CONT " %lld",
831 					zone->devs[j]->devid);
832 			}
833 			if (device->reada_curr_zone == zone)
834 				printk(KERN_CONT " curr off %llu",
835 					device->reada_next - zone->start);
836 			printk(KERN_CONT "\n");
837 			index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
838 		}
839 		cnt = 0;
840 		index = 0;
841 		while (all) {
842 			struct reada_extent *re = NULL;
843 
844 			ret = radix_tree_gang_lookup(&device->reada_extents,
845 						     (void **)&re, index, 1);
846 			if (ret == 0)
847 				break;
848 			printk(KERN_DEBUG
849 				"  re: logical %llu size %u empty %d for %lld",
850 				re->logical, fs_info->tree_root->nodesize,
851 				list_empty(&re->extctl), re->scheduled_for ?
852 				re->scheduled_for->devid : -1);
853 
854 			for (i = 0; i < re->nzones; ++i) {
855 				printk(KERN_CONT " zone %llu-%llu devs",
856 					re->zones[i]->start,
857 					re->zones[i]->end);
858 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
859 					printk(KERN_CONT " %lld",
860 						re->zones[i]->devs[j]->devid);
861 				}
862 			}
863 			printk(KERN_CONT "\n");
864 			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
865 			if (++cnt > 15)
866 				break;
867 		}
868 	}
869 
870 	index = 0;
871 	cnt = 0;
872 	while (all) {
873 		struct reada_extent *re = NULL;
874 
875 		ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
876 					     index, 1);
877 		if (ret == 0)
878 			break;
879 		if (!re->scheduled_for) {
880 			index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
881 			continue;
882 		}
883 		printk(KERN_DEBUG
884 			"re: logical %llu size %u list empty %d for %lld",
885 			re->logical, fs_info->tree_root->nodesize,
886 			list_empty(&re->extctl),
887 			re->scheduled_for ? re->scheduled_for->devid : -1);
888 		for (i = 0; i < re->nzones; ++i) {
889 			printk(KERN_CONT " zone %llu-%llu devs",
890 				re->zones[i]->start,
891 				re->zones[i]->end);
892 			for (i = 0; i < re->nzones; ++i) {
893 				printk(KERN_CONT " zone %llu-%llu devs",
894 					re->zones[i]->start,
895 					re->zones[i]->end);
896 				for (j = 0; j < re->zones[i]->ndevs; ++j) {
897 					printk(KERN_CONT " %lld",
898 						re->zones[i]->devs[j]->devid);
899 				}
900 			}
901 		}
902 		printk(KERN_CONT "\n");
903 		index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
904 	}
905 	spin_unlock(&fs_info->reada_lock);
906 }
907 #endif
908 
909 /*
910  * interface
911  */
btrfs_reada_add(struct btrfs_root * root,struct btrfs_key * key_start,struct btrfs_key * key_end)912 struct reada_control *btrfs_reada_add(struct btrfs_root *root,
913 			struct btrfs_key *key_start, struct btrfs_key *key_end)
914 {
915 	struct reada_control *rc;
916 	u64 start;
917 	u64 generation;
918 	int level;
919 	struct extent_buffer *node;
920 	static struct btrfs_key max_key = {
921 		.objectid = (u64)-1,
922 		.type = (u8)-1,
923 		.offset = (u64)-1
924 	};
925 
926 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
927 	if (!rc)
928 		return ERR_PTR(-ENOMEM);
929 
930 	rc->root = root;
931 	rc->key_start = *key_start;
932 	rc->key_end = *key_end;
933 	atomic_set(&rc->elems, 0);
934 	init_waitqueue_head(&rc->wait);
935 	kref_init(&rc->refcnt);
936 	kref_get(&rc->refcnt); /* one ref for having elements */
937 
938 	node = btrfs_root_node(root);
939 	start = node->start;
940 	level = btrfs_header_level(node);
941 	generation = btrfs_header_generation(node);
942 	free_extent_buffer(node);
943 
944 	if (reada_add_block(rc, start, &max_key, level, generation)) {
945 		kfree(rc);
946 		return ERR_PTR(-ENOMEM);
947 	}
948 
949 	reada_start_machine(root->fs_info);
950 
951 	return rc;
952 }
953 
954 #ifdef DEBUG
btrfs_reada_wait(void * handle)955 int btrfs_reada_wait(void *handle)
956 {
957 	struct reada_control *rc = handle;
958 
959 	while (atomic_read(&rc->elems)) {
960 		wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
961 				   5 * HZ);
962 		dump_devs(rc->root->fs_info,
963 			  atomic_read(&rc->elems) < 10 ? 1 : 0);
964 	}
965 
966 	dump_devs(rc->root->fs_info, atomic_read(&rc->elems) < 10 ? 1 : 0);
967 
968 	kref_put(&rc->refcnt, reada_control_release);
969 
970 	return 0;
971 }
972 #else
btrfs_reada_wait(void * handle)973 int btrfs_reada_wait(void *handle)
974 {
975 	struct reada_control *rc = handle;
976 
977 	while (atomic_read(&rc->elems)) {
978 		wait_event(rc->wait, atomic_read(&rc->elems) == 0);
979 	}
980 
981 	kref_put(&rc->refcnt, reada_control_release);
982 
983 	return 0;
984 }
985 #endif
986 
btrfs_reada_detach(void * handle)987 void btrfs_reada_detach(void *handle)
988 {
989 	struct reada_control *rc = handle;
990 
991 	kref_put(&rc->refcnt, reada_control_release);
992 }
993