1/*
2	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3	<http://rt2x00.serialmonkey.com>
4
5	This program is free software; you can redistribute it and/or modify
6	it under the terms of the GNU General Public License as published by
7	the Free Software Foundation; either version 2 of the License, or
8	(at your option) any later version.
9
10	This program is distributed in the hope that it will be useful,
11	but WITHOUT ANY WARRANTY; without even the implied warranty of
12	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13	GNU General Public License for more details.
14
15	You should have received a copy of the GNU General Public License
16	along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19/*
20	Module: rt73usb
21	Abstract: rt73usb device specific routines.
22	Supported chipsets: rt2571W & rt2671.
23 */
24
25#include <linux/crc-itu-t.h>
26#include <linux/delay.h>
27#include <linux/etherdevice.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/slab.h>
31#include <linux/usb.h>
32
33#include "rt2x00.h"
34#include "rt2x00usb.h"
35#include "rt73usb.h"
36
37/*
38 * Allow hardware encryption to be disabled.
39 */
40static bool modparam_nohwcrypt;
41module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
42MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00usb_register_read and rt2x00usb_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 * The _lock versions must be used if you already hold the csr_mutex
57 */
58#define WAIT_FOR_BBP(__dev, __reg) \
59	rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg))
60#define WAIT_FOR_RF(__dev, __reg) \
61	rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg))
62
63static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev,
64			      const unsigned int word, const u8 value)
65{
66	u32 reg;
67
68	mutex_lock(&rt2x00dev->csr_mutex);
69
70	/*
71	 * Wait until the BBP becomes available, afterwards we
72	 * can safely write the new data into the register.
73	 */
74	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
75		reg = 0;
76		rt2x00_set_field32(&reg, PHY_CSR3_VALUE, value);
77		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
78		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
79		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 0);
80
81		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
82	}
83
84	mutex_unlock(&rt2x00dev->csr_mutex);
85}
86
87static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev,
88			     const unsigned int word, u8 *value)
89{
90	u32 reg;
91
92	mutex_lock(&rt2x00dev->csr_mutex);
93
94	/*
95	 * Wait until the BBP becomes available, afterwards we
96	 * can safely write the read request into the register.
97	 * After the data has been written, we wait until hardware
98	 * returns the correct value, if at any time the register
99	 * doesn't become available in time, reg will be 0xffffffff
100	 * which means we return 0xff to the caller.
101	 */
102	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
103		reg = 0;
104		rt2x00_set_field32(&reg, PHY_CSR3_REGNUM, word);
105		rt2x00_set_field32(&reg, PHY_CSR3_BUSY, 1);
106		rt2x00_set_field32(&reg, PHY_CSR3_READ_CONTROL, 1);
107
108		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg);
109
110		WAIT_FOR_BBP(rt2x00dev, &reg);
111	}
112
113	*value = rt2x00_get_field32(reg, PHY_CSR3_VALUE);
114
115	mutex_unlock(&rt2x00dev->csr_mutex);
116}
117
118static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev,
119			     const unsigned int word, const u32 value)
120{
121	u32 reg;
122
123	mutex_lock(&rt2x00dev->csr_mutex);
124
125	/*
126	 * Wait until the RF becomes available, afterwards we
127	 * can safely write the new data into the register.
128	 */
129	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
130		reg = 0;
131		rt2x00_set_field32(&reg, PHY_CSR4_VALUE, value);
132		/*
133		 * RF5225 and RF2527 contain 21 bits per RF register value,
134		 * all others contain 20 bits.
135		 */
136		rt2x00_set_field32(&reg, PHY_CSR4_NUMBER_OF_BITS,
137				   20 + (rt2x00_rf(rt2x00dev, RF5225) ||
138					 rt2x00_rf(rt2x00dev, RF2527)));
139		rt2x00_set_field32(&reg, PHY_CSR4_IF_SELECT, 0);
140		rt2x00_set_field32(&reg, PHY_CSR4_BUSY, 1);
141
142		rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg);
143		rt2x00_rf_write(rt2x00dev, word, value);
144	}
145
146	mutex_unlock(&rt2x00dev->csr_mutex);
147}
148
149#ifdef CONFIG_RT2X00_LIB_DEBUGFS
150static const struct rt2x00debug rt73usb_rt2x00debug = {
151	.owner	= THIS_MODULE,
152	.csr	= {
153		.read		= rt2x00usb_register_read,
154		.write		= rt2x00usb_register_write,
155		.flags		= RT2X00DEBUGFS_OFFSET,
156		.word_base	= CSR_REG_BASE,
157		.word_size	= sizeof(u32),
158		.word_count	= CSR_REG_SIZE / sizeof(u32),
159	},
160	.eeprom	= {
161		.read		= rt2x00_eeprom_read,
162		.write		= rt2x00_eeprom_write,
163		.word_base	= EEPROM_BASE,
164		.word_size	= sizeof(u16),
165		.word_count	= EEPROM_SIZE / sizeof(u16),
166	},
167	.bbp	= {
168		.read		= rt73usb_bbp_read,
169		.write		= rt73usb_bbp_write,
170		.word_base	= BBP_BASE,
171		.word_size	= sizeof(u8),
172		.word_count	= BBP_SIZE / sizeof(u8),
173	},
174	.rf	= {
175		.read		= rt2x00_rf_read,
176		.write		= rt73usb_rf_write,
177		.word_base	= RF_BASE,
178		.word_size	= sizeof(u32),
179		.word_count	= RF_SIZE / sizeof(u32),
180	},
181};
182#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
183
184static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev)
185{
186	u32 reg;
187
188	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
189	return rt2x00_get_field32(reg, MAC_CSR13_VAL7);
190}
191
192#ifdef CONFIG_RT2X00_LIB_LEDS
193static void rt73usb_brightness_set(struct led_classdev *led_cdev,
194				   enum led_brightness brightness)
195{
196	struct rt2x00_led *led =
197	   container_of(led_cdev, struct rt2x00_led, led_dev);
198	unsigned int enabled = brightness != LED_OFF;
199	unsigned int a_mode =
200	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ);
201	unsigned int bg_mode =
202	    (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ);
203
204	if (led->type == LED_TYPE_RADIO) {
205		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
206				   MCU_LEDCS_RADIO_STATUS, enabled);
207
208		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
209					    0, led->rt2x00dev->led_mcu_reg,
210					    REGISTER_TIMEOUT);
211	} else if (led->type == LED_TYPE_ASSOC) {
212		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
213				   MCU_LEDCS_LINK_BG_STATUS, bg_mode);
214		rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg,
215				   MCU_LEDCS_LINK_A_STATUS, a_mode);
216
217		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
218					    0, led->rt2x00dev->led_mcu_reg,
219					    REGISTER_TIMEOUT);
220	} else if (led->type == LED_TYPE_QUALITY) {
221		/*
222		 * The brightness is divided into 6 levels (0 - 5),
223		 * this means we need to convert the brightness
224		 * argument into the matching level within that range.
225		 */
226		rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL,
227					    brightness / (LED_FULL / 6),
228					    led->rt2x00dev->led_mcu_reg,
229					    REGISTER_TIMEOUT);
230	}
231}
232
233static int rt73usb_blink_set(struct led_classdev *led_cdev,
234			     unsigned long *delay_on,
235			     unsigned long *delay_off)
236{
237	struct rt2x00_led *led =
238	    container_of(led_cdev, struct rt2x00_led, led_dev);
239	u32 reg;
240
241	rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, &reg);
242	rt2x00_set_field32(&reg, MAC_CSR14_ON_PERIOD, *delay_on);
243	rt2x00_set_field32(&reg, MAC_CSR14_OFF_PERIOD, *delay_off);
244	rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg);
245
246	return 0;
247}
248
249static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev,
250			     struct rt2x00_led *led,
251			     enum led_type type)
252{
253	led->rt2x00dev = rt2x00dev;
254	led->type = type;
255	led->led_dev.brightness_set = rt73usb_brightness_set;
256	led->led_dev.blink_set = rt73usb_blink_set;
257	led->flags = LED_INITIALIZED;
258}
259#endif /* CONFIG_RT2X00_LIB_LEDS */
260
261/*
262 * Configuration handlers.
263 */
264static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev,
265				     struct rt2x00lib_crypto *crypto,
266				     struct ieee80211_key_conf *key)
267{
268	struct hw_key_entry key_entry;
269	struct rt2x00_field32 field;
270	u32 mask;
271	u32 reg;
272
273	if (crypto->cmd == SET_KEY) {
274		/*
275		 * rt2x00lib can't determine the correct free
276		 * key_idx for shared keys. We have 1 register
277		 * with key valid bits. The goal is simple, read
278		 * the register, if that is full we have no slots
279		 * left.
280		 * Note that each BSS is allowed to have up to 4
281		 * shared keys, so put a mask over the allowed
282		 * entries.
283		 */
284		mask = (0xf << crypto->bssidx);
285
286		rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
287		reg &= mask;
288
289		if (reg && reg == mask)
290			return -ENOSPC;
291
292		key->hw_key_idx += reg ? ffz(reg) : 0;
293
294		/*
295		 * Upload key to hardware
296		 */
297		memcpy(key_entry.key, crypto->key,
298		       sizeof(key_entry.key));
299		memcpy(key_entry.tx_mic, crypto->tx_mic,
300		       sizeof(key_entry.tx_mic));
301		memcpy(key_entry.rx_mic, crypto->rx_mic,
302		       sizeof(key_entry.rx_mic));
303
304		reg = SHARED_KEY_ENTRY(key->hw_key_idx);
305		rt2x00usb_register_multiwrite(rt2x00dev, reg,
306					      &key_entry, sizeof(key_entry));
307
308		/*
309		 * The cipher types are stored over 2 registers.
310		 * bssidx 0 and 1 keys are stored in SEC_CSR1 and
311		 * bssidx 1 and 2 keys are stored in SEC_CSR5.
312		 * Using the correct defines correctly will cause overhead,
313		 * so just calculate the correct offset.
