1 /******************************************************************************
2  *
3  * Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
4  * Copyright(c) 2013 - 2014 Intel Mobile Communications GmbH
5  *
6  * Portions of this file are derived from the ipw3945 project, as well
7  * as portions of the ieee80211 subsystem header files.
8  *
9  * This program is free software; you can redistribute it and/or modify it
10  * under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but WITHOUT
14  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16  * more details.
17  *
18  * You should have received a copy of the GNU General Public License along with
19  * this program; if not, write to the Free Software Foundation, Inc.,
20  * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
21  *
22  * The full GNU General Public License is included in this distribution in the
23  * file called LICENSE.
24  *
25  * Contact Information:
26  *  Intel Linux Wireless <ilw@linux.intel.com>
27  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
28  *
29  *****************************************************************************/
30 #include <linux/sched.h>
31 #include <linux/wait.h>
32 #include <linux/gfp.h>
33 
34 #include "iwl-prph.h"
35 #include "iwl-io.h"
36 #include "internal.h"
37 #include "iwl-op-mode.h"
38 
39 /******************************************************************************
40  *
41  * RX path functions
42  *
43  ******************************************************************************/
44 
45 /*
46  * Rx theory of operation
47  *
48  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
49  * each of which point to Receive Buffers to be filled by the NIC.  These get
50  * used not only for Rx frames, but for any command response or notification
51  * from the NIC.  The driver and NIC manage the Rx buffers by means
52  * of indexes into the circular buffer.
53  *
54  * Rx Queue Indexes
55  * The host/firmware share two index registers for managing the Rx buffers.
56  *
57  * The READ index maps to the first position that the firmware may be writing
58  * to -- the driver can read up to (but not including) this position and get
59  * good data.
60  * The READ index is managed by the firmware once the card is enabled.
61  *
62  * The WRITE index maps to the last position the driver has read from -- the
63  * position preceding WRITE is the last slot the firmware can place a packet.
64  *
65  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
66  * WRITE = READ.
67  *
68  * During initialization, the host sets up the READ queue position to the first
69  * INDEX position, and WRITE to the last (READ - 1 wrapped)
70  *
71  * When the firmware places a packet in a buffer, it will advance the READ index
72  * and fire the RX interrupt.  The driver can then query the READ index and
73  * process as many packets as possible, moving the WRITE index forward as it
74  * resets the Rx queue buffers with new memory.
75  *
76  * The management in the driver is as follows:
77  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
78  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
79  *   to replenish the iwl->rxq->rx_free.
80  * + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
81  *   iwl->rxq is replenished and the READ INDEX is updated (updating the
82  *   'processed' and 'read' driver indexes as well)
83  * + A received packet is processed and handed to the kernel network stack,
84  *   detached from the iwl->rxq.  The driver 'processed' index is updated.
85  * + The Host/Firmware iwl->rxq is replenished at irq thread time from the
86  *   rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
87  *   the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
88  *   If there were enough free buffers and RX_STALLED is set it is cleared.
89  *
90  *
91  * Driver sequence:
92  *
93  * iwl_rxq_alloc()            Allocates rx_free
94  * iwl_pcie_rx_replenish()    Replenishes rx_free list from rx_used, and calls
95  *                            iwl_pcie_rxq_restock
96  * iwl_pcie_rxq_restock()     Moves available buffers from rx_free into Rx
97  *                            queue, updates firmware pointers, and updates
98  *                            the WRITE index.  If insufficient rx_free buffers
99  *                            are available, schedules iwl_pcie_rx_replenish
100  *
101  * -- enable interrupts --
102  * ISR - iwl_rx()             Detach iwl_rx_mem_buffers from pool up to the
103  *                            READ INDEX, detaching the SKB from the pool.
104  *                            Moves the packet buffer from queue to rx_used.
105  *                            Calls iwl_pcie_rxq_restock to refill any empty
106  *                            slots.
107  * ...
108  *
109  */
110 
111 /*
112  * iwl_rxq_space - Return number of free slots available in queue.
113  */
iwl_rxq_space(const struct iwl_rxq * rxq)114 static int iwl_rxq_space(const struct iwl_rxq *rxq)
115 {
116 	/* Make sure RX_QUEUE_SIZE is a power of 2 */
117 	BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
118 
119 	/*
120 	 * There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
121 	 * between empty and completely full queues.
122 	 * The following is equivalent to modulo by RX_QUEUE_SIZE and is well
123 	 * defined for negative dividends.
