1 /*
2 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 <http://rt2x00.serialmonkey.com>
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, see <http://www.gnu.org/licenses/>.
19 */
20
21 /*
22 Module: rt2x00
23 Abstract: rt2x00 global information.
24 */
25
26 #ifndef RT2X00_H
27 #define RT2X00_H
28
29 #include <linux/bitops.h>
30 #include <linux/interrupt.h>
31 #include <linux/skbuff.h>
32 #include <linux/workqueue.h>
33 #include <linux/firmware.h>
34 #include <linux/leds.h>
35 #include <linux/mutex.h>
36 #include <linux/etherdevice.h>
37 #include <linux/input-polldev.h>
38 #include <linux/kfifo.h>
39 #include <linux/hrtimer.h>
40 #include <linux/average.h>
41
42 #include <net/mac80211.h>
43
44 #include "rt2x00debug.h"
45 #include "rt2x00dump.h"
46 #include "rt2x00leds.h"
47 #include "rt2x00reg.h"
48 #include "rt2x00queue.h"
49
50 /*
51 * Module information.
52 */
53 #define DRV_VERSION "2.3.0"
54 #define DRV_PROJECT "http://rt2x00.serialmonkey.com"
55
56 /* Debug definitions.
57 * Debug output has to be enabled during compile time.
58 */
59 #ifdef CONFIG_RT2X00_DEBUG
60 #define DEBUG
61 #endif /* CONFIG_RT2X00_DEBUG */
62
63 /* Utility printing macros
64 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
65 */
66 #define rt2x00_probe_err(fmt, ...) \
67 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
68 __func__, ##__VA_ARGS__)
69 #define rt2x00_err(dev, fmt, ...) \
70 wiphy_err((dev)->hw->wiphy, "%s: Error - " fmt, \
71 __func__, ##__VA_ARGS__)
72 #define rt2x00_warn(dev, fmt, ...) \
73 wiphy_warn((dev)->hw->wiphy, "%s: Warning - " fmt, \
74 __func__, ##__VA_ARGS__)
75 #define rt2x00_info(dev, fmt, ...) \
76 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
77 __func__, ##__VA_ARGS__)
78
79 /* Various debug levels */
80 #define rt2x00_dbg(dev, fmt, ...) \
81 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
82 __func__, ##__VA_ARGS__)
83 #define rt2x00_eeprom_dbg(dev, fmt, ...) \
84 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
85 __func__, ##__VA_ARGS__)
86
87 /*
88 * Duration calculations
89 * The rate variable passed is: 100kbs.
90 * To convert from bytes to bits we multiply size with 8,
91 * then the size is multiplied with 10 to make the
92 * real rate -> rate argument correction.
93 */
94 #define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
95 #define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
96
97 /*
98 * Determine the number of L2 padding bytes required between the header and
99 * the payload.
100 */
101 #define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
102
103 /*
104 * Determine the alignment requirement,
105 * to make sure the 802.11 payload is padded to a 4-byte boundrary
106 * we must determine the address of the payload and calculate the
107 * amount of bytes needed to move the data.
108 */
109 #define ALIGN_SIZE(__skb, __header) \
110 ( ((unsigned long)((__skb)->data + (__header))) & 3 )
111
112 /*
113 * Constants for extra TX headroom for alignment purposes.
114 */
115 #define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
116 #define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
117
118 /*
119 * Standard timing and size defines.
120 * These values should follow the ieee80211 specifications.
121 */
122 #define ACK_SIZE 14
123 #define IEEE80211_HEADER 24
124 #define PLCP 48
125 #define BEACON 100
126 #define PREAMBLE 144
127 #define SHORT_PREAMBLE 72
128 #define SLOT_TIME 20
129 #define SHORT_SLOT_TIME 9
130 #define SIFS 10
131 #define PIFS ( SIFS + SLOT_TIME )
132 #define SHORT_PIFS ( SIFS + SHORT_SLOT_TIME )
133 #define DIFS ( PIFS + SLOT_TIME )
134 #define SHORT_DIFS ( SHORT_PIFS + SHORT_SLOT_TIME )
135 #define EIFS ( SIFS + DIFS + \
136 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
137 #define SHORT_EIFS ( SIFS + SHORT_DIFS + \
138 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10) )
139
140 enum rt2x00_chip_intf {
141 RT2X00_CHIP_INTF_PCI,
142 RT2X00_CHIP_INTF_PCIE,
143 RT2X00_CHIP_INTF_USB,
144 RT2X00_CHIP_INTF_SOC,
145 };
146
147 /*
148 * Chipset identification
149 * The chipset on the device is composed of a RT and RF chip.
150 * The chipset combination is important for determining device capabilities.
151 */
152 struct rt2x00_chip {
153 u16 rt;
154 #define RT2460 0x2460
155 #define RT2560 0x2560
156 #define RT2570 0x2570
157 #define RT2661 0x2661
158 #define RT2573 0x2573
159 #define RT2860 0x2860 /* 2.4GHz */
160 #define RT2872 0x2872 /* WSOC */
161 #define RT2883 0x2883 /* WSOC */
162 #define RT3070 0x3070
163 #define RT3071 0x3071
164 #define RT3090 0x3090 /* 2.4GHz PCIe */
165 #define RT3290 0x3290
166 #define RT3352 0x3352 /* WSOC */
167 #define RT3390 0x3390
168 #define RT3572 0x3572
169 #define RT3593 0x3593
170 #define RT3883 0x3883 /* WSOC */
171 #define RT5390 0x5390 /* 2.4GHz */
172 #define RT5392 0x5392 /* 2.4GHz */
173 #define RT5592 0x5592
174
175 u16 rf;
176 u16 rev;
177
178 enum rt2x00_chip_intf intf;
179 };
180
181 /*
182 * RF register values that belong to a particular channel.