314		 */
315		if (key->hw_key_idx < 8) {
316			field.bit_offset = (3 * key->hw_key_idx);
317			field.bit_mask = 0x7 << field.bit_offset;
318
319			rt2x00usb_register_read(rt2x00dev, SEC_CSR1, &reg);
320			rt2x00_set_field32(&reg, field, crypto->cipher);
321			rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg);
322		} else {
323			field.bit_offset = (3 * (key->hw_key_idx - 8));
324			field.bit_mask = 0x7 << field.bit_offset;
325
326			rt2x00usb_register_read(rt2x00dev, SEC_CSR5, &reg);
327			rt2x00_set_field32(&reg, field, crypto->cipher);
328			rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg);
329		}
330
331		/*
332		 * The driver does not support the IV/EIV generation
333		 * in hardware. However it doesn't support the IV/EIV
334		 * inside the ieee80211 frame either, but requires it
335		 * to be provided separately for the descriptor.
336		 * rt2x00lib will cut the IV/EIV data out of all frames
337		 * given to us by mac80211, but we must tell mac80211
338		 * to generate the IV/EIV data.
339		 */
340		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
341	}
342
343	/*
344	 * SEC_CSR0 contains only single-bit fields to indicate
345	 * a particular key is valid. Because using the FIELD32()
346	 * defines directly will cause a lot of overhead we use
347	 * a calculation to determine the correct bit directly.
348	 */
349	mask = 1 << key->hw_key_idx;
350
351	rt2x00usb_register_read(rt2x00dev, SEC_CSR0, &reg);
352	if (crypto->cmd == SET_KEY)
353		reg |= mask;
354	else if (crypto->cmd == DISABLE_KEY)
355		reg &= ~mask;
356	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg);
357
358	return 0;
359}
360
361static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev,
362				       struct rt2x00lib_crypto *crypto,
363				       struct ieee80211_key_conf *key)
364{
365	struct hw_pairwise_ta_entry addr_entry;
366	struct hw_key_entry key_entry;
367	u32 mask;
368	u32 reg;
369
370	if (crypto->cmd == SET_KEY) {
371		/*
372		 * rt2x00lib can't determine the correct free
373		 * key_idx for pairwise keys. We have 2 registers
374		 * with key valid bits. The goal is simple, read
375		 * the first register, if that is full move to
376		 * the next register.
377		 * When both registers are full, we drop the key,
378		 * otherwise we use the first invalid entry.
379		 */
380		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
381		if (reg && reg == ~0) {
382			key->hw_key_idx = 32;
383			rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
384			if (reg && reg == ~0)
385				return -ENOSPC;
386		}
387
388		key->hw_key_idx += reg ? ffz(reg) : 0;
389
390		/*
391		 * Upload key to hardware
392		 */
393		memcpy(key_entry.key, crypto->key,
394		       sizeof(key_entry.key));
395		memcpy(key_entry.tx_mic, crypto->tx_mic,
396		       sizeof(key_entry.tx_mic));
397		memcpy(key_entry.rx_mic, crypto->rx_mic,
398		       sizeof(key_entry.rx_mic));
399
400		reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx);
401		rt2x00usb_register_multiwrite(rt2x00dev, reg,
402					      &key_entry, sizeof(key_entry));
403
404		/*
405		 * Send the address and cipher type to the hardware register.
406		 */
407		memset(&addr_entry, 0, sizeof(addr_entry));
408		memcpy(&addr_entry, crypto->address, ETH_ALEN);
409		addr_entry.cipher = crypto->cipher;
410
411		reg = PAIRWISE_TA_ENTRY(key->hw_key_idx);
412		rt2x00usb_register_multiwrite(rt2x00dev, reg,
413					    &addr_entry, sizeof(addr_entry));
414
415		/*
416		 * Enable pairwise lookup table for given BSS idx,
417		 * without this received frames will not be decrypted
418		 * by the hardware.
419		 */
420		rt2x00usb_register_read(rt2x00dev, SEC_CSR4, &reg);
421		reg |= (1 << crypto->bssidx);
422		rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg);
423
424		/*
425		 * The driver does not support the IV/EIV generation
426		 * in hardware. However it doesn't support the IV/EIV
427		 * inside the ieee80211 frame either, but requires it
428		 * to be provided separately for the descriptor.
429		 * rt2x00lib will cut the IV/EIV data out of all frames
430		 * given to us by mac80211, but we must tell mac80211
431		 * to generate the IV/EIV data.
432		 */
433		key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV;
434	}
435
436	/*
437	 * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate
438	 * a particular key is valid. Because using the FIELD32()
439	 * defines directly will cause a lot of overhead we use
440	 * a calculation to determine the correct bit directly.
441	 */
442	if (key->hw_key_idx < 32) {
443		mask = 1 << key->hw_key_idx;
444
445		rt2x00usb_register_read(rt2x00dev, SEC_CSR2, &reg);
446		if (crypto->cmd == SET_KEY)
447			reg |= mask;
448		else if (crypto->cmd == DISABLE_KEY)
449			reg &= ~mask;
450		rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg);
451	} else {
452		mask = 1 << (key->hw_key_idx - 32);
453
454		rt2x00usb_register_read(rt2x00dev, SEC_CSR3, &reg);
455		if (crypto->cmd == SET_KEY)
456			reg |= mask;
457		else if (crypto->cmd == DISABLE_KEY)
458			reg &= ~mask;
459		rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg);
460	}
461
462	return 0;
463}
464
465static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev,
466				  const unsigned int filter_flags)
467{
468	u32 reg;
469
470	/*
471	 * Start configuration steps.
472	 * Note that the version error will always be dropped
473	 * and broadcast frames will always be accepted since
474	 * there is no filter for it at this time.
475	 */
476	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
477	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CRC,
478			   !(filter_flags & FIF_FCSFAIL));
479	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_PHYSICAL,
480			   !(filter_flags & FIF_PLCPFAIL));
481	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_CONTROL,
482			   !(filter_flags & (FIF_CONTROL | FIF_PSPOLL)));
483	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_NOT_TO_ME,
484			   !(filter_flags & FIF_PROMISC_IN_BSS));
485	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_TO_DS,
486			   !(filter_flags & FIF_PROMISC_IN_BSS) &&
487			   !rt2x00dev->intf_ap_count);
488	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_VERSION_ERROR, 1);
489	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_MULTICAST,
490			   !(filter_flags & FIF_ALLMULTI));
491	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_BROADCAST, 0);
492	rt2x00_set_field32(&reg, TXRX_CSR0_DROP_ACK_CTS,
493			   !(filter_flags & FIF_CONTROL));
494	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
495}
496
497static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev,
498				struct rt2x00_intf *intf,
499				struct rt2x00intf_conf *conf,
500				const unsigned int flags)
501{
502	u32 reg;
503
504	if (flags & CONFIG_UPDATE_TYPE) {
505		/*
506		 * Enable synchronisation.
507		 */
508		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
509		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, conf->sync);
510		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
511	}
512
513	if (flags & CONFIG_UPDATE_MAC) {
514		reg = le32_to_cpu(conf->mac[1]);
515		rt2x00_set_field32(&reg, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff);
516		conf->mac[1] = cpu_to_le32(reg);
517
518		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2,
519					    conf->mac, sizeof(conf->mac));
520	}
521
522	if (flags & CONFIG_UPDATE_BSSID) {
523		reg = le32_to_cpu(conf->bssid[1]);
524		rt2x00_set_field32(&reg, MAC_CSR5_BSS_ID_MASK, 3);
525		conf->bssid[1] = cpu_to_le32(reg);
526
527		rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4,
528					    conf->bssid, sizeof(conf->bssid));
529	}
530}
531
532static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev,
533			       struct rt2x00lib_erp *erp,
534			       u32 changed)
535{
536	u32 reg;
537
538	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
539	rt2x00_set_field32(&reg, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32);
540	rt2x00_set_field32(&reg, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER);
541	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
542
543	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
544		rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
545		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_ENABLE, 1);
546		rt2x00_set_field32(&reg, TXRX_CSR4_AUTORESPOND_PREAMBLE,
547				   !!erp->short_preamble);
548		rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
549	}
550
551	if (changed & BSS_CHANGED_BASIC_RATES)
552		rt2x00usb_register_write(rt2x00dev, TXRX_CSR5,
553					 erp->basic_rates);
554
555	if (changed & BSS_CHANGED_BEACON_INT) {
556		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
557		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL,
558				   erp->beacon_int * 16);
559		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
560	}
561
562	if (changed & BSS_CHANGED_ERP_SLOT) {
563		rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
564		rt2x00_set_field32(&reg, MAC_CSR9_SLOT_TIME, erp->slot_time);
565		rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
566
567		rt2x00usb_register_read(rt2x00dev, MAC_CSR8, &reg);
568		rt2x00_set_field32(&reg, MAC_CSR8_SIFS, erp->sifs);
569		rt2x00_set_field32(&reg, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3);
570		rt2x00_set_field32(&reg, MAC_CSR8_EIFS, erp->eifs);
571		rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg);
572	}
573}
574
575static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev,
576				      struct antenna_setup *ant)
577{
578	u8 r3;
579	u8 r4;
580	u8 r77;
581	u8 temp;
582
583	rt73usb_bbp_read(rt2x00dev, 3, &r3);
584	rt73usb_bbp_read(rt2x00dev, 4, &r4);
585	rt73usb_bbp_read(rt2x00dev, 77, &r77);
586
587	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
588
589	/*
590	 * Configure the RX antenna.
591	 */
592	switch (ant->rx) {
593	case ANTENNA_HW_DIVERSITY:
594		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
595		temp = !rt2x00_has_cap_frame_type(rt2x00dev) &&
596		       (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ);
597		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp);
598		break;
599	case ANTENNA_A:
600		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
601		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
602		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
603			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
604		else
605			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
606		break;
607	case ANTENNA_B:
608	default:
609		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
610		rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0);
611		if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)
612			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
613		else
614			rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
615		break;
616	}
617
618	rt73usb_bbp_write(rt2x00dev, 77, r77);
619	rt73usb_bbp_write(rt2x00dev, 3, r3);
620	rt73usb_bbp_write(rt2x00dev, 4, r4);
621}
622
623static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev,
624				      struct antenna_setup *ant)
625{
626	u8 r3;
627	u8 r4;
628	u8 r77;
629
630	rt73usb_bbp_read(rt2x00dev, 3, &r3);
631	rt73usb_bbp_read(rt2x00dev, 4, &r4);
632	rt73usb_bbp_read(rt2x00dev, 77, &r77);
633
634	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0);
635	rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END,
636			  !rt2x00_has_cap_frame_type(rt2x00dev));
637
638	/*
639	 * Configure the RX antenna.
