1/*
2 * RTC subsystem, interface functions
3 *
4 * Copyright (C) 2005 Tower Technologies
5 * Author: Alessandro Zummo <a.zummo@towertech.it>
6 *
7 * based on arch/arm/common/rtctime.c
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12*/
13
14#include <linux/rtc.h>
15#include <linux/sched.h>
16#include <linux/module.h>
17#include <linux/log2.h>
18#include <linux/workqueue.h>
19
20static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
21static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
22
23static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
24{
25	int err;
26	if (!rtc->ops)
27		err = -ENODEV;
28	else if (!rtc->ops->read_time)
29		err = -EINVAL;
30	else {
31		memset(tm, 0, sizeof(struct rtc_time));
32		err = rtc->ops->read_time(rtc->dev.parent, tm);
33		if (err < 0) {
34			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
35				err);
36			return err;
37		}
38
39		err = rtc_valid_tm(tm);
40		if (err < 0)
41			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
42	}
43	return err;
44}
45
46int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
47{
48	int err;
49
50	err = mutex_lock_interruptible(&rtc->ops_lock);
51	if (err)
52		return err;
53
54	err = __rtc_read_time(rtc, tm);
55	mutex_unlock(&rtc->ops_lock);
56	return err;
57}
58EXPORT_SYMBOL_GPL(rtc_read_time);
59
60int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
61{
62	int err;
63
64	err = rtc_valid_tm(tm);
65	if (err != 0)
66		return err;
67
68	err = mutex_lock_interruptible(&rtc->ops_lock);
69	if (err)
70		return err;
71
72	if (!rtc->ops)
73		err = -ENODEV;
74	else if (rtc->ops->set_time)
75		err = rtc->ops->set_time(rtc->dev.parent, tm);
76	else if (rtc->ops->set_mmss64) {
77		time64_t secs64 = rtc_tm_to_time64(tm);
78
79		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
80	} else if (rtc->ops->set_mmss) {
81		time64_t secs64 = rtc_tm_to_time64(tm);
82		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
83	} else
84		err = -EINVAL;
85
86	pm_stay_awake(rtc->dev.parent);
87	mutex_unlock(&rtc->ops_lock);
88	/* A timer might have just expired */
89	schedule_work(&rtc->irqwork);
90	return err;
91}
92EXPORT_SYMBOL_GPL(rtc_set_time);
93
94int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
95{
96	int err;
97
98	err = mutex_lock_interruptible(&rtc->ops_lock);
99	if (err)
100		return err;
101
102	if (!rtc->ops)
103		err = -ENODEV;
104	else if (rtc->ops->set_mmss64)
105		err = rtc->ops->set_mmss64(rtc->dev.parent, secs);
106	else if (rtc->ops->set_mmss)
107		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
108	else if (rtc->ops->read_time && rtc->ops->set_time) {
109		struct rtc_time new, old;
110
111		err = rtc->ops->read_time(rtc->dev.parent, &old);
112		if (err == 0) {
113			rtc_time64_to_tm(secs, &new);
114
115			/*
116			 * avoid writing when we're going to change the day of
117			 * the month. We will retry in the next minute. This
118			 * basically means that if the RTC must not drift
119			 * by more than 1 minute in 11 minutes.
120			 */
121			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
122				(new.tm_hour == 23 && new.tm_min == 59)))
123				err = rtc->ops->set_time(rtc->dev.parent,
124						&new);
125		}
126	} else {
127		err = -EINVAL;
128	}
129
130	pm_stay_awake(rtc->dev.parent);
131	mutex_unlock(&rtc->ops_lock);
132	/* A timer might have just expired */
133	schedule_work(&rtc->irqwork);
134
135	return err;
136}
137EXPORT_SYMBOL_GPL(rtc_set_mmss);
138
139static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
140{
141	int err;
142
143	err = mutex_lock_interruptible(&rtc->ops_lock);
144	if (err)
145		return err;
146
147	if (rtc->ops == NULL)
148		err = -ENODEV;
149	else if (!rtc->ops->read_alarm)
150		err = -EINVAL;
151	else {
152		memset(alarm, 0, sizeof(struct rtc_wkalrm));
153		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
154	}
155
156	mutex_unlock(&rtc->ops_lock);
157	return err;
158}
159
160int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
161{
162	int err;
163	struct rtc_time before, now;
164	int first_time = 1;
165	time64_t t_now, t_alm;
166	enum { none, day, month, year } missing = none;
167	unsigned days;
168
169	/* The lower level RTC driver may return -1 in some fields,
170	 * creating invalid alarm->time values, for reasons like:
171	 *
172	 *   - The hardware may not be capable of filling them in;
173	 *     many alarms match only on time-of-day fields, not
174	 *     day/month/year calendar data.