124 	 */
125 	return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
126 }
127 
128 /*
129  * iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
130  */
iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)131 static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
132 {
133 	return cpu_to_le32((u32)(dma_addr >> 8));
134 }
135 
136 /*
137  * iwl_pcie_rx_stop - stops the Rx DMA
138  */
iwl_pcie_rx_stop(struct iwl_trans * trans)139 int iwl_pcie_rx_stop(struct iwl_trans *trans)
140 {
141 	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
142 	return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
143 				   FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
144 }
145 
146 /*
147  * iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
148  */
iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans * trans)149 static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans)
150 {
151 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
152 	struct iwl_rxq *rxq = &trans_pcie->rxq;
153 	u32 reg;
154 
155 	lockdep_assert_held(&rxq->lock);
156 
157 	/*
158 	 * explicitly wake up the NIC if:
159 	 * 1. shadow registers aren't enabled
160 	 * 2. there is a chance that the NIC is asleep
161 	 */
162 	if (!trans->cfg->base_params->shadow_reg_enable &&
163 	    test_bit(STATUS_TPOWER_PMI, &trans->status)) {
164 		reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
165 
166 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
167 			IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
168 				       reg);
169 			iwl_set_bit(trans, CSR_GP_CNTRL,
170 				    CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
171 			rxq->need_update = true;
172 			return;
173 		}
174 	}
175 
176 	rxq->write_actual = round_down(rxq->write, 8);
177 	iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
178 }
179 
iwl_pcie_rxq_check_wrptr(struct iwl_trans * trans)180 static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
181 {
182 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
183 	struct iwl_rxq *rxq = &trans_pcie->rxq;
184 
185 	spin_lock(&rxq->lock);
186 
187 	if (!rxq->need_update)
188 		goto exit_unlock;
189 
190 	iwl_pcie_rxq_inc_wr_ptr(trans);
191 	rxq->need_update = false;
192 
193  exit_unlock:
194 	spin_unlock(&rxq->lock);
195 }
196 
197 /*
198  * iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
199  *
200  * If there are slots in the RX queue that need to be restocked,
201  * and we have free pre-allocated buffers, fill the ranks as much
202  * as we can, pulling from rx_free.
203  *
204  * This moves the 'write' index forward to catch up with 'processed', and
205  * also updates the memory address in the firmware to reference the new
206  * target buffer.
207  */
iwl_pcie_rxq_restock(struct iwl_trans * trans)208 static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
209 {
210 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
211 	struct iwl_rxq *rxq = &trans_pcie->rxq;
212 	struct iwl_rx_mem_buffer *rxb;
213 
214 	/*
215 	 * If the device isn't enabled - not need to try to add buffers...
216 	 * This can happen when we stop the device and still have an interrupt
217 	 * pending. We stop the APM before we sync the interrupts because we
218 	 * have to (see comment there). On the other hand, since the APM is
219 	 * stopped, we cannot access the HW (in particular not prph).
220 	 * So don't try to restock if the APM has been already stopped.
221 	 */
222 	if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
223 		return;
224 
225 	spin_lock(&rxq->lock);
226 	while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
227 		/* The overwritten rxb must be a used one */
228 		rxb = rxq->queue[rxq->write];
229 		BUG_ON(rxb && rxb->page);
230 
231 		/* Get next free Rx buffer, remove from free list */
232 		rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
233 				       list);
234 		list_del(&rxb->list);
235 
236 		/* Point to Rx buffer via next RBD in circular buffer */
237 		rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
238 		rxq->queue[rxq->write] = rxb;
239 		rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
240 		rxq->free_count--;
241 	}
242 	spin_unlock(&rxq->lock);
243 	/* If the pre-allocated buffer pool is dropping low, schedule to
244 	 * refill it */
245 	if (rxq->free_count <= RX_LOW_WATERMARK)
246 		schedule_work(&trans_pcie->rx_replenish);
247 
248 	/* If we've added more space for the firmware to place data, tell it.
249 	 * Increment device's write pointer in multiples of 8. */
250 	if (rxq->write_actual != (rxq->write & ~0x7)) {
251 		spin_lock(&rxq->lock);
252 		iwl_pcie_rxq_inc_wr_ptr(trans);
253 		spin_unlock(&rxq->lock);
254 	}
255 }
256 
257 /*
258  * iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
259  *
260  * A used RBD is an Rx buffer that has been given to the stack. To use it again
261  * a page must be allocated and the RBD must point to the page. This function
262  * doesn't change the HW pointer but handles the list of pages that is used by
263  * iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
264  * allocated buffers.
265  */
iwl_pcie_rxq_alloc_rbs(struct iwl_trans * trans,gfp_t priority)266 static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
267 {
268 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
269 	struct iwl_rxq *rxq = &trans_pcie->rxq;
270 	struct iwl_rx_mem_buffer *rxb;
271 	struct page *page;
272 	gfp_t gfp_mask = priority;
273 
274 	while (1) {
275 		spin_lock(&rxq->lock);
276 		if (list_empty(&rxq->rx_used)) {
277 			spin_unlock(&rxq->lock);
278 			return;
279 		}
280 		spin_unlock(&rxq->lock);
281 
282 		if (rxq->free_count > RX_LOW_WATERMARK)
283 			gfp_mask |= __GFP_NOWARN;
284 
285 		if (trans_pcie->rx_page_order > 0)
286 			gfp_mask |= __GFP_COMP;
287 
288 		/* Alloc a new receive buffer */
289 		page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
290 		if (!page) {
291 			if (net_ratelimit())
292 				IWL_DEBUG_INFO(trans, "alloc_pages failed, "
293 					   "order: %d\n",
294 					   trans_pcie->rx_page_order);
295 
296 			if ((rxq->free_count <= RX_LOW_WATERMARK) &&
297 			    net_ratelimit())
298 				IWL_CRIT(trans, "Failed to alloc_pages with %s."
299 					 "Only %u free buffers remaining.\n",
300 					 priority == GFP_ATOMIC ?