183 */
184 struct rf_channel {
185 int channel;
186 u32 rf1;
187 u32 rf2;
188 u32 rf3;
189 u32 rf4;
190 };
191
192 /*
193 * Channel information structure
194 */
195 struct channel_info {
196 unsigned int flags;
197 #define GEOGRAPHY_ALLOWED 0x00000001
198
199 short max_power;
200 short default_power1;
201 short default_power2;
202 short default_power3;
203 };
204
205 /*
206 * Antenna setup values.
207 */
208 struct antenna_setup {
209 enum antenna rx;
210 enum antenna tx;
211 u8 rx_chain_num;
212 u8 tx_chain_num;
213 };
214
215 /*
216 * Quality statistics about the currently active link.
217 */
218 struct link_qual {
219 /*
220 * Statistics required for Link tuning by driver
221 * The rssi value is provided by rt2x00lib during the
222 * link_tuner() callback function.
223 * The false_cca field is filled during the link_stats()
224 * callback function and could be used during the
225 * link_tuner() callback function.
226 */
227 int rssi;
228 int false_cca;
229
230 /*
231 * VGC levels
232 * Hardware driver will tune the VGC level during each call
233 * to the link_tuner() callback function. This vgc_level is
234 * is determined based on the link quality statistics like
235 * average RSSI and the false CCA count.
236 *
237 * In some cases the drivers need to differentiate between
238 * the currently "desired" VGC level and the level configured
239 * in the hardware. The latter is important to reduce the
240 * number of BBP register reads to reduce register access
241 * overhead. For this reason we store both values here.
242 */
243 u8 vgc_level;
244 u8 vgc_level_reg;
245
246 /*
247 * Statistics required for Signal quality calculation.
248 * These fields might be changed during the link_stats()
249 * callback function.
250 */
251 int rx_success;
252 int rx_failed;
253 int tx_success;
254 int tx_failed;
255 };
256
257 /*
258 * Antenna settings about the currently active link.
259 */
260 struct link_ant {
261 /*
262 * Antenna flags
263 */
264 unsigned int flags;
265 #define ANTENNA_RX_DIVERSITY 0x00000001
266 #define ANTENNA_TX_DIVERSITY 0x00000002
267 #define ANTENNA_MODE_SAMPLE 0x00000004
268
269 /*
270 * Currently active TX/RX antenna setup.
271 * When software diversity is used, this will indicate
272 * which antenna is actually used at this time.
273 */
274 struct antenna_setup active;
275
276 /*
277 * RSSI history information for the antenna.
278 * Used to determine when to switch antenna
279 * when using software diversity.
280 */
281 int rssi_history;
282
283 /*
284 * Current RSSI average of the currently active antenna.
285 * Similar to the avg_rssi in the link_qual structure
286 * this value is updated by using the walking average.
287 */
288 struct ewma rssi_ant;
289 };
290
291 /*
292 * To optimize the quality of the link we need to store
293 * the quality of received frames and periodically
294 * optimize the link.
295 */
296 struct link {
297 /*
298 * Link tuner counter
299 * The number of times the link has been tuned
300 * since the radio has been switched on.
301 */
302 u32 count;
303
304 /*
305 * Quality measurement values.
306 */
307 struct link_qual qual;
308
309 /*
310 * TX/RX antenna setup.
311 */
312 struct link_ant ant;
313
314 /*
315 * Currently active average RSSI value
316 */
317 struct ewma avg_rssi;
318
319 /*
320 * Work structure for scheduling periodic link tuning.
321 */
322 struct delayed_work work;
323
324 /*
325 * Work structure for scheduling periodic watchdog monitoring.
326 * This work must be scheduled on the kernel workqueue, while
327 * all other work structures must be queued on the mac80211
328 * workqueue. This guarantees that the watchdog can schedule
329 * other work structures and wait for their completion in order
330 * to bring the device/driver back into the desired state.
331 */
332 struct delayed_work watchdog_work;
333
334 /*
335 * Work structure for scheduling periodic AGC adjustments.
336 */
337 struct delayed_work agc_work;
338
339 /*
340 * Work structure for scheduling periodic VCO calibration.
341 */
342 struct delayed_work vco_work;
343 };
344
345 enum rt2x00_delayed_flags {
346 DELAYED_UPDATE_BEACON,
347 };
348
349 /*
350 * Interface structure
351 * Per interface configuration details, this structure
352 * is allocated as the private data for ieee80211_vif.
353 */
354 struct rt2x00_intf {
355 /*
356 * beacon->skb must be protected with the mutex.
357 */
358 struct mutex beacon_skb_mutex;
359
360 /*
361 * Entry in the beacon queue which belongs to
362 * this interface. Each interface has its own
363 * dedicated beacon entry.
364 */
365 struct queue_entry *beacon;
366 bool enable_beacon;
367
368 /*
369 * Actions that needed rescheduling.