175	 *
176	 *   - Some hardware uses illegal values as "wildcard" match
177	 *     values, which non-Linux firmware (like a BIOS) may try
178	 *     to set up as e.g. "alarm 15 minutes after each hour".
179	 *     Linux uses only oneshot alarms.
180	 *
181	 * When we see that here, we deal with it by using values from
182	 * a current RTC timestamp for any missing (-1) values.  The
183	 * RTC driver prevents "periodic alarm" modes.
184	 *
185	 * But this can be racey, because some fields of the RTC timestamp
186	 * may have wrapped in the interval since we read the RTC alarm,
187	 * which would lead to us inserting inconsistent values in place
188	 * of the -1 fields.
189	 *
190	 * Reading the alarm and timestamp in the reverse sequence
191	 * would have the same race condition, and not solve the issue.
192	 *
193	 * So, we must first read the RTC timestamp,
194	 * then read the RTC alarm value,
195	 * and then read a second RTC timestamp.
196	 *
197	 * If any fields of the second timestamp have changed
198	 * when compared with the first timestamp, then we know
199	 * our timestamp may be inconsistent with that used by
200	 * the low-level rtc_read_alarm_internal() function.
201	 *
202	 * So, when the two timestamps disagree, we just loop and do
203	 * the process again to get a fully consistent set of values.
204	 *
205	 * This could all instead be done in the lower level driver,
206	 * but since more than one lower level RTC implementation needs it,
207	 * then it's probably best best to do it here instead of there..
208	 */
209
210	/* Get the "before" timestamp */
211	err = rtc_read_time(rtc, &before);
212	if (err < 0)
213		return err;
214	do {
215		if (!first_time)
216			memcpy(&before, &now, sizeof(struct rtc_time));
217		first_time = 0;
218
219		/* get the RTC alarm values, which may be incomplete */
220		err = rtc_read_alarm_internal(rtc, alarm);
221		if (err)
222			return err;
223
224		/* full-function RTCs won't have such missing fields */
225		if (rtc_valid_tm(&alarm->time) == 0)
226			return 0;
227
228		/* get the "after" timestamp, to detect wrapped fields */
229		err = rtc_read_time(rtc, &now);
230		if (err < 0)
231			return err;
232
233		/* note that tm_sec is a "don't care" value here: */
234	} while (   before.tm_min   != now.tm_min
235		 || before.tm_hour  != now.tm_hour
236		 || before.tm_mon   != now.tm_mon
237		 || before.tm_year  != now.tm_year);
238
239	/* Fill in the missing alarm fields using the timestamp; we
240	 * know there's at least one since alarm->time is invalid.
241	 */
242	if (alarm->time.tm_sec == -1)
243		alarm->time.tm_sec = now.tm_sec;
244	if (alarm->time.tm_min == -1)
245		alarm->time.tm_min = now.tm_min;
246	if (alarm->time.tm_hour == -1)
247		alarm->time.tm_hour = now.tm_hour;
248
249	/* For simplicity, only support date rollover for now */
250	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
251		alarm->time.tm_mday = now.tm_mday;
252		missing = day;
253	}
254	if ((unsigned)alarm->time.tm_mon >= 12) {
255		alarm->time.tm_mon = now.tm_mon;
256		if (missing == none)
257			missing = month;
258	}
259	if (alarm->time.tm_year == -1) {
260		alarm->time.tm_year = now.tm_year;
261		if (missing == none)
262			missing = year;
263	}
264
265	/* with luck, no rollover is needed */
266	t_now = rtc_tm_to_time64(&now);
267	t_alm = rtc_tm_to_time64(&alarm->time);
268	if (t_now < t_alm)
269		goto done;
270
271	switch (missing) {
272
273	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
274	 * that will trigger at 5am will do so at 5am Tuesday, which
275	 * could also be in the next month or year.  This is a common
276	 * case, especially for PCs.