301 					 "GFP_ATOMIC" : "GFP_KERNEL",
302 					 rxq->free_count);
303 			/* We don't reschedule replenish work here -- we will
304 			 * call the restock method and if it still needs
305 			 * more buffers it will schedule replenish */
306 			return;
307 		}
308 
309 		spin_lock(&rxq->lock);
310 
311 		if (list_empty(&rxq->rx_used)) {
312 			spin_unlock(&rxq->lock);
313 			__free_pages(page, trans_pcie->rx_page_order);
314 			return;
315 		}
316 		rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
317 				       list);
318 		list_del(&rxb->list);
319 		spin_unlock(&rxq->lock);
320 
321 		BUG_ON(rxb->page);
322 		rxb->page = page;
323 		/* Get physical address of the RB */
324 		rxb->page_dma =
325 			dma_map_page(trans->dev, page, 0,
326 				     PAGE_SIZE << trans_pcie->rx_page_order,
327 				     DMA_FROM_DEVICE);
328 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
329 			rxb->page = NULL;
330 			spin_lock(&rxq->lock);
331 			list_add(&rxb->list, &rxq->rx_used);
332 			spin_unlock(&rxq->lock);
333 			__free_pages(page, trans_pcie->rx_page_order);
334 			return;
335 		}
336 		/* dma address must be no more than 36 bits */
337 		BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
338 		/* and also 256 byte aligned! */
339 		BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
340 
341 		spin_lock(&rxq->lock);
342 
343 		list_add_tail(&rxb->list, &rxq->rx_free);
344 		rxq->free_count++;
345 
346 		spin_unlock(&rxq->lock);
347 	}
348 }
349 
iwl_pcie_rxq_free_rbs(struct iwl_trans * trans)350 static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
351 {
352 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
353 	struct iwl_rxq *rxq = &trans_pcie->rxq;
354 	int i;
355 
356 	lockdep_assert_held(&rxq->lock);
357 
358 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
359 		if (!rxq->pool[i].page)
360 			continue;
361 		dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
362 			       PAGE_SIZE << trans_pcie->rx_page_order,
363 			       DMA_FROM_DEVICE);
364 		__free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
365 		rxq->pool[i].page = NULL;
366 	}
367 }
368 
369 /*
370  * iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
371  *
372  * When moving to rx_free an page is allocated for the slot.
373  *
374  * Also restock the Rx queue via iwl_pcie_rxq_restock.
375  * This is called as a scheduled work item (except for during initialization)
376  */
iwl_pcie_rx_replenish(struct iwl_trans * trans,gfp_t gfp)377 static void iwl_pcie_rx_replenish(struct iwl_trans *trans, gfp_t gfp)
378 {
379 	iwl_pcie_rxq_alloc_rbs(trans, gfp);
380 
381 	iwl_pcie_rxq_restock(trans);
382 }
383 
iwl_pcie_rx_replenish_work(struct work_struct * data)384 static void iwl_pcie_rx_replenish_work(struct work_struct *data)
385 {
386 	struct iwl_trans_pcie *trans_pcie =
387 	    container_of(data, struct iwl_trans_pcie, rx_replenish);
388 
389 	iwl_pcie_rx_replenish(trans_pcie->trans, GFP_KERNEL);
390 }
391 
iwl_pcie_rx_alloc(struct iwl_trans * trans)392 static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
393 {
394 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
395 	struct iwl_rxq *rxq = &trans_pcie->rxq;
396 	struct device *dev = trans->dev;
397 
398 	memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
399 
400 	spin_lock_init(&rxq->lock);
401 
402 	if (WARN_ON(rxq->bd || rxq->rb_stts))
403 		return -EINVAL;
404 
405 	/* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
406 	rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
407 				      &rxq->bd_dma, GFP_KERNEL);
408 	if (!rxq->bd)
409 		goto err_bd;
410 
411 	/*Allocate the driver's pointer to receive buffer status */
412 	rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
413 					   &rxq->rb_stts_dma, GFP_KERNEL);
414 	if (!rxq->rb_stts)
415 		goto err_rb_stts;
416 
417 	return 0;
418 
419 err_rb_stts:
420 	dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
421 			  rxq->bd, rxq->bd_dma);
422 	rxq->bd_dma = 0;
423 	rxq->bd = NULL;
424 err_bd:
425 	return -ENOMEM;
426 }
427 
iwl_pcie_rx_hw_init(struct iwl_trans * trans,struct iwl_rxq * rxq)428 static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
429 {
430 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
431 	u32 rb_size;
432 	const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
433 
434 	if (trans_pcie->rx_buf_size_8k)
435 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
436 	else
437 		rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
438 
439 	/* Stop Rx DMA */
440 	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
441 	/* reset and flush pointers */
442 	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
443 	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
444 	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
445 
446 	/* Reset driver's Rx queue write index */
447 	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
448 
449 	/* Tell device where to find RBD circular buffer in DRAM */
450 	iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
451 			   (u32)(rxq->bd_dma >> 8));
452 
453 	/* Tell device where in DRAM to update its Rx status */
454 	iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
455 			   rxq->rb_stts_dma >> 4);