370 */
371 unsigned long delayed_flags;
372
373 /*
374 * Software sequence counter, this is only required
375 * for hardware which doesn't support hardware
376 * sequence counting.
377 */
378 atomic_t seqno;
379 };
380
vif_to_intf(struct ieee80211_vif * vif)381 static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
382 {
383 return (struct rt2x00_intf *)vif->drv_priv;
384 }
385
386 /**
387 * struct hw_mode_spec: Hardware specifications structure
388 *
389 * Details about the supported modes, rates and channels
390 * of a particular chipset. This is used by rt2x00lib
391 * to build the ieee80211_hw_mode array for mac80211.
392 *
393 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
394 * @supported_rates: Rate types which are supported (CCK, OFDM).
395 * @num_channels: Number of supported channels. This is used as array size
396 * for @tx_power_a, @tx_power_bg and @channels.
397 * @channels: Device/chipset specific channel values (See &struct rf_channel).
398 * @channels_info: Additional information for channels (See &struct channel_info).
399 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
400 */
401 struct hw_mode_spec {
402 unsigned int supported_bands;
403 #define SUPPORT_BAND_2GHZ 0x00000001
404 #define SUPPORT_BAND_5GHZ 0x00000002
405
406 unsigned int supported_rates;
407 #define SUPPORT_RATE_CCK 0x00000001
408 #define SUPPORT_RATE_OFDM 0x00000002
409
410 unsigned int num_channels;
411 const struct rf_channel *channels;
412 const struct channel_info *channels_info;
413
414 struct ieee80211_sta_ht_cap ht;
415 };
416
417 /*
418 * Configuration structure wrapper around the
419 * mac80211 configuration structure.
420 * When mac80211 configures the driver, rt2x00lib
421 * can precalculate values which are equal for all
422 * rt2x00 drivers. Those values can be stored in here.
423 */
424 struct rt2x00lib_conf {
425 struct ieee80211_conf *conf;
426
427 struct rf_channel rf;
428 struct channel_info channel;
429 };
430
431 /*
432 * Configuration structure for erp settings.
433 */
434 struct rt2x00lib_erp {
435 int short_preamble;
436 int cts_protection;
437
438 u32 basic_rates;
439
440 int slot_time;
441
442 short sifs;
443 short pifs;
444 short difs;
445 short eifs;
446
447 u16 beacon_int;
448 u16 ht_opmode;
449 };
450
451 /*
452 * Configuration structure for hardware encryption.
453 */
454 struct rt2x00lib_crypto {
455 enum cipher cipher;
456
457 enum set_key_cmd cmd;
458 const u8 *address;
459
460 u32 bssidx;
461
462 u8 key[16];
463 u8 tx_mic[8];
464 u8 rx_mic[8];
465
466 int wcid;
467 };
468
469 /*
470 * Configuration structure wrapper around the
471 * rt2x00 interface configuration handler.
472 */
473 struct rt2x00intf_conf {
474 /*
475 * Interface type
476 */
477 enum nl80211_iftype type;
478
479 /*
480 * TSF sync value, this is dependent on the operation type.
481 */
482 enum tsf_sync sync;
483
484 /*
485 * The MAC and BSSID addresses are simple array of bytes,
486 * these arrays are little endian, so when sending the addresses
487 * to the drivers, copy the it into a endian-signed variable.
488 *
489 * Note that all devices (except rt2500usb) have 32 bits
490 * register word sizes. This means that whatever variable we
491 * pass _must_ be a multiple of 32 bits. Otherwise the device
492 * might not accept what we are sending to it.
493 * This will also make it easier for the driver to write
494 * the data to the device.
495 */
496 __le32 mac[2];
497 __le32 bssid[2];
498 };
499
500 /*
501 * Private structure for storing STA details
502 * wcid: Wireless Client ID
503 */
504 struct rt2x00_sta {
505 int wcid;
506 };
507
sta_to_rt2x00_sta(struct ieee80211_sta * sta)508 static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
509 {
510 return (struct rt2x00_sta *)sta->drv_priv;
511 }
512
513 /*
514 * rt2x00lib callback functions.
515 */
516 struct rt2x00lib_ops {
517 /*
518 * Interrupt handlers.
519 */
520 irq_handler_t irq_handler;
521
522 /*
523 * TX status tasklet handler.
524 */
525 void (*txstatus_tasklet) (unsigned long data);
526 void (*pretbtt_tasklet) (unsigned long data);
527 void (*tbtt_tasklet) (unsigned long data);
528 void (*rxdone_tasklet) (unsigned long data);
529 void (*autowake_tasklet) (unsigned long data);
530
531 /*
532 * Device init handlers.
533 */
534 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
535 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
536 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
537 const u8 *data, const size_t len);
538 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
539 const u8 *data, const size_t len);
540
541 /*
542 * Device initialization/deinitialization handlers.
543 */
544 int (*initialize) (struct rt2x00_dev *rt2x00dev);
545 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
546
547 /*
548 * queue initialization handlers
549 */
550 bool (*get_entry_state) (struct queue_entry *entry);
551 void (*clear_entry) (struct queue_entry *entry);
552
553 /*
554 * Radio control handlers.