277	 */
278	case day:
279		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
280		t_alm += 24 * 60 * 60;
281		rtc_time64_to_tm(t_alm, &alarm->time);
282		break;
283
284	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
285	 * be next month.  An alarm matching on the 30th, 29th, or 28th
286	 * may end up in the month after that!  Many newer PCs support
287	 * this type of alarm.
288	 */
289	case month:
290		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
291		do {
292			if (alarm->time.tm_mon < 11)
293				alarm->time.tm_mon++;
294			else {
295				alarm->time.tm_mon = 0;
296				alarm->time.tm_year++;
297			}
298			days = rtc_month_days(alarm->time.tm_mon,
299					alarm->time.tm_year);
300		} while (days < alarm->time.tm_mday);
301		break;
302
303	/* Year rollover ... easy except for leap years! */
304	case year:
305		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
306		do {
307			alarm->time.tm_year++;
308		} while (!is_leap_year(alarm->time.tm_year + 1900)
309			&& rtc_valid_tm(&alarm->time) != 0);
310		break;
311
312	default:
313		dev_warn(&rtc->dev, "alarm rollover not handled\n");
314	}
315
316done:
317	err = rtc_valid_tm(&alarm->time);
318
319	if (err) {
320		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
321			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
322			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
323			alarm->time.tm_sec);
324	}
325
326	return err;
327}
328
329int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
330{
331	int err;
332
333	err = mutex_lock_interruptible(&rtc->ops_lock);
334	if (err)
335		return err;
336	if (rtc->ops == NULL)
337		err = -ENODEV;
338	else if (!rtc->ops->read_alarm)
339		err = -EINVAL;
340	else {
341		memset(alarm, 0, sizeof(struct rtc_wkalrm));
342		alarm->enabled = rtc->aie_timer.enabled;
343		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
344	}
345	mutex_unlock(&rtc->ops_lock);
346
347	return err;
348}
349EXPORT_SYMBOL_GPL(rtc_read_alarm);
350
351static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
352{
353	struct rtc_time tm;
354	time64_t now, scheduled;
355	int err;
356
357	err = rtc_valid_tm(&alarm->time);
358	if (err)
359		return err;
360	scheduled = rtc_tm_to_time64(&alarm->time);
361
362	/* Make sure we're not setting alarms in the past */
363	err = __rtc_read_time(rtc, &tm);
364	if (err)
365		return err;
366	now = rtc_tm_to_time64(&tm);
367	if (scheduled <= now)
368		return -ETIME;
369	/*
370	 * XXX - We just checked to make sure the alarm time is not
371	 * in the past, but there is still a race window where if
372	 * the is alarm set for the next second and the second ticks
373	 * over right here, before we set the alarm.