640	 */
641	switch (ant->rx) {
642	case ANTENNA_HW_DIVERSITY:
643		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2);
644		break;
645	case ANTENNA_A:
646		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3);
647		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
648		break;
649	case ANTENNA_B:
650	default:
651		rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0);
652		rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1);
653		break;
654	}
655
656	rt73usb_bbp_write(rt2x00dev, 77, r77);
657	rt73usb_bbp_write(rt2x00dev, 3, r3);
658	rt73usb_bbp_write(rt2x00dev, 4, r4);
659}
660
661struct antenna_sel {
662	u8 word;
663	/*
664	 * value[0] -> non-LNA
665	 * value[1] -> LNA
666	 */
667	u8 value[2];
668};
669
670static const struct antenna_sel antenna_sel_a[] = {
671	{ 96,  { 0x58, 0x78 } },
672	{ 104, { 0x38, 0x48 } },
673	{ 75,  { 0xfe, 0x80 } },
674	{ 86,  { 0xfe, 0x80 } },
675	{ 88,  { 0xfe, 0x80 } },
676	{ 35,  { 0x60, 0x60 } },
677	{ 97,  { 0x58, 0x58 } },
678	{ 98,  { 0x58, 0x58 } },
679};
680
681static const struct antenna_sel antenna_sel_bg[] = {
682	{ 96,  { 0x48, 0x68 } },
683	{ 104, { 0x2c, 0x3c } },
684	{ 75,  { 0xfe, 0x80 } },
685	{ 86,  { 0xfe, 0x80 } },
686	{ 88,  { 0xfe, 0x80 } },
687	{ 35,  { 0x50, 0x50 } },
688	{ 97,  { 0x48, 0x48 } },
689	{ 98,  { 0x48, 0x48 } },
690};
691
692static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev,
693			       struct antenna_setup *ant)
694{
695	const struct antenna_sel *sel;
696	unsigned int lna;
697	unsigned int i;
698	u32 reg;
699
700	/*
701	 * We should never come here because rt2x00lib is supposed
702	 * to catch this and send us the correct antenna explicitely.
703	 */
704	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
705	       ant->tx == ANTENNA_SW_DIVERSITY);
706
707	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
708		sel = antenna_sel_a;
709		lna = rt2x00_has_cap_external_lna_a(rt2x00dev);
710	} else {
711		sel = antenna_sel_bg;
712		lna = rt2x00_has_cap_external_lna_bg(rt2x00dev);
713	}
714
715	for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++)
716		rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]);
717
718	rt2x00usb_register_read(rt2x00dev, PHY_CSR0, &reg);
719
720	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_BG,
721			   (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ));
722	rt2x00_set_field32(&reg, PHY_CSR0_PA_PE_A,
723			   (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ));
724
725	rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg);
726
727	if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225))
728		rt73usb_config_antenna_5x(rt2x00dev, ant);
729	else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527))
730		rt73usb_config_antenna_2x(rt2x00dev, ant);
731}
732
733static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev,
734				    struct rt2x00lib_conf *libconf)
735{
736	u16 eeprom;
737	short lna_gain = 0;
738
739	if (libconf->conf->chandef.chan->band == IEEE80211_BAND_2GHZ) {
740		if (rt2x00_has_cap_external_lna_bg(rt2x00dev))
741			lna_gain += 14;
742
743		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom);
744		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1);
745	} else {
746		rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom);
747		lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1);
748	}
749
750	rt2x00dev->lna_gain = lna_gain;
751}
752
753static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev,
754				   struct rf_channel *rf, const int txpower)
755{
756	u8 r3;
757	u8 r94;
758	u8 smart;
759
760	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
761	rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset);
762
763	smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527));
764
765	rt73usb_bbp_read(rt2x00dev, 3, &r3);
766	rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart);
767	rt73usb_bbp_write(rt2x00dev, 3, r3);
768
769	r94 = 6;
770	if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94))
771		r94 += txpower - MAX_TXPOWER;
772	else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94))
773		r94 += txpower;
774	rt73usb_bbp_write(rt2x00dev, 94, r94);
775
776	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
777	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
778	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
779	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
780
781	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
782	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
783	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004);
784	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
785
786	rt73usb_rf_write(rt2x00dev, 1, rf->rf1);
787	rt73usb_rf_write(rt2x00dev, 2, rf->rf2);
788	rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004);
789	rt73usb_rf_write(rt2x00dev, 4, rf->rf4);
790
791	udelay(10);
792}
793
794static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev,
795				   const int txpower)
796{
797	struct rf_channel rf;
798
799	rt2x00_rf_read(rt2x00dev, 1, &rf.rf1);
800	rt2x00_rf_read(rt2x00dev, 2, &rf.rf2);
801	rt2x00_rf_read(rt2x00dev, 3, &rf.rf3);
802	rt2x00_rf_read(rt2x00dev, 4, &rf.rf4);
803
804	rt73usb_config_channel(rt2x00dev, &rf, txpower);
805}
806
807static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev,
808				       struct rt2x00lib_conf *libconf)
809{
810	u32 reg;
811
812	rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, &reg);
813	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1);
814	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_RATE_STEP, 0);
815	rt2x00_set_field32(&reg, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0);
816	rt2x00_set_field32(&reg, TXRX_CSR4_LONG_RETRY_LIMIT,
817			   libconf->conf->long_frame_max_tx_count);
818	rt2x00_set_field32(&reg, TXRX_CSR4_SHORT_RETRY_LIMIT,
819			   libconf->conf->short_frame_max_tx_count);
820	rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg);
821}
822
823static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev,
824				struct rt2x00lib_conf *libconf)
825{
826	enum dev_state state =
827	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
828		STATE_SLEEP : STATE_AWAKE;
829	u32 reg;
830
831	if (state == STATE_SLEEP) {
832		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
833		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN,
834				   rt2x00dev->beacon_int - 10);
835		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP,
836				   libconf->conf->listen_interval - 1);
837		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 5);
838
839		/* We must first disable autowake before it can be enabled */
840		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
841		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
842
843		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 1);
844		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
845
846		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
847					    USB_MODE_SLEEP, REGISTER_TIMEOUT);
848	} else {
849		rt2x00usb_register_read(rt2x00dev, MAC_CSR11, &reg);
850		rt2x00_set_field32(&reg, MAC_CSR11_DELAY_AFTER_TBCN, 0);
851		rt2x00_set_field32(&reg, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0);
852		rt2x00_set_field32(&reg, MAC_CSR11_AUTOWAKE, 0);
853		rt2x00_set_field32(&reg, MAC_CSR11_WAKEUP_LATENCY, 0);
854		rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg);
855
856		rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0,
857					    USB_MODE_WAKEUP, REGISTER_TIMEOUT);
858	}
859}
860
861static void rt73usb_config(struct rt2x00_dev *rt2x00dev,
862			   struct rt2x00lib_conf *libconf,
863			   const unsigned int flags)
864{
865	/* Always recalculate LNA gain before changing configuration */
866	rt73usb_config_lna_gain(rt2x00dev, libconf);
867
868	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
869		rt73usb_config_channel(rt2x00dev, &libconf->rf,
870				       libconf->conf->power_level);
871	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
872	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
873		rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level);
874	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
875		rt73usb_config_retry_limit(rt2x00dev, libconf);
876	if (flags & IEEE80211_CONF_CHANGE_PS)
877		rt73usb_config_ps(rt2x00dev, libconf);
878}
879
880/*
881 * Link tuning
882 */
883static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev,
884			       struct link_qual *qual)
885{
886	u32 reg;
887
888	/*
889	 * Update FCS error count from register.
890	 */
891	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
892	qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR);
893
894	/*
895	 * Update False CCA count from register.
896	 */
897	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
898	qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR);
899}
900
901static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev,
902				   struct link_qual *qual, u8 vgc_level)
903{
904	if (qual->vgc_level != vgc_level) {
905		rt73usb_bbp_write(rt2x00dev, 17, vgc_level);
906		qual->vgc_level = vgc_level;
907		qual->vgc_level_reg = vgc_level;
908	}
909}
910
911static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev,
912				struct link_qual *qual)
913{
914	rt73usb_set_vgc(rt2x00dev, qual, 0x20);
915}
916
917static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev,
918			       struct link_qual *qual, const u32 count)
919{
920	u8 up_bound;
921	u8 low_bound;
922
923	/*
924	 * Determine r17 bounds.
925	 */
926	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
927		low_bound = 0x28;
928		up_bound = 0x48;
929
930		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
931			low_bound += 0x10;
932			up_bound += 0x10;
933		}
934	} else {
935		if (qual->rssi > -82) {
936			low_bound = 0x1c;
937			up_bound = 0x40;
938		} else if (qual->rssi > -84) {
939			low_bound = 0x1c;
940			up_bound = 0x20;
941		} else {
942			low_bound = 0x1c;
943			up_bound = 0x1c;
944		}
945
946		if (rt2x00_has_cap_external_lna_bg(rt2x00dev)) {
947			low_bound += 0x14;
948			up_bound += 0x10;
949		}
950	}
951
952	/*
953	 * If we are not associated, we should go straight to the
954	 * dynamic CCA tuning.
955	 */
956	if (!rt2x00dev->intf_associated)
957		goto dynamic_cca_tune;
958
959	/*
960	 * Special big-R17 for very short distance
961	 */
962	if (qual->rssi > -35) {
963		rt73usb_set_vgc(rt2x00dev, qual, 0x60);
964		return;
965	}
966
967	/*
968	 * Special big-R17 for short distance
969	 */
970	if (qual->rssi >= -58) {
971		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
972		return;
973	}
974
975	/*
976	 * Special big-R17 for middle-short distance
977	 */
978	if (qual->rssi >= -66) {
979		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10);
980		return;
981	}
982
983	/*
984	 * Special mid-R17 for middle distance
985	 */
986	if (qual->rssi >= -74) {
987		rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08);
988		return;
989	}
990
991	/*
992	 * Special case: Change up_bound based on the rssi.