555 */
556 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
557 enum dev_state state);
558 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
559 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
560 struct link_qual *qual);
561 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
562 struct link_qual *qual);
563 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
564 struct link_qual *qual, const u32 count);
565 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
566 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
567
568 /*
569 * Data queue handlers.
570 */
571 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
572 void (*start_queue) (struct data_queue *queue);
573 void (*kick_queue) (struct data_queue *queue);
574 void (*stop_queue) (struct data_queue *queue);
575 void (*flush_queue) (struct data_queue *queue, bool drop);
576 void (*tx_dma_done) (struct queue_entry *entry);
577
578 /*
579 * TX control handlers
580 */
581 void (*write_tx_desc) (struct queue_entry *entry,
582 struct txentry_desc *txdesc);
583 void (*write_tx_data) (struct queue_entry *entry,
584 struct txentry_desc *txdesc);
585 void (*write_beacon) (struct queue_entry *entry,
586 struct txentry_desc *txdesc);
587 void (*clear_beacon) (struct queue_entry *entry);
588 int (*get_tx_data_len) (struct queue_entry *entry);
589
590 /*
591 * RX control handlers
592 */
593 void (*fill_rxdone) (struct queue_entry *entry,
594 struct rxdone_entry_desc *rxdesc);
595
596 /*
597 * Configuration handlers.
598 */
599 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
600 struct rt2x00lib_crypto *crypto,
601 struct ieee80211_key_conf *key);
602 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
603 struct rt2x00lib_crypto *crypto,
604 struct ieee80211_key_conf *key);
605 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
606 const unsigned int filter_flags);
607 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
608 struct rt2x00_intf *intf,
609 struct rt2x00intf_conf *conf,
610 const unsigned int flags);
611 #define CONFIG_UPDATE_TYPE ( 1 << 1 )
612 #define CONFIG_UPDATE_MAC ( 1 << 2 )
613 #define CONFIG_UPDATE_BSSID ( 1 << 3 )
614
615 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
616 struct rt2x00lib_erp *erp,
617 u32 changed);
618 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
619 struct antenna_setup *ant);
620 void (*config) (struct rt2x00_dev *rt2x00dev,
621 struct rt2x00lib_conf *libconf,
622 const unsigned int changed_flags);
623 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
624 struct ieee80211_vif *vif,
625 struct ieee80211_sta *sta);
626 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
627 int wcid);
628 };
629
630 /*
631 * rt2x00 driver callback operation structure.
632 */
633 struct rt2x00_ops {
634 const char *name;
635 const unsigned int drv_data_size;
636 const unsigned int max_ap_intf;
637 const unsigned int eeprom_size;
638 const unsigned int rf_size;
639 const unsigned int tx_queues;
640 void (*queue_init)(struct data_queue *queue);
641 const struct rt2x00lib_ops *lib;
642 const void *drv;
643 const struct ieee80211_ops *hw;
644 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
645 const struct rt2x00debug *debugfs;
646 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
647 };
648
649 /*
650 * rt2x00 state flags
651 */
652 enum rt2x00_state_flags {
653 /*
654 * Device flags
655 */
656 DEVICE_STATE_PRESENT,
657 DEVICE_STATE_REGISTERED_HW,
658 DEVICE_STATE_INITIALIZED,
659 DEVICE_STATE_STARTED,
660 DEVICE_STATE_ENABLED_RADIO,
661 DEVICE_STATE_SCANNING,
662
663 /*
664 * Driver configuration
665 */
666 CONFIG_CHANNEL_HT40,
667 CONFIG_POWERSAVING,
668 CONFIG_HT_DISABLED,
669 CONFIG_QOS_DISABLED,
670
671 /*
672 * Mark we currently are sequentially reading TX_STA_FIFO register
673 * FIXME: this is for only rt2800usb, should go to private data
674 */
675 TX_STATUS_READING,
676 };
677
678 /*
679 * rt2x00 capability flags
680 */
681 enum rt2x00_capability_flags {
682 /*
683 * Requirements
684 */
685 REQUIRE_FIRMWARE,
686 REQUIRE_BEACON_GUARD,
687 REQUIRE_ATIM_QUEUE,
688 REQUIRE_DMA,
689 REQUIRE_COPY_IV,
690 REQUIRE_L2PAD,
691 REQUIRE_TXSTATUS_FIFO,
692 REQUIRE_TASKLET_CONTEXT,
693 REQUIRE_SW_SEQNO,
694 REQUIRE_HT_TX_DESC,
695 REQUIRE_PS_AUTOWAKE,
696 REQUIRE_DELAYED_RFKILL,
697
698 /*
699 * Capabilities
700 */
701 CAPABILITY_HW_BUTTON,
702 CAPABILITY_HW_CRYPTO,
703 CAPABILITY_POWER_LIMIT,
704 CAPABILITY_CONTROL_FILTERS,
705 CAPABILITY_CONTROL_FILTER_PSPOLL,
706 CAPABILITY_PRE_TBTT_INTERRUPT,
707 CAPABILITY_LINK_TUNING,
708 CAPABILITY_FRAME_TYPE,
709 CAPABILITY_RF_SEQUENCE,
710 CAPABILITY_EXTERNAL_LNA_A,
711 CAPABILITY_EXTERNAL_LNA_BG,
712 CAPABILITY_DOUBLE_ANTENNA,
713 CAPABILITY_BT_COEXIST,
714 CAPABILITY_VCO_RECALIBRATION,
715 };
716
717 /*
718 * Interface combinations
719 */
720 enum {
721 IF_COMB_AP = 0,
722 NUM_IF_COMB,
723 };
724
725 /*
726 * rt2x00 device structure.
727 */
728 struct rt2x00_dev {
729 /*
730 * Device structure.
731 * The structure stored in here depends on the
732 * system bus (PCI or USB).
733 * When accessing this variable, the rt2x00dev_{pci,usb}
734 * macros should be used for correct typecasting.
735 */
736 struct device *dev;
737
738 /*
739 * Callback functions.
740 */
741 const struct rt2x00_ops *ops;
742
743 /*
744 * Driver data.
745 */
746 void *drv_data;
747
748 /*
749 * IEEE80211 control structure.
750 */
751 struct ieee80211_hw *hw;
752 struct ieee80211_supported_band bands[IEEE80211_NUM_BANDS];
753 enum ieee80211_band curr_band;
754 int curr_freq;
755
756 /*
757 * If enabled, the debugfs interface structures
758 * required for deregistration of debugfs.
759 */
760 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
761 struct rt2x00debug_intf *debugfs_intf;
762 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
763
764 /*
765 * LED structure for changing the LED status
766 * by mac8011 or the kernel.
767 */
768 #ifdef CONFIG_RT2X00_LIB_LEDS
769 struct rt2x00_led led_radio;
770 struct rt2x00_led led_assoc;
771 struct rt2x00_led led_qual;
772 u16 led_mcu_reg;
773 #endif /* CONFIG_RT2X00_LIB_LEDS */
774
775 /*
776 * Device state flags.
777 * In these flags the current status is stored.
778 * Access to these flags should occur atomically.
779 */
780 unsigned long flags;
781
782 /*
783 * Device capabiltiy flags.
784 * In these flags the device/driver capabilities are stored.
785 * Access to these flags should occur non-atomically.
786 */
787 unsigned long cap_flags;
788
789 /*
790 * Device information, Bus IRQ and name (PCI, SoC)
791 */
792 int irq;
793 const char *name;
794
795 /*
796 * Chipset identification.
797 */
798 struct rt2x00_chip chip;
799
800 /*
801 * hw capability specifications.
802 */
803 struct hw_mode_spec spec;
804
805 /*
806 * This is the default TX/RX antenna setup as indicated
807 * by the device's EEPROM.
808 */
809 struct antenna_setup default_ant;
810
811 /*
812 * Register pointers
813 * csr.base: CSR base register address. (PCI)
814 * csr.cache: CSR cache for usb_control_msg. (USB)
815 */
816 union csr {
817 void __iomem *base;
818 void *cache;
819 } csr;
820
821 /*
822 * Mutex to protect register accesses.
823 * For PCI and USB devices it protects against concurrent indirect
824 * register access (BBP, RF, MCU) since accessing those
825 * registers require multiple calls to the CSR registers.
826 * For USB devices it also protects the csr_cache since that
827 * field is used for normal CSR access and it cannot support
828 * multiple callers simultaneously.
829 */
830 struct mutex csr_mutex;
831
832 /*
833 * Current packet filter configuration for the device.
834 * This contains all currently active FIF_* flags send
835 * to us by mac80211 during configure_filter().
836 */
837 unsigned int packet_filter;
838
839 /*
840 * Interface details:
841 * - Open ap interface count.
842 * - Open sta interface count.
843 * - Association count.
844 * - Beaconing enabled count.
845 */
846 unsigned int intf_ap_count;
847 unsigned int intf_sta_count;
848 unsigned int intf_associated;
849 unsigned int intf_beaconing;
850
851 /*
852 * Interface combinations
853 */
854 struct ieee80211_iface_limit if_limits_ap;
855 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
856
857 /*
858 * Link quality
859 */
860 struct link link;
861
862 /*
863 * EEPROM data.
864 */
865 __le16 *eeprom;
866
867 /*
868 * Active RF register values.
869 * These are stored here so we don't need
870 * to read the rf registers and can directly
871 * use this value instead.
872 * This field should be accessed by using
873 * rt2x00_rf_read() and rt2x00_rf_write().
874 */
875 u32 *rf;
876
877 /*
878 * LNA gain
879 */
880 short lna_gain;
881
882 /*
883 * Current TX power value.
884 */
885 u16 tx_power;
886
887 /*
888 * Current retry values.
889 */
890 u8 short_retry;
891 u8 long_retry;
892
893 /*
894 * Rssi <-> Dbm offset
895 */
896 u8 rssi_offset;
897
898 /*
899 * Frequency offset.
900 */
901 u8 freq_offset;
902
903 /*
904 * Association id.
905 */
906 u16 aid;
907
908 /*
909 * Beacon interval.
910 */
911 u16 beacon_int;
912
913 /**
914 * Timestamp of last received beacon
915 */
916 unsigned long last_beacon;
917
918 /*
919 * Low level statistics which will have
920 * to be kept up to date while device is running.
921 */
922 struct ieee80211_low_level_stats low_level_stats;
923
924 /**
925 * Work queue for all work which should not be placed
926 * on the mac80211 workqueue (because of dependencies
927 * between various work structures).
928 */
929 struct workqueue_struct *workqueue;
930
931 /*
932 * Scheduled work.
933 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
934 * which means it cannot be placed on the hw->workqueue
935 * due to RTNL locking requirements.
936 */
937 struct work_struct intf_work;
938
939 /**
940 * Scheduled work for TX/RX done handling (USB devices)
941 */
942 struct work_struct rxdone_work;
943 struct work_struct txdone_work;
944
945 /*
946 * Powersaving work
947 */
948 struct delayed_work autowakeup_work;
949 struct work_struct sleep_work;
950
951 /*
952 * Data queue arrays for RX, TX, Beacon and ATIM.
953 */
954 unsigned int data_queues;
955 struct data_queue *rx;
956 struct data_queue *tx;
957 struct data_queue *bcn;
958 struct data_queue *atim;
959
960 /*
961 * Firmware image.
962 */
963 const struct firmware *fw;
964
965 /*
966 * FIFO for storing tx status reports between isr and tasklet.
967 */
968 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
969
970 /*
971 * Timer to ensure tx status reports are read (rt2800usb).
972 */
973 struct hrtimer txstatus_timer;
974
975 /*
976 * Tasklet for processing tx status reports (rt2800pci).
977 */
978 struct tasklet_struct txstatus_tasklet;
979 struct tasklet_struct pretbtt_tasklet;
980 struct tasklet_struct tbtt_tasklet;
981 struct tasklet_struct rxdone_tasklet;
982 struct tasklet_struct autowake_tasklet;
983
984 /*
985 * Used for VCO periodic calibration.
986 */
987 int rf_channel;
988
989 /*
990 * Protect the interrupt mask register.
991 */
992 spinlock_t irqmask_lock;
993
994 /*
995 * List of BlockAckReq TX entries that need driver BlockAck processing.
996 */
997 struct list_head bar_list;
998 spinlock_t bar_list_lock;
999
1000 /* Extra TX headroom required for alignment purposes. */
1001 unsigned int extra_tx_headroom;
1002 };
1003
1004 struct rt2x00_bar_list_entry {
1005 struct list_head list;
1006 struct rcu_head head;
1007
1008 struct queue_entry *entry;
1009 int block_acked;
1010
1011 /* Relevant parts of the IEEE80211 BAR header */
1012 __u8 ra[6];
1013 __u8 ta[6];
1014 __le16 control;
1015 __le16 start_seq_num;
1016 };
1017
1018 /*
1019 * Register defines.
1020 * Some registers require multiple attempts before success,
1021 * in those cases REGISTER_BUSY_COUNT attempts should be
1022 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1023 * bus delays, we do not have to loop so many times to wait
1024 * for valid register value on that bus.
1025 */
1026 #define REGISTER_BUSY_COUNT 100
1027 #define REGISTER_USB_BUSY_COUNT 20
1028 #define REGISTER_BUSY_DELAY 100
1029
1030 /*
1031 * Generic RF access.
1032 * The RF is being accessed by word index.
1033 */
rt2x00_rf_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 * data)1034 static inline void rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1035 const unsigned int word, u32 *data)
1036 {
1037 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1038 *data = rt2x00dev->rf[word - 1];
1039 }
1040
rt2x00_rf_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u32 data)1041 static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1042 const unsigned int word, u32 data)
1043 {
1044 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1045 rt2x00dev->rf[word - 1] = data;
1046 }
1047
1048 /*
1049 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1050 */
rt2x00_eeprom_addr(struct rt2x00_dev * rt2x00dev,const unsigned int word)1051 static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1052 const unsigned int word)
1053 {
1054 return (void *)&rt2x00dev->eeprom[word];
1055 }
1056
rt2x00_eeprom_read(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 * data)1057 static inline void rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1058 const unsigned int word, u16 *data)
1059 {
1060 *data = le16_to_cpu(rt2x00dev->eeprom[word]);
1061 }
1062
rt2x00_eeprom_write(struct rt2x00_dev * rt2x00dev,const unsigned int word,u16 data)1063 static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1064 const unsigned int word, u16 data)
1065 {
1066 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1067 }
1068
rt2x00_eeprom_byte(struct rt2x00_dev * rt2x00dev,const unsigned int byte)1069 static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1070 const unsigned int byte)
1071 {
1072 return *(((u8 *)rt2x00dev->eeprom) + byte);
1073 }
1074
1075 /*
1076 * Chipset handlers
1077 */
rt2x00_set_chip(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rf,const u16 rev)1078 static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1079 const u16 rt, const u16 rf, const u16 rev)
1080 {
1081 rt2x00dev->chip.rt = rt;
1082 rt2x00dev->chip.rf = rf;
1083 rt2x00dev->chip.rev = rev;
1084
1085 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1086 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1087 rt2x00dev->chip.rev);
1088 }
1089
rt2x00_set_rt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1090 static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1091 const u16 rt, const u16 rev)
1092 {
1093 rt2x00dev->chip.rt = rt;
1094 rt2x00dev->chip.rev = rev;
1095
1096 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1097 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1098 }
1099
rt2x00_set_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1100 static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1101 {
1102 rt2x00dev->chip.rf = rf;
1103
1104 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1105 rt2x00dev->chip.rf);
1106 }
1107
rt2x00_rt(struct rt2x00_dev * rt2x00dev,const u16 rt)1108 static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1109 {
1110 return (rt2x00dev->chip.rt == rt);
1111 }
1112
rt2x00_rf(struct rt2x00_dev * rt2x00dev,const u16 rf)1113 static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1114 {
1115 return (rt2x00dev->chip.rf == rf);
1116 }
1117
rt2x00_rev(struct rt2x00_dev * rt2x00dev)1118 static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1119 {
1120 return rt2x00dev->chip.rev;
1121 }
1122
rt2x00_rt_rev(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1123 static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1124 const u16 rt, const u16 rev)
1125 {
1126 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1127 }
1128
rt2x00_rt_rev_lt(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1129 static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1130 const u16 rt, const u16 rev)
1131 {
1132 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1133 }
1134
rt2x00_rt_rev_gte(struct rt2x00_dev * rt2x00dev,const u16 rt,const u16 rev)1135 static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1136 const u16 rt, const u16 rev)
1137 {
1138 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1139 }
1140
rt2x00_set_chip_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1141 static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1142 enum rt2x00_chip_intf intf)
1143 {
1144 rt2x00dev->chip.intf = intf;
1145 }
1146
rt2x00_intf(struct rt2x00_dev * rt2x00dev,enum rt2x00_chip_intf intf)1147 static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1148 enum rt2x00_chip_intf intf)
1149 {
1150 return (rt2x00dev->chip.intf == intf);
1151 }
1152
rt2x00_is_pci(struct rt2x00_dev * rt2x00dev)1153 static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1154 {
1155 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1156 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1157 }
1158
rt2x00_is_pcie(struct rt2x00_dev * rt2x00dev)1159 static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1160 {
1161 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1162 }
1163
rt2x00_is_usb(struct rt2x00_dev * rt2x00dev)1164 static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1165 {
1166 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1167 }
1168
rt2x00_is_soc(struct rt2x00_dev * rt2x00dev)1169 static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1170 {
1171 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1172 }
1173
1174 /* Helpers for capability flags */
1175
1176 static inline bool
rt2x00_has_cap_flag(struct rt2x00_dev * rt2x00dev,enum rt2x00_capability_flags cap_flag)1177 rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1178 enum rt2x00_capability_flags cap_flag)
1179 {
1180 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1181 }
1182
1183 static inline bool
rt2x00_has_cap_hw_crypto(struct rt2x00_dev * rt2x00dev)1184 rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1185 {
1186 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1187 }
1188
1189 static inline bool
rt2x00_has_cap_power_limit(struct rt2x00_dev * rt2x00dev)1190 rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1191 {
1192 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1193 }
1194
1195 static inline bool
rt2x00_has_cap_control_filters(struct rt2x00_dev * rt2x00dev)1196 rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1197 {
1198 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1199 }
1200
1201 static inline bool
rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev * rt2x00dev)1202 rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1203 {
1204 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1205 }
1206
1207 static inline bool
rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev * rt2x00dev)1208 rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1209 {
1210 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1211 }
1212
1213 static inline bool
rt2x00_has_cap_link_tuning(struct rt2x00_dev * rt2x00dev)1214 rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1215 {
1216 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1217 }
1218
1219 static inline bool
rt2x00_has_cap_frame_type(struct rt2x00_dev * rt2x00dev)1220 rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1221 {
1222 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1223 }
1224
1225 static inline bool
rt2x00_has_cap_rf_sequence(struct rt2x00_dev * rt2x00dev)1226 rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1227 {
1228 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1229 }
1230
1231 static inline bool
rt2x00_has_cap_external_lna_a(struct rt2x00_dev * rt2x00dev)1232 rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1233 {
1234 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1235 }
1236
1237 static inline bool
rt2x00_has_cap_external_lna_bg(struct rt2x00_dev * rt2x00dev)1238 rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1239 {
1240 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1241 }
1242
1243 static inline bool
rt2x00_has_cap_double_antenna(struct rt2x00_dev * rt2x00dev)1244 rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1245 {
1246 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1247 }
1248
1249 static inline bool
rt2x00_has_cap_bt_coexist(struct rt2x00_dev * rt2x00dev)1250 rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1251 {
1252 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1253 }
1254
1255 static inline bool
rt2x00_has_cap_vco_recalibration(struct rt2x00_dev * rt2x00dev)1256 rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1257 {
1258 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1259 }
1260
1261 /**
1262 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1263 * @entry: Pointer to &struct queue_entry
1264 *
1265 * Returns -ENOMEM if mapping fail, 0 otherwise.
1266 */
1267 int rt2x00queue_map_txskb(struct queue_entry *entry);
1268
1269 /**
1270 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1271 * @entry: Pointer to &struct queue_entry
1272 */
1273 void rt2x00queue_unmap_skb(struct queue_entry *entry);
1274
1275 /**
1276 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1277 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1278 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1279 *
1280 * Returns NULL for non tx queues.
1281 */
1282 static inline struct data_queue *
rt2x00queue_get_tx_queue(struct rt2x00_dev * rt2x00dev,const enum data_queue_qid queue)1283 rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1284 const enum data_queue_qid queue)
1285 {
1286 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1287 return &rt2x00dev->tx[queue];
1288
1289 if (queue == QID_ATIM)
1290 return rt2x00dev->atim;
1291
1292 return NULL;
1293 }
1294
1295 /**
1296 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1297 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1298 * @index: Index identifier for obtaining the correct index.
1299 */
1300 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1301 enum queue_index index);
1302
1303 /**
1304 * rt2x00queue_pause_queue - Pause a data queue
1305 * @queue: Pointer to &struct data_queue.
1306 *
1307 * This function will pause the data queue locally, preventing
1308 * new frames to be added to the queue (while the hardware is
1309 * still allowed to run).
1310 */
1311 void rt2x00queue_pause_queue(struct data_queue *queue);
1312
1313 /**
1314 * rt2x00queue_unpause_queue - unpause a data queue
1315 * @queue: Pointer to &struct data_queue.
1316 *
1317 * This function will unpause the data queue locally, allowing
1318 * new frames to be added to the queue again.
1319 */
1320 void rt2x00queue_unpause_queue(struct data_queue *queue);
1321
1322 /**
1323 * rt2x00queue_start_queue - Start a data queue
1324 * @queue: Pointer to &struct data_queue.
1325 *
1326 * This function will start handling all pending frames in the queue.
1327 */
1328 void rt2x00queue_start_queue(struct data_queue *queue);
1329
1330 /**
1331 * rt2x00queue_stop_queue - Halt a data queue
1332 * @queue: Pointer to &struct data_queue.
1333 *
1334 * This function will stop all pending frames in the queue.
1335 */
1336 void rt2x00queue_stop_queue(struct data_queue *queue);
1337
1338 /**
1339 * rt2x00queue_flush_queue - Flush a data queue
1340 * @queue: Pointer to &struct data_queue.
1341 * @drop: True to drop all pending frames.
1342 *
1343 * This function will flush the queue. After this call
1344 * the queue is guaranteed to be empty.
1345 */
1346 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1347
1348 /**
1349 * rt2x00queue_start_queues - Start all data queues
1350 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1351 *
1352 * This function will loop through all available queues to start them
1353 */
1354 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1355
1356 /**
1357 * rt2x00queue_stop_queues - Halt all data queues
1358 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1359 *
1360 * This function will loop through all available queues to stop
1361 * any pending frames.
1362 */
1363 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1364
1365 /**
1366 * rt2x00queue_flush_queues - Flush all data queues
1367 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1368 * @drop: True to drop all pending frames.
1369 *
1370 * This function will loop through all available queues to flush
1371 * any pending frames.
1372 */
1373 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1374
1375 /*
1376 * Debugfs handlers.
1377 */
1378 /**
1379 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1380 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1381 * @type: The type of frame that is being dumped.
1382 * @skb: The skb containing the frame to be dumped.
1383 */
1384 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1385 void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1386 enum rt2x00_dump_type type, struct sk_buff *skb);
1387 #else
rt2x00debug_dump_frame(struct rt2x00_dev * rt2x00dev,enum rt2x00_dump_type type,struct sk_buff * skb)1388 static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1389 enum rt2x00_dump_type type,
1390 struct sk_buff *skb)
1391 {
1392 }
1393 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1394
1395 /*
1396 * Utility functions.
1397 */
1398 u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1399 struct ieee80211_vif *vif);
1400
1401 /*
1402 * Interrupt context handlers.
1403 */
1404 void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1405 void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1406 void rt2x00lib_dmastart(struct queue_entry *entry);
1407 void rt2x00lib_dmadone(struct queue_entry *entry);
1408 void rt2x00lib_txdone(struct queue_entry *entry,
1409 struct txdone_entry_desc *txdesc);
1410 void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1411 void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1412
1413 /*
1414 * mac80211 handlers.
1415 */
1416 void rt2x00mac_tx(struct ieee80211_hw *hw,
1417 struct ieee80211_tx_control *control,
1418 struct sk_buff *skb);
1419 int rt2x00mac_start(struct ieee80211_hw *hw);
1420 void rt2x00mac_stop(struct ieee80211_hw *hw);
1421 int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1422 struct ieee80211_vif *vif);
1423 void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1424 struct ieee80211_vif *vif);
1425 int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1426 void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1427 unsigned int changed_flags,
1428 unsigned int *total_flags,
1429 u64 multicast);
1430 int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1431 bool set);
1432 #ifdef CONFIG_RT2X00_LIB_CRYPTO
1433 int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1434 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1435 struct ieee80211_key_conf *key);
1436 #else
1437 #define rt2x00mac_set_key NULL
1438 #endif /* CONFIG_RT2X00_LIB_CRYPTO */
1439 int rt2x00mac_sta_add(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1440 struct ieee80211_sta *sta);
1441 int rt2x00mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1442 struct ieee80211_sta *sta);
1443 void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1444 struct ieee80211_vif *vif,
1445 const u8 *mac_addr);
1446 void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1447 struct ieee80211_vif *vif);
1448 int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1449 struct ieee80211_low_level_stats *stats);
1450 void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1451 struct ieee80211_vif *vif,
1452 struct ieee80211_bss_conf *bss_conf,
1453 u32 changes);
1454 int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1455 struct ieee80211_vif *vif, u16 queue,
1456 const struct ieee80211_tx_queue_params *params);
1457 void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1458 void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1459 u32 queues, bool drop);
1460 int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1461 int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1462 void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1463 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1464 bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1465
1466 /*
1467 * Driver allocation handlers.
1468 */
1469 int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1470 void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1471 #ifdef CONFIG_PM
1472 int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1473 int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1474 #endif /* CONFIG_PM */
1475
1476 #endif /* RT2X00_H */
1477