374	 */
375
376	if (!rtc->ops)
377		err = -ENODEV;
378	else if (!rtc->ops->set_alarm)
379		err = -EINVAL;
380	else
381		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
382
383	return err;
384}
385
386int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
387{
388	int err;
389
390	err = rtc_valid_tm(&alarm->time);
391	if (err != 0)
392		return err;
393
394	err = mutex_lock_interruptible(&rtc->ops_lock);
395	if (err)
396		return err;
397	if (rtc->aie_timer.enabled)
398		rtc_timer_remove(rtc, &rtc->aie_timer);
399
400	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
401	rtc->aie_timer.period = ktime_set(0, 0);
402	if (alarm->enabled)
403		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
404
405	mutex_unlock(&rtc->ops_lock);
406	return err;
407}
408EXPORT_SYMBOL_GPL(rtc_set_alarm);
409
410/* Called once per device from rtc_device_register */
411int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
412{
413	int err;
414	struct rtc_time now;
415
416	err = rtc_valid_tm(&alarm->time);
417	if (err != 0)
418		return err;
419
420	err = rtc_read_time(rtc, &now);
421	if (err)
422		return err;
423
424	err = mutex_lock_interruptible(&rtc->ops_lock);
425	if (err)
426		return err;
427
428	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
429	rtc->aie_timer.period = ktime_set(0, 0);
430
431	/* Alarm has to be enabled & in the futrure for us to enqueue it */
432	if (alarm->enabled && (rtc_tm_to_ktime(now).tv64 <
433			 rtc->aie_timer.node.expires.tv64)) {
434
435		rtc->aie_timer.enabled = 1;
436		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
437	}
438	mutex_unlock(&rtc->ops_lock);
439	return err;
440}
441EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
442
443
444
445int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
446{
447	int err = mutex_lock_interruptible(&rtc->ops_lock);
448	if (err)
449		return err;
450
451	if (rtc->aie_timer.enabled != enabled) {
452		if (enabled)
453			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
454		else
455			rtc_timer_remove(rtc, &rtc->aie_timer);
456	}
457
458	if (err)
459		/* nothing */;
460	else if (!rtc->ops)
461		err = -ENODEV;
462	else if (!rtc->ops->alarm_irq_enable)
463		err = -EINVAL;
464	else
465		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
466
467	mutex_unlock(&rtc->ops_lock);
468	return err;
469}
470EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
471
472int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
473{
474	int err = mutex_lock_interruptible(&rtc->ops_lock);
475	if (err)
476		return err;
477
478#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
479	if (enabled == 0 && rtc->uie_irq_active) {
480		mutex_unlock(&rtc->ops_lock);
481		return rtc_dev_update_irq_enable_emul(rtc, 0);
482	}
483#endif
484	/* make sure we're changing state */
485	if (rtc->uie_rtctimer.enabled == enabled)
486		goto out;
487
488	if (rtc->uie_unsupported) {
489		err = -EINVAL;
490		goto out;
491	}
492
493	if (enabled) {
494		struct rtc_time tm;
495		ktime_t now, onesec;
496
497		__rtc_read_time(rtc, &tm);
498		onesec = ktime_set(1, 0);
499		now = rtc_tm_to_ktime(tm);
500		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
501		rtc->uie_rtctimer.period = ktime_set(1, 0);
502		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
503	} else
504		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
505
506out:
507	mutex_unlock(&rtc->ops_lock);
508#ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
509	/*
510	 * Enable emulation if the driver did not provide
511	 * the update_irq_enable function pointer or if returned
512	 * -EINVAL to signal that it has been configured without
513	 * interrupts or that are not available at the moment.
514	 */
515	if (err == -EINVAL)
516		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
517#endif
518	return err;
519
520}
521EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
522
523
524/**
525 * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
526 * @rtc: pointer to the rtc device
527 *
528 * This function is called when an AIE, UIE or PIE mode interrupt
529 * has occurred (or been emulated).
530 *
531 * Triggers the registered irq_task function callback.
532 */
533void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
534{
535	unsigned long flags;
536
537	/* mark one irq of the appropriate mode */
538	spin_lock_irqsave(&rtc->irq_lock, flags);
539	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
540	spin_unlock_irqrestore(&rtc->irq_lock, flags);
541
542	/* call the task func */
543	spin_lock_irqsave(&rtc->irq_task_lock, flags);
544	if (rtc->irq_task)
545		rtc->irq_task->func(rtc->irq_task->private_data);
546	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
547
548	wake_up_interruptible(&rtc->irq_queue);
549	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
550}
551
552
553/**
554 * rtc_aie_update_irq - AIE mode rtctimer hook
555 * @private: pointer to the rtc_device
556 *
557 * This functions is called when the aie_timer expires.
558 */
559void rtc_aie_update_irq(void *private)
560{
561	struct rtc_device *rtc = (struct rtc_device *)private;
562	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
563}
564
565
566/**
567 * rtc_uie_update_irq - UIE mode rtctimer hook
568 * @private: pointer to the rtc_device
569 *
570 * This functions is called when the uie_timer expires.
571 */
572void rtc_uie_update_irq(void *private)
573{
574	struct rtc_device *rtc = (struct rtc_device *)private;
575	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
576}
577
578
579/**
580 * rtc_pie_update_irq - PIE mode hrtimer hook
581 * @timer: pointer to the pie mode hrtimer
582 *
583 * This function is used to emulate PIE mode interrupts
584 * using an hrtimer. This function is called when the periodic
585 * hrtimer expires.
586 */
587enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
588{
589	struct rtc_device *rtc;
590	ktime_t period;
591	int count;
592	rtc = container_of(timer, struct rtc_device, pie_timer);
593
594	period = ktime_set(0, NSEC_PER_SEC/rtc->irq_freq);
595	count = hrtimer_forward_now(timer, period);
596
597	rtc_handle_legacy_irq(rtc, count, RTC_PF);
598
599	return HRTIMER_RESTART;
600}
601
602/**
603 * rtc_update_irq - Triggered when a RTC interrupt occurs.
604 * @rtc: the rtc device
605 * @num: how many irqs are being reported (usually one)
606 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
607 * Context: any
608 */
609void rtc_update_irq(struct rtc_device *rtc,
610		unsigned long num, unsigned long events)
611{
612	if (unlikely(IS_ERR_OR_NULL(rtc)))
613		return;
614
615	pm_stay_awake(rtc->dev.parent);
616	schedule_work(&rtc->irqwork);
617}
618EXPORT_SYMBOL_GPL(rtc_update_irq);
619
620static int __rtc_match(struct device *dev, const void *data)
621{
622	const char *name = data;
623
624	if (strcmp(dev_name(dev), name) == 0)
625		return 1;
626	return 0;
627}
628
629struct rtc_device *rtc_class_open(const char *name)
630{
631	struct device *dev;
632	struct rtc_device *rtc = NULL;
633
634	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
635	if (dev)
636		rtc = to_rtc_device(dev);
637
638	if (rtc) {
639		if (!try_module_get(rtc->owner)) {
640			put_device(dev);
641			rtc = NULL;
642		}
643	}
644
645	return rtc;
646}
647EXPORT_SYMBOL_GPL(rtc_class_open);
648
649void rtc_class_close(struct rtc_device *rtc)
650{
651	module_put(rtc->owner);
652	put_device(&rtc->dev);
653}
654EXPORT_SYMBOL_GPL(rtc_class_close);
655
656int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
657{
658	int retval = -EBUSY;
659
660	if (task == NULL || task->func == NULL)
661		return -EINVAL;
662
663	/* Cannot register while the char dev is in use */
664	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
665		return -EBUSY;
666
667	spin_lock_irq(&rtc->irq_task_lock);
668	if (rtc->irq_task == NULL) {
669		rtc->irq_task = task;
670		retval = 0;
671	}
672	spin_unlock_irq(&rtc->irq_task_lock);
673
674	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);
675
676	return retval;
677}
678EXPORT_SYMBOL_GPL(rtc_irq_register);
679
680void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
681{
682	spin_lock_irq(&rtc->irq_task_lock);
683	if (rtc->irq_task == task)
684		rtc->irq_task = NULL;
685	spin_unlock_irq(&rtc->irq_task_lock);
686}
687EXPORT_SYMBOL_GPL(rtc_irq_unregister);
688
689static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
690{
691	/*
692	 * We always cancel the timer here first, because otherwise
693	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
694	 * when we manage to start the timer before the callback
695	 * returns HRTIMER_RESTART.
696	 *
697	 * We cannot use hrtimer_cancel() here as a running callback
698	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
699	 * would spin forever.
700	 */
701	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
702		return -1;
703
704	if (enabled) {
705		ktime_t period = ktime_set(0, NSEC_PER_SEC / rtc->irq_freq);
706
707		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
708	}
709	return 0;
710}
711
712/**
713 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
714 * @rtc: the rtc device
715 * @task: currently registered with rtc_irq_register()
716 * @enabled: true to enable periodic IRQs
717 * Context: any
718 *
719 * Note that rtc_irq_set_freq() should previously have been used to
720 * specify the desired frequency of periodic IRQ task->func() callbacks.
721 */
722int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
723{
724	int err = 0;
725	unsigned long flags;
726
727retry:
728	spin_lock_irqsave(&rtc->irq_task_lock, flags);
729	if (rtc->irq_task != NULL && task == NULL)
730		err = -EBUSY;
731	else if (rtc->irq_task != task)
732		err = -EACCES;
733	else {
734		if (rtc_update_hrtimer(rtc, enabled) < 0) {
735			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
736			cpu_relax();
737			goto retry;
738		}
739		rtc->pie_enabled = enabled;
740	}
741	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
742	return err;
743}
744EXPORT_SYMBOL_GPL(rtc_irq_set_state);
745
746/**
747 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
748 * @rtc: the rtc device
749 * @task: currently registered with rtc_irq_register()
750 * @freq: positive frequency with which task->func() will be called
751 * Context: any
752 *
753 * Note that rtc_irq_set_state() is used to enable or disable the
754 * periodic IRQs.
755 */
756int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
757{
758	int err = 0;
759	unsigned long flags;
760
761	if (freq <= 0 || freq > RTC_MAX_FREQ)
762		return -EINVAL;
763retry:
764	spin_lock_irqsave(&rtc->irq_task_lock, flags);
765	if (rtc->irq_task != NULL && task == NULL)
766		err = -EBUSY;
767	else if (rtc->irq_task != task)
768		err = -EACCES;
769	else {
770		rtc->irq_freq = freq;
771		if (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0) {
772			spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
773			cpu_relax();
774			goto retry;
775		}
776	}
777	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);
778	return err;
779}
780EXPORT_SYMBOL_GPL(rtc_irq_set_freq);
781
782/**
783 * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
784 * @rtc rtc device
785 * @timer timer being added.
786 *
787 * Enqueues a timer onto the rtc devices timerqueue and sets
788 * the next alarm event appropriately.
789 *
790 * Sets the enabled bit on the added timer.
791 *
792 * Must hold ops_lock for proper serialization of timerqueue
793 */
794static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
795{
796	timer->enabled = 1;
797	timerqueue_add(&rtc->timerqueue, &timer->node);
798	if (&timer->node == timerqueue_getnext(&rtc->timerqueue)) {
799		struct rtc_wkalrm alarm;
800		int err;
801		alarm.time = rtc_ktime_to_tm(timer->node.expires);
802		alarm.enabled = 1;
803		err = __rtc_set_alarm(rtc, &alarm);
804		if (err == -ETIME) {
805			pm_stay_awake(rtc->dev.parent);
806			schedule_work(&rtc->irqwork);
807		} else if (err) {
808			timerqueue_del(&rtc->timerqueue, &timer->node);
809			timer->enabled = 0;
810			return err;
811		}
812	}
813	return 0;
814}
815
816static void rtc_alarm_disable(struct rtc_device *rtc)
817{
818	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
819		return;
820
821	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
822}
823
824/**
825 * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
826 * @rtc rtc device
827 * @timer timer being removed.
828 *
829 * Removes a timer onto the rtc devices timerqueue and sets
830 * the next alarm event appropriately.
831 *
832 * Clears the enabled bit on the removed timer.
833 *
834 * Must hold ops_lock for proper serialization of timerqueue
835 */
836static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
837{
838	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
839	timerqueue_del(&rtc->timerqueue, &timer->node);
840	timer->enabled = 0;
841	if (next == &timer->node) {
842		struct rtc_wkalrm alarm;
843		int err;
844		next = timerqueue_getnext(&rtc->timerqueue);
845		if (!next) {
846			rtc_alarm_disable(rtc);
847			return;
848		}
849		alarm.time = rtc_ktime_to_tm(next->expires);
850		alarm.enabled = 1;
851		err = __rtc_set_alarm(rtc, &alarm);
852		if (err == -ETIME) {
853			pm_stay_awake(rtc->dev.parent);
854			schedule_work(&rtc->irqwork);
855		}
856	}
857}
858
859/**
860 * rtc_timer_do_work - Expires rtc timers
861 * @rtc rtc device
862 * @timer timer being removed.
863 *
864 * Expires rtc timers. Reprograms next alarm event if needed.
865 * Called via worktask.
866 *
867 * Serializes access to timerqueue via ops_lock mutex
868 */
869void rtc_timer_do_work(struct work_struct *work)
870{
871	struct rtc_timer *timer;
872	struct timerqueue_node *next;
873	ktime_t now;
874	struct rtc_time tm;
875
876	struct rtc_device *rtc =
877		container_of(work, struct rtc_device, irqwork);
878
879	mutex_lock(&rtc->ops_lock);
880again:
881	__rtc_read_time(rtc, &tm);
882	now = rtc_tm_to_ktime(tm);
883	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
884		if (next->expires.tv64 > now.tv64)
885			break;
886
887		/* expire timer */
888		timer = container_of(next, struct rtc_timer, node);
889		timerqueue_del(&rtc->timerqueue, &timer->node);
890		timer->enabled = 0;
891		if (timer->task.func)
892			timer->task.func(timer->task.private_data);
893
894		/* Re-add/fwd periodic timers */
895		if (ktime_to_ns(timer->period)) {
896			timer->node.expires = ktime_add(timer->node.expires,
897							timer->period);
898			timer->enabled = 1;
899			timerqueue_add(&rtc->timerqueue, &timer->node);
900		}
901	}
902
903	/* Set next alarm */
904	if (next) {
905		struct rtc_wkalrm alarm;
906		int err;
907		int retry = 3;
908
909		alarm.time = rtc_ktime_to_tm(next->expires);
910		alarm.enabled = 1;
911reprogram:
912		err = __rtc_set_alarm(rtc, &alarm);
913		if (err == -ETIME)
914			goto again;
915		else if (err) {
916			if (retry-- > 0)
917				goto reprogram;
918
919			timer = container_of(next, struct rtc_timer, node);
920			timerqueue_del(&rtc->timerqueue, &timer->node);
921			timer->enabled = 0;
922			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
923			goto again;
924		}
925	} else
926		rtc_alarm_disable(rtc);
927
928	pm_relax(rtc->dev.parent);
929	mutex_unlock(&rtc->ops_lock);
930}
931
932
933/* rtc_timer_init - Initializes an rtc_timer
934 * @timer: timer to be intiialized
935 * @f: function pointer to be called when timer fires
936 * @data: private data passed to function pointer
937 *
938 * Kernel interface to initializing an rtc_timer.
939 */
940void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
941{
942	timerqueue_init(&timer->node);
943	timer->enabled = 0;
944	timer->task.func = f;
945	timer->task.private_data = data;
946}
947
948/* rtc_timer_start - Sets an rtc_timer to fire in the future
949 * @ rtc: rtc device to be used
950 * @ timer: timer being set
951 * @ expires: time at which to expire the timer
952 * @ period: period that the timer will recur
953 *
954 * Kernel interface to set an rtc_timer
955 */
956int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
957			ktime_t expires, ktime_t period)
958{
959	int ret = 0;
960	mutex_lock(&rtc->ops_lock);
961	if (timer->enabled)
962		rtc_timer_remove(rtc, timer);
963
964	timer->node.expires = expires;
965	timer->period = period;
966
967	ret = rtc_timer_enqueue(rtc, timer);
968
969	mutex_unlock(&rtc->ops_lock);
970	return ret;
971}
972
973/* rtc_timer_cancel - Stops an rtc_timer
974 * @ rtc: rtc device to be used
975 * @ timer: timer being set
976 *
977 * Kernel interface to cancel an rtc_timer
978 */
979int rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
980{
981	int ret = 0;
982	mutex_lock(&rtc->ops_lock);
983	if (timer->enabled)
984		rtc_timer_remove(rtc, timer);
985	mutex_unlock(&rtc->ops_lock);
986	return ret;
987}
988
989
990