456 
457 	/* Enable Rx DMA
458 	 * FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
459 	 *      the credit mechanism in 5000 HW RX FIFO
460 	 * Direct rx interrupts to hosts
461 	 * Rx buffer size 4 or 8k
462 	 * RB timeout 0x10
463 	 * 256 RBDs
464 	 */
465 	iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
466 			   FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
467 			   FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
468 			   FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
469 			   rb_size|
470 			   (RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
471 			   (rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
472 
473 	/* Set interrupt coalescing timer to default (2048 usecs) */
474 	iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
475 
476 	/* W/A for interrupt coalescing bug in 7260 and 3160 */
477 	if (trans->cfg->host_interrupt_operation_mode)
478 		iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
479 }
480 
iwl_pcie_rx_init_rxb_lists(struct iwl_rxq * rxq)481 static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
482 {
483 	int i;
484 
485 	lockdep_assert_held(&rxq->lock);
486 
487 	INIT_LIST_HEAD(&rxq->rx_free);
488 	INIT_LIST_HEAD(&rxq->rx_used);
489 	rxq->free_count = 0;
490 
491 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
492 		list_add(&rxq->pool[i].list, &rxq->rx_used);
493 }
494 
iwl_pcie_rx_init(struct iwl_trans * trans)495 int iwl_pcie_rx_init(struct iwl_trans *trans)
496 {
497 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
498 	struct iwl_rxq *rxq = &trans_pcie->rxq;
499 	int i, err;
500 
501 	if (!rxq->bd) {
502 		err = iwl_pcie_rx_alloc(trans);
503 		if (err)
504 			return err;
505 	}
506 
507 	spin_lock(&rxq->lock);
508 
509 	INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
510 
511 	/* free all first - we might be reconfigured for a different size */
512 	iwl_pcie_rxq_free_rbs(trans);
513 	iwl_pcie_rx_init_rxb_lists(rxq);
514 
515 	for (i = 0; i < RX_QUEUE_SIZE; i++)
516 		rxq->queue[i] = NULL;
517 
518 	/* Set us so that we have processed and used all buffers, but have
519 	 * not restocked the Rx queue with fresh buffers */
520 	rxq->read = rxq->write = 0;
521 	rxq->write_actual = 0;
522 	memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
523 	spin_unlock(&rxq->lock);
524 
525 	iwl_pcie_rx_replenish(trans, GFP_KERNEL);
526 
527 	iwl_pcie_rx_hw_init(trans, rxq);
528 
529 	spin_lock(&rxq->lock);
530 	iwl_pcie_rxq_inc_wr_ptr(trans);
531 	spin_unlock(&rxq->lock);
532 
533 	return 0;
534 }
535 
iwl_pcie_rx_free(struct iwl_trans * trans)536 void iwl_pcie_rx_free(struct iwl_trans *trans)
537 {
538 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
539 	struct iwl_rxq *rxq = &trans_pcie->rxq;
540 
541 	/*if rxq->bd is NULL, it means that nothing has been allocated,
542 	 * exit now */
543 	if (!rxq->bd) {
544 		IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
545 		return;
546 	}
547 
548 	cancel_work_sync(&trans_pcie->rx_replenish);
549 
550 	spin_lock(&rxq->lock);
551 	iwl_pcie_rxq_free_rbs(trans);
552 	spin_unlock(&rxq->lock);
553 
554 	dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
555 			  rxq->bd, rxq->bd_dma);
556 	rxq->bd_dma = 0;
557 	rxq->bd = NULL;
558 
559 	if (rxq->rb_stts)
560 		dma_free_coherent(trans->dev,
561 				  sizeof(struct iwl_rb_status),
562 				  rxq->rb_stts, rxq->rb_stts_dma);
563 	else
564 		IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
565 	rxq->rb_stts_dma = 0;
566 	rxq->rb_stts = NULL;
567 }
568 
iwl_pcie_rx_handle_rb(struct iwl_trans * trans,struct iwl_rx_mem_buffer * rxb)569 static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
570 				struct iwl_rx_mem_buffer *rxb)
571 {
572 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
573 	struct iwl_rxq *rxq = &trans_pcie->rxq;
574 	struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
575 	bool page_stolen = false;
576 	int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
577 	u32 offset = 0;
578 
579 	if (WARN_ON(!rxb))
580 		return;
581 
582 	dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
583 
584 	while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
585 		struct iwl_rx_packet *pkt;
586 		struct iwl_device_cmd *cmd;
587 		u16 sequence;
588 		bool reclaim;
589 		int index, cmd_index, err, len;
590 		struct iwl_rx_cmd_buffer rxcb = {
591 			._offset = offset,
592 			._rx_page_order = trans_pcie->rx_page_order,
593 			._page = rxb->page,
594 			._page_stolen = false,
595 			.truesize = max_len,
596 		};
597 
598 		pkt = rxb_addr(&rxcb);
599 
600 		if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
601 			break;
602 
603 		IWL_DEBUG_RX(trans,
604 			     "cmd at offset %d: %s (0x%.2x, seq 0x%x)\n",
605 			     rxcb._offset,
606 			     get_cmd_string(trans_pcie, pkt->hdr.cmd),
607 			     pkt->hdr.cmd, le16_to_cpu(pkt->hdr.sequence));
608 
609 		len = iwl_rx_packet_len(pkt);
610 		len += sizeof(u32); /* account for status word */
611 		trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
612 		trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
613 
614 		/* Reclaim a command buffer only if this packet is a response
615 		 *   to a (driver-originated) command.
616 		 * If the packet (e.g. Rx frame) originated from uCode,
617 		 *   there is no command buffer to reclaim.
618 		 * Ucode should set SEQ_RX_FRAME bit if ucode-originated,
619 		 *   but apparently a few don't get set; catch them here. */
620 		reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
621 		if (reclaim) {
622 			int i;
623 
624 			for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
625 				if (trans_pcie->no_reclaim_cmds[i] ==
626 							pkt->hdr.cmd) {
627 					reclaim = false;
628 					break;
629 				}
630 			}
631 		}
632 
633 		sequence = le16_to_cpu(pkt->hdr.sequence);
634 		index = SEQ_TO_INDEX(sequence);
635 		cmd_index = get_cmd_index(&txq->q, index);
636 
637 		if (reclaim)
638 			cmd = txq->entries[cmd_index].cmd;
639 		else
640 			cmd = NULL;
641 
642 		err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
643 
644 		if (reclaim) {
645 			kzfree(txq->entries[cmd_index].free_buf);
646 			txq->entries[cmd_index].free_buf = NULL;
647 		}
648 
649 		/*
650 		 * After here, we should always check rxcb._page_stolen,
651 		 * if it is true then one of the handlers took the page.
652 		 */
653 
654 		if (reclaim) {
655 			/* Invoke any callbacks, transfer the buffer to caller,
656 			 * and fire off the (possibly) blocking
657 			 * iwl_trans_send_cmd()
658 			 * as we reclaim the driver command queue */
659 			if (!rxcb._page_stolen)
660 				iwl_pcie_hcmd_complete(trans, &rxcb, err);
661 			else
662 				IWL_WARN(trans, "Claim null rxb?\n");
663 		}
664 
665 		page_stolen |= rxcb._page_stolen;
666 		offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
667 	}
668 
669 	/* page was stolen from us -- free our reference */
670 	if (page_stolen) {
671 		__free_pages(rxb->page, trans_pcie->rx_page_order);
672 		rxb->page = NULL;
673 	}
674 
675 	/* Reuse the page if possible. For notification packets and
676 	 * SKBs that fail to Rx correctly, add them back into the
677 	 * rx_free list for reuse later. */
678 	if (rxb->page != NULL) {
679 		rxb->page_dma =
680 			dma_map_page(trans->dev, rxb->page, 0,
681 				     PAGE_SIZE << trans_pcie->rx_page_order,
682 				     DMA_FROM_DEVICE);
683 		if (dma_mapping_error(trans->dev, rxb->page_dma)) {
684 			/*
685 			 * free the page(s) as well to not break
686 			 * the invariant that the items on the used
687 			 * list have no page(s)
688 			 */
689 			__free_pages(rxb->page, trans_pcie->rx_page_order);
690 			rxb->page = NULL;
691 			list_add_tail(&rxb->list, &rxq->rx_used);
692 		} else {
693 			list_add_tail(&rxb->list, &rxq->rx_free);
694 			rxq->free_count++;
695 		}
696 	} else
697 		list_add_tail(&rxb->list, &rxq->rx_used);
698 }
699 
700 /*
701  * iwl_pcie_rx_handle - Main entry function for receiving responses from fw
702  */
iwl_pcie_rx_handle(struct iwl_trans * trans)703 static void iwl_pcie_rx_handle(struct iwl_trans *trans)
704 {
705 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
706 	struct iwl_rxq *rxq = &trans_pcie->rxq;
707 	u32 r, i;
708 	u8 fill_rx = 0;
709 	u32 count = 8;
710 	int total_empty;
711 
712 restart:
713 	spin_lock(&rxq->lock);
714 	/* uCode's read index (stored in shared DRAM) indicates the last Rx
715 	 * buffer that the driver may process (last buffer filled by ucode). */
716 	r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
717 	i = rxq->read;
718 
719 	/* Rx interrupt, but nothing sent from uCode */
720 	if (i == r)
721 		IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
722 
723 	/* calculate total frames need to be restock after handling RX */
724 	total_empty = r - rxq->write_actual;
725 	if (total_empty < 0)
726 		total_empty += RX_QUEUE_SIZE;
727 
728 	if (total_empty > (RX_QUEUE_SIZE / 2))
729 		fill_rx = 1;
730 
731 	while (i != r) {
732 		struct iwl_rx_mem_buffer *rxb;
733 
734 		rxb = rxq->queue[i];
735 		rxq->queue[i] = NULL;
736 
737 		IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
738 			     r, i, rxb);
739 		iwl_pcie_rx_handle_rb(trans, rxb);
740 
741 		i = (i + 1) & RX_QUEUE_MASK;
742 		/* If there are a lot of unused frames,
743 		 * restock the Rx queue so ucode wont assert. */
744 		if (fill_rx) {
745 			count++;
746 			if (count >= 8) {
747 				rxq->read = i;
748 				spin_unlock(&rxq->lock);
749 				iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
750 				count = 0;
751 				goto restart;
752 			}
753 		}
754 	}
755 
756 	/* Backtrack one entry */
757 	rxq->read = i;
758 	spin_unlock(&rxq->lock);
759 
760 	if (fill_rx)
761 		iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
762 	else
763 		iwl_pcie_rxq_restock(trans);
764 
765 	if (trans_pcie->napi.poll)
766 		napi_gro_flush(&trans_pcie->napi, false);
767 }
768 
769 /*
770  * iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
771  */
iwl_pcie_irq_handle_error(struct iwl_trans * trans)772 static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
773 {
774 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
775 
776 	/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
777 	if (trans->cfg->internal_wimax_coex &&
778 	    (!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
779 			     APMS_CLK_VAL_MRB_FUNC_MODE) ||
780 	     (iwl_read_prph(trans, APMG_PS_CTRL_REG) &
781 			    APMG_PS_CTRL_VAL_RESET_REQ))) {
782 		clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
783 		iwl_op_mode_wimax_active(trans->op_mode);
784 		wake_up(&trans_pcie->wait_command_queue);
785 		return;
786 	}
787 
788 	iwl_pcie_dump_csr(trans);
789 	iwl_dump_fh(trans, NULL);
790 
791 	local_bh_disable();
792 	/* The STATUS_FW_ERROR bit is set in this function. This must happen
793 	 * before we wake up the command caller, to ensure a proper cleanup. */
794 	iwl_trans_fw_error(trans);
795 	local_bh_enable();
796 
797 	clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
798 	wake_up(&trans_pcie->wait_command_queue);
799 }
800 
iwl_pcie_int_cause_non_ict(struct iwl_trans * trans)801 static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
802 {
803 	u32 inta;
804 
805 	lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
806 
807 	trace_iwlwifi_dev_irq(trans->dev);
808 
809 	/* Discover which interrupts are active/pending */
810 	inta = iwl_read32(trans, CSR_INT);
811 
812 	/* the thread will service interrupts and re-enable them */
813 	return inta;
814 }
815 
816 /* a device (PCI-E) page is 4096 bytes long */
817 #define ICT_SHIFT	12
818 #define ICT_SIZE	(1 << ICT_SHIFT)
819 #define ICT_COUNT	(ICT_SIZE / sizeof(u32))
820 
821 /* interrupt handler using ict table, with this interrupt driver will
822  * stop using INTA register to get device's interrupt, reading this register
823  * is expensive, device will write interrupts in ICT dram table, increment
824  * index then will fire interrupt to driver, driver will OR all ICT table
825  * entries from current index up to table entry with 0 value. the result is
826  * the interrupt we need to service, driver will set the entries back to 0 and
827  * set index.
828  */
iwl_pcie_int_cause_ict(struct iwl_trans * trans)829 static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
830 {
831 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
832 	u32 inta;
833 	u32 val = 0;
834 	u32 read;
835 
836 	trace_iwlwifi_dev_irq(trans->dev);
837 
838 	/* Ignore interrupt if there's nothing in NIC to service.
839 	 * This may be due to IRQ shared with another device,
840 	 * or due to sporadic interrupts thrown from our NIC. */
841 	read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
842 	trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
843 	if (!read)
844 		return 0;
845 
846 	/*
847 	 * Collect all entries up to the first 0, starting from ict_index;
848 	 * note we already read at ict_index.
849 	 */
850 	do {
851 		val |= read;
852 		IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
853 				trans_pcie->ict_index, read);
854 		trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
855 		trans_pcie->ict_index =
856 			((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
857 
858 		read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
859 		trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
860 					   read);
861 	} while (read);
862 
863 	/* We should not get this value, just ignore it. */
864 	if (val == 0xffffffff)
865 		val = 0;
866 
867 	/*
868 	 * this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
869 	 * (bit 15 before shifting it to 31) to clear when using interrupt
870 	 * coalescing. fortunately, bits 18 and 19 stay set when this happens
871 	 * so we use them to decide on the real state of the Rx bit.
872 	 * In order words, bit 15 is set if bit 18 or bit 19 are set.
873 	 */
874 	if (val & 0xC0000)
875 		val |= 0x8000;
876 
877 	inta = (0xff & val) | ((0xff00 & val) << 16);
878 	return inta;
879 }
880 
iwl_pcie_irq_handler(int irq,void * dev_id)881 irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
882 {
883 	struct iwl_trans *trans = dev_id;
884 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
885 	struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
886 	u32 inta = 0;
887 	u32 handled = 0;
888 
889 	lock_map_acquire(&trans->sync_cmd_lockdep_map);
890 
891 	spin_lock(&trans_pcie->irq_lock);
892 
893 	/* dram interrupt table not set yet,
894 	 * use legacy interrupt.
895 	 */
896 	if (likely(trans_pcie->use_ict))
897 		inta = iwl_pcie_int_cause_ict(trans);
898 	else
899 		inta = iwl_pcie_int_cause_non_ict(trans);
900 
901 	if (iwl_have_debug_level(IWL_DL_ISR)) {
902 		IWL_DEBUG_ISR(trans,
903 			      "ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
904 			      inta, trans_pcie->inta_mask,
905 			      iwl_read32(trans, CSR_INT_MASK),
906 			      iwl_read32(trans, CSR_FH_INT_STATUS));
907 		if (inta & (~trans_pcie->inta_mask))
908 			IWL_DEBUG_ISR(trans,
909 				      "We got a masked interrupt (0x%08x)\n",
910 				      inta & (~trans_pcie->inta_mask));
911 	}
912 
913 	inta &= trans_pcie->inta_mask;
914 
915 	/*
916 	 * Ignore interrupt if there's nothing in NIC to service.
917 	 * This may be due to IRQ shared with another device,
918 	 * or due to sporadic interrupts thrown from our NIC.
919 	 */
920 	if (unlikely(!inta)) {
921 		IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
922 		/*
923 		 * Re-enable interrupts here since we don't
924 		 * have anything to service
925 		 */
926 		if (test_bit(STATUS_INT_ENABLED, &trans->status))
927 			iwl_enable_interrupts(trans);
928 		spin_unlock(&trans_pcie->irq_lock);
929 		lock_map_release(&trans->sync_cmd_lockdep_map);
930 		return IRQ_NONE;
931 	}
932 
933 	if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
934 		/*
935 		 * Hardware disappeared. It might have
936 		 * already raised an interrupt.
937 		 */
938 		IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
939 		spin_unlock(&trans_pcie->irq_lock);
940 		goto out;
941 	}
942 
943 	/* Ack/clear/reset pending uCode interrupts.
944 	 * Note:  Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
945 	 */
946 	/* There is a hardware bug in the interrupt mask function that some
947 	 * interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
948 	 * they are disabled in the CSR_INT_MASK register. Furthermore the
949 	 * ICT interrupt handling mechanism has another bug that might cause
950 	 * these unmasked interrupts fail to be detected. We workaround the
951 	 * hardware bugs here by ACKing all the possible interrupts so that
952 	 * interrupt coalescing can still be achieved.
953 	 */
954 	iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
955 
956 	if (iwl_have_debug_level(IWL_DL_ISR))
957 		IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
958 			      inta, iwl_read32(trans, CSR_INT_MASK));
959 
960 	spin_unlock(&trans_pcie->irq_lock);
961 
962 	/* Now service all interrupt bits discovered above. */
963 	if (inta & CSR_INT_BIT_HW_ERR) {
964 		IWL_ERR(trans, "Hardware error detected.  Restarting.\n");
965 
966 		/* Tell the device to stop sending interrupts */
967 		iwl_disable_interrupts(trans);
968 
969 		isr_stats->hw++;
970 		iwl_pcie_irq_handle_error(trans);
971 
972 		handled |= CSR_INT_BIT_HW_ERR;
973 
974 		goto out;
975 	}
976 
977 	if (iwl_have_debug_level(IWL_DL_ISR)) {
978 		/* NIC fires this, but we don't use it, redundant with WAKEUP */
979 		if (inta & CSR_INT_BIT_SCD) {
980 			IWL_DEBUG_ISR(trans,
981 				      "Scheduler finished to transmit the frame/frames.\n");
982 			isr_stats->sch++;
983 		}
984 
985 		/* Alive notification via Rx interrupt will do the real work */
986 		if (inta & CSR_INT_BIT_ALIVE) {
987 			IWL_DEBUG_ISR(trans, "Alive interrupt\n");
988 			isr_stats->alive++;
989 		}
990 	}
991 
992 	/* Safely ignore these bits for debug checks below */
993 	inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
994 
995 	/* HW RF KILL switch toggled */
996 	if (inta & CSR_INT_BIT_RF_KILL) {
997 		bool hw_rfkill;
998 
999 		hw_rfkill = iwl_is_rfkill_set(trans);
1000 		IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
1001 			 hw_rfkill ? "disable radio" : "enable radio");
1002 
1003 		isr_stats->rfkill++;
1004 
1005 		iwl_trans_pcie_rf_kill(trans, hw_rfkill);
1006 		if (hw_rfkill) {
1007 			set_bit(STATUS_RFKILL, &trans->status);
1008 			if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
1009 					       &trans->status))
1010 				IWL_DEBUG_RF_KILL(trans,
1011 						  "Rfkill while SYNC HCMD in flight\n");
1012 			wake_up(&trans_pcie->wait_command_queue);
1013 		} else {
1014 			clear_bit(STATUS_RFKILL, &trans->status);
1015 		}
1016 
1017 		handled |= CSR_INT_BIT_RF_KILL;
1018 	}
1019 
1020 	/* Chip got too hot and stopped itself */
1021 	if (inta & CSR_INT_BIT_CT_KILL) {
1022 		IWL_ERR(trans, "Microcode CT kill error detected.\n");
1023 		isr_stats->ctkill++;
1024 		handled |= CSR_INT_BIT_CT_KILL;
1025 	}
1026 
1027 	/* Error detected by uCode */
1028 	if (inta & CSR_INT_BIT_SW_ERR) {
1029 		IWL_ERR(trans, "Microcode SW error detected. "
1030 			" Restarting 0x%X.\n", inta);
1031 		isr_stats->sw++;
1032 		iwl_pcie_irq_handle_error(trans);
1033 		handled |= CSR_INT_BIT_SW_ERR;
1034 	}
1035 
1036 	/* uCode wakes up after power-down sleep */
1037 	if (inta & CSR_INT_BIT_WAKEUP) {
1038 		IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
1039 		iwl_pcie_rxq_check_wrptr(trans);
1040 		iwl_pcie_txq_check_wrptrs(trans);
1041 
1042 		isr_stats->wakeup++;
1043 
1044 		handled |= CSR_INT_BIT_WAKEUP;
1045 	}
1046 
1047 	/* All uCode command responses, including Tx command responses,
1048 	 * Rx "responses" (frame-received notification), and other
1049 	 * notifications from uCode come through here*/
1050 	if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
1051 		    CSR_INT_BIT_RX_PERIODIC)) {
1052 		IWL_DEBUG_ISR(trans, "Rx interrupt\n");
1053 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
1054 			handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
1055 			iwl_write32(trans, CSR_FH_INT_STATUS,
1056 					CSR_FH_INT_RX_MASK);
1057 		}
1058 		if (inta & CSR_INT_BIT_RX_PERIODIC) {
1059 			handled |= CSR_INT_BIT_RX_PERIODIC;
1060 			iwl_write32(trans,
1061 				CSR_INT, CSR_INT_BIT_RX_PERIODIC);
1062 		}
1063 		/* Sending RX interrupt require many steps to be done in the
1064 		 * the device:
1065 		 * 1- write interrupt to current index in ICT table.
1066 		 * 2- dma RX frame.
1067 		 * 3- update RX shared data to indicate last write index.
1068 		 * 4- send interrupt.
1069 		 * This could lead to RX race, driver could receive RX interrupt
1070 		 * but the shared data changes does not reflect this;
1071 		 * periodic interrupt will detect any dangling Rx activity.
1072 		 */
1073 
1074 		/* Disable periodic interrupt; we use it as just a one-shot. */
1075 		iwl_write8(trans, CSR_INT_PERIODIC_REG,
1076 			    CSR_INT_PERIODIC_DIS);
1077 
1078 		/*
1079 		 * Enable periodic interrupt in 8 msec only if we received
1080 		 * real RX interrupt (instead of just periodic int), to catch
1081 		 * any dangling Rx interrupt.  If it was just the periodic
1082 		 * interrupt, there was no dangling Rx activity, and no need
1083 		 * to extend the periodic interrupt; one-shot is enough.
1084 		 */
1085 		if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
1086 			iwl_write8(trans, CSR_INT_PERIODIC_REG,
1087 				   CSR_INT_PERIODIC_ENA);
1088 
1089 		isr_stats->rx++;
1090 
1091 		local_bh_disable();
1092 		iwl_pcie_rx_handle(trans);
1093 		local_bh_enable();
1094 	}
1095 
1096 	/* This "Tx" DMA channel is used only for loading uCode */
1097 	if (inta & CSR_INT_BIT_FH_TX) {
1098 		iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
1099 		IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
1100 		isr_stats->tx++;
1101 		handled |= CSR_INT_BIT_FH_TX;
1102 		/* Wake up uCode load routine, now that load is complete */
1103 		trans_pcie->ucode_write_complete = true;
1104 		wake_up(&trans_pcie->ucode_write_waitq);
1105 	}
1106 
1107 	if (inta & ~handled) {
1108 		IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
1109 		isr_stats->unhandled++;
1110 	}
1111 
1112 	if (inta & ~(trans_pcie->inta_mask)) {
1113 		IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
1114 			 inta & ~trans_pcie->inta_mask);
1115 	}
1116 
1117 	/* Re-enable all interrupts */
1118 	/* only Re-enable if disabled by irq */
1119 	if (test_bit(STATUS_INT_ENABLED, &trans->status))
1120 		iwl_enable_interrupts(trans);
1121 	/* Re-enable RF_KILL if it occurred */
1122 	else if (handled & CSR_INