1/*
2 * USB Gadget driver for LPC32xx
3 *
4 * Authors:
5 *    Kevin Wells <kevin.wells@nxp.com>
6 *    Mike James
7 *    Roland Stigge <stigge@antcom.de>
8 *
9 * Copyright (C) 2006 Philips Semiconductors
10 * Copyright (C) 2009 NXP Semiconductors
11 * Copyright (C) 2012 Roland Stigge
12 *
13 * Note: This driver is based on original work done by Mike James for
14 *       the LPC3180.
15 *
16 * This program is free software; you can redistribute it and/or modify
17 * it under the terms of the GNU General Public License as published by
18 * the Free Software Foundation; either version 2 of the License, or
19 * (at your option) any later version.
20 *
21 * This program is distributed in the hope that it will be useful,
22 * but WITHOUT ANY WARRANTY; without even the implied warranty of
23 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
24 * GNU General Public License for more details.
25 *
26 * You should have received a copy of the GNU General Public License
27 * along with this program; if not, write to the Free Software
28 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
29 */
30
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/platform_device.h>
34#include <linux/delay.h>
35#include <linux/ioport.h>
36#include <linux/slab.h>
37#include <linux/errno.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/interrupt.h>
41#include <linux/proc_fs.h>
42#include <linux/clk.h>
43#include <linux/usb/ch9.h>
44#include <linux/usb/gadget.h>
45#include <linux/i2c.h>
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48#include <linux/dma-mapping.h>
49#include <linux/dmapool.h>
50#include <linux/workqueue.h>
51#include <linux/of.h>
52#include <linux/usb/isp1301.h>
53
54#include <asm/byteorder.h>
55#include <mach/hardware.h>
56#include <linux/io.h>
57#include <asm/irq.h>
58
59#include <mach/platform.h>
60#include <mach/irqs.h>
61#include <mach/board.h>
62#ifdef CONFIG_USB_GADGET_DEBUG_FILES
63#include <linux/debugfs.h>
64#include <linux/seq_file.h>
65#endif
66
67/*
68 * USB device configuration structure
69 */
70typedef void (*usc_chg_event)(int);
71struct lpc32xx_usbd_cfg {
72	int vbus_drv_pol;   /* 0=active low drive for VBUS via ISP1301 */
73	usc_chg_event conn_chgb; /* Connection change event (optional) */
74	usc_chg_event susp_chgb; /* Suspend/resume event (optional) */
75	usc_chg_event rmwk_chgb; /* Enable/disable remote wakeup */
76};
77
78/*
79 * controller driver data structures
80 */
81
82/* 16 endpoints (not to be confused with 32 hardware endpoints) */
83#define	NUM_ENDPOINTS	16
84
85/*
86 * IRQ indices make reading the code a little easier
87 */
88#define IRQ_USB_LP	0
89#define IRQ_USB_HP	1
90#define IRQ_USB_DEVDMA	2
91#define IRQ_USB_ATX	3
92
93#define EP_OUT 0 /* RX (from host) */
94#define EP_IN 1 /* TX (to host) */
95
96/* Returns the interrupt mask for the selected hardware endpoint */
97#define EP_MASK_SEL(ep, dir) (1 << (((ep) * 2) + dir))
98
99#define EP_INT_TYPE 0
100#define EP_ISO_TYPE 1
101#define EP_BLK_TYPE 2
102#define EP_CTL_TYPE 3
103
104/* EP0 states */
105#define WAIT_FOR_SETUP 0 /* Wait for setup packet */
106#define DATA_IN        1 /* Expect dev->host transfer */
107#define DATA_OUT       2 /* Expect host->dev transfer */
108
109/* DD (DMA Descriptor) structure, requires word alignment, this is already
110 * defined in the LPC32XX USB device header file, but this version is slightly
111 * modified to tag some work data with each DMA descriptor. */
112struct lpc32xx_usbd_dd_gad {
113	u32 dd_next_phy;
114	u32 dd_setup;
115	u32 dd_buffer_addr;
116	u32 dd_status;
117	u32 dd_iso_ps_mem_addr;
118	u32 this_dma;
119	u32 iso_status[6]; /* 5 spare */
120	u32 dd_next_v;
121};
122
123/*
124 * Logical endpoint structure
125 */
126struct lpc32xx_ep {
127	struct usb_ep		ep;
128	struct list_head	queue;
129	struct lpc32xx_udc	*udc;
130
131	u32			hwep_num_base; /* Physical hardware EP */
132	u32			hwep_num; /* Maps to hardware endpoint */
133	u32			maxpacket;
134	u32			lep;
135
136	bool			is_in;
137	bool			req_pending;
138	u32			eptype;
139
140	u32                     totalints;
141
142	bool			wedge;
143};
144
145/*
146 * Common UDC structure
147 */
148struct lpc32xx_udc {
149	struct usb_gadget	gadget;
150	struct usb_gadget_driver *driver;
151	struct platform_device	*pdev;
152	struct device		*dev;
153	struct dentry		*pde;
154	spinlock_t		lock;
155	struct i2c_client	*isp1301_i2c_client;
156
157	/* Board and device specific */
158	struct lpc32xx_usbd_cfg	*board;
159	u32			io_p_start;
160	u32			io_p_size;
161	void __iomem		*udp_baseaddr;
162	int			udp_irq[4];
163	struct clk		*usb_pll_clk;
164	struct clk		*usb_slv_clk;
165	struct clk		*usb_otg_clk;
166
167	/* DMA support */
168	u32			*udca_v_base;
169	u32			udca_p_base;
170	struct dma_pool		*dd_cache;
171
172	/* Common EP and control data */
173	u32			enabled_devints;
174	u32			enabled_hwepints;
175	u32			dev_status;
176	u32			realized_eps;
177
178	/* VBUS detection, pullup, and power flags */
179	u8			vbus;
180	u8			last_vbus;
181	int			pullup;
182	int			poweron;
183
184	/* Work queues related to I2C support */
185	struct work_struct	pullup_job;
186	struct work_struct	vbus_job;
187	struct work_struct	power_job;
188
189	/* USB device peripheral - various */
190	struct lpc32xx_ep	ep[NUM_ENDPOINTS];
191	bool			enabled;
192	bool			clocked;
193	bool			suspended;
194	int                     ep0state;
195	atomic_t                enabled_ep_cnt;
196	wait_queue_head_t       ep_disable_wait_queue;
197};
198
199/*
200 * Endpoint request
201 */
202struct lpc32xx_request {
203	struct usb_request	req;
204	struct list_head	queue;
205	struct lpc32xx_usbd_dd_gad *dd_desc_ptr;
206	bool			mapped;
207	bool			send_zlp;
208};
209
210static inline struct lpc32xx_udc *to_udc(struct usb_gadget *g)
211{
212	return container_of(g, struct lpc32xx_udc, gadget);
213}
214
215#define ep_dbg(epp, fmt, arg...) \
216	dev_dbg(epp->udc->dev, "%s: " fmt, __func__, ## arg)
217#define ep_err(epp, fmt, arg...) \
218	dev_err(epp->udc->dev, "%s: " fmt, __func__, ## arg)
219#define ep_info(epp, fmt, arg...) \
220	dev_info(epp->udc->dev, "%s: " fmt, __func__, ## arg)
221#define ep_warn(epp, fmt, arg...) \
222	dev_warn(epp->udc->dev, "%s:" fmt, __func__, ## arg)
223
224#define UDCA_BUFF_SIZE (128)
225
226/* TODO: When the clock framework is introduced in LPC32xx, IO_ADDRESS will
227 * be replaced with an inremap()ed pointer
228 * */
229#define USB_CTRL		IO_ADDRESS(LPC32XX_CLK_PM_BASE + 0x64)
230
231/* USB_CTRL bit defines */
232#define USB_SLAVE_HCLK_EN	(1 << 24)
233#define USB_HOST_NEED_CLK_EN	(1 << 21)
234#define USB_DEV_NEED_CLK_EN	(1 << 22)
235
236/**********************************************************************
237 * USB device controller register offsets
238 **********************************************************************/
239
240#define USBD_DEVINTST(x)	((x) + 0x200)
241#define USBD_DEVINTEN(x)	((x) + 0x204)
242#define USBD_DEVINTCLR(x)	((x) + 0x208)
243#define USBD_DEVINTSET(x)	((x) + 0x20C)
244#define USBD_CMDCODE(x)		((x) + 0x210)
245#define USBD_CMDDATA(x)		((x) + 0x214)
246#define USBD_RXDATA(x)		((x) + 0x218)
247#define USBD_TXDATA(x)		((x) + 0x21C)
248#define USBD_RXPLEN(x)		((x) + 0x220)
249#define USBD_TXPLEN(x)		((x) + 0x224)
250#define USBD_CTRL(x)		((x) + 0x228)
251#define USBD_DEVINTPRI(x)	((x) + 0x22C)
252#define USBD_EPINTST(x)		((x) + 0x230)
253#define USBD_EPINTEN(x)		((x) + 0x234)
254#define USBD_EPINTCLR(x)	((x) + 0x238)
255#define USBD_EPINTSET(x)	((x) + 0x23C)
256#define USBD_EPINTPRI(x)	((x) + 0x240)
257#define USBD_REEP(x)		((x) + 0x244)
258#define USBD_EPIND(x)		((x) + 0x248)
259#define USBD_EPMAXPSIZE(x)	((x) + 0x24C)
260/* DMA support registers only below */
261/* Set, clear, or get enabled state of the DMA request status. If
262 * enabled, an IN or OUT token will start a DMA transfer for the EP */
263#define USBD_DMARST(x)		((x) + 0x250)
264#define USBD_DMARCLR(x)		((x) + 0x254)
265#define USBD_DMARSET(x)		((x) + 0x258)
266/* DMA UDCA head pointer */
267#define USBD_UDCAH(x)		((x) + 0x280)
268/* EP DMA status, enable, and disable. This is used to specifically
269 * enabled or disable DMA for a specific EP */
270#define USBD_EPDMAST(x)		((x) + 0x284)
271#define USBD_EPDMAEN(x)		((x) + 0x288)
272#define USBD_EPDMADIS(x)	((x) + 0x28C)
273/* DMA master interrupts enable and pending interrupts */
274#define USBD_DMAINTST(x)	((x) + 0x290)
275#define USBD_DMAINTEN(x)	((x) + 0x294)
276/* DMA end of transfer interrupt enable, disable, status */
277#define USBD_EOTINTST(x)	((x) + 0x2A0)
278#define USBD_EOTINTCLR(x)	((x) + 0x2A4)
279#define USBD_EOTINTSET(x)	((x) + 0x2A8)
280/* New DD request interrupt enable, disable, status */
281#define USBD_NDDRTINTST(x)	((x) + 0x2AC)
282#define USBD_NDDRTINTCLR(x)	((x) + 0x2B0)
283#define USBD_NDDRTINTSET(x)	((x) + 0x2B4)
284/* DMA error interrupt enable, disable, status */
285#define USBD_SYSERRTINTST(x)	((x) + 0x2B8)
286#define USBD_SYSERRTINTCLR(x)	((x) + 0x2BC)
287#define USBD_SYSERRTINTSET(x)	((x) + 0x2C0)
288
289/**********************************************************************
290 * USBD_DEVINTST/USBD_DEVINTEN/USBD_DEVINTCLR/USBD_DEVINTSET/
291 * USBD_DEVINTPRI register definitions
292 **********************************************************************/
293#define USBD_ERR_INT		(1 << 9)
294#define USBD_EP_RLZED		(1 << 8)
295#define USBD_TXENDPKT		(1 << 7)
296#define USBD_RXENDPKT		(1 << 6)
297#define USBD_CDFULL		(1 << 5)
298#define USBD_CCEMPTY		(1 << 4)
299#define USBD_DEV_STAT		(1 << 3)
300#define USBD_EP_SLOW		(1 << 2)
301#define USBD_EP_FAST		(1 << 1)
302#define USBD_FRAME		(1 << 0)
303
304/**********************************************************************
305 * USBD_EPINTST/USBD_EPINTEN/USBD_EPINTCLR/USBD_EPINTSET/
306 * USBD_EPINTPRI register definitions
307 **********************************************************************/
308/* End point selection macro (RX) */
309#define USBD_RX_EP_SEL(e)	(1 << ((e) << 1))
310
311/* End point selection macro (TX) */
312#define USBD_TX_EP_SEL(e)	(1 << (((e) << 1) + 1))
313
314/**********************************************************************
315 * USBD_REEP/USBD_DMARST/USBD_DMARCLR/USBD_DMARSET/USBD_EPDMAST/
316 * USBD_EPDMAEN/USBD_EPDMADIS/
317 * USBD_NDDRTINTST/USBD_NDDRTINTCLR/USBD_NDDRTINTSET/
318 * USBD_EOTINTST/USBD_EOTINTCLR/USBD_EOTINTSET/
319 * USBD_SYSERRTINTST/USBD_SYSERRTINTCLR/USBD_SYSERRTINTSET
320 * register definitions
321 **********************************************************************/
322/* Endpoint selection macro */
323#define USBD_EP_SEL(e)		(1 << (e))
324
325/**********************************************************************
326 * SBD_DMAINTST/USBD_DMAINTEN
327 **********************************************************************/
328#define USBD_SYS_ERR_INT	(1 << 2)
329#define USBD_NEW_DD_INT		(1 << 1)
330#define USBD_EOT_INT		(1 << 0)
331
332/**********************************************************************
333 * USBD_RXPLEN register definitions
334 **********************************************************************/
335#define USBD_PKT_RDY		(1 << 11)
336#define USBD_DV			(1 << 10)
337#define USBD_PK_LEN_MASK	0x3FF
338
339/**********************************************************************
340 * USBD_CTRL register definitions
341 **********************************************************************/
342#define USBD_LOG_ENDPOINT(e)	((e) << 2)
343#define USBD_WR_EN		(1 << 1)
344#define USBD_RD_EN		(1 << 0)
345
346/**********************************************************************
347 * USBD_CMDCODE register definitions
348 **********************************************************************/
349#define USBD_CMD_CODE(c)	((c) << 16)
350#define USBD_CMD_PHASE(p)	((p) << 8)
351
352/**********************************************************************
353 * USBD_DMARST/USBD_DMARCLR/USBD_DMARSET register definitions
354 **********************************************************************/
355#define USBD_DMAEP(e)		(1 << (e))
356
357/* DD (DMA Descriptor) structure, requires word alignment */
358struct lpc32xx_usbd_dd {
359	u32 *dd_next;
360	u32 dd_setup;
361	u32 dd_buffer_addr;
362	u32 dd_status;
363	u32 dd_iso_ps_mem_addr;
364};
365
366/* dd_setup bit defines */
367#define DD_SETUP_ATLE_DMA_MODE	0x01
368#define DD_SETUP_NEXT_DD_VALID	0x04
369#define DD_SETUP_ISO_EP		0x10
370#define DD_SETUP_PACKETLEN(n)	(((n) & 0x7FF) << 5)
371#define DD_SETUP_DMALENBYTES(n)	(((n) & 0xFFFF) << 16)
372
373/* dd_status bit defines */
374#define DD_STATUS_DD_RETIRED	0x01
375#define DD_STATUS_STS_MASK	0x1E
376#define DD_STATUS_STS_NS	0x00 /* Not serviced */
377#define DD_STATUS_STS_BS	0x02 /* Being serviced */
378#define DD_STATUS_STS_NC	0x04 /* Normal completion */
379#define DD_STATUS_STS_DUR	0x06 /* Data underrun (short packet) */
380#define DD_STATUS_STS_DOR	0x08 /* Data overrun */
381#define DD_STATUS_STS_SE	0x12 /* System error */
382#define DD_STATUS_PKT_VAL	0x20 /* Packet valid */
383#define DD_STATUS_LSB_EX	0x40 /* LS byte extracted (ATLE) */
384#define DD_STATUS_MSB_EX	0x80 /* MS byte extracted (ATLE) */
385#define DD_STATUS_MLEN(n)	(((n) >> 8) & 0x3F)
386#define DD_STATUS_CURDMACNT(n)	(((n) >> 16) & 0xFFFF)
387
388/*
389 *
390 * Protocol engine bits below
391 *
392 */
393/* Device Interrupt Bit Definitions */
394#define FRAME_INT		0x00000001
395#define EP_FAST_INT		0x00000002
396#define EP_SLOW_INT		0x00000004
397#define DEV_STAT_INT		0x00000008
398#define CCEMTY_INT		0x00000010
399#define CDFULL_INT		0x00000020
400#define RxENDPKT_INT		0x00000040
401#define TxENDPKT_INT		0x00000080
402#define EP_RLZED_INT		0x00000100
403#define ERR_INT			0x00000200
404
405/* Rx & Tx Packet Length Definitions */
406#define PKT_LNGTH_MASK		0x000003FF
407#define PKT_DV			0x00000400
408#define PKT_RDY			0x00000800
409
410/* USB Control Definitions */
411#define CTRL_RD_EN		0x00000001
412#define CTRL_WR_EN		0x00000002
413
414/* Command Codes */
415#define CMD_SET_ADDR		0x00D00500
416#define CMD_CFG_DEV		0x00D80500
417#define CMD_SET_MODE		0x00F30500
418#define CMD_RD_FRAME		0x00F50500
419#define DAT_RD_FRAME		0x00F50200
420#define CMD_RD_TEST		0x00FD0500
421#define DAT_RD_TEST		0x00FD0200
422#define CMD_SET_DEV_STAT	0x00FE0500
423#define CMD_GET_DEV_STAT	0x00FE0500
424#define DAT_GET_DEV_STAT	0x00FE0200
425#define CMD_GET_ERR_CODE	0x00FF0500
426#define DAT_GET_ERR_CODE	0x00FF0200
427#define CMD_RD_ERR_STAT		0x00FB0500
428#define DAT_RD_ERR_STAT		0x00FB0200
429#define DAT_WR_BYTE(x)		(0x00000100 | ((x) << 16))
430#define CMD_SEL_EP(x)		(0x00000500 | ((x) << 16))
431#define DAT_SEL_EP(x)		(0x00000200 | ((x) << 16))
432#define CMD_SEL_EP_CLRI(x)	(0x00400500 | ((x) << 16))
433#define DAT_SEL_EP_CLRI(x)	(0x00400200 | ((x) << 16))
434#define CMD_SET_EP_STAT(x)	(0x00400500 | ((x) << 16))
435#define CMD_CLR_BUF		0x00F20500
436#define DAT_CLR_BUF		0x00F20200
437#define CMD_VALID_BUF		0x00FA0500
438
439/* Device Address Register Definitions */
440#define DEV_ADDR_MASK		0x7F
441#define DEV_EN			0x80
442
443/* Device Configure Register Definitions */
444#define CONF_DVICE		0x01
445
446/* Device Mode Register Definitions */
447#define AP_CLK			0x01
448#define INAK_CI			0x02
449#define INAK_CO			0x04
450#define INAK_II			0x08
451#define INAK_IO			0x10
452#define INAK_BI			0x20
453#define INAK_BO			0x40
454
455/* Device Status Register Definitions */
456#define DEV_CON			0x01
457#define DEV_CON_CH		0x02
458#define DEV_SUS			0x04
459#define DEV_SUS_CH		0x08
460#define DEV_RST			0x10
461
462/* Error Code Register Definitions */
463#define ERR_EC_MASK		0x0F
464#define ERR_EA			0x10
465
466/* Error Status Register Definitions */
467#define ERR_PID			0x01
468#define ERR_UEPKT		0x02
469#define ERR_DCRC		0x04
470#define ERR_TIMOUT		0x08
471#define ERR_EOP			0x10
472#define ERR_B_OVRN		0x20
473#define ERR_BTSTF		0x40
474#define ERR_TGL			0x80
475
476/* Endpoint Select Register Definitions */
477#define EP_SEL_F		0x01
478#define EP_SEL_ST		0x02
479#define EP_SEL_STP		0x04
480#define EP_SEL_PO		0x08
481#define EP_SEL_EPN		0x10
482#define EP_SEL_B_1_FULL		0x20
483#define EP_SEL_B_2_FULL		0x40
484
485/* Endpoint Status Register Definitions */
486#define EP_STAT_ST		0x01
487#define EP_STAT_DA		0x20
488#define EP_STAT_RF_MO		0x40
489#define EP_STAT_CND_ST		0x80
490
491/* Clear Buffer Register Definitions */
492#define CLR_BUF_PO		0x01
493
494/* DMA Interrupt Bit Definitions */
495#define EOT_INT			0x01
496#define NDD_REQ_INT		0x02
497#define SYS_ERR_INT		0x04
498
499#define	DRIVER_VERSION	"1.03"
500static const char driver_name[] = "lpc32xx_udc";
501
502/*
503 *
504 * proc interface support
505 *
506 */
507#ifdef CONFIG_USB_GADGET_DEBUG_FILES
508static char *epnames[] = {"INT", "ISO", "BULK", "CTRL"};
509static const char debug_filename[] = "driver/udc";
510
511static void proc_ep_show(struct seq_file *s, struct lpc32xx_ep *ep)
512{
513	struct lpc32xx_request *req;
514
515	seq_printf(s, "\n");
516	seq_printf(s, "%12s, maxpacket %4d %3s",
517			ep->ep.name, ep->ep.maxpacket,
518			ep->is_in ? "in" : "out");
519	seq_printf(s, " type %4s", epnames[ep->eptype]);
520	seq_printf(s, " ints: %12d", ep->totalints);
521
522	if (list_empty(&ep->queue))
523		seq_printf(s, "\t(queue empty)\n");
524	else {
525		list_for_each_entry(req, &ep->queue, queue) {
526			u32 length = req->req.actual;
527
528			seq_printf(s, "\treq %p len %d/%d buf %p\n",
529				   &req->req, length,
530				   req->req.length, req->req.buf);
531		}
532	}
533}
534
535static int proc_udc_show(struct seq_file *s, void *unused)
536{
537	struct lpc32xx_udc *udc = s->private;
538	struct lpc32xx_ep *ep;
539	unsigned long flags;
540
541	seq_printf(s, "%s: version %s\n", driver_name, DRIVER_VERSION);
542
543	spin_lock_irqsave(&udc->lock, flags);
544
545	seq_printf(s, "vbus %s, pullup %s, %s powered%s, gadget %s\n\n",
546		   udc->vbus ? "present" : "off",
547		   udc->enabled ? (udc->vbus ? "active" : "enabled") :
548		   "disabled",
549		   udc->gadget.is_selfpowered ? "self" : "VBUS",
550		   udc->suspended ? ", suspended" : "",
551		   udc->driver ? udc->driver->driver.name : "(none)");
552
553	if (udc->enabled && udc->vbus) {
554		proc_ep_show(s, &udc->ep[0]);
555		list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list)
556			proc_ep_show(s, ep);
557	}
558
559	spin_unlock_irqrestore(&udc->lock, flags);
560
561	return 0;
562}
563
564static int proc_udc_open(struct inode *inode, struct file *file)
565{
566	return single_open(file, proc_udc_show, PDE_DATA(inode));
567}
568
569static const struct file_operations proc_ops = {
570	.owner		= THIS_MODULE,
571	.open		= proc_udc_open,
572	.read		= seq_read,
573	.llseek		= seq_lseek,
574	.release	= single_release,
575};
576
577static void create_debug_file(struct lpc32xx_udc *udc)
578{
579	udc->pde = debugfs_create_file(debug_filename, 0, NULL, udc, &proc_ops);
580}
581
582static void remove_debug_file(struct lpc32xx_udc *udc)
583{
584	debugfs_remove(udc->pde);
585}
586
587#else
588static inline void create_debug_file(struct lpc32xx_udc *udc) {}
589static inline void remove_debug_file(struct lpc32xx_udc *udc) {}
590#endif
591
592/* Primary initialization sequence for the ISP1301 transceiver */
593static void isp1301_udc_configure(struct lpc32xx_udc *udc)
594{
595	/* LPC32XX only supports DAT_SE0 USB mode */
596	/* This sequence is important */
597
598	/* Disable transparent UART mode first */
599	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
600		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
601		MC1_UART_EN);
602
603	/* Set full speed and SE0 mode */
604	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
605		(ISP1301_I2C_MODE_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
606	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
607		ISP1301_I2C_MODE_CONTROL_1, (MC1_SPEED_REG | MC1_DAT_SE0));
608
609	/*
610	 * The PSW_OE enable bit state is reversed in the ISP1301 User's Guide
611	 */
612	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
613		(ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
614	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
615		ISP1301_I2C_MODE_CONTROL_2, (MC2_BI_DI | MC2_SPD_SUSP_CTRL));
616
617	/* Driver VBUS_DRV high or low depending on board setup */
618	if (udc->board->vbus_drv_pol != 0)
619		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
620			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DRV);
621	else
622		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
623			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
624			OTG1_VBUS_DRV);
625
626	/* Bi-directional mode with suspend control
627	 * Enable both pulldowns for now - the pullup will be enable when VBUS
628	 * is detected */
629	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
630		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR), ~0);
631	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
632		ISP1301_I2C_OTG_CONTROL_1,
633		(0 | OTG1_DM_PULLDOWN | OTG1_DP_PULLDOWN));
634
635	/* Discharge VBUS (just in case) */
636	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
637		ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
638	msleep(1);
639	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
640		(ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR),
641		OTG1_VBUS_DISCHRG);
642
643	/* Clear and enable VBUS high edge interrupt */
644	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
645		ISP1301_I2C_INTERRUPT_LATCH | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
646	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
647		ISP1301_I2C_INTERRUPT_FALLING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
648	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
649		ISP1301_I2C_INTERRUPT_FALLING, INT_VBUS_VLD);
650	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
651		ISP1301_I2C_INTERRUPT_RISING | ISP1301_I2C_REG_CLEAR_ADDR, ~0);
652	i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
653		ISP1301_I2C_INTERRUPT_RISING, INT_VBUS_VLD);
654
655	/* Enable usb_need_clk clock after transceiver is initialized */
656	writel((readl(USB_CTRL) | USB_DEV_NEED_CLK_EN), USB_CTRL);
657
658	dev_info(udc->dev, "ISP1301 Vendor ID  : 0x%04x\n",
659		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x00));
660	dev_info(udc->dev, "ISP1301 Product ID : 0x%04x\n",
661		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x02));
662	dev_info(udc->dev, "ISP1301 Version ID : 0x%04x\n",
663		 i2c_smbus_read_word_data(udc->isp1301_i2c_client, 0x14));
664}
665
666/* Enables or disables the USB device pullup via the ISP1301 transceiver */
667static void isp1301_pullup_set(struct lpc32xx_udc *udc)
668{
669	if (udc->pullup)
670		/* Enable pullup for bus signalling */
671		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
672			ISP1301_I2C_OTG_CONTROL_1, OTG1_DP_PULLUP);
673	else
674		/* Enable pullup for bus signalling */
675		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
676			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
677			OTG1_DP_PULLUP);
678}
679
680static void pullup_work(struct work_struct *work)
681{
682	struct lpc32xx_udc *udc =
683		container_of(work, struct lpc32xx_udc, pullup_job);
684
685	isp1301_pullup_set(udc);
686}
687
688static void isp1301_pullup_enable(struct lpc32xx_udc *udc, int en_pullup,
689				  int block)
690{
691	if (en_pullup == udc->pullup)
692		return;
693
694	udc->pullup = en_pullup;
695	if (block)
696		isp1301_pullup_set(udc);
697	else
698		/* defer slow i2c pull up setting */
699		schedule_work(&udc->pullup_job);
700}
701
702#ifdef CONFIG_PM
703/* Powers up or down the ISP1301 transceiver */
704static void isp1301_set_powerstate(struct lpc32xx_udc *udc, int enable)
705{
706	if (enable != 0)
707		/* Power up ISP1301 - this ISP1301 will automatically wakeup
708		   when VBUS is detected */
709		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
710			ISP1301_I2C_MODE_CONTROL_2 | ISP1301_I2C_REG_CLEAR_ADDR,
711			MC2_GLOBAL_PWR_DN);
712	else
713		/* Power down ISP1301 */
714		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
715			ISP1301_I2C_MODE_CONTROL_2, MC2_GLOBAL_PWR_DN);
716}
717
718static void power_work(struct work_struct *work)
719{
720	struct lpc32xx_udc *udc =
721		container_of(work, struct lpc32xx_udc, power_job);
722
723	isp1301_set_powerstate(udc, udc->poweron);
724}
725#endif
726
727/*
728 *
729 * USB protocol engine command/data read/write helper functions
730 *
731 */
732/* Issues a single command to the USB device state machine */
733static void udc_protocol_cmd_w(struct lpc32xx_udc *udc, u32 cmd)
734{
735	u32 pass = 0;
736	int to;
737
738	/* EP may lock on CLRI if this read isn't done */
739	u32 tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
740	(void) tmp;
741
742	while (pass == 0) {
743		writel(USBD_CCEMPTY, USBD_DEVINTCLR(udc->udp_baseaddr));
744
745		/* Write command code */
746		writel(cmd, USBD_CMDCODE(udc->udp_baseaddr));
747		to = 10000;
748		while (((readl(USBD_DEVINTST(udc->udp_baseaddr)) &
749			 USBD_CCEMPTY) == 0) && (to > 0)) {
750			to--;
751		}
752
753		if (to > 0)
754			pass = 1;
755
756		cpu_relax();
757	}
758}
759
760/* Issues 2 commands (or command and data) to the USB device state machine */
761static inline void udc_protocol_cmd_data_w(struct lpc32xx_udc *udc, u32 cmd,
762					   u32 data)
763{
764	udc_protocol_cmd_w(udc, cmd);
765	udc_protocol_cmd_w(udc, data);
766}
767
768/* Issues a single command to the USB device state machine and reads
769 * response data */
770static u32 udc_protocol_cmd_r(struct lpc32xx_udc *udc, u32 cmd)
771{
772	u32 tmp;
773	int to = 1000;
774
775	/* Write a command and read data from the protocol engine */
776	writel((USBD_CDFULL | USBD_CCEMPTY),
777		     USBD_DEVINTCLR(udc->udp_baseaddr));
778
779	/* Write command code */
780	udc_protocol_cmd_w(udc, cmd);
781
782	tmp = readl(USBD_DEVINTST(udc->udp_baseaddr));
783	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) & USBD_CDFULL))
784	       && (to > 0))
785		to--;
786	if (!to)
787		dev_dbg(udc->dev,
788			"Protocol engine didn't receive response (CDFULL)\n");
789
790	return readl(USBD_CMDDATA(udc->udp_baseaddr));
791}
792
793/*
794 *
795 * USB device interrupt mask support functions
796 *
797 */
798/* Enable one or more USB device interrupts */
799static inline void uda_enable_devint(struct lpc32xx_udc *udc, u32 devmask)
800{
801	udc->enabled_devints |= devmask;
802	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
803}
804
805/* Disable one or more USB device interrupts */
806static inline void uda_disable_devint(struct lpc32xx_udc *udc, u32 mask)
807{
808	udc->enabled_devints &= ~mask;
809	writel(udc->enabled_devints, USBD_DEVINTEN(udc->udp_baseaddr));
810}
811
812/* Clear one or more USB device interrupts */
813static inline void uda_clear_devint(struct lpc32xx_udc *udc, u32 mask)
814{
815	writel(mask, USBD_DEVINTCLR(udc->udp_baseaddr));
816}
817
818/*
819 *
820 * Endpoint interrupt disable/enable functions
821 *
822 */
823/* Enable one or more USB endpoint interrupts */
824static void uda_enable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
825{
826	udc->enabled_hwepints |= (1 << hwep);
827	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
828}
829
830/* Disable one or more USB endpoint interrupts */
831static void uda_disable_hwepint(struct lpc32xx_udc *udc, u32 hwep)
832{
833	udc->enabled_hwepints &= ~(1 << hwep);
834	writel(udc->enabled_hwepints, USBD_EPINTEN(udc->udp_baseaddr));
835}
836
837/* Clear one or more USB endpoint interrupts */
838static inline void uda_clear_hwepint(struct lpc32xx_udc *udc, u32 hwep)
839{
840	writel((1 << hwep), USBD_EPINTCLR(udc->udp_baseaddr));
841}
842
843/* Enable DMA for the HW channel */
844static inline void udc_ep_dma_enable(struct lpc32xx_udc *udc, u32 hwep)
845{
846	writel((1 << hwep), USBD_EPDMAEN(udc->udp_baseaddr));
847}
848
849/* Disable DMA for the HW channel */
850static inline void udc_ep_dma_disable(struct lpc32xx_udc *udc, u32 hwep)
851{
852	writel((1 << hwep), USBD_EPDMADIS(udc->udp_baseaddr));
853}
854
855/*
856 *
857 * Endpoint realize/unrealize functions
858 *
859 */
860/* Before an endpoint can be used, it needs to be realized
861 * in the USB protocol engine - this realizes the endpoint.
862 * The interrupt (FIFO or DMA) is not enabled with this function */
863static void udc_realize_hwep(struct lpc32xx_udc *udc, u32 hwep,
864			     u32 maxpacket)
865{
866	int to = 1000;
867
868	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
869	writel(hwep, USBD_EPIND(udc->udp_baseaddr));
870	udc->realized_eps |= (1 << hwep);
871	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
872	writel(maxpacket, USBD_EPMAXPSIZE(udc->udp_baseaddr));
873
874	/* Wait until endpoint is realized in hardware */
875	while ((!(readl(USBD_DEVINTST(udc->udp_baseaddr)) &
876		  USBD_EP_RLZED)) && (to > 0))
877		to--;
878	if (!to)
879		dev_dbg(udc->dev, "EP not correctly realized in hardware\n");
880
881	writel(USBD_EP_RLZED, USBD_DEVINTCLR(udc->udp_baseaddr));
882}
883
884/* Unrealize an EP */
885static void udc_unrealize_hwep(struct lpc32xx_udc *udc, u32 hwep)
886{
887	udc->realized_eps &= ~(1 << hwep);
888	writel(udc->realized_eps, USBD_REEP(udc->udp_baseaddr));
889}
890
891/*
892 *
893 * Endpoint support functions
894 *
895 */
896/* Select and clear endpoint interrupt */
897static u32 udc_selep_clrint(struct lpc32xx_udc *udc, u32 hwep)
898{
899	udc_protocol_cmd_w(udc, CMD_SEL_EP_CLRI(hwep));
900	return udc_protocol_cmd_r(udc, DAT_SEL_EP_CLRI(hwep));
901}
902
903/* Disables the endpoint in the USB protocol engine */
904static void udc_disable_hwep(struct lpc32xx_udc *udc, u32 hwep)
905{
906	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
907				DAT_WR_BYTE(EP_STAT_DA));
908}
909
910/* Stalls the endpoint - endpoint will return STALL */
911static void udc_stall_hwep(struct lpc32xx_udc *udc, u32 hwep)
912{
913	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
914				DAT_WR_BYTE(EP_STAT_ST));
915}
916
917/* Clear stall or reset endpoint */
918static void udc_clrstall_hwep(struct lpc32xx_udc *udc, u32 hwep)
919{
920	udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(hwep),
921				DAT_WR_BYTE(0));
922}
923
924/* Select an endpoint for endpoint status, clear, validate */
925static void udc_select_hwep(struct lpc32xx_udc *udc, u32 hwep)
926{
927	udc_protocol_cmd_w(udc, CMD_SEL_EP(hwep));
928}
929
930/*
931 *
932 * Endpoint buffer management functions
933 *
934 */
935/* Clear the current endpoint's buffer */
936static void udc_clr_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
937{
938	udc_select_hwep(udc, hwep);
939	udc_protocol_cmd_w(udc, CMD_CLR_BUF);
940}
941
942/* Validate the current endpoint's buffer */
943static void udc_val_buffer_hwep(struct lpc32xx_udc *udc, u32 hwep)
944{
945	udc_select_hwep(udc, hwep);
946	udc_protocol_cmd_w(udc, CMD_VALID_BUF);
947}
948
949static inline u32 udc_clearep_getsts(struct lpc32xx_udc *udc, u32 hwep)
950{
951	/* Clear EP interrupt */
952	uda_clear_hwepint(udc, hwep);
953	return udc_selep_clrint(udc, hwep);
954}
955
956/*
957 *
958 * USB EP DMA support
959 *
960 */
961/* Allocate a DMA Descriptor */
962static struct lpc32xx_usbd_dd_gad *udc_dd_alloc(struct lpc32xx_udc *udc)
963{
964	dma_addr_t			dma;
965	struct lpc32xx_usbd_dd_gad	*dd;
966
967	dd = (struct lpc32xx_usbd_dd_gad *) dma_pool_alloc(
968			udc->dd_cache, (GFP_KERNEL | GFP_DMA), &dma);
969	if (dd)
970		dd->this_dma = dma;
971
972	return dd;
973}
974
975/* Free a DMA Descriptor */
976static void udc_dd_free(struct lpc32xx_udc *udc, struct lpc32xx_usbd_dd_gad *dd)
977{
978	dma_pool_free(udc->dd_cache, dd, dd->this_dma);
979}
980
981/*
982 *
983 * USB setup and shutdown functions
984 *
985 */
986/* Enables or disables most of the USB system clocks when low power mode is
987 * needed. Clocks are typically started on a connection event, and disabled
988 * when a cable is disconnected */
989static void udc_clk_set(struct lpc32xx_udc *udc, int enable)
990{
991	if (enable != 0) {
992		if (udc->clocked)
993			return;
994
995		udc->clocked = 1;
996
997		/* 48MHz PLL up */
998		clk_enable(udc->usb_pll_clk);
999
1000		/* Enable the USB device clock */
1001		writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN,
1002			     USB_CTRL);
1003
1004		clk_enable(udc->usb_otg_clk);
1005	} else {
1006		if (!udc->clocked)
1007			return;
1008
1009		udc->clocked = 0;
1010
1011		/* Never disable the USB_HCLK during normal operation */
1012
1013		/* 48MHz PLL dpwn */
1014		clk_disable(udc->usb_pll_clk);
1015
1016		/* Disable the USB device clock */
1017		writel(readl(USB_CTRL) & ~USB_DEV_NEED_CLK_EN,
1018			     USB_CTRL);
1019
1020		clk_disable(udc->usb_otg_clk);
1021	}
1022}
1023
1024/* Set/reset USB device address */
1025static void udc_set_address(struct lpc32xx_udc *udc, u32 addr)
1026{
1027	/* Address will be latched at the end of the status phase, or
1028	   latched immediately if function is called twice */
1029	udc_protocol_cmd_data_w(udc, CMD_SET_ADDR,
1030				DAT_WR_BYTE(DEV_EN | addr));
1031}
1032
1033/* Setup up a IN request for DMA transfer - this consists of determining the
1034 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1035 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1036static int udc_ep_in_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1037{
1038	struct lpc32xx_request *req;
1039	u32 hwep = ep->hwep_num;
1040
1041	ep->req_pending = 1;
1042
1043	/* There will always be a request waiting here */
1044	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1045
1046	/* Place the DD Descriptor into the UDCA */
1047	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1048
1049	/* Enable DMA and interrupt for the HW EP */
1050	udc_ep_dma_enable(udc, hwep);
1051
1052	/* Clear ZLP if last packet is not of MAXP size */
1053	if (req->req.length % ep->ep.maxpacket)
1054		req->send_zlp = 0;
1055
1056	return 0;
1057}
1058
1059/* Setup up a OUT request for DMA transfer - this consists of determining the
1060 * list of DMA addresses for the transfer, allocating DMA Descriptors,
1061 * installing the DD into the UDCA, and then enabling the DMA for that EP */
1062static int udc_ep_out_req_dma(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1063{
1064	struct lpc32xx_request *req;
1065	u32 hwep = ep->hwep_num;
1066
1067	ep->req_pending = 1;
1068
1069	/* There will always be a request waiting here */
1070	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1071
1072	/* Place the DD Descriptor into the UDCA */
1073	udc->udca_v_base[hwep] = req->dd_desc_ptr->this_dma;
1074
1075	/* Enable DMA and interrupt for the HW EP */
1076	udc_ep_dma_enable(udc, hwep);
1077	return 0;
1078}
1079
1080static void udc_disable(struct lpc32xx_udc *udc)
1081{
1082	u32 i;
1083
1084	/* Disable device */
1085	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1086	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(0));
1087
1088	/* Disable all device interrupts (including EP0) */
1089	uda_disable_devint(udc, 0x3FF);
1090
1091	/* Disable and reset all endpoint interrupts */
1092	for (i = 0; i < 32; i++) {
1093		uda_disable_hwepint(udc, i);
1094		uda_clear_hwepint(udc, i);
1095		udc_disable_hwep(udc, i);
1096		udc_unrealize_hwep(udc, i);
1097		udc->udca_v_base[i] = 0;
1098
1099		/* Disable and clear all interrupts and DMA */
1100		udc_ep_dma_disable(udc, i);
1101		writel((1 << i), USBD_EOTINTCLR(udc->udp_baseaddr));
1102		writel((1 << i), USBD_NDDRTINTCLR(udc->udp_baseaddr));
1103		writel((1 << i), USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1104		writel((1 << i), USBD_DMARCLR(udc->udp_baseaddr));
1105	}
1106
1107	/* Disable DMA interrupts */
1108	writel(0, USBD_DMAINTEN(udc->udp_baseaddr));
1109
1110	writel(0, USBD_UDCAH(udc->udp_baseaddr));
1111}
1112
1113static void udc_enable(struct lpc32xx_udc *udc)
1114{
1115	u32 i;
1116	struct lpc32xx_ep *ep = &udc->ep[0];
1117
1118	/* Start with known state */
1119	udc_disable(udc);
1120
1121	/* Enable device */
1122	udc_protocol_cmd_data_w(udc, CMD_SET_DEV_STAT, DAT_WR_BYTE(DEV_CON));
1123
1124	/* EP interrupts on high priority, FRAME interrupt on low priority */
1125	writel(USBD_EP_FAST, USBD_DEVINTPRI(udc->udp_baseaddr));
1126	writel(0xFFFF, USBD_EPINTPRI(udc->udp_baseaddr));
1127
1128	/* Clear any pending device interrupts */
1129	writel(0x3FF, USBD_DEVINTCLR(udc->udp_baseaddr));
1130
1131	/* Setup UDCA - not yet used (DMA) */
1132	writel(udc->udca_p_base, USBD_UDCAH(udc->udp_baseaddr));
1133
1134	/* Only enable EP0 in and out for now, EP0 only works in FIFO mode */
1135	for (i = 0; i <= 1; i++) {
1136		udc_realize_hwep(udc, i, ep->ep.maxpacket);
1137		uda_enable_hwepint(udc, i);
1138		udc_select_hwep(udc, i);
1139		udc_clrstall_hwep(udc, i);
1140		udc_clr_buffer_hwep(udc, i);
1141	}
1142
1143	/* Device interrupt setup */
1144	uda_clear_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1145			       USBD_EP_FAST));
1146	uda_enable_devint(udc, (USBD_ERR_INT | USBD_DEV_STAT | USBD_EP_SLOW |
1147				USBD_EP_FAST));
1148
1149	/* Set device address to 0 - called twice to force a latch in the USB
1150	   engine without the need of a setup packet status closure */
1151	udc_set_address(udc, 0);
1152	udc_set_address(udc, 0);
1153
1154	/* Enable master DMA interrupts */
1155	writel((USBD_SYS_ERR_INT | USBD_EOT_INT),
1156		     USBD_DMAINTEN(udc->udp_baseaddr));
1157
1158	udc->dev_status = 0;
1159}
1160
1161/*
1162 *
1163 * USB device board specific events handled via callbacks
1164 *
1165 */
1166/* Connection change event - notify board function of change */
1167static void uda_power_event(struct lpc32xx_udc *udc, u32 conn)
1168{
1169	/* Just notify of a connection change event (optional) */
1170	if (udc->board->conn_chgb != NULL)
1171		udc->board->conn_chgb(conn);
1172}
1173
1174/* Suspend/resume event - notify board function of change */
1175static void uda_resm_susp_event(struct lpc32xx_udc *udc, u32 conn)
1176{
1177	/* Just notify of a Suspend/resume change event (optional) */
1178	if (udc->board->susp_chgb != NULL)
1179		udc->board->susp_chgb(conn);
1180
1181	if (conn)
1182		udc->suspended = 0;
1183	else
1184		udc->suspended = 1;
1185}
1186
1187/* Remote wakeup enable/disable - notify board function of change */
1188static void uda_remwkp_cgh(struct lpc32xx_udc *udc)
1189{
1190	if (udc->board->rmwk_chgb != NULL)
1191		udc->board->rmwk_chgb(udc->dev_status &
1192				      (1 << USB_DEVICE_REMOTE_WAKEUP));
1193}
1194
1195/* Reads data from FIFO, adjusts for alignment and data size */
1196static void udc_pop_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1197{
1198	int n, i, bl;
1199	u16 *p16;
1200	u32 *p32, tmp, cbytes;
1201
1202	/* Use optimal data transfer method based on source address and size */
1203	switch (((u32) data) & 0x3) {
1204	case 0: /* 32-bit aligned */
1205		p32 = (u32 *) data;
1206		cbytes = (bytes & ~0x3);
1207
1208		/* Copy 32-bit aligned data first */
1209		for (n = 0; n < cbytes; n += 4)
1210			*p32++ = readl(USBD_RXDATA(udc->udp_baseaddr));
1211
1212		/* Handle any remaining bytes */
1213		bl = bytes - cbytes;
1214		if (bl) {
1215			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1216			for (n = 0; n < bl; n++)
1217				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1218
1219		}
1220		break;
1221
1222	case 1: /* 8-bit aligned */
1223	case 3:
1224		/* Each byte has to be handled independently */
1225		for (n = 0; n < bytes; n += 4) {
1226			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1227
1228			bl = bytes - n;
1229			if (bl > 3)
1230				bl = 3;
1231
1232			for (i = 0; i < bl; i++)
1233				data[n + i] = (u8) ((tmp >> (n * 8)) & 0xFF);
1234		}
1235		break;
1236
1237	case 2: /* 16-bit aligned */
1238		p16 = (u16 *) data;
1239		cbytes = (bytes & ~0x3);
1240
1241		/* Copy 32-bit sized objects first with 16-bit alignment */
1242		for (n = 0; n < cbytes; n += 4) {
1243			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1244			*p16++ = (u16)(tmp & 0xFFFF);
1245			*p16++ = (u16)((tmp >> 16) & 0xFFFF);
1246		}
1247
1248		/* Handle any remaining bytes */
1249		bl = bytes - cbytes;
1250		if (bl) {
1251			tmp = readl(USBD_RXDATA(udc->udp_baseaddr));
1252			for (n = 0; n < bl; n++)
1253				data[cbytes + n] = ((tmp >> (n * 8)) & 0xFF);
1254		}
1255		break;
1256	}
1257}
1258
1259/* Read data from the FIFO for an endpoint. This function is for endpoints (such
1260 * as EP0) that don't use DMA. This function should only be called if a packet
1261 * is known to be ready to read for the endpoint. Note that the endpoint must
1262 * be selected in the protocol engine prior to this call. */
1263static u32 udc_read_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1264			 u32 bytes)
1265{
1266	u32 tmpv;
1267	int to = 1000;
1268	u32 tmp, hwrep = ((hwep & 0x1E) << 1) | CTRL_RD_EN;
1269
1270	/* Setup read of endpoint */
1271	writel(hwrep, USBD_CTRL(udc->udp_baseaddr));
1272
1273	/* Wait until packet is ready */
1274	while ((((tmpv = readl(USBD_RXPLEN(udc->udp_baseaddr))) &
1275		 PKT_RDY) == 0)	&& (to > 0))
1276		to--;
1277	if (!to)
1278		dev_dbg(udc->dev, "No packet ready on FIFO EP read\n");
1279
1280	/* Mask out count */
1281	tmp = tmpv & PKT_LNGTH_MASK;
1282	if (bytes < tmp)
1283		tmp = bytes;
1284
1285	if ((tmp > 0) && (data != NULL))
1286		udc_pop_fifo(udc, (u8 *) data, tmp);
1287
1288	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1289
1290	/* Clear the buffer */
1291	udc_clr_buffer_hwep(udc, hwep);
1292
1293	return tmp;
1294}
1295
1296/* Stuffs data into the FIFO, adjusts for alignment and data size */
1297static void udc_stuff_fifo(struct lpc32xx_udc *udc, u8 *data, u32 bytes)
1298{
1299	int n, i, bl;
1300	u16 *p16;
1301	u32 *p32, tmp, cbytes;
1302
1303	/* Use optimal data transfer method based on source address and size */
1304	switch (((u32) data) & 0x3) {
1305	case 0: /* 32-bit aligned */
1306		p32 = (u32 *) data;
1307		cbytes = (bytes & ~0x3);
1308
1309		/* Copy 32-bit aligned data first */
1310		for (n = 0; n < cbytes; n += 4)
1311			writel(*p32++, USBD_TXDATA(udc->udp_baseaddr));
1312
1313		/* Handle any remaining bytes */
1314		bl = bytes - cbytes;
1315		if (bl) {
1316			tmp = 0;
1317			for (n = 0; n < bl; n++)
1318				tmp |= data[cbytes + n] << (n * 8);
1319
1320			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1321		}
1322		break;
1323
1324	case 1: /* 8-bit aligned */
1325	case 3:
1326		/* Each byte has to be handled independently */
1327		for (n = 0; n < bytes; n += 4) {
1328			bl = bytes - n;
1329			if (bl > 4)
1330				bl = 4;
1331
1332			tmp = 0;
1333			for (i = 0; i < bl; i++)
1334				tmp |= data[n + i] << (i * 8);
1335
1336			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1337		}
1338		break;
1339
1340	case 2: /* 16-bit aligned */
1341		p16 = (u16 *) data;
1342		cbytes = (bytes & ~0x3);
1343
1344		/* Copy 32-bit aligned data first */
1345		for (n = 0; n < cbytes; n += 4) {
1346			tmp = *p16++ & 0xFFFF;
1347			tmp |= (*p16++ & 0xFFFF) << 16;
1348			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1349		}
1350
1351		/* Handle any remaining bytes */
1352		bl = bytes - cbytes;
1353		if (bl) {
1354			tmp = 0;
1355			for (n = 0; n < bl; n++)
1356				tmp |= data[cbytes + n] << (n * 8);
1357
1358			writel(tmp, USBD_TXDATA(udc->udp_baseaddr));
1359		}
1360		break;
1361	}
1362}
1363
1364/* Write data to the FIFO for an endpoint. This function is for endpoints (such
1365 * as EP0) that don't use DMA. Note that the endpoint must be selected in the
1366 * protocol engine prior to this call. */
1367static void udc_write_hwep(struct lpc32xx_udc *udc, u32 hwep, u32 *data,
1368			   u32 bytes)
1369{
1370	u32 hwwep = ((hwep & 0x1E) << 1) | CTRL_WR_EN;
1371
1372	if ((bytes > 0) && (data == NULL))
1373		return;
1374
1375	/* Setup write of endpoint */
1376	writel(hwwep, USBD_CTRL(udc->udp_baseaddr));
1377
1378	writel(bytes, USBD_TXPLEN(udc->udp_baseaddr));
1379
1380	/* Need at least 1 byte to trigger TX */
1381	if (bytes == 0)
1382		writel(0, USBD_TXDATA(udc->udp_baseaddr));
1383	else
1384		udc_stuff_fifo(udc, (u8 *) data, bytes);
1385
1386	writel(((hwep & 0x1E) << 1), USBD_CTRL(udc->udp_baseaddr));
1387
1388	udc_val_buffer_hwep(udc, hwep);
1389}
1390
1391/* USB device reset - resets USB to a default state with just EP0
1392   enabled */
1393static void uda_usb_reset(struct lpc32xx_udc *udc)
1394{
1395	u32 i = 0;
1396	/* Re-init device controller and EP0 */
1397	udc_enable(udc);
1398	udc->gadget.speed = USB_SPEED_FULL;
1399
1400	for (i = 1; i < NUM_ENDPOINTS; i++) {
1401		struct lpc32xx_ep *ep = &udc->ep[i];
1402		ep->req_pending = 0;
1403	}
1404}
1405
1406/* Send a ZLP on EP0 */
1407static void udc_ep0_send_zlp(struct lpc32xx_udc *udc)
1408{
1409	udc_write_hwep(udc, EP_IN, NULL, 0);
1410}
1411
1412/* Get current frame number */
1413static u16 udc_get_current_frame(struct lpc32xx_udc *udc)
1414{
1415	u16 flo, fhi;
1416
1417	udc_protocol_cmd_w(udc, CMD_RD_FRAME);
1418	flo = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1419	fhi = (u16) udc_protocol_cmd_r(udc, DAT_RD_FRAME);
1420
1421	return (fhi << 8) | flo;
1422}
1423
1424/* Set the device as configured - enables all endpoints */
1425static inline void udc_set_device_configured(struct lpc32xx_udc *udc)
1426{
1427	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(CONF_DVICE));
1428}
1429
1430/* Set the device as unconfigured - disables all endpoints */
1431static inline void udc_set_device_unconfigured(struct lpc32xx_udc *udc)
1432{
1433	udc_protocol_cmd_data_w(udc, CMD_CFG_DEV, DAT_WR_BYTE(0));
1434}
1435
1436/* reinit == restore initial software state */
1437static void udc_reinit(struct lpc32xx_udc *udc)
1438{
1439	u32 i;
1440
1441	INIT_LIST_HEAD(&udc->gadget.ep_list);
1442	INIT_LIST_HEAD(&udc->gadget.ep0->ep_list);
1443
1444	for (i = 0; i < NUM_ENDPOINTS; i++) {
1445		struct lpc32xx_ep *ep = &udc->ep[i];
1446
1447		if (i != 0)
1448			list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list);
1449		usb_ep_set_maxpacket_limit(&ep->ep, ep->maxpacket);
1450		INIT_LIST_HEAD(&ep->queue);
1451		ep->req_pending = 0;
1452	}
1453
1454	udc->ep0state = WAIT_FOR_SETUP;
1455}
1456
1457/* Must be called with lock */
1458static void done(struct lpc32xx_ep *ep, struct lpc32xx_request *req, int status)
1459{
1460	struct lpc32xx_udc *udc = ep->udc;
1461
1462	list_del_init(&req->queue);
1463	if (req->req.status == -EINPROGRESS)
1464		req->req.status = status;
1465	else
1466		status = req->req.status;
1467
1468	if (ep->lep) {
1469		usb_gadget_unmap_request(&udc->gadget, &req->req, ep->is_in);
1470
1471		/* Free DDs */
1472		udc_dd_free(udc, req->dd_desc_ptr);
1473	}
1474
1475	if (status && status != -ESHUTDOWN)
1476		ep_dbg(ep, "%s done %p, status %d\n", ep->ep.name, req, status);
1477
1478	ep->req_pending = 0;
1479	spin_unlock(&udc->lock);
1480	usb_gadget_giveback_request(&ep->ep, &req->req);
1481	spin_lock(&udc->lock);
1482}
1483
1484/* Must be called with lock */
1485static void nuke(struct lpc32xx_ep *ep, int status)
1486{
1487	struct lpc32xx_request *req;
1488
1489	while (!list_empty(&ep->queue)) {
1490		req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
1491		done(ep, req, status);
1492	}
1493
1494	if (status == -ESHUTDOWN) {
1495		uda_disable_hwepint(ep->udc, ep->hwep_num);
1496		udc_disable_hwep(ep->udc, ep->hwep_num);
1497	}
1498}
1499
1500/* IN endpoint 0 transfer */
1501static int udc_ep0_in_req(struct lpc32xx_udc *udc)
1502{
1503	struct lpc32xx_request *req;
1504	struct lpc32xx_ep *ep0 = &udc->ep[0];
1505	u32 tsend, ts = 0;
1506
1507	if (list_empty(&ep0->queue))
1508		/* Nothing to send */
1509		return 0;
1510	else
1511		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1512				 queue);
1513
1514	tsend = ts = req->req.length - req->req.actual;
1515	if (ts == 0) {
1516		/* Send a ZLP */
1517		udc_ep0_send_zlp(udc);
1518		done(ep0, req, 0);
1519		return 1;
1520	} else if (ts > ep0->ep.maxpacket)
1521		ts = ep0->ep.maxpacket; /* Just send what we can */
1522
1523	/* Write data to the EP0 FIFO and start transfer */
1524	udc_write_hwep(udc, EP_IN, (req->req.buf + req->req.actual), ts);
1525
1526	/* Increment data pointer */
1527	req->req.actual += ts;
1528
1529	if (tsend >= ep0->ep.maxpacket)
1530		return 0; /* Stay in data transfer state */
1531
1532	/* Transfer request is complete */
1533	udc->ep0state = WAIT_FOR_SETUP;
1534	done(ep0, req, 0);
1535	return 1;
1536}
1537
1538/* OUT endpoint 0 transfer */
1539static int udc_ep0_out_req(struct lpc32xx_udc *udc)
1540{
1541	struct lpc32xx_request *req;
1542	struct lpc32xx_ep *ep0 = &udc->ep[0];
1543	u32 tr, bufferspace;
1544
1545	if (list_empty(&ep0->queue))
1546		return 0;
1547	else
1548		req = list_entry(ep0->queue.next, struct lpc32xx_request,
1549				 queue);
1550
1551	if (req) {
1552		if (req->req.length == 0) {
1553			/* Just dequeue request */
1554			done(ep0, req, 0);
1555			udc->ep0state = WAIT_FOR_SETUP;
1556			return 1;
1557		}
1558
1559		/* Get data from FIFO */
1560		bufferspace = req->req.length - req->req.actual;
1561		if (bufferspace > ep0->ep.maxpacket)
1562			bufferspace = ep0->ep.maxpacket;
1563
1564		/* Copy data to buffer */
1565		prefetchw(req->req.buf + req->req.actual);
1566		tr = udc_read_hwep(udc, EP_OUT, req->req.buf + req->req.actual,
1567				   bufferspace);
1568		req->req.actual += bufferspace;
1569
1570		if (tr < ep0->ep.maxpacket) {
1571			/* This is the last packet */
1572			done(ep0, req, 0);
1573			udc->ep0state = WAIT_FOR_SETUP;
1574			return 1;
1575		}
1576	}
1577
1578	return 0;
1579}
1580
1581/* Must be called with lock */
1582static void stop_activity(struct lpc32xx_udc *udc)
1583{
1584	struct usb_gadget_driver *driver = udc->driver;
1585	int i;
1586
1587	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1588		driver = NULL;
1589
1590	udc->gadget.speed = USB_SPEED_UNKNOWN;
1591	udc->suspended = 0;
1592
1593	for (i = 0; i < NUM_ENDPOINTS; i++) {
1594		struct lpc32xx_ep *ep = &udc->ep[i];
1595		nuke(ep, -ESHUTDOWN);
1596	}
1597	if (driver) {
1598		spin_unlock(&udc->lock);
1599		driver->disconnect(&udc->gadget);
1600		spin_lock(&udc->lock);
1601	}
1602
1603	isp1301_pullup_enable(udc, 0, 0);
1604	udc_disable(udc);
1605	udc_reinit(udc);
1606}
1607
1608/*
1609 * Activate or kill host pullup
1610 * Can be called with or without lock
1611 */
1612static void pullup(struct lpc32xx_udc *udc, int is_on)
1613{
1614	if (!udc->clocked)
1615		return;
1616
1617	if (!udc->enabled || !udc->vbus)
1618		is_on = 0;
1619
1620	if (is_on != udc->pullup)
1621		isp1301_pullup_enable(udc, is_on, 0);
1622}
1623
1624/* Must be called without lock */
1625static int lpc32xx_ep_disable(struct usb_ep *_ep)
1626{
1627	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1628	struct lpc32xx_udc *udc = ep->udc;
1629	unsigned long	flags;
1630
1631	if ((ep->hwep_num_base == 0) || (ep->hwep_num == 0))
1632		return -EINVAL;
1633	spin_lock_irqsave(&udc->lock, flags);
1634
1635	nuke(ep, -ESHUTDOWN);
1636
1637	/* Clear all DMA statuses for this EP */
1638	udc_ep_dma_disable(udc, ep->hwep_num);
1639	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1640	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1641	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1642	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1643
1644	/* Remove the DD pointer in the UDCA */
1645	udc->udca_v_base[ep->hwep_num] = 0;
1646
1647	/* Disable and reset endpoint and interrupt */
1648	uda_clear_hwepint(udc, ep->hwep_num);
1649	udc_unrealize_hwep(udc, ep->hwep_num);
1650
1651	ep->hwep_num = 0;
1652
1653	spin_unlock_irqrestore(&udc->lock, flags);
1654
1655	atomic_dec(&udc->enabled_ep_cnt);
1656	wake_up(&udc->ep_disable_wait_queue);
1657
1658	return 0;
1659}
1660
1661/* Must be called without lock */
1662static int lpc32xx_ep_enable(struct usb_ep *_ep,
1663			     const struct usb_endpoint_descriptor *desc)
1664{
1665	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1666	struct lpc32xx_udc *udc = ep->udc;
1667	u16 maxpacket;
1668	u32 tmp;
1669	unsigned long flags;
1670
1671	/* Verify EP data */
1672	if ((!_ep) || (!ep) || (!desc) ||
1673	    (desc->bDescriptorType != USB_DT_ENDPOINT)) {
1674		dev_dbg(udc->dev, "bad ep or descriptor\n");
1675		return -EINVAL;
1676	}
1677	maxpacket = usb_endpoint_maxp(desc);
1678	if ((maxpacket == 0) || (maxpacket > ep->maxpacket)) {
1679		dev_dbg(udc->dev, "bad ep descriptor's packet size\n");
1680		return -EINVAL;
1681	}
1682
1683	/* Don't touch EP0 */
1684	if (ep->hwep_num_base == 0) {
1685		dev_dbg(udc->dev, "Can't re-enable EP0!!!\n");
1686		return -EINVAL;
1687	}
1688
1689	/* Is driver ready? */
1690	if ((!udc->driver) || (udc->gadget.speed == USB_SPEED_UNKNOWN)) {
1691		dev_dbg(udc->dev, "bogus device state\n");
1692		return -ESHUTDOWN;
1693	}
1694
1695	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
1696	switch (tmp) {
1697	case USB_ENDPOINT_XFER_CONTROL:
1698		return -EINVAL;
1699
1700	case USB_ENDPOINT_XFER_INT:
1701		if (maxpacket > ep->maxpacket) {
1702			dev_dbg(udc->dev,
1703				"Bad INT endpoint maxpacket %d\n", maxpacket);
1704			return -EINVAL;
1705		}
1706		break;
1707
1708	case USB_ENDPOINT_XFER_BULK:
1709		switch (maxpacket) {
1710		case 8:
1711		case 16:
1712		case 32:
1713		case 64:
1714			break;
1715
1716		default:
1717			dev_dbg(udc->dev,
1718				"Bad BULK endpoint maxpacket %d\n", maxpacket);
1719			return -EINVAL;
1720		}
1721		break;
1722
1723	case USB_ENDPOINT_XFER_ISOC:
1724		break;
1725	}
1726	spin_lock_irqsave(&udc->lock, flags);
1727
1728	/* Initialize endpoint to match the selected descriptor */
1729	ep->is_in = (desc->bEndpointAddress & USB_DIR_IN) != 0;
1730	ep->ep.maxpacket = maxpacket;
1731
1732	/* Map hardware endpoint from base and direction */
1733	if (ep->is_in)
1734		/* IN endpoints are offset 1 from the OUT endpoint */
1735		ep->hwep_num = ep->hwep_num_base + EP_IN;
1736	else
1737		ep->hwep_num = ep->hwep_num_base;
1738
1739	ep_dbg(ep, "EP enabled: %s, HW:%d, MP:%d IN:%d\n", ep->ep.name,
1740	       ep->hwep_num, maxpacket, (ep->is_in == 1));
1741
1742	/* Realize the endpoint, interrupt is enabled later when
1743	 * buffers are queued, IN EPs will NAK until buffers are ready */
1744	udc_realize_hwep(udc, ep->hwep_num, ep->ep.maxpacket);
1745	udc_clr_buffer_hwep(udc, ep->hwep_num);
1746	uda_disable_hwepint(udc, ep->hwep_num);
1747	udc_clrstall_hwep(udc, ep->hwep_num);
1748
1749	/* Clear all DMA statuses for this EP */
1750	udc_ep_dma_disable(udc, ep->hwep_num);
1751	writel(1 << ep->hwep_num, USBD_EOTINTCLR(udc->udp_baseaddr));
1752	writel(1 << ep->hwep_num, USBD_NDDRTINTCLR(udc->udp_baseaddr));
1753	writel(1 << ep->hwep_num, USBD_SYSERRTINTCLR(udc->udp_baseaddr));
1754	writel(1 << ep->hwep_num, USBD_DMARCLR(udc->udp_baseaddr));
1755
1756	spin_unlock_irqrestore(&udc->lock, flags);
1757
1758	atomic_inc(&udc->enabled_ep_cnt);
1759	return 0;
1760}
1761
1762/*
1763 * Allocate a USB request list
1764 * Can be called with or without lock
1765 */
1766static struct usb_request *lpc32xx_ep_alloc_request(struct usb_ep *_ep,
1767						    gfp_t gfp_flags)
1768{
1769	struct lpc32xx_request *req;
1770
1771	req = kzalloc(sizeof(struct lpc32xx_request), gfp_flags);
1772	if (!req)
1773		return NULL;
1774
1775	INIT_LIST_HEAD(&req->queue);
1776	return &req->req;
1777}
1778
1779/*
1780 * De-allocate a USB request list
1781 * Can be called with or without lock
1782 */
1783static void lpc32xx_ep_free_request(struct usb_ep *_ep,
1784				    struct usb_request *_req)
1785{
1786	struct lpc32xx_request *req;
1787
1788	req = container_of(_req, struct lpc32xx_request, req);
1789	BUG_ON(!list_empty(&req->queue));
1790	kfree(req);
1791}
1792
1793/* Must be called without lock */
1794static int lpc32xx_ep_queue(struct usb_ep *_ep,
1795			    struct usb_request *_req, gfp_t gfp_flags)
1796{
1797	struct lpc32xx_request *req;
1798	struct lpc32xx_ep *ep;
1799	struct lpc32xx_udc *udc;
1800	unsigned long flags;
1801	int status = 0;
1802
1803	req = container_of(_req, struct lpc32xx_request, req);
1804	ep = container_of(_ep, struct lpc32xx_ep, ep);
1805
1806	if (!_ep || !_req || !_req->complete || !_req->buf ||
1807	    !list_empty(&req->queue))
1808		return -EINVAL;
1809
1810	udc = ep->udc;
1811
1812	if (udc->gadget.speed == USB_SPEED_UNKNOWN)
1813		return -EPIPE;
1814
1815	if (ep->lep) {
1816		struct lpc32xx_usbd_dd_gad *dd;
1817
1818		status = usb_gadget_map_request(&udc->gadget, _req, ep->is_in);
1819		if (status)
1820			return status;
1821
1822		/* For the request, build a list of DDs */
1823		dd = udc_dd_alloc(udc);
1824		if (!dd) {
1825			/* Error allocating DD */
1826			return -ENOMEM;
1827		}
1828		req->dd_desc_ptr = dd;
1829
1830		/* Setup the DMA descriptor */
1831		dd->dd_next_phy = dd->dd_next_v = 0;
1832		dd->dd_buffer_addr = req->req.dma;
1833		dd->dd_status = 0;
1834
1835		/* Special handling for ISO EPs */
1836		if (ep->eptype == EP_ISO_TYPE) {
1837			dd->dd_setup = DD_SETUP_ISO_EP |
1838				DD_SETUP_PACKETLEN(0) |
1839				DD_SETUP_DMALENBYTES(1);
1840			dd->dd_iso_ps_mem_addr = dd->this_dma + 24;
1841			if (ep->is_in)
1842				dd->iso_status[0] = req->req.length;
1843			else
1844				dd->iso_status[0] = 0;
1845		} else
1846			dd->dd_setup = DD_SETUP_PACKETLEN(ep->ep.maxpacket) |
1847				DD_SETUP_DMALENBYTES(req->req.length);
1848	}
1849
1850	ep_dbg(ep, "%s queue req %p len %d buf %p (in=%d) z=%d\n", _ep->name,
1851	       _req, _req->length, _req->buf, ep->is_in, _req->zero);
1852
1853	spin_lock_irqsave(&udc->lock, flags);
1854
1855	_req->status = -EINPROGRESS;
1856	_req->actual = 0;
1857	req->send_zlp = _req->zero;
1858
1859	/* Kickstart empty queues */
1860	if (list_empty(&ep->queue)) {
1861		list_add_tail(&req->queue, &ep->queue);
1862
1863		if (ep->hwep_num_base == 0) {
1864			/* Handle expected data direction */
1865			if (ep->is_in) {
1866				/* IN packet to host */
1867				udc->ep0state = DATA_IN;
1868				status = udc_ep0_in_req(udc);
1869			} else {
1870				/* OUT packet from host */
1871				udc->ep0state = DATA_OUT;
1872				status = udc_ep0_out_req(udc);
1873			}
1874		} else if (ep->is_in) {
1875			/* IN packet to host and kick off transfer */
1876			if (!ep->req_pending)
1877				udc_ep_in_req_dma(udc, ep);
1878		} else
1879			/* OUT packet from host and kick off list */
1880			if (!ep->req_pending)
1881				udc_ep_out_req_dma(udc, ep);
1882	} else
1883		list_add_tail(&req->queue, &ep->queue);
1884
1885	spin_unlock_irqrestore(&udc->lock, flags);
1886
1887	return (status < 0) ? status : 0;
1888}
1889
1890/* Must be called without lock */
1891static int lpc32xx_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1892{
1893	struct lpc32xx_ep *ep;
1894	struct lpc32xx_request *req;
1895	unsigned long flags;
1896
1897	ep = container_of(_ep, struct lpc32xx_ep, ep);
1898	if (!_ep || ep->hwep_num_base == 0)
1899		return -EINVAL;
1900
1901	spin_lock_irqsave(&ep->udc->lock, flags);
1902
1903	/* make sure it's actually queued on this endpoint */
1904	list_for_each_entry(req, &ep->queue, queue) {
1905		if (&req->req == _req)
1906			break;
1907	}
1908	if (&req->req != _req) {
1909		spin_unlock_irqrestore(&ep->udc->lock, flags);
1910		return -EINVAL;
1911	}
1912
1913	done(ep, req, -ECONNRESET);
1914
1915	spin_unlock_irqrestore(&ep->udc->lock, flags);
1916
1917	return 0;
1918}
1919
1920/* Must be called without lock */
1921static int lpc32xx_ep_set_halt(struct usb_ep *_ep, int value)
1922{
1923	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1924	struct lpc32xx_udc *udc = ep->udc;
1925	unsigned long flags;
1926
1927	if ((!ep) || (ep->hwep_num <= 1))
1928		return -EINVAL;
1929
1930	/* Don't halt an IN EP */
1931	if (ep->is_in)
1932		return -EAGAIN;
1933
1934	spin_lock_irqsave(&udc->lock, flags);
1935
1936	if (value == 1) {
1937		/* stall */
1938		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1939					DAT_WR_BYTE(EP_STAT_ST));
1940	} else {
1941		/* End stall */
1942		ep->wedge = 0;
1943		udc_protocol_cmd_data_w(udc, CMD_SET_EP_STAT(ep->hwep_num),
1944					DAT_WR_BYTE(0));
1945	}
1946
1947	spin_unlock_irqrestore(&udc->lock, flags);
1948
1949	return 0;
1950}
1951
1952/* set the halt feature and ignores clear requests */
1953static int lpc32xx_ep_set_wedge(struct usb_ep *_ep)
1954{
1955	struct lpc32xx_ep *ep = container_of(_ep, struct lpc32xx_ep, ep);
1956
1957	if (!_ep || !ep->udc)
1958		return -EINVAL;
1959
1960	ep->wedge = 1;
1961
1962	return usb_ep_set_halt(_ep);
1963}
1964
1965static const struct usb_ep_ops lpc32xx_ep_ops = {
1966	.enable		= lpc32xx_ep_enable,
1967	.disable	= lpc32xx_ep_disable,
1968	.alloc_request	= lpc32xx_ep_alloc_request,
1969	.free_request	= lpc32xx_ep_free_request,
1970	.queue		= lpc32xx_ep_queue,
1971	.dequeue	= lpc32xx_ep_dequeue,
1972	.set_halt	= lpc32xx_ep_set_halt,
1973	.set_wedge	= lpc32xx_ep_set_wedge,
1974};
1975
1976/* Send a ZLP on a non-0 IN EP */
1977void udc_send_in_zlp(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1978{
1979	/* Clear EP status */
1980	udc_clearep_getsts(udc, ep->hwep_num);
1981
1982	/* Send ZLP via FIFO mechanism */
1983	udc_write_hwep(udc, ep->hwep_num, NULL, 0);
1984}
1985
1986/*
1987 * Handle EP completion for ZLP
1988 * This function will only be called when a delayed ZLP needs to be sent out
1989 * after a DMA transfer has filled both buffers.
1990 */
1991void udc_handle_eps(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
1992{
1993	u32 epstatus;
1994	struct lpc32xx_request *req;
1995
1996	if (ep->hwep_num <= 0)
1997		return;
1998
1999	uda_clear_hwepint(udc, ep->hwep_num);
2000
2001	/* If this interrupt isn't enabled, return now */
2002	if (!(udc->enabled_hwepints & (1 << ep->hwep_num)))
2003		return;
2004
2005	/* Get endpoint status */
2006	epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2007
2008	/*
2009	 * This should never happen, but protect against writing to the
2010	 * buffer when full.
2011	 */
2012	if (epstatus & EP_SEL_F)
2013		return;
2014
2015	if (ep->is_in) {
2016		udc_send_in_zlp(udc, ep);
2017		uda_disable_hwepint(udc, ep->hwep_num);
2018	} else
2019		return;
2020
2021	/* If there isn't a request waiting, something went wrong */
2022	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2023	if (req) {
2024		done(ep, req, 0);
2025
2026		/* Start another request if ready */
2027		if (!list_empty(&ep->queue)) {
2028			if (ep->is_in)
2029				udc_ep_in_req_dma(udc, ep);
2030			else
2031				udc_ep_out_req_dma(udc, ep);
2032		} else
2033			ep->req_pending = 0;
2034	}
2035}
2036
2037
2038/* DMA end of transfer completion */
2039static void udc_handle_dma_ep(struct lpc32xx_udc *udc, struct lpc32xx_ep *ep)
2040{
2041	u32 status, epstatus;
2042	struct lpc32xx_request *req;
2043	struct lpc32xx_usbd_dd_gad *dd;
2044
2045#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2046	ep->totalints++;
2047#endif
2048
2049	req = list_entry(ep->queue.next, struct lpc32xx_request, queue);
2050	if (!req) {
2051		ep_err(ep, "DMA interrupt on no req!\n");
2052		return;
2053	}
2054	dd = req->dd_desc_ptr;
2055
2056	/* DMA descriptor should always be retired for this call */
2057	if (!(dd->dd_status & DD_STATUS_DD_RETIRED))
2058		ep_warn(ep, "DMA descriptor did not retire\n");
2059
2060	/* Disable DMA */
2061	udc_ep_dma_disable(udc, ep->hwep_num);
2062	writel((1 << ep->hwep_num), USBD_EOTINTCLR(udc->udp_baseaddr));
2063	writel((1 << ep->hwep_num), USBD_NDDRTINTCLR(udc->udp_baseaddr));
2064
2065	/* System error? */
2066	if (readl(USBD_SYSERRTINTST(udc->udp_baseaddr)) &
2067	    (1 << ep->hwep_num)) {
2068		writel((1 << ep->hwep_num),
2069			     USBD_SYSERRTINTCLR(udc->udp_baseaddr));
2070		ep_err(ep, "AHB critical error!\n");
2071		ep->req_pending = 0;
2072
2073		/* The error could have occurred on a packet of a multipacket
2074		 * transfer, so recovering the transfer is not possible. Close
2075		 * the request with an error */
2076		done(ep, req, -ECONNABORTED);
2077		return;
2078	}
2079
2080	/* Handle the current DD's status */
2081	status = dd->dd_status;
2082	switch (status & DD_STATUS_STS_MASK) {
2083	case DD_STATUS_STS_NS:
2084		/* DD not serviced? This shouldn't happen! */
2085		ep->req_pending = 0;
2086		ep_err(ep, "DMA critical EP error: DD not serviced (0x%x)!\n",
2087		       status);
2088
2089		done(ep, req, -ECONNABORTED);
2090		return;
2091
2092	case DD_STATUS_STS_BS:
2093		/* Interrupt only fires on EOT - This shouldn't happen! */
2094		ep->req_pending = 0;
2095		ep_err(ep, "DMA critical EP error: EOT prior to service completion (0x%x)!\n",
2096		       status);
2097		done(ep, req, -ECONNABORTED);
2098		return;
2099
2100	case DD_STATUS_STS_NC:
2101	case DD_STATUS_STS_DUR:
2102		/* Really just a short packet, not an underrun */
2103		/* This is a good status and what we expect */
2104		break;
2105
2106	default:
2107		/* Data overrun, system error, or unknown */
2108		ep->req_pending = 0;
2109		ep_err(ep, "DMA critical EP error: System error (0x%x)!\n",
2110		       status);
2111		done(ep, req, -ECONNABORTED);
2112		return;
2113	}
2114
2115	/* ISO endpoints are handled differently */
2116	if (ep->eptype == EP_ISO_TYPE) {
2117		if (ep->is_in)
2118			req->req.actual = req->req.length;
2119		else
2120			req->req.actual = dd->iso_status[0] & 0xFFFF;
2121	} else
2122		req->req.actual += DD_STATUS_CURDMACNT(status);
2123
2124	/* Send a ZLP if necessary. This will be done for non-int
2125	 * packets which have a size that is a divisor of MAXP */
2126	if (req->send_zlp) {
2127		/*
2128		 * If at least 1 buffer is available, send the ZLP now.
2129		 * Otherwise, the ZLP send needs to be deferred until a
2130		 * buffer is available.
2131		 */
2132		if (udc_clearep_getsts(udc, ep->hwep_num) & EP_SEL_F) {
2133			udc_clearep_getsts(udc, ep->hwep_num);
2134			uda_enable_hwepint(udc, ep->hwep_num);
2135			epstatus = udc_clearep_getsts(udc, ep->hwep_num);
2136
2137			/* Let the EP interrupt handle the ZLP */
2138			return;
2139		} else
2140			udc_send_in_zlp(udc, ep);
2141	}
2142
2143	/* Transfer request is complete */
2144	done(ep, req, 0);
2145
2146	/* Start another request if ready */
2147	udc_clearep_getsts(udc, ep->hwep_num);
2148	if (!list_empty((&ep->queue))) {
2149		if (ep->is_in)
2150			udc_ep_in_req_dma(udc, ep);
2151		else
2152			udc_ep_out_req_dma(udc, ep);
2153	} else
2154		ep->req_pending = 0;
2155
2156}
2157
2158/*
2159 *
2160 * Endpoint 0 functions
2161 *
2162 */
2163static void udc_handle_dev(struct lpc32xx_udc *udc)
2164{
2165	u32 tmp;
2166
2167	udc_protocol_cmd_w(udc, CMD_GET_DEV_STAT);
2168	tmp = udc_protocol_cmd_r(udc, DAT_GET_DEV_STAT);
2169
2170	if (tmp & DEV_RST)
2171		uda_usb_reset(udc);
2172	else if (tmp & DEV_CON_CH)
2173		uda_power_event(udc, (tmp & DEV_CON));
2174	else if (tmp & DEV_SUS_CH) {
2175		if (tmp & DEV_SUS) {
2176			if (udc->vbus == 0)
2177				stop_activity(udc);
2178			else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2179				 udc->driver) {
2180				/* Power down transceiver */
2181				udc->poweron = 0;
2182				schedule_work(&udc->pullup_job);
2183				uda_resm_susp_event(udc, 1);
2184			}
2185		} else if ((udc->gadget.speed != USB_SPEED_UNKNOWN) &&
2186			   udc->driver && udc->vbus) {
2187			uda_resm_susp_event(udc, 0);
2188			/* Power up transceiver */
2189			udc->poweron = 1;
2190			schedule_work(&udc->pullup_job);
2191		}
2192	}
2193}
2194
2195static int udc_get_status(struct lpc32xx_udc *udc, u16 reqtype, u16 wIndex)
2196{
2197	struct lpc32xx_ep *ep;
2198	u32 ep0buff = 0, tmp;
2199
2200	switch (reqtype & USB_RECIP_MASK) {
2201	case USB_RECIP_INTERFACE:
2202		break; /* Not supported */
2203
2204	case USB_RECIP_DEVICE:
2205		ep0buff = udc->gadget.is_selfpowered;
2206		if (udc->dev_status & (1 << USB_DEVICE_REMOTE_WAKEUP))
2207			ep0buff |= (1 << USB_DEVICE_REMOTE_WAKEUP);
2208		break;
2209
2210	case USB_RECIP_ENDPOINT:
2211		tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2212		ep = &udc->ep[tmp];
2213		if ((tmp == 0) || (tmp >= NUM_ENDPOINTS))
2214			return -EOPNOTSUPP;
2215
2216		if (wIndex & USB_DIR_IN) {
2217			if (!ep->is_in)
2218				return -EOPNOTSUPP; /* Something's wrong */
2219		} else if (ep->is_in)
2220			return -EOPNOTSUPP; /* Not an IN endpoint */
2221
2222		/* Get status of the endpoint */
2223		udc_protocol_cmd_w(udc, CMD_SEL_EP(ep->hwep_num));
2224		tmp = udc_protocol_cmd_r(udc, DAT_SEL_EP(ep->hwep_num));
2225
2226		if (tmp & EP_SEL_ST)
2227			ep0buff = (1 << USB_ENDPOINT_HALT);
2228		else
2229			ep0buff = 0;
2230		break;
2231
2232	default:
2233		break;
2234	}
2235
2236	/* Return data */
2237	udc_write_hwep(udc, EP_IN, &ep0buff, 2);
2238
2239	return 0;
2240}
2241
2242static void udc_handle_ep0_setup(struct lpc32xx_udc *udc)
2243{
2244	struct lpc32xx_ep *ep, *ep0 = &udc->ep[0];
2245	struct usb_ctrlrequest ctrlpkt;
2246	int i, bytes;
2247	u16 wIndex, wValue, wLength, reqtype, req, tmp;
2248
2249	/* Nuke previous transfers */
2250	nuke(ep0, -EPROTO);
2251
2252	/* Get setup packet */
2253	bytes = udc_read_hwep(udc, EP_OUT, (u32 *) &ctrlpkt, 8);
2254	if (bytes != 8) {
2255		ep_warn(ep0, "Incorrectly sized setup packet (s/b 8, is %d)!\n",
2256			bytes);
2257		return;
2258	}
2259
2260	/* Native endianness */
2261	wIndex = le16_to_cpu(ctrlpkt.wIndex);
2262	wValue = le16_to_cpu(ctrlpkt.wValue);
2263	wLength = le16_to_cpu(ctrlpkt.wLength);
2264	reqtype = le16_to_cpu(ctrlpkt.bRequestType);
2265
2266	/* Set direction of EP0 */
2267	if (likely(reqtype & USB_DIR_IN))
2268		ep0->is_in = 1;
2269	else
2270		ep0->is_in = 0;
2271
2272	/* Handle SETUP packet */
2273	req = le16_to_cpu(ctrlpkt.bRequest);
2274	switch (req) {
2275	case USB_REQ_CLEAR_FEATURE:
2276	case USB_REQ_SET_FEATURE:
2277		switch (reqtype) {
2278		case (USB_TYPE_STANDARD | USB_RECIP_DEVICE):
2279			if (wValue != USB_DEVICE_REMOTE_WAKEUP)
2280				goto stall; /* Nothing else handled */
2281
2282			/* Tell board about event */
2283			if (req == USB_REQ_CLEAR_FEATURE)
2284				udc->dev_status &=
2285					~(1 << USB_DEVICE_REMOTE_WAKEUP);
2286			else
2287				udc->dev_status |=
2288					(1 << USB_DEVICE_REMOTE_WAKEUP);
2289			uda_remwkp_cgh(udc);
2290			goto zlp_send;
2291
2292		case (USB_TYPE_STANDARD | USB_RECIP_ENDPOINT):
2293			tmp = wIndex & USB_ENDPOINT_NUMBER_MASK;
2294			if ((wValue != USB_ENDPOINT_HALT) ||
2295			    (tmp >= NUM_ENDPOINTS))
2296				break;
2297
2298			/* Find hardware endpoint from logical endpoint */
2299			ep = &udc->ep[tmp];
2300			tmp = ep->hwep_num;
2301			if (tmp == 0)
2302				break;
2303
2304			if (req == USB_REQ_SET_FEATURE)
2305				udc_stall_hwep(udc, tmp);
2306			else if (!ep->wedge)
2307				udc_clrstall_hwep(udc, tmp);
2308
2309			goto zlp_send;
2310
2311		default:
2312			break;
2313		}
2314
2315
2316	case USB_REQ_SET_ADDRESS:
2317		if (reqtype == (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) {
2318			udc_set_address(udc, wValue);
2319			goto zlp_send;
2320		}
2321		break;
2322
2323	case USB_REQ_GET_STATUS:
2324		udc_get_status(udc, reqtype, wIndex);
2325		return;
2326
2327	default:
2328		break; /* Let GadgetFS handle the descriptor instead */
2329	}
2330
2331	if (likely(udc->driver)) {
2332		/* device-2-host (IN) or no data setup command, process
2333		 * immediately */
2334		spin_unlock(&udc->lock);
2335		i = udc->driver->setup(&udc->gadget, &ctrlpkt);
2336
2337		spin_lock(&udc->lock);
2338		if (req == USB_REQ_SET_CONFIGURATION) {
2339			/* Configuration is set after endpoints are realized */
2340			if (wValue) {
2341				/* Set configuration */
2342				udc_set_device_configured(udc);
2343
2344				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2345							DAT_WR_BYTE(AP_CLK |
2346							INAK_BI | INAK_II));
2347			} else {
2348				/* Clear configuration */
2349				udc_set_device_unconfigured(udc);
2350
2351				/* Disable NAK interrupts */
2352				udc_protocol_cmd_data_w(udc, CMD_SET_MODE,
2353							DAT_WR_BYTE(AP_CLK));
2354			}
2355		}
2356
2357		if (i < 0) {
2358			/* setup processing failed, force stall */
2359			dev_dbg(udc->dev,
2360				"req %02x.%02x protocol STALL; stat %d\n",
2361				reqtype, req, i);
2362			udc->ep0state = WAIT_FOR_SETUP;
2363			goto stall;
2364		}
2365	}
2366
2367	if (!ep0->is_in)
2368		udc_ep0_send_zlp(udc); /* ZLP IN packet on data phase */
2369
2370	return;
2371
2372stall:
2373	udc_stall_hwep(udc, EP_IN);
2374	return;
2375
2376zlp_send:
2377	udc_ep0_send_zlp(udc);
2378	return;
2379}
2380
2381/* IN endpoint 0 transfer */
2382static void udc_handle_ep0_in(struct lpc32xx_udc *udc)
2383{
2384	struct lpc32xx_ep *ep0 = &udc->ep[0];
2385	u32 epstatus;
2386
2387	/* Clear EP interrupt */
2388	epstatus = udc_clearep_getsts(udc, EP_IN);
2389
2390#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2391	ep0->totalints++;
2392#endif
2393
2394	/* Stalled? Clear stall and reset buffers */
2395	if (epstatus & EP_SEL_ST) {
2396		udc_clrstall_hwep(udc, EP_IN);
2397		nuke(ep0, -ECONNABORTED);
2398		udc->ep0state = WAIT_FOR_SETUP;
2399		return;
2400	}
2401
2402	/* Is a buffer available? */
2403	if (!(epstatus & EP_SEL_F)) {
2404		/* Handle based on current state */
2405		if (udc->ep0state == DATA_IN)
2406			udc_ep0_in_req(udc);
2407		else {
2408			/* Unknown state for EP0 oe end of DATA IN phase */
2409			nuke(ep0, -ECONNABORTED);
2410			udc->ep0state = WAIT_FOR_SETUP;
2411		}
2412	}
2413}
2414
2415/* OUT endpoint 0 transfer */
2416static void udc_handle_ep0_out(struct lpc32xx_udc *udc)
2417{
2418	struct lpc32xx_ep *ep0 = &udc->ep[0];
2419	u32 epstatus;
2420
2421	/* Clear EP interrupt */
2422	epstatus = udc_clearep_getsts(udc, EP_OUT);
2423
2424
2425#ifdef CONFIG_USB_GADGET_DEBUG_FILES
2426	ep0->totalints++;
2427#endif
2428
2429	/* Stalled? */
2430	if (epstatus & EP_SEL_ST) {
2431		udc_clrstall_hwep(udc, EP_OUT);
2432		nuke(ep0, -ECONNABORTED);
2433		udc->ep0state = WAIT_FOR_SETUP;
2434		return;
2435	}
2436
2437	/* A NAK may occur if a packet couldn't be received yet */
2438	if (epstatus & EP_SEL_EPN)
2439		return;
2440	/* Setup packet incoming? */
2441	if (epstatus & EP_SEL_STP) {
2442		nuke(ep0, 0);
2443		udc->ep0state = WAIT_FOR_SETUP;
2444	}
2445
2446	/* Data available? */
2447	if (epstatus & EP_SEL_F)
2448		/* Handle based on current state */
2449		switch (udc->ep0state) {
2450		case WAIT_FOR_SETUP:
2451			udc_handle_ep0_setup(udc);
2452			break;
2453
2454		case DATA_OUT:
2455			udc_ep0_out_req(udc);
2456			break;
2457
2458		default:
2459			/* Unknown state for EP0 */
2460			nuke(ep0, -ECONNABORTED);
2461			udc->ep0state = WAIT_FOR_SETUP;
2462		}
2463}
2464
2465/* Must be called without lock */
2466static int lpc32xx_get_frame(struct usb_gadget *gadget)
2467{
2468	int frame;
2469	unsigned long flags;
2470	struct lpc32xx_udc *udc = to_udc(gadget);
2471
2472	if (!udc->clocked)
2473		return -EINVAL;
2474
2475	spin_lock_irqsave(&udc->lock, flags);
2476
2477	frame = (int) udc_get_current_frame(udc);
2478
2479	spin_unlock_irqrestore(&udc->lock, flags);
2480
2481	return frame;
2482}
2483
2484static int lpc32xx_wakeup(struct usb_gadget *gadget)
2485{
2486	return -ENOTSUPP;
2487}
2488
2489static int lpc32xx_set_selfpowered(struct usb_gadget *gadget, int is_on)
2490{
2491	gadget->is_selfpowered = (is_on != 0);
2492
2493	return 0;
2494}
2495
2496/*
2497 * vbus is here!  turn everything on that's ready
2498 * Must be called without lock
2499 */
2500static int lpc32xx_vbus_session(struct usb_gadget *gadget, int is_active)
2501{
2502	unsigned long flags;
2503	struct lpc32xx_udc *udc = to_udc(gadget);
2504
2505	spin_lock_irqsave(&udc->lock, flags);
2506
2507	/* Doesn't need lock */
2508	if (udc->driver) {
2509		udc_clk_set(udc, 1);
2510		udc_enable(udc);
2511		pullup(udc, is_active);
2512	} else {
2513		stop_activity(udc);
2514		pullup(udc, 0);
2515
2516		spin_unlock_irqrestore(&udc->lock, flags);
2517		/*
2518		 *  Wait for all the endpoints to disable,
2519		 *  before disabling clocks. Don't wait if
2520		 *  endpoints are not enabled.
2521		 */
2522		if (atomic_read(&udc->enabled_ep_cnt))
2523			wait_event_interruptible(udc->ep_disable_wait_queue,
2524				 (atomic_read(&udc->enabled_ep_cnt) == 0));
2525
2526		spin_lock_irqsave(&udc->lock, flags);
2527
2528		udc_clk_set(udc, 0);
2529	}
2530
2531	spin_unlock_irqrestore(&udc->lock, flags);
2532
2533	return 0;
2534}
2535
2536/* Can be called with or without lock */
2537static int lpc32xx_pullup(struct usb_gadget *gadget, int is_on)
2538{
2539	struct lpc32xx_udc *udc = to_udc(gadget);
2540
2541	/* Doesn't need lock */
2542	pullup(udc, is_on);
2543
2544	return 0;
2545}
2546
2547static int lpc32xx_start(struct usb_gadget *, struct usb_gadget_driver *);
2548static int lpc32xx_stop(struct usb_gadget *);
2549
2550static const struct usb_gadget_ops lpc32xx_udc_ops = {
2551	.get_frame		= lpc32xx_get_frame,
2552	.wakeup			= lpc32xx_wakeup,
2553	.set_selfpowered	= lpc32xx_set_selfpowered,
2554	.vbus_session		= lpc32xx_vbus_session,
2555	.pullup			= lpc32xx_pullup,
2556	.udc_start		= lpc32xx_start,
2557	.udc_stop		= lpc32xx_stop,
2558};
2559
2560static void nop_release(struct device *dev)
2561{
2562	/* nothing to free */
2563}
2564
2565static const struct lpc32xx_udc controller_template = {
2566	.gadget = {
2567		.ops	= &lpc32xx_udc_ops,
2568		.name	= driver_name,
2569		.dev	= {
2570			.init_name = "gadget",
2571			.release = nop_release,
2572		}
2573	},
2574	.ep[0] = {
2575		.ep = {
2576			.name	= "ep0",
2577			.ops	= &lpc32xx_ep_ops,
2578		},
2579		.maxpacket	= 64,
2580		.hwep_num_base	= 0,
2581		.hwep_num	= 0, /* Can be 0 or 1, has special handling */
2582		.lep		= 0,
2583		.eptype		= EP_CTL_TYPE,
2584	},
2585	.ep[1] = {
2586		.ep = {
2587			.name	= "ep1-int",
2588			.ops	= &lpc32xx_ep_ops,
2589		},
2590		.maxpacket	= 64,
2591		.hwep_num_base	= 2,
2592		.hwep_num	= 0, /* 2 or 3, will be set later */
2593		.lep		= 1,
2594		.eptype		= EP_INT_TYPE,
2595	},
2596	.ep[2] = {
2597		.ep = {
2598			.name	= "ep2-bulk",
2599			.ops	= &lpc32xx_ep_ops,
2600		},
2601		.maxpacket	= 64,
2602		.hwep_num_base	= 4,
2603		.hwep_num	= 0, /* 4 or 5, will be set later */
2604		.lep		= 2,
2605		.eptype		= EP_BLK_TYPE,
2606	},
2607	.ep[3] = {
2608		.ep = {
2609			.name	= "ep3-iso",
2610			.ops	= &lpc32xx_ep_ops,
2611		},
2612		.maxpacket	= 1023,
2613		.hwep_num_base	= 6,
2614		.hwep_num	= 0, /* 6 or 7, will be set later */
2615		.lep		= 3,
2616		.eptype		= EP_ISO_TYPE,
2617	},
2618	.ep[4] = {
2619		.ep = {
2620			.name	= "ep4-int",
2621			.ops	= &lpc32xx_ep_ops,
2622		},
2623		.maxpacket	= 64,
2624		.hwep_num_base	= 8,
2625		.hwep_num	= 0, /* 8 or 9, will be set later */
2626		.lep		= 4,
2627		.eptype		= EP_INT_TYPE,
2628	},
2629	.ep[5] = {
2630		.ep = {
2631			.name	= "ep5-bulk",
2632			.ops	= &lpc32xx_ep_ops,
2633		},
2634		.maxpacket	= 64,
2635		.hwep_num_base	= 10,
2636		.hwep_num	= 0, /* 10 or 11, will be set later */
2637		.lep		= 5,
2638		.eptype		= EP_BLK_TYPE,
2639	},
2640	.ep[6] = {
2641		.ep = {
2642			.name	= "ep6-iso",
2643			.ops	= &lpc32xx_ep_ops,
2644		},
2645		.maxpacket	= 1023,
2646		.hwep_num_base	= 12,
2647		.hwep_num	= 0, /* 12 or 13, will be set later */
2648		.lep		= 6,
2649		.eptype		= EP_ISO_TYPE,
2650	},
2651	.ep[7] = {
2652		.ep = {
2653			.name	= "ep7-int",
2654			.ops	= &lpc32xx_ep_ops,
2655		},
2656		.maxpacket	= 64,
2657		.hwep_num_base	= 14,
2658		.hwep_num	= 0,
2659		.lep		= 7,
2660		.eptype		= EP_INT_TYPE,
2661	},
2662	.ep[8] = {
2663		.ep = {
2664			.name	= "ep8-bulk",
2665			.ops	= &lpc32xx_ep_ops,
2666		},
2667		.maxpacket	= 64,
2668		.hwep_num_base	= 16,
2669		.hwep_num	= 0,
2670		.lep		= 8,
2671		.eptype		= EP_BLK_TYPE,
2672	},
2673	.ep[9] = {
2674		.ep = {
2675			.name	= "ep9-iso",
2676			.ops	= &lpc32xx_ep_ops,
2677		},
2678		.maxpacket	= 1023,
2679		.hwep_num_base	= 18,
2680		.hwep_num	= 0,
2681		.lep		= 9,
2682		.eptype		= EP_ISO_TYPE,
2683	},
2684	.ep[10] = {
2685		.ep = {
2686			.name	= "ep10-int",
2687			.ops	= &lpc32xx_ep_ops,
2688		},
2689		.maxpacket	= 64,
2690		.hwep_num_base	= 20,
2691		.hwep_num	= 0,
2692		.lep		= 10,
2693		.eptype		= EP_INT_TYPE,
2694	},
2695	.ep[11] = {
2696		.ep = {
2697			.name	= "ep11-bulk",
2698			.ops	= &lpc32xx_ep_ops,
2699		},
2700		.maxpacket	= 64,
2701		.hwep_num_base	= 22,
2702		.hwep_num	= 0,
2703		.lep		= 11,
2704		.eptype		= EP_BLK_TYPE,
2705	},
2706	.ep[12] = {
2707		.ep = {
2708			.name	= "ep12-iso",
2709			.ops	= &lpc32xx_ep_ops,
2710		},
2711		.maxpacket	= 1023,
2712		.hwep_num_base	= 24,
2713		.hwep_num	= 0,
2714		.lep		= 12,
2715		.eptype		= EP_ISO_TYPE,
2716	},
2717	.ep[13] = {
2718		.ep = {
2719			.name	= "ep13-int",
2720			.ops	= &lpc32xx_ep_ops,
2721		},
2722		.maxpacket	= 64,
2723		.hwep_num_base	= 26,
2724		.hwep_num	= 0,
2725		.lep		= 13,
2726		.eptype		= EP_INT_TYPE,
2727	},
2728	.ep[14] = {
2729		.ep = {
2730			.name	= "ep14-bulk",
2731			.ops	= &lpc32xx_ep_ops,
2732		},
2733		.maxpacket	= 64,
2734		.hwep_num_base	= 28,
2735		.hwep_num	= 0,
2736		.lep		= 14,
2737		.eptype		= EP_BLK_TYPE,
2738	},
2739	.ep[15] = {
2740		.ep = {
2741			.name	= "ep15-bulk",
2742			.ops	= &lpc32xx_ep_ops,
2743		},
2744		.maxpacket	= 1023,
2745		.hwep_num_base	= 30,
2746		.hwep_num	= 0,
2747		.lep		= 15,
2748		.eptype		= EP_BLK_TYPE,
2749	},
2750};
2751
2752/* ISO and status interrupts */
2753static irqreturn_t lpc32xx_usb_lp_irq(int irq, void *_udc)
2754{
2755	u32 tmp, devstat;
2756	struct lpc32xx_udc *udc = _udc;
2757
2758	spin_lock(&udc->lock);
2759
2760	/* Read the device status register */
2761	devstat = readl(USBD_DEVINTST(udc->udp_baseaddr));
2762
2763	devstat &= ~USBD_EP_FAST;
2764	writel(devstat, USBD_DEVINTCLR(udc->udp_baseaddr));
2765	devstat = devstat & udc->enabled_devints;
2766
2767	/* Device specific handling needed? */
2768	if (devstat & USBD_DEV_STAT)
2769		udc_handle_dev(udc);
2770
2771	/* Start of frame? (devstat & FRAME_INT):
2772	 * The frame interrupt isn't really needed for ISO support,
2773	 * as the driver will queue the necessary packets */
2774
2775	/* Error? */
2776	if (devstat & ERR_INT) {
2777		/* All types of errors, from cable removal during transfer to
2778		 * misc protocol and bit errors. These are mostly for just info,
2779		 * as the USB hardware will work around these. If these errors
2780		 * happen alot, something is wrong. */
2781		udc_protocol_cmd_w(udc, CMD_RD_ERR_STAT);
2782		tmp = udc_protocol_cmd_r(udc, DAT_RD_ERR_STAT);
2783		dev_dbg(udc->dev, "Device error (0x%x)!\n", tmp);
2784	}
2785
2786	spin_unlock(&udc->lock);
2787
2788	return IRQ_HANDLED;
2789}
2790
2791/* EP interrupts */
2792static irqreturn_t lpc32xx_usb_hp_irq(int irq, void *_udc)
2793{
2794	u32 tmp;
2795	struct lpc32xx_udc *udc = _udc;
2796
2797	spin_lock(&udc->lock);
2798
2799	/* Read the device status register */
2800	writel(USBD_EP_FAST, USBD_DEVINTCLR(udc->udp_baseaddr));
2801
2802	/* Endpoints */
2803	tmp = readl(USBD_EPINTST(udc->udp_baseaddr));
2804
2805	/* Special handling for EP0 */
2806	if (tmp & (EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2807		/* Handle EP0 IN */
2808		if (tmp & (EP_MASK_SEL(0, EP_IN)))
2809			udc_handle_ep0_in(udc);
2810
2811		/* Handle EP0 OUT */
2812		if (tmp & (EP_MASK_SEL(0, EP_OUT)))
2813			udc_handle_ep0_out(udc);
2814	}
2815
2816	/* All other EPs */
2817	if (tmp & ~(EP_MASK_SEL(0, EP_OUT) | EP_MASK_SEL(0, EP_IN))) {
2818		int i;
2819
2820		/* Handle other EP interrupts */
2821		for (i = 1; i < NUM_ENDPOINTS; i++) {
2822			if (tmp & (1 << udc->ep[i].hwep_num))
2823				udc_handle_eps(udc, &udc->ep[i]);
2824		}
2825	}
2826
2827	spin_unlock(&udc->lock);
2828
2829	return IRQ_HANDLED;
2830}
2831
2832static irqreturn_t lpc32xx_usb_devdma_irq(int irq, void *_udc)
2833{
2834	struct lpc32xx_udc *udc = _udc;
2835
2836	int i;
2837	u32 tmp;
2838
2839	spin_lock(&udc->lock);
2840
2841	/* Handle EP DMA EOT interrupts */
2842	tmp = readl(USBD_EOTINTST(udc->udp_baseaddr)) |
2843		(readl(USBD_EPDMAST(udc->udp_baseaddr)) &
2844		 readl(USBD_NDDRTINTST(udc->udp_baseaddr))) |
2845		readl(USBD_SYSERRTINTST(udc->udp_baseaddr));
2846	for (i = 1; i < NUM_ENDPOINTS; i++) {
2847		if (tmp & (1 << udc->ep[i].hwep_num))
2848			udc_handle_dma_ep(udc, &udc->ep[i]);
2849	}
2850
2851	spin_unlock(&udc->lock);
2852
2853	return IRQ_HANDLED;
2854}
2855
2856/*
2857 *
2858 * VBUS detection, pullup handler, and Gadget cable state notification
2859 *
2860 */
2861static void vbus_work(struct work_struct *work)
2862{
2863	u8 value;
2864	struct lpc32xx_udc *udc = container_of(work, struct lpc32xx_udc,
2865					       vbus_job);
2866
2867	if (udc->enabled != 0) {
2868		/* Discharge VBUS real quick */
2869		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2870			ISP1301_I2C_OTG_CONTROL_1, OTG1_VBUS_DISCHRG);
2871
2872		/* Give VBUS some time (100mS) to discharge */
2873		msleep(100);
2874
2875		/* Disable VBUS discharge resistor */
2876		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2877			ISP1301_I2C_OTG_CONTROL_1 | ISP1301_I2C_REG_CLEAR_ADDR,
2878			OTG1_VBUS_DISCHRG);
2879
2880		/* Clear interrupt */
2881		i2c_smbus_write_byte_data(udc->isp1301_i2c_client,
2882			ISP1301_I2C_INTERRUPT_LATCH |
2883			ISP1301_I2C_REG_CLEAR_ADDR, ~0);
2884
2885		/* Get the VBUS status from the transceiver */
2886		value = i2c_smbus_read_byte_data(udc->isp1301_i2c_client,
2887						 ISP1301_I2C_INTERRUPT_SOURCE);
2888
2889		/* VBUS on or off? */
2890		if (value & INT_SESS_VLD)
2891			udc->vbus = 1;
2892		else
2893			udc->vbus = 0;
2894
2895		/* VBUS changed? */
2896		if (udc->last_vbus != udc->vbus) {
2897			udc->last_vbus = udc->vbus;
2898			lpc32xx_vbus_session(&udc->gadget, udc->vbus);
2899		}
2900	}
2901
2902	/* Re-enable after completion */
2903	enable_irq(udc->udp_irq[IRQ_USB_ATX]);
2904}
2905
2906static irqreturn_t lpc32xx_usb_vbus_irq(int irq, void *_udc)
2907{
2908	struct lpc32xx_udc *udc = _udc;
2909
2910	/* Defer handling of VBUS IRQ to work queue */
2911	disable_irq_nosync(udc->udp_irq[IRQ_USB_ATX]);
2912	schedule_work(&udc->vbus_job);
2913
2914	return IRQ_HANDLED;
2915}
2916
2917static int lpc32xx_start(struct usb_gadget *gadget,
2918			 struct usb_gadget_driver *driver)
2919{
2920	struct lpc32xx_udc *udc = to_udc(gadget);
2921	int i;
2922
2923	if (!driver || driver->max_speed < USB_SPEED_FULL || !driver->setup) {
2924		dev_err(udc->dev, "bad parameter.\n");
2925		return -EINVAL;
2926	}
2927
2928	if (udc->driver) {
2929		dev_err(udc->dev, "UDC already has a gadget driver\n");
2930		return -EBUSY;
2931	}
2932
2933	udc->driver = driver;
2934	udc->gadget.dev.of_node = udc->dev->of_node;
2935	udc->enabled = 1;
2936	udc->gadget.is_selfpowered = 1;
2937	udc->vbus = 0;
2938
2939	/* Force VBUS process once to check for cable insertion */
2940	udc->last_vbus = udc->vbus = 0;
2941	schedule_work(&udc->vbus_job);
2942
2943	/* Do not re-enable ATX IRQ (3) */
2944	for (i = IRQ_USB_LP; i < IRQ_USB_ATX; i++)
2945		enable_irq(udc->udp_irq[i]);
2946
2947	return 0;
2948}
2949
2950static int lpc32xx_stop(struct usb_gadget *gadget)
2951{
2952	int i;
2953	struct lpc32xx_udc *udc = to_udc(gadget);
2954
2955	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
2956		disable_irq(udc->udp_irq[i]);
2957
2958	if (udc->clocked) {
2959		spin_lock(&udc->lock);
2960		stop_activity(udc);
2961		spin_unlock(&udc->lock);
2962
2963		/*
2964		 *  Wait for all the endpoints to disable,
2965		 *  before disabling clocks. Don't wait if
2966		 *  endpoints are not enabled.
2967		 */
2968		if (atomic_read(&udc->enabled_ep_cnt))
2969			wait_event_interruptible(udc->ep_disable_wait_queue,
2970				(atomic_read(&udc->enabled_ep_cnt) == 0));
2971
2972		spin_lock(&udc->lock);
2973		udc_clk_set(udc, 0);
2974		spin_unlock(&udc->lock);
2975	}
2976
2977	udc->enabled = 0;
2978	udc->driver = NULL;
2979
2980	return 0;
2981}
2982
2983static void lpc32xx_udc_shutdown(struct platform_device *dev)
2984{
2985	/* Force disconnect on reboot */
2986	struct lpc32xx_udc *udc = platform_get_drvdata(dev);
2987
2988	pullup(udc, 0);
2989}
2990
2991/*
2992 * Callbacks to be overridden by options passed via OF (TODO)
2993 */
2994
2995static void lpc32xx_usbd_conn_chg(int conn)
2996{
2997	/* Do nothing, it might be nice to enable an LED
2998	 * based on conn state being !0 */
2999}
3000
3001static void lpc32xx_usbd_susp_chg(int susp)
3002{
3003	/* Device suspend if susp != 0 */
3004}
3005
3006static void lpc32xx_rmwkup_chg(int remote_wakup_enable)
3007{
3008	/* Enable or disable USB remote wakeup */
3009}
3010
3011struct lpc32xx_usbd_cfg lpc32xx_usbddata = {
3012	.vbus_drv_pol = 0,
3013	.conn_chgb = &lpc32xx_usbd_conn_chg,
3014	.susp_chgb = &lpc32xx_usbd_susp_chg,
3015	.rmwk_chgb = &lpc32xx_rmwkup_chg,
3016};
3017
3018
3019static u64 lpc32xx_usbd_dmamask = ~(u32) 0x7F;
3020
3021static int lpc32xx_udc_probe(struct platform_device *pdev)
3022{
3023	struct device *dev = &pdev->dev;
3024	struct lpc32xx_udc *udc;
3025	int retval, i;
3026	struct resource *res;
3027	dma_addr_t dma_handle;
3028	struct device_node *isp1301_node;
3029
3030	udc = kmemdup(&controller_template, sizeof(*udc), GFP_KERNEL);
3031	if (!udc)
3032		return -ENOMEM;
3033
3034	for (i = 0; i <= 15; i++)
3035		udc->ep[i].udc = udc;
3036	udc->gadget.ep0 = &udc->ep[0].ep;
3037
3038	/* init software state */
3039	udc->gadget.dev.parent = dev;
3040	udc->pdev = pdev;
3041	udc->dev = &pdev->dev;
3042	udc->enabled = 0;
3043
3044	if (pdev->dev.of_node) {
3045		isp1301_node = of_parse_phandle(pdev->dev.of_node,
3046						"transceiver", 0);
3047	} else {
3048		isp1301_node = NULL;
3049	}
3050
3051	udc->isp1301_i2c_client = isp1301_get_client(isp1301_node);
3052	if (!udc->isp1301_i2c_client) {
3053		retval = -EPROBE_DEFER;
3054		goto phy_fail;
3055	}
3056
3057	dev_info(udc->dev, "ISP1301 I2C device at address 0x%x\n",
3058		 udc->isp1301_i2c_client->addr);
3059
3060	pdev->dev.dma_mask = &lpc32xx_usbd_dmamask;
3061	retval = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
3062	if (retval)
3063		goto resource_fail;
3064
3065	udc->board = &lpc32xx_usbddata;
3066
3067	/*
3068	 * Resources are mapped as follows:
3069	 *  IORESOURCE_MEM, base address and size of USB space
3070	 *  IORESOURCE_IRQ, USB device low priority interrupt number
3071	 *  IORESOURCE_IRQ, USB device high priority interrupt number
3072	 *  IORESOURCE_IRQ, USB device interrupt number
3073	 *  IORESOURCE_IRQ, USB transceiver interrupt number
3074	 */
3075	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
3076	if (!res) {
3077		retval = -ENXIO;
3078		goto resource_fail;
3079	}
3080
3081	spin_lock_init(&udc->lock);
3082
3083	/* Get IRQs */
3084	for (i = 0; i < 4; i++) {
3085		udc->udp_irq[i] = platform_get_irq(pdev, i);
3086		if (udc->udp_irq[i] < 0) {
3087			dev_err(udc->dev,
3088				"irq resource %d not available!\n", i);
3089			retval = udc->udp_irq[i];
3090			goto irq_fail;
3091		}
3092	}
3093
3094	udc->io_p_start = res->start;
3095	udc->io_p_size = resource_size(res);
3096	if (!request_mem_region(udc->io_p_start, udc->io_p_size, driver_name)) {
3097		dev_err(udc->dev, "someone's using UDC memory\n");
3098		retval = -EBUSY;
3099		goto request_mem_region_fail;
3100	}
3101
3102	udc->udp_baseaddr = ioremap(udc->io_p_start, udc->io_p_size);
3103	if (!udc->udp_baseaddr) {
3104		retval = -ENOMEM;
3105		dev_err(udc->dev, "IO map failure\n");
3106		goto io_map_fail;
3107	}
3108
3109	/* Enable AHB slave USB clock, needed for further USB clock control */
3110	writel(USB_SLAVE_HCLK_EN | (1 << 19), USB_CTRL);
3111
3112	/* Get required clocks */
3113	udc->usb_pll_clk = clk_get(&pdev->dev, "ck_pll5");
3114	if (IS_ERR(udc->usb_pll_clk)) {
3115		dev_err(udc->dev, "failed to acquire USB PLL\n");
3116		retval = PTR_ERR(udc->usb_pll_clk);
3117		goto pll_get_fail;
3118	}
3119	udc->usb_slv_clk = clk_get(&pdev->dev, "ck_usbd");
3120	if (IS_ERR(udc->usb_slv_clk)) {
3121		dev_err(udc->dev, "failed to acquire USB device clock\n");
3122		retval = PTR_ERR(udc->usb_slv_clk);
3123		goto usb_clk_get_fail;
3124	}
3125	udc->usb_otg_clk = clk_get(&pdev->dev, "ck_usb_otg");
3126	if (IS_ERR(udc->usb_otg_clk)) {
3127		dev_err(udc->dev, "failed to acquire USB otg clock\n");
3128		retval = PTR_ERR(udc->usb_otg_clk);
3129		goto usb_otg_clk_get_fail;
3130	}
3131
3132	/* Setup PLL clock to 48MHz */
3133	retval = clk_enable(udc->usb_pll_clk);
3134	if (retval < 0) {
3135		dev_err(udc->dev, "failed to start USB PLL\n");
3136		goto pll_enable_fail;
3137	}
3138
3139	retval = clk_set_rate(udc->usb_pll_clk, 48000);
3140	if (retval < 0) {
3141		dev_err(udc->dev, "failed to set USB clock rate\n");
3142		goto pll_set_fail;
3143	}
3144
3145	writel(readl(USB_CTRL) | USB_DEV_NEED_CLK_EN, USB_CTRL);
3146
3147	/* Enable USB device clock */
3148	retval = clk_enable(udc->usb_slv_clk);
3149	if (retval < 0) {
3150		dev_err(udc->dev, "failed to start USB device clock\n");
3151		goto usb_clk_enable_fail;
3152	}
3153
3154	/* Enable USB OTG clock */
3155	retval = clk_enable(udc->usb_otg_clk);
3156	if (retval < 0) {
3157		dev_err(udc->dev, "failed to start USB otg clock\n");
3158		goto usb_otg_clk_enable_fail;
3159	}
3160
3161	/* Setup deferred workqueue data */
3162	udc->poweron = udc->pullup = 0;
3163	INIT_WORK(&udc->pullup_job, pullup_work);
3164	INIT_WORK(&udc->vbus_job, vbus_work);
3165#ifdef CONFIG_PM
3166	INIT_WORK(&udc->power_job, power_work);
3167#endif
3168
3169	/* All clocks are now on */
3170	udc->clocked = 1;
3171
3172	isp1301_udc_configure(udc);
3173	/* Allocate memory for the UDCA */
3174	udc->udca_v_base = dma_alloc_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3175					      &dma_handle,
3176					      (GFP_KERNEL | GFP_DMA));
3177	if (!udc->udca_v_base) {
3178		dev_err(udc->dev, "error getting UDCA region\n");
3179		retval = -ENOMEM;
3180		goto i2c_fail;
3181	}
3182	udc->udca_p_base = dma_handle;
3183	dev_dbg(udc->dev, "DMA buffer(0x%x bytes), P:0x%08x, V:0x%p\n",
3184		UDCA_BUFF_SIZE, udc->udca_p_base, udc->udca_v_base);
3185
3186	/* Setup the DD DMA memory pool */
3187	udc->dd_cache = dma_pool_create("udc_dd", udc->dev,
3188					sizeof(struct lpc32xx_usbd_dd_gad),
3189					sizeof(u32), 0);
3190	if (!udc->dd_cache) {
3191		dev_err(udc->dev, "error getting DD DMA region\n");
3192		retval = -ENOMEM;
3193		goto dma_alloc_fail;
3194	}
3195
3196	/* Clear USB peripheral and initialize gadget endpoints */
3197	udc_disable(udc);
3198	udc_reinit(udc);
3199
3200	/* Request IRQs - low and high priority USB device IRQs are routed to
3201	 * the same handler, while the DMA interrupt is routed elsewhere */
3202	retval = request_irq(udc->udp_irq[IRQ_USB_LP], lpc32xx_usb_lp_irq,
3203			     0, "udc_lp", udc);
3204	if (retval < 0) {
3205		dev_err(udc->dev, "LP request irq %d failed\n",
3206			udc->udp_irq[IRQ_USB_LP]);
3207		goto irq_lp_fail;
3208	}
3209	retval = request_irq(udc->udp_irq[IRQ_USB_HP], lpc32xx_usb_hp_irq,
3210			     0, "udc_hp", udc);
3211	if (retval < 0) {
3212		dev_err(udc->dev, "HP request irq %d failed\n",
3213			udc->udp_irq[IRQ_USB_HP]);
3214		goto irq_hp_fail;
3215	}
3216
3217	retval = request_irq(udc->udp_irq[IRQ_USB_DEVDMA],
3218			     lpc32xx_usb_devdma_irq, 0, "udc_dma", udc);
3219	if (retval < 0) {
3220		dev_err(udc->dev, "DEV request irq %d failed\n",
3221			udc->udp_irq[IRQ_USB_DEVDMA]);
3222		goto irq_dev_fail;
3223	}
3224
3225	/* The transceiver interrupt is used for VBUS detection and will
3226	   kick off the VBUS handler function */
3227	retval = request_irq(udc->udp_irq[IRQ_USB_ATX], lpc32xx_usb_vbus_irq,
3228			     0, "udc_otg", udc);
3229	if (retval < 0) {
3230		dev_err(udc->dev, "VBUS request irq %d failed\n",
3231			udc->udp_irq[IRQ_USB_ATX]);
3232		goto irq_xcvr_fail;
3233	}
3234
3235	/* Initialize wait queue */
3236	init_waitqueue_head(&udc->ep_disable_wait_queue);
3237	atomic_set(&udc->enabled_ep_cnt, 0);
3238
3239	/* Keep all IRQs disabled until GadgetFS starts up */
3240	for (i = IRQ_USB_LP; i <= IRQ_USB_ATX; i++)
3241		disable_irq(udc->udp_irq[i]);
3242
3243	retval = usb_add_gadget_udc(dev, &udc->gadget);
3244	if (retval < 0)
3245		goto add_gadget_fail;
3246
3247	dev_set_drvdata(dev, udc);
3248	device_init_wakeup(dev, 1);
3249	create_debug_file(udc);
3250
3251	/* Disable clocks for now */
3252	udc_clk_set(udc, 0);
3253
3254	dev_info(udc->dev, "%s version %s\n", driver_name, DRIVER_VERSION);
3255	return 0;
3256
3257add_gadget_fail:
3258	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3259irq_xcvr_fail:
3260	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3261irq_dev_fail:
3262	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3263irq_hp_fail:
3264	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3265irq_lp_fail:
3266	dma_pool_destroy(udc->dd_cache);
3267dma_alloc_fail:
3268	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3269			  udc->udca_v_base, udc->udca_p_base);
3270i2c_fail:
3271	clk_disable(udc->usb_otg_clk);
3272usb_otg_clk_enable_fail:
3273	clk_disable(udc->usb_slv_clk);
3274usb_clk_enable_fail:
3275pll_set_fail:
3276	clk_disable(udc->usb_pll_clk);
3277pll_enable_fail:
3278	clk_put(udc->usb_otg_clk);
3279usb_otg_clk_get_fail:
3280	clk_put(udc->usb_slv_clk);
3281usb_clk_get_fail:
3282	clk_put(udc->usb_pll_clk);
3283pll_get_fail:
3284	iounmap(udc->udp_baseaddr);
3285io_map_fail:
3286	release_mem_region(udc->io_p_start, udc->io_p_size);
3287	dev_err(udc->dev, "%s probe failed, %d\n", driver_name, retval);
3288request_mem_region_fail:
3289irq_fail:
3290resource_fail:
3291phy_fail:
3292	kfree(udc);
3293	return retval;
3294}
3295
3296static int lpc32xx_udc_remove(struct platform_device *pdev)
3297{
3298	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3299
3300	usb_del_gadget_udc(&udc->gadget);
3301	if (udc->driver)
3302		return -EBUSY;
3303
3304	udc_clk_set(udc, 1);
3305	udc_disable(udc);
3306	pullup(udc, 0);
3307
3308	free_irq(udc->udp_irq[IRQ_USB_ATX], udc);
3309
3310	device_init_wakeup(&pdev->dev, 0);
3311	remove_debug_file(udc);
3312
3313	dma_pool_destroy(udc->dd_cache);
3314	dma_free_coherent(&pdev->dev, UDCA_BUFF_SIZE,
3315			  udc->udca_v_base, udc->udca_p_base);
3316	free_irq(udc->udp_irq[IRQ_USB_DEVDMA], udc);
3317	free_irq(udc->udp_irq[IRQ_USB_HP], udc);
3318	free_irq(udc->udp_irq[IRQ_USB_LP], udc);
3319
3320	clk_disable(udc->usb_otg_clk);
3321	clk_put(udc->usb_otg_clk);
3322	clk_disable(udc->usb_slv_clk);
3323	clk_put(udc->usb_slv_clk);
3324	clk_disable(udc->usb_pll_clk);
3325	clk_put(udc->usb_pll_clk);
3326	iounmap(udc->udp_baseaddr);
3327	release_mem_region(udc->io_p_start, udc->io_p_size);
3328	kfree(udc);
3329
3330	return 0;
3331}
3332
3333#ifdef CONFIG_PM
3334static int lpc32xx_udc_suspend(struct platform_device *pdev, pm_message_t mesg)
3335{
3336	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3337
3338	if (udc->clocked) {
3339		/* Power down ISP */
3340		udc->poweron = 0;
3341		isp1301_set_powerstate(udc, 0);
3342
3343		/* Disable clocking */
3344		udc_clk_set(udc, 0);
3345
3346		/* Keep clock flag on, so we know to re-enable clocks
3347		   on resume */
3348		udc->clocked = 1;
3349
3350		/* Kill global USB clock */
3351		clk_disable(udc->usb_slv_clk);
3352	}
3353
3354	return 0;
3355}
3356
3357static int lpc32xx_udc_resume(struct platform_device *pdev)
3358{
3359	struct lpc32xx_udc *udc = platform_get_drvdata(pdev);
3360
3361	if (udc->clocked) {
3362		/* Enable global USB clock */
3363		clk_enable(udc->usb_slv_clk);
3364
3365		/* Enable clocking */
3366		udc_clk_set(udc, 1);
3367
3368		/* ISP back to normal power mode */
3369		udc->poweron = 1;
3370		isp1301_set_powerstate(udc, 1);
3371	}
3372
3373	return 0;
3374}
3375#else
3376#define	lpc32xx_udc_suspend	NULL
3377#define	lpc32xx_udc_resume	NULL
3378#endif
3379
3380#ifdef CONFIG_OF
3381static const struct of_device_id lpc32xx_udc_of_match[] = {
3382	{ .compatible = "nxp,lpc3220-udc", },
3383	{ },
3384};
3385MODULE_DEVICE_TABLE(of, lpc32xx_udc_of_match);
3386#endif
3387
3388static struct platform_driver lpc32xx_udc_driver = {
3389	.remove		= lpc32xx_udc_remove,
3390	.shutdown	= lpc32xx_udc_shutdown,
3391	.suspend	= lpc32xx_udc_suspend,
3392	.resume		= lpc32xx_udc_resume,
3393	.driver		= {
3394		.name	= (char *) driver_name,
3395		.of_match_table = of_match_ptr(lpc32xx_udc_of_match),
3396	},
3397};
3398
3399module_platform_driver_probe(lpc32xx_udc_driver, lpc32xx_udc_probe);
3400
3401MODULE_DESCRIPTION("LPC32XX udc driver");
3402MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
3403MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
3404MODULE_LICENSE("GPL");
3405MODULE_ALIAS("platform:lpc32xx_udc");
3406