993	 * Lower up_bound when rssi is weaker then -74 dBm.
994	 */
995	up_bound -= 2 * (-74 - qual->rssi);
996	if (low_bound > up_bound)
997		up_bound = low_bound;
998
999	if (qual->vgc_level > up_bound) {
1000		rt73usb_set_vgc(rt2x00dev, qual, up_bound);
1001		return;
1002	}
1003
1004dynamic_cca_tune:
1005
1006	/*
1007	 * r17 does not yet exceed upper limit, continue and base
1008	 * the r17 tuning on the false CCA count.
1009	 */
1010	if ((qual->false_cca > 512) && (qual->vgc_level < up_bound))
1011		rt73usb_set_vgc(rt2x00dev, qual,
1012				min_t(u8, qual->vgc_level + 4, up_bound));
1013	else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound))
1014		rt73usb_set_vgc(rt2x00dev, qual,
1015				max_t(u8, qual->vgc_level - 4, low_bound));
1016}
1017
1018/*
1019 * Queue handlers.
1020 */
1021static void rt73usb_start_queue(struct data_queue *queue)
1022{
1023	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1024	u32 reg;
1025
1026	switch (queue->qid) {
1027	case QID_RX:
1028		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1029		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1030		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1031		break;
1032	case QID_BEACON:
1033		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1034		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 1);
1035		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 1);
1036		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1037		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1038		break;
1039	default:
1040		break;
1041	}
1042}
1043
1044static void rt73usb_stop_queue(struct data_queue *queue)
1045{
1046	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
1047	u32 reg;
1048
1049	switch (queue->qid) {
1050	case QID_RX:
1051		rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1052		rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 1);
1053		rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1054		break;
1055	case QID_BEACON:
1056		rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1057		rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1058		rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1059		rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1060		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1061		break;
1062	default:
1063		break;
1064	}
1065}
1066
1067/*
1068 * Firmware functions
1069 */
1070static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev)
1071{
1072	return FIRMWARE_RT2571;
1073}
1074
1075static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev,
1076				  const u8 *data, const size_t len)
1077{
1078	u16 fw_crc;
1079	u16 crc;
1080
1081	/*
1082	 * Only support 2kb firmware files.
1083	 */
1084	if (len != 2048)
1085		return FW_BAD_LENGTH;
1086
1087	/*
1088	 * The last 2 bytes in the firmware array are the crc checksum itself,
1089	 * this means that we should never pass those 2 bytes to the crc
1090	 * algorithm.
1091	 */
1092	fw_crc = (data[len - 2] << 8 | data[len - 1]);
1093
1094	/*
1095	 * Use the crc itu-t algorithm.
1096	 */
1097	crc = crc_itu_t(0, data, len - 2);
1098	crc = crc_itu_t_byte(crc, 0);
1099	crc = crc_itu_t_byte(crc, 0);
1100
1101	return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
1102}
1103
1104static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev,
1105				 const u8 *data, const size_t len)
1106{
1107	unsigned int i;
1108	int status;
1109	u32 reg;
1110
1111	/*
1112	 * Wait for stable hardware.
1113	 */
1114	for (i = 0; i < 100; i++) {
1115		rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1116		if (reg)
1117			break;
1118		msleep(1);
1119	}
1120
1121	if (!reg) {
1122		rt2x00_err(rt2x00dev, "Unstable hardware\n");
1123		return -EBUSY;
1124	}
1125
1126	/*
1127	 * Write firmware to device.
1128	 */
1129	rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len);
1130
1131	/*
1132	 * Send firmware request to device to load firmware,
1133	 * we need to specify a long timeout time.
1134	 */
1135	status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE,
1136					     0, USB_MODE_FIRMWARE,
1137					     REGISTER_TIMEOUT_FIRMWARE);
1138	if (status < 0) {
1139		rt2x00_err(rt2x00dev, "Failed to write Firmware to device\n");
1140		return status;
1141	}
1142
1143	return 0;
1144}
1145
1146/*
1147 * Initialization functions.
1148 */
1149static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev)
1150{
1151	u32 reg;
1152
1153	rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, &reg);
1154	rt2x00_set_field32(&reg, TXRX_CSR0_AUTO_TX_SEQ, 1);
1155	rt2x00_set_field32(&reg, TXRX_CSR0_DISABLE_RX, 0);
1156	rt2x00_set_field32(&reg, TXRX_CSR0_TX_WITHOUT_WAITING, 0);
1157	rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg);
1158
1159	rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, &reg);
1160	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */
1161	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID0_VALID, 1);
1162	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1, 30); /* Rssi */
1163	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID1_VALID, 1);
1164	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */
1165	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID2_VALID, 1);
1166	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3, 30); /* Rssi */
1167	rt2x00_set_field32(&reg, TXRX_CSR1_BBP_ID3_VALID, 1);
1168	rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg);
1169
1170	/*
1171	 * CCK TXD BBP registers
1172	 */
1173	rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, &reg);
1174	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0, 13);
1175	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID0_VALID, 1);
1176	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1, 12);
1177	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID1_VALID, 1);
1178	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2, 11);
1179	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID2_VALID, 1);
1180	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3, 10);
1181	rt2x00_set_field32(&reg, TXRX_CSR2_BBP_ID3_VALID, 1);
1182	rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg);
1183
1184	/*
1185	 * OFDM TXD BBP registers
1186	 */
1187	rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, &reg);
1188	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0, 7);
1189	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID0_VALID, 1);
1190	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1, 6);
1191	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID1_VALID, 1);
1192	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2, 5);
1193	rt2x00_set_field32(&reg, TXRX_CSR3_BBP_ID2_VALID, 1);
1194	rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg);
1195
1196	rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, &reg);
1197	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_6MBS, 59);
1198	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_9MBS, 53);
1199	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_12MBS, 49);
1200	rt2x00_set_field32(&reg, TXRX_CSR7_ACK_CTS_18MBS, 46);
1201	rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg);
1202
1203	rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, &reg);
1204	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_24MBS, 44);
1205	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_36MBS, 42);
1206	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_48MBS, 42);
1207	rt2x00_set_field32(&reg, TXRX_CSR8_ACK_CTS_54MBS, 42);
1208	rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg);
1209
1210	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1211	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_INTERVAL, 0);
1212	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_TICKING, 0);
1213	rt2x00_set_field32(&reg, TXRX_CSR9_TSF_SYNC, 0);
1214	rt2x00_set_field32(&reg, TXRX_CSR9_TBTT_ENABLE, 0);
1215	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1216	rt2x00_set_field32(&reg, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0);
1217	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1218
1219	rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f);
1220
1221	rt2x00usb_register_read(rt2x00dev, MAC_CSR6, &reg);
1222	rt2x00_set_field32(&reg, MAC_CSR6_MAX_FRAME_UNIT, 0xfff);
1223	rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg);
1224
1225	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718);
1226
1227	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1228		return -EBUSY;
1229
1230	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00);
1231
1232	/*
1233	 * Invalidate all Shared Keys (SEC_CSR0),
1234	 * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5)
1235	 */
1236	rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000);
1237	rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000);
1238	rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000);
1239
1240	reg = 0x000023b0;
1241	if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527))
1242		rt2x00_set_field32(&reg, PHY_CSR1_RF_RPI, 1);
1243	rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg);
1244
1245	rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06);
1246	rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606);
1247	rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408);
1248
1249	rt2x00usb_register_read(rt2x00dev, MAC_CSR9, &reg);
1250	rt2x00_set_field32(&reg, MAC_CSR9_CW_SELECT, 0);
1251	rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg);
1252
1253	/*
1254	 * Clear all beacons
1255	 * For the Beacon base registers we only need to clear
1256	 * the first byte since that byte contains the VALID and OWNER
1257	 * bits which (when set to 0) will invalidate the entire beacon.
1258	 */
1259	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0);
1260	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0);
1261	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0);
1262	rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0);
1263
1264	/*
1265	 * We must clear the error counters.
1266	 * These registers are cleared on read,
1267	 * so we may pass a useless variable to store the value.
1268	 */
1269	rt2x00usb_register_read(rt2x00dev, STA_CSR0, &reg);
1270	rt2x00usb_register_read(rt2x00dev, STA_CSR1, &reg);
1271	rt2x00usb_register_read(rt2x00dev, STA_CSR2, &reg);
1272
1273	/*
1274	 * Reset MAC and BBP registers.
1275	 */
1276	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1277	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 1);
1278	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 1);
1279	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1280
1281	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1282	rt2x00_set_field32(&reg, MAC_CSR1_SOFT_RESET, 0);
1283	rt2x00_set_field32(&reg, MAC_CSR1_BBP_RESET, 0);
1284	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1285
1286	rt2x00usb_register_read(rt2x00dev, MAC_CSR1, &reg);
1287	rt2x00_set_field32(&reg, MAC_CSR1_HOST_READY, 1);
1288	rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg);
1289
1290	return 0;
1291}
1292
1293static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1294{
1295	unsigned int i;
1296	u8 value;
1297
1298	for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) {
1299		rt73usb_bbp_read(rt2x00dev, 0, &value);
1300		if ((value != 0xff) && (value != 0x00))
1301			return 0;
1302		udelay(REGISTER_BUSY_DELAY);
1303	}
1304
1305	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1306	return -EACCES;
1307}
1308
1309static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev)
1310{
1311	unsigned int i;
1312	u16 eeprom;
1313	u8 reg_id;
1314	u8 value;
1315
1316	if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev)))
1317		return -EACCES;
1318
1319	rt73usb_bbp_write(rt2x00dev, 3, 0x80);
1320	rt73usb_bbp_write(rt2x00dev, 15, 0x30);
1321	rt73usb_bbp_write(rt2x00dev, 21, 0xc8);
1322	rt73usb_bbp_write(rt2x00dev, 22, 0x38);
1323	rt73usb_bbp_write(rt2x00dev, 23, 0x06);
1324	rt73usb_bbp_write(rt2x00dev, 24, 0xfe);
1325	rt73usb_bbp_write(rt2x00dev, 25, 0x0a);
1326	rt73usb_bbp_write(rt2x00dev, 26, 0x0d);
1327	rt73usb_bbp_write(rt2x00dev, 32, 0x0b);
1328	rt73usb_bbp_write(rt2x00dev, 34, 0x12);
1329	rt73usb_bbp_write(rt2x00dev, 37, 0x07);
1330	rt73usb_bbp_write(rt2x00dev, 39, 0xf8);
1331	rt73usb_bbp_write(rt2x00dev, 41, 0x60);
1332	rt73usb_bbp_write(rt2x00dev, 53, 0x10);
1333	rt73usb_bbp_write(rt2x00dev, 54, 0x18);
1334	rt73usb_bbp_write(rt2x00dev, 60, 0x10);
1335	rt73usb_bbp_write(rt2x00dev, 61, 0x04);
1336	rt73usb_bbp_write(rt2x00dev, 62, 0x04);
1337	rt73usb_bbp_write(rt2x00dev, 75, 0xfe);
1338	rt73usb_bbp_write(rt2x00dev, 86, 0xfe);
1339	rt73usb_bbp_write(rt2x00dev, 88, 0xfe);
1340	rt73usb_bbp_write(rt2x00dev, 90, 0x0f);
1341	rt73usb_bbp_write(rt2x00dev, 99, 0x00);
1342	rt73usb_bbp_write(rt2x00dev, 102, 0x16);
1343	rt73usb_bbp_write(rt2x00dev, 107, 0x04);
1344
1345	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1346		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1347
1348		if (eeprom != 0xffff && eeprom != 0x0000) {
1349			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1350			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1351			rt73usb_bbp_write(rt2x00dev, reg_id, value);
1352		}
1353	}
1354
1355	return 0;
1356}
1357
1358/*
1359 * Device state switch handlers.
1360 */
1361static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev)
1362{
1363	/*
1364	 * Initialize all registers.
1365	 */
1366	if (unlikely(rt73usb_init_registers(rt2x00dev) ||
1367		     rt73usb_init_bbp(rt2x00dev)))
1368		return -EIO;
1369
1370	return 0;
1371}
1372
1373static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev)
1374{
1375	rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818);
1376
1377	/*
1378	 * Disable synchronisation.
1379	 */
1380	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0);
1381
1382	rt2x00usb_disable_radio(rt2x00dev);
1383}
1384
1385static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state)
1386{
1387	u32 reg, reg2;
1388	unsigned int i;
1389	char put_to_sleep;
1390
1391	put_to_sleep = (state != STATE_AWAKE);
1392
1393	rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg);
1394	rt2x00_set_field32(&reg, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep);
1395	rt2x00_set_field32(&reg, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep);
1396	rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1397
1398	/*
1399	 * Device is not guaranteed to be in the requested state yet.
1400	 * We must wait until the register indicates that the
1401	 * device has entered the correct state.
1402	 */
1403	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1404		rt2x00usb_register_read(rt2x00dev, MAC_CSR12, &reg2);
1405		state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE);
1406		if (state == !put_to_sleep)
1407			return 0;
1408		rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg);
1409		msleep(10);
1410	}
1411
1412	return -EBUSY;
1413}
1414
1415static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev,
1416				    enum dev_state state)
1417{
1418	int retval = 0;
1419
1420	switch (state) {
1421	case STATE_RADIO_ON:
1422		retval = rt73usb_enable_radio(rt2x00dev);
1423		break;
1424	case STATE_RADIO_OFF:
1425		rt73usb_disable_radio(rt2x00dev);
1426		break;
1427	case STATE_RADIO_IRQ_ON:
1428	case STATE_RADIO_IRQ_OFF:
1429		/* No support, but no error either */
1430		break;
1431	case STATE_DEEP_SLEEP:
1432	case STATE_SLEEP:
1433	case STATE_STANDBY:
1434	case STATE_AWAKE:
1435		retval = rt73usb_set_state(rt2x00dev, state);
1436		break;
1437	default:
1438		retval = -ENOTSUPP;
1439		break;
1440	}
1441
1442	if (unlikely(retval))
1443		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1444			   state, retval);
1445
1446	return retval;
1447}
1448
1449/*
1450 * TX descriptor initialization
1451 */
1452static void rt73usb_write_tx_desc(struct queue_entry *entry,
1453				  struct txentry_desc *txdesc)
1454{
1455	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1456	__le32 *txd = (__le32 *) entry->skb->data;
1457	u32 word;
1458
1459	/*
1460	 * Start writing the descriptor words.
1461	 */
1462	rt2x00_desc_read(txd, 0, &word);
1463	rt2x00_set_field32(&word, TXD_W0_BURST,
1464			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1465	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1466	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1467			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1468	rt2x00_set_field32(&word, TXD_W0_ACK,
1469			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1470	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1471			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1472	rt2x00_set_field32(&word, TXD_W0_OFDM,
1473			   (txdesc->rate_mode == RATE_MODE_OFDM));
1474	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1475	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1476			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1477	rt2x00_set_field32(&word, TXD_W0_TKIP_MIC,
1478			   test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags));
1479	rt2x00_set_field32(&word, TXD_W0_KEY_TABLE,
1480			   test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags));
1481	rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx);
1482	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1483	rt2x00_set_field32(&word, TXD_W0_BURST2,
1484			   test_bit(ENTRY_TXD_BURST, &txdesc->flags));
1485	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher);
1486	rt2x00_desc_write(txd, 0, word);
1487
1488	rt2x00_desc_read(txd, 1, &word);
1489	rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid);
1490	rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs);
1491	rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min);
1492	rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max);
1493	rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset);
1494	rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE,
1495			   test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags));
1496	rt2x00_desc_write(txd, 1, word);
1497
1498	rt2x00_desc_read(txd, 2, &word);
1499	rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal);
1500	rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service);
1501	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW,
1502			   txdesc->u.plcp.length_low);
1503	rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH,
1504			   txdesc->u.plcp.length_high);
1505	rt2x00_desc_write(txd, 2, word);
1506
1507	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) {
1508		_rt2x00_desc_write(txd, 3, skbdesc->iv[0]);
1509		_rt2x00_desc_write(txd, 4, skbdesc->iv[1]);
1510	}
1511
1512	rt2x00_desc_read(txd, 5, &word);
1513	rt2x00_set_field32(&word, TXD_W5_TX_POWER,
1514			   TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power));
1515	rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1);
1516	rt2x00_desc_write(txd, 5, word);
1517
1518	/*
1519	 * Register descriptor details in skb frame descriptor.
1520	 */
1521	skbdesc->flags |= SKBDESC_DESC_IN_SKB;
1522	skbdesc->desc = txd;
1523	skbdesc->desc_len = TXD_DESC_SIZE;
1524}
1525
1526/*
1527 * TX data initialization
1528 */
1529static void rt73usb_write_beacon(struct queue_entry *entry,
1530				 struct txentry_desc *txdesc)
1531{
1532	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1533	unsigned int beacon_base;
1534	unsigned int padding_len;
1535	u32 orig_reg, reg;
1536
1537	/*
1538	 * Disable beaconing while we are reloading the beacon data,
1539	 * otherwise we might be sending out invalid data.
1540	 */
1541	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &reg);
1542	orig_reg = reg;
1543	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1544	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1545
1546	/*
1547	 * Add space for the descriptor in front of the skb.
1548	 */
1549	skb_push(entry->skb, TXD_DESC_SIZE);
1550	memset(entry->skb->data, 0, TXD_DESC_SIZE);
1551
1552	/*
1553	 * Write the TX descriptor for the beacon.
1554	 */
1555	rt73usb_write_tx_desc(entry, txdesc);
1556
1557	/*
1558	 * Dump beacon to userspace through debugfs.
1559	 */
1560	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1561
1562	/*
1563	 * Write entire beacon with descriptor and padding to register.
1564	 */
1565	padding_len = roundup(entry->skb->len, 4) - entry->skb->len;
1566	if (padding_len && skb_pad(entry->skb, padding_len)) {
1567		rt2x00_err(rt2x00dev, "Failure padding beacon, aborting\n");
1568		/* skb freed by skb_pad() on failure */
1569		entry->skb = NULL;
1570		rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1571		return;
1572	}
1573
1574	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1575	rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data,
1576				      entry->skb->len + padding_len);
1577
1578	/*
1579	 * Enable beaconing again.
1580	 *
1581	 * For Wi-Fi faily generated beacons between participating stations.
1582	 * Set TBTT phase adaptive adjustment step to 8us (default 16us)
1583	 */
1584	rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008);
1585
1586	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 1);
1587	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1588
1589	/*
1590	 * Clean up the beacon skb.
1591	 */
1592	dev_kfree_skb(entry->skb);
1593	entry->skb = NULL;
1594}
1595
1596static void rt73usb_clear_beacon(struct queue_entry *entry)
1597{
1598	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1599	unsigned int beacon_base;
1600	u32 orig_reg, reg;
1601
1602	/*
1603	 * Disable beaconing while we are reloading the beacon data,
1604	 * otherwise we might be sending out invalid data.
1605	 */
1606	rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, &orig_reg);
1607	reg = orig_reg;
1608	rt2x00_set_field32(&reg, TXRX_CSR9_BEACON_GEN, 0);
1609	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg);
1610
1611	/*
1612	 * Clear beacon.
1613	 */
1614	beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
1615	rt2x00usb_register_write(rt2x00dev, beacon_base, 0);
1616
1617	/*
1618	 * Restore beaconing state.
1619	 */
1620	rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg);
1621}
1622
1623static int rt73usb_get_tx_data_len(struct queue_entry *entry)
1624{
1625	int length;
1626
1627	/*
1628	 * The length _must_ be a multiple of 4,
1629	 * but it must _not_ be a multiple of the USB packet size.
1630	 */
1631	length = roundup(entry->skb->len, 4);
1632	length += (4 * !(length % entry->queue->usb_maxpacket));
1633
1634	return length;
1635}
1636
1637/*
1638 * RX control handlers
1639 */
1640static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1)
1641{
1642	u8 offset = rt2x00dev->lna_gain;
1643	u8 lna;
1644
1645	lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA);
1646	switch (lna) {
1647	case 3:
1648		offset += 90;
1649		break;
1650	case 2:
1651		offset += 74;
1652		break;
1653	case 1:
1654		offset += 64;
1655		break;
1656	default:
1657		return 0;
1658	}
1659
1660	if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) {
1661		if (rt2x00_has_cap_external_lna_a(rt2x00dev)) {
1662			if (lna == 3 || lna == 2)
1663				offset += 10;
1664		} else {
1665			if (lna == 3)
1666				offset += 6;
1667			else if (lna == 2)
1668				offset += 8;
1669		}
1670	}
1671
1672	return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset;
1673}
1674
1675static void rt73usb_fill_rxdone(struct queue_entry *entry,
1676				struct rxdone_entry_desc *rxdesc)
1677{
1678	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1679	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1680	__le32 *rxd = (__le32 *)entry->skb->data;
1681	u32 word0;
1682	u32 word1;
1683
1684	/*
1685	 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of
1686	 * frame data in rt2x00usb.
1687	 */
1688	memcpy(skbdesc->desc, rxd, skbdesc->desc_len);
1689	rxd = (__le32 *)skbdesc->desc;
1690
1691	/*
1692	 * It is now safe to read the descriptor on all architectures.
1693	 */
1694	rt2x00_desc_read(rxd, 0, &word0);
1695	rt2x00_desc_read(rxd, 1, &word1);
1696
1697	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1698		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1699
1700	rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG);
1701	rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR);
1702
1703	if (rxdesc->cipher != CIPHER_NONE) {
1704		_rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]);
1705		_rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]);
1706		rxdesc->dev_flags |= RXDONE_CRYPTO_IV;
1707
1708		_rt2x00_desc_read(rxd, 4, &rxdesc->icv);
1709		rxdesc->dev_flags |= RXDONE_CRYPTO_ICV;
1710
1711		/*
1712		 * Hardware has stripped IV/EIV data from 802.11 frame during
1713		 * decryption. It has provided the data separately but rt2x00lib
1714		 * should decide if it should be reinserted.
1715		 */
1716		rxdesc->flags |= RX_FLAG_IV_STRIPPED;
1717
1718		/*
1719		 * The hardware has already checked the Michael Mic and has
1720		 * stripped it from the frame. Signal this to mac80211.
1721		 */
1722		rxdesc->flags |= RX_FLAG_MMIC_STRIPPED;
1723
1724		if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
1725			rxdesc->flags |= RX_FLAG_DECRYPTED;
1726		else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
1727			rxdesc->flags |= RX_FLAG_MMIC_ERROR;
1728	}
1729
1730	/*
1731	 * Obtain the status about this packet.
1732	 * When frame was received with an OFDM bitrate,
1733	 * the signal is the PLCP value. If it was received with
1734	 * a CCK bitrate the signal is the rate in 100kbit/s.
1735	 */
1736	rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL);
1737	rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1);
1738	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1739
1740	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1741		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1742	else
1743		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1744	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1745		rxdesc->dev_flags |= RXDONE_MY_BSS;
1746
1747	/*
1748	 * Set skb pointers, and update frame information.
1749	 */
1750	skb_pull(entry->skb, entry->queue->desc_size);
1751	skb_trim(entry->skb, rxdesc->size);
1752}
1753
1754/*
1755 * Device probe functions.
1756 */
1757static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1758{
1759	u16 word;
1760	u8 *mac;
1761	s8 value;
1762
1763	rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE);
1764
1765	/*
1766	 * Start validation of the data that has been read.
1767	 */
1768	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1769	if (!is_valid_ether_addr(mac)) {
1770		eth_random_addr(mac);
1771		rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac);
1772	}
1773
1774	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1775	if (word == 0xffff) {
1776		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1777		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1778				   ANTENNA_B);
1779		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1780				   ANTENNA_B);
1781		rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0);
1782		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1783		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1784		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226);
1785		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1786		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1787	}
1788
1789	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1790	if (word == 0xffff) {
1791		rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0);
1792		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1793		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1794	}
1795
1796	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word);
1797	if (word == 0xffff) {
1798		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0);
1799		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0);
1800		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0);
1801		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0);
1802		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0);
1803		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0);
1804		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0);
1805		rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0);
1806		rt2x00_set_field16(&word, EEPROM_LED_LED_MODE,
1807				   LED_MODE_DEFAULT);
1808		rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word);
1809		rt2x00_eeprom_dbg(rt2x00dev, "Led: 0x%04x\n", word);
1810	}
1811
1812	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word);
1813	if (word == 0xffff) {
1814		rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0);
1815		rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0);
1816		rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word);
1817		rt2x00_eeprom_dbg(rt2x00dev, "Freq: 0x%04x\n", word);
1818	}
1819
1820	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word);
1821	if (word == 0xffff) {
1822		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1823		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1824		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1825		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word);
1826	} else {
1827		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1);
1828		if (value < -10 || value > 10)
1829			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0);
1830		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2);
1831		if (value < -10 || value > 10)
1832			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0);
1833		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word);
1834	}
1835
1836	rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word);
1837	if (word == 0xffff) {
1838		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1839		rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1840		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1841		rt2x00_eeprom_dbg(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word);
1842	} else {
1843		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1);
1844		if (value < -10 || value > 10)
1845			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0);
1846		value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2);
1847		if (value < -10 || value > 10)
1848			rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0);
1849		rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word);
1850	}
1851
1852	return 0;
1853}
1854
1855static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev)
1856{
1857	u32 reg;
1858	u16 value;
1859	u16 eeprom;
1860
1861	/*
1862	 * Read EEPROM word for configuration.
1863	 */
1864	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1865
1866	/*
1867	 * Identify RF chipset.
1868	 */
1869	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1870	rt2x00usb_register_read(rt2x00dev, MAC_CSR0, &reg);
1871	rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET),
1872			value, rt2x00_get_field32(reg, MAC_CSR0_REVISION));
1873
1874	if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) {
1875		rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n");
1876		return -ENODEV;
1877	}
1878
1879	if (!rt2x00_rf(rt2x00dev, RF5226) &&
1880	    !rt2x00_rf(rt2x00dev, RF2528) &&
1881	    !rt2x00_rf(rt2x00dev, RF5225) &&
1882	    !rt2x00_rf(rt2x00dev, RF2527)) {
1883		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1884		return -ENODEV;
1885	}
1886
1887	/*
1888	 * Identify default antenna configuration.
1889	 */
1890	rt2x00dev->default_ant.tx =
1891	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1892	rt2x00dev->default_ant.rx =
1893	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1894
1895	/*
1896	 * Read the Frame type.
1897	 */
1898	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE))
1899		__set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags);
1900
1901	/*
1902	 * Detect if this device has an hardware controlled radio.
1903	 */
1904	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1905		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1906
1907	/*
1908	 * Read frequency offset.
1909	 */
1910	rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom);
1911	rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET);
1912
1913	/*
1914	 * Read external LNA informations.
1915	 */
1916	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1917
1918	if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) {
1919		__set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags);
1920		__set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags);
1921	}
1922
1923	/*
1924	 * Store led settings, for correct led behaviour.
1925	 */
1926#ifdef CONFIG_RT2X00_LIB_LEDS
1927	rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom);
1928
1929	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1930	rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC);
1931	if (value == LED_MODE_SIGNAL_STRENGTH)
1932		rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual,
1933				 LED_TYPE_QUALITY);
1934
1935	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value);
1936	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0,
1937			   rt2x00_get_field16(eeprom,
1938					      EEPROM_LED_POLARITY_GPIO_0));
1939	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1,
1940			   rt2x00_get_field16(eeprom,
1941					      EEPROM_LED_POLARITY_GPIO_1));
1942	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2,
1943			   rt2x00_get_field16(eeprom,
1944					      EEPROM_LED_POLARITY_GPIO_2));
1945	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3,
1946			   rt2x00_get_field16(eeprom,
1947					      EEPROM_LED_POLARITY_GPIO_3));
1948	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4,
1949			   rt2x00_get_field16(eeprom,
1950					      EEPROM_LED_POLARITY_GPIO_4));
1951	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT,
1952			   rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT));
1953	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG,
1954			   rt2x00_get_field16(eeprom,
1955					      EEPROM_LED_POLARITY_RDY_G));
1956	rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A,
1957			   rt2x00_get_field16(eeprom,
1958					      EEPROM_LED_POLARITY_RDY_A));
1959#endif /* CONFIG_RT2X00_LIB_LEDS */
1960
1961	return 0;
1962}
1963
1964/*
1965 * RF value list for RF2528
1966 * Supports: 2.4 GHz
1967 */
1968static const struct rf_channel rf_vals_bg_2528[] = {
1969	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1970	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1971	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1972	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1973	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1974	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1975	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1976	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1977	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1978	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
1979	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
1980	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
1981	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
1982	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
1983};
1984
1985/*
1986 * RF value list for RF5226
1987 * Supports: 2.4 GHz & 5.2 GHz
1988 */
1989static const struct rf_channel rf_vals_5226[] = {
1990	{ 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b },
1991	{ 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f },
1992	{ 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b },
1993	{ 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f },
1994	{ 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b },
1995	{ 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f },
1996	{ 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b },
1997	{ 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f },
1998	{ 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b },
1999	{ 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f },
2000	{ 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b },
2001	{ 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f },
2002	{ 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b },
2003	{ 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 },
2004
2005	/* 802.11 UNI / HyperLan 2 */
2006	{ 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 },
2007	{ 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 },
2008	{ 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b },
2009	{ 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 },
2010	{ 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b },
2011	{ 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 },
2012	{ 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 },
2013	{ 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b },
2014
2015	/* 802.11 HyperLan 2 */
2016	{ 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 },
2017	{ 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b },
2018	{ 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 },
2019	{ 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b },
2020	{ 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 },
2021	{ 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 },
2022	{ 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b },
2023	{ 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 },
2024	{ 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b },
2025	{ 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 },
2026
2027	/* 802.11 UNII */
2028	{ 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 },
2029	{ 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f },
2030	{ 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 },
2031	{ 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 },
2032	{ 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f },
2033	{ 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 },
2034
2035	/* MMAC(Japan)J52 ch 34,38,42,46 */
2036	{ 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b },
2037	{ 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 },
2038	{ 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b },
2039	{ 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 },
2040};
2041
2042/*
2043 * RF value list for RF5225 & RF2527
2044 * Supports: 2.4 GHz & 5.2 GHz
2045 */
2046static const struct rf_channel rf_vals_5225_2527[] = {
2047	{ 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b },
2048	{ 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f },
2049	{ 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b },
2050	{ 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f },
2051	{ 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b },
2052	{ 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f },
2053	{ 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b },
2054	{ 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f },
2055	{ 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b },
2056	{ 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f },
2057	{ 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b },
2058	{ 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f },
2059	{ 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b },
2060	{ 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 },
2061
2062	/* 802.11 UNI / HyperLan 2 */
2063	{ 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 },
2064	{ 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 },
2065	{ 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b },
2066	{ 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 },
2067	{ 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b },
2068	{ 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 },
2069	{ 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 },
2070	{ 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b },
2071
2072	/* 802.11 HyperLan 2 */
2073	{ 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 },
2074	{ 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b },
2075	{ 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 },
2076	{ 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b },
2077	{ 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 },
2078	{ 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 },
2079	{ 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b },
2080	{ 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 },
2081	{ 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b },
2082	{ 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 },
2083
2084	/* 802.11 UNII */
2085	{ 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 },
2086	{ 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f },
2087	{ 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 },
2088	{ 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 },
2089	{ 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f },
2090	{ 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 },
2091
2092	/* MMAC(Japan)J52 ch 34,38,42,46 */
2093	{ 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b },
2094	{ 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 },
2095	{ 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b },
2096	{ 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 },
2097};
2098
2099
2100static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
2101{
2102	struct hw_mode_spec *spec = &rt2x00dev->spec;
2103	struct channel_info *info;
2104	char *tx_power;
2105	unsigned int i;
2106
2107	/*
2108	 * Initialize all hw fields.
2109	 *
2110	 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are
2111	 * capable of sending the buffered frames out after the DTIM
2112	 * transmission using rt2x00lib_beacondone. This will send out
2113	 * multicast and broadcast traffic immediately instead of buffering it
2114	 * infinitly and thus dropping it after some time.
2115	 */
2116	rt2x00dev->hw->flags =
2117	    IEEE80211_HW_SIGNAL_DBM |
2118	    IEEE80211_HW_SUPPORTS_PS |
2119	    IEEE80211_HW_PS_NULLFUNC_STACK;
2120
2121	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
2122	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
2123				rt2x00_eeprom_addr(rt2x00dev,
2124						   EEPROM_MAC_ADDR_0));
2125
2126	/*
2127	 * Initialize hw_mode information.
2128	 */
2129	spec->supported_bands = SUPPORT_BAND_2GHZ;
2130	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
2131
2132	if (rt2x00_rf(rt2x00dev, RF2528)) {
2133		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528);
2134		spec->channels = rf_vals_bg_2528;
2135	} else if (rt2x00_rf(rt2x00dev, RF5226)) {
2136		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2137		spec->num_channels = ARRAY_SIZE(rf_vals_5226);
2138		spec->channels = rf_vals_5226;
2139	} else if (rt2x00_rf(rt2x00dev, RF2527)) {
2140		spec->num_channels = 14;
2141		spec->channels = rf_vals_5225_2527;
2142	} else if (rt2x00_rf(rt2x00dev, RF5225)) {
2143		spec->supported_bands |= SUPPORT_BAND_5GHZ;
2144		spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527);
2145		spec->channels = rf_vals_5225_2527;
2146	}
2147
2148	/*
2149	 * Create channel information array
2150	 */
2151	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
2152	if (!info)
2153		return -ENOMEM;
2154
2155	spec->channels_info = info;
2156
2157	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START);
2158	for (i = 0; i < 14; i++) {
2159		info[i].max_power = MAX_TXPOWER;
2160		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
2161	}
2162
2163	if (spec->num_channels > 14) {
2164		tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START);
2165		for (i = 14; i < spec->num_channels; i++) {
2166			info[i].max_power = MAX_TXPOWER;
2167			info[i].default_power1 =
2168					TXPOWER_FROM_DEV(tx_power[i - 14]);
2169		}
2170	}
2171
2172	return 0;
2173}
2174
2175static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev)
2176{
2177	int retval;
2178	u32 reg;
2179
2180	/*
2181	 * Allocate eeprom data.
2182	 */
2183	retval = rt73usb_validate_eeprom(rt2x00dev);
2184	if (retval)
2185		return retval;
2186
2187	retval = rt73usb_init_eeprom(rt2x00dev);
2188	if (retval)
2189		return retval;
2190
2191	/*
2192	 * Enable rfkill polling by setting GPIO direction of the
2193	 * rfkill switch GPIO pin correctly.
2194	 */
2195	rt2x00usb_register_read(rt2x00dev, MAC_CSR13, &reg);
2196	rt2x00_set_field32(&reg, MAC_CSR13_DIR7, 0);
2197	rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg);
2198
2199	/*
2200	 * Initialize hw specifications.
2201	 */
2202	retval = rt73usb_probe_hw_mode(rt2x00dev);
2203	if (retval)
2204		return retval;
2205
2206	/*
2207	 * This device has multiple filters for control frames,
2208	 * but has no a separate filter for PS Poll frames.
2209	 */
2210	__set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags);
2211
2212	/*
2213	 * This device requires firmware.
2214	 */
2215	__set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags);
2216	if (!modparam_nohwcrypt)
2217		__set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags);
2218	__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
2219	__set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags);
2220
2221	/*
2222	 * Set the rssi offset.
2223	 */
2224	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
2225
2226	return 0;
2227}
2228
2229/*
2230 * IEEE80211 stack callback functions.
2231 */
2232static int rt73usb_conf_tx(struct ieee80211_hw *hw,
2233			   struct ieee80211_vif *vif, u16 queue_idx,
2234			   const struct ieee80211_tx_queue_params *params)
2235{
2236	struct rt2x00_dev *rt2x00dev = hw->priv;
2237	struct data_queue *queue;
2238	struct rt2x00_field32 field;
2239	int retval;
2240	u32 reg;
2241	u32 offset;
2242
2243	/*
2244	 * First pass the configuration through rt2x00lib, that will
2245	 * update the queue settings and validate the input. After that
2246	 * we are free to update the registers based on the value
2247	 * in the queue parameter.
2248	 */
2249	retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params);
2250	if (retval)
2251		return retval;
2252
2253	/*
2254	 * We only need to perform additional register initialization
2255	 * for WMM queues/
2256	 */
2257	if (queue_idx >= 4)
2258		return 0;
2259
2260	queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
2261
2262	/* Update WMM TXOP register */
2263	offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2)));
2264	field.bit_offset = (queue_idx & 1) * 16;
2265	field.bit_mask = 0xffff << field.bit_offset;
2266
2267	rt2x00usb_register_read(rt2x00dev, offset, &reg);
2268	rt2x00_set_field32(&reg, field, queue->txop);
2269	rt2x00usb_register_write(rt2x00dev, offset, reg);
2270
2271	/* Update WMM registers */
2272	field.bit_offset = queue_idx * 4;
2273	field.bit_mask = 0xf << field.bit_offset;
2274
2275	rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, &reg);
2276	rt2x00_set_field32(&reg, field, queue->aifs);
2277	rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg);
2278
2279	rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, &reg);
2280	rt2x00_set_field32(&reg, field, queue->cw_min);
2281	rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg);
2282
2283	rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, &reg);
2284	rt2x00_set_field32(&reg, field, queue->cw_max);
2285	rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg);
2286
2287	return 0;
2288}
2289
2290static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
2291{
2292	struct rt2x00_dev *rt2x00dev = hw->priv;
2293	u64 tsf;
2294	u32 reg;
2295
2296	rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, &reg);
2297	tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32;
2298	rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, &reg);
2299	tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER);
2300
2301	return tsf;
2302}
2303
2304static const struct ieee80211_ops rt73usb_mac80211_ops = {
2305	.tx			= rt2x00mac_tx,
2306	.start			= rt2x00mac_start,
2307	.stop			= rt2x00mac_stop,
2308	.add_interface		= rt2x00mac_add_interface,
2309	.remove_interface	= rt2x00mac_remove_interface,
2310	.config			= rt2x00mac_config,
2311	.configure_filter	= rt2x00mac_configure_filter,
2312	.set_tim		= rt2x00mac_set_tim,
2313	.set_key		= rt2x00mac_set_key,
2314	.sw_scan_start		= rt2x00mac_sw_scan_start,
2315	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2316	.get_stats		= rt2x00mac_get_stats,
2317	.bss_info_changed	= rt2x00mac_bss_info_changed,
2318	.conf_tx		= rt73usb_conf_tx,
2319	.get_tsf		= rt73usb_get_tsf,
2320	.rfkill_poll		= rt2x00mac_rfkill_poll,
2321	.flush			= rt2x00mac_flush,
2322	.set_antenna		= rt2x00mac_set_antenna,
2323	.get_antenna		= rt2x00mac_get_antenna,
2324	.get_ringparam		= rt2x00mac_get_ringparam,
2325	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2326};
2327
2328static const struct rt2x00lib_ops rt73usb_rt2x00_ops = {
2329	.probe_hw		= rt73usb_probe_hw,
2330	.get_firmware_name	= rt73usb_get_firmware_name,
2331	.check_firmware		= rt73usb_check_firmware,
2332	.load_firmware		= rt73usb_load_firmware,
2333	.initialize		= rt2x00usb_initialize,
2334	.uninitialize		= rt2x00usb_uninitialize,
2335	.clear_entry		= rt2x00usb_clear_entry,
2336	.set_device_state	= rt73usb_set_device_state,
2337	.rfkill_poll		= rt73usb_rfkill_poll,
2338	.link_stats		= rt73usb_link_stats,
2339	.reset_tuner		= rt73usb_reset_tuner,
2340	.link_tuner		= rt73usb_link_tuner,
2341	.watchdog		= rt2x00usb_watchdog,
2342	.start_queue		= rt73usb_start_queue,
2343	.kick_queue		= rt2x00usb_kick_queue,
2344	.stop_queue		= rt73usb_stop_queue,
2345	.flush_queue		= rt2x00usb_flush_queue,
2346	.write_tx_desc		= rt73usb_write_tx_desc,
2347	.write_beacon		= rt73usb_write_beacon,
2348	.clear_beacon		= rt73usb_clear_beacon,
2349	.get_tx_data_len	= rt73usb_get_tx_data_len,
2350	.fill_rxdone		= rt73usb_fill_rxdone,
2351	.config_shared_key	= rt73usb_config_shared_key,
2352	.config_pairwise_key	= rt73usb_config_pairwise_key,
2353	.config_filter		= rt73usb_config_filter,
2354	.config_intf		= rt73usb_config_intf,
2355	.config_erp		= rt73usb_config_erp,
2356	.config_ant		= rt73usb_config_ant,
2357	.config			= rt73usb_config,
2358};
2359
2360static void rt73usb_queue_init(struct data_queue *queue)
2361{
2362	switch (queue->qid) {
2363	case QID_RX:
2364		queue->limit = 32;
2365		queue->data_size = DATA_FRAME_SIZE;
2366		queue->desc_size = RXD_DESC_SIZE;
2367		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2368		break;
2369
2370	case QID_AC_VO:
2371	case QID_AC_VI:
2372	case QID_AC_BE:
2373	case QID_AC_BK:
2374		queue->limit = 32;
2375		queue->data_size = DATA_FRAME_SIZE;
2376		queue->desc_size = TXD_DESC_SIZE;
2377		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2378		break;
2379
2380	case QID_BEACON:
2381		queue->limit = 4;
2382		queue->data_size = MGMT_FRAME_SIZE;
2383		queue->desc_size = TXINFO_SIZE;
2384		queue->priv_size = sizeof(struct queue_entry_priv_usb);
2385		break;
2386
2387	case QID_ATIM:
2388		/* fallthrough */
2389	default:
2390		BUG();
2391		break;
2392	}
2393}
2394
2395static const struct rt2x00_ops rt73usb_ops = {
2396	.name			= KBUILD_MODNAME,
2397	.max_ap_intf		= 4,
2398	.eeprom_size		= EEPROM_SIZE,
2399	.rf_size		= RF_SIZE,
2400	.tx_queues		= NUM_TX_QUEUES,
2401	.queue_init		= rt73usb_queue_init,
2402	.lib			= &rt73usb_rt2x00_ops,
2403	.hw			= &rt73usb_mac80211_ops,
2404#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2405	.debugfs		= &rt73usb_rt2x00debug,
2406#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2407};
2408
2409/*
2410 * rt73usb module information.
2411 */
2412static struct usb_device_id rt73usb_device_table[] = {
2413	/* AboCom */
2414	{ USB_DEVICE(0x07b8, 0xb21b) },
2415	{ USB_DEVICE(0x07b8, 0xb21c) },
2416	{ USB_DEVICE(0x07b8, 0xb21d) },
2417	{ USB_DEVICE(0x07b8, 0xb21e) },
2418	{ USB_DEVICE(0x07b8, 0xb21f) },
2419	/* AL */
2420	{ USB_DEVICE(0x14b2, 0x3c10) },
2421	/* Amigo */
2422	{ USB_DEVICE(0x148f, 0x9021) },
2423	{ USB_DEVICE(0x0eb0, 0x9021) },
2424	/* AMIT  */
2425	{ USB_DEVICE(0x18c5, 0x0002) },
2426	/* Askey */
2427	{ USB_DEVICE(0x1690, 0x0722) },
2428	/* ASUS */
2429	{ USB_DEVICE(0x0b05, 0x1723) },
2430	{ USB_DEVICE(0x0b05, 0x1724) },
2431	/* Belkin */
2432	{ USB_DEVICE(0x050d, 0x7050) },	/* FCC ID: K7SF5D7050B ver. 3.x */
2433	{ USB_DEVICE(0x050d, 0x705a) },
2434	{ USB_DEVICE(0x050d, 0x905b) },
2435	{ USB_DEVICE(0x050d, 0x905c) },
2436	/* Billionton */
2437	{ USB_DEVICE(0x1631, 0xc019) },
2438	{ USB_DEVICE(0x08dd, 0x0120) },
2439	/* Buffalo */
2440	{ USB_DEVICE(0x0411, 0x00d8) },
2441	{ USB_DEVICE(0x0411, 0x00d9) },
2442	{ USB_DEVICE(0x0411, 0x00e6) },
2443	{ USB_DEVICE(0x0411, 0x00f4) },
2444	{ USB_DEVICE(0x0411, 0x0116) },
2445	{ USB_DEVICE(0x0411, 0x0119) },
2446	{ USB_DEVICE(0x0411, 0x0137) },
2447	/* CEIVA */
2448	{ USB_DEVICE(0x178d, 0x02be) },
2449	/* CNet */
2450	{ USB_DEVICE(0x1371, 0x9022) },
2451	{ USB_DEVICE(0x1371, 0x9032) },
2452	/* Conceptronic */
2453	{ USB_DEVICE(0x14b2, 0x3c22) },
2454	/* Corega */
2455	{ USB_DEVICE(0x07aa, 0x002e) },
2456	/* D-Link */
2457	{ USB_DEVICE(0x07d1, 0x3c03) },
2458	{ USB_DEVICE(0x07d1, 0x3c04) },
2459	{ USB_DEVICE(0x07d1, 0x3c06) },
2460	{ USB_DEVICE(0x07d1, 0x3c07) },
2461	/* Edimax */
2462	{ USB_DEVICE(0x7392, 0x7318) },
2463	{ USB_DEVICE(0x7392, 0x7618) },
2464	/* EnGenius */
2465	{ USB_DEVICE(0x1740, 0x3701) },
2466	/* Gemtek */
2467	{ USB_DEVICE(0x15a9, 0x0004) },
2468	/* Gigabyte */
2469	{ USB_DEVICE(0x1044, 0x8008) },
2470	{ USB_DEVICE(0x1044, 0x800a) },
2471	/* Huawei-3Com */
2472	{ USB_DEVICE(0x1472, 0x0009) },
2473	/* Hercules */
2474	{ USB_DEVICE(0x06f8, 0xe002) },
2475	{ USB_DEVICE(0x06f8, 0xe010) },
2476	{ USB_DEVICE(0x06f8, 0xe020) },
2477	/* Linksys */
2478	{ USB_DEVICE(0x13b1, 0x0020) },
2479	{ USB_DEVICE(0x13b1, 0x0023) },
2480	{ USB_DEVICE(0x13b1, 0x0028) },
2481	/* MSI */
2482	{ USB_DEVICE(0x0db0, 0x4600) },
2483	{ USB_DEVICE(0x0db0, 0x6877) },
2484	{ USB_DEVICE(0x0db0, 0x6874) },
2485	{ USB_DEVICE(0x0db0, 0xa861) },
2486	{ USB_DEVICE(0x0db0, 0xa874) },
2487	/* Ovislink */
2488	{ USB_DEVICE(0x1b75, 0x7318) },
2489	/* Ralink */
2490	{ USB_DEVICE(0x04bb, 0x093d) },
2491	{ USB_DEVICE(0x148f, 0x2573) },
2492	{ USB_DEVICE(0x148f, 0x2671) },
2493	{ USB_DEVICE(0x0812, 0x3101) },
2494	/* Qcom */
2495	{ USB_DEVICE(0x18e8, 0x6196) },
2496	{ USB_DEVICE(0x18e8, 0x6229) },
2497	{ USB_DEVICE(0x18e8, 0x6238) },
2498	/* Samsung */
2499	{ USB_DEVICE(0x04e8, 0x4471) },
2500	/* Senao */
2501	{ USB_DEVICE(0x1740, 0x7100) },
2502	/* Sitecom */
2503	{ USB_DEVICE(0x0df6, 0x0024) },
2504	{ USB_DEVICE(0x0df6, 0x0027) },
2505	{ USB_DEVICE(0x0df6, 0x002f) },
2506	{ USB_DEVICE(0x0df6, 0x90ac) },
2507	{ USB_DEVICE(0x0df6, 0x9712) },
2508	/* Surecom */
2509	{ USB_DEVICE(0x0769, 0x31f3) },
2510	/* Tilgin */
2511	{ USB_DEVICE(0x6933, 0x5001) },
2512	/* Philips */
2513	{ USB_DEVICE(0x0471, 0x200a) },
2514	/* Planex */
2515	{ USB_DEVICE(0x2019, 0xab01) },
2516	{ USB_DEVICE(0x2019, 0xab50) },
2517	/* WideTell */
2518	{ USB_DEVICE(0x7167, 0x3840) },
2519	/* Zcom */
2520	{ USB_DEVICE(0x0cde, 0x001c) },
2521	/* ZyXEL */
2522	{ USB_DEVICE(0x0586, 0x3415) },
2523	{ 0, }
2524};
2525
2526MODULE_AUTHOR(DRV_PROJECT);
2527MODULE_VERSION(DRV_VERSION);
2528MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver.");
2529MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards");
2530MODULE_DEVICE_TABLE(usb, rt73usb_device_table);
2531MODULE_FIRMWARE(FIRMWARE_RT2571);
2532MODULE_LICENSE("GPL");
2533
2534static int rt73usb_probe(struct usb_interface *usb_intf,
2535			 const struct usb_device_id *id)
2536{
2537	return rt2x00usb_probe(usb_intf, &rt73usb_ops);
2538}
2539
2540static struct usb_driver rt73usb_driver = {
2541	.name		= KBUILD_MODNAME,
2542	.id_table	= rt73usb_device_table,
2543	.probe		= rt73usb_probe,
2544	.disconnect	= rt2x00usb_disconnect,
2545	.suspend	= rt2x00usb_suspend,
2546	.resume		= rt2x00usb_resume,
2547	.reset_resume	= rt2x00usb_resume,
2548	.disable_hub_initiated_lpm = 1,
2549};
2550
2551module_usb_driver(rt73usb_driver);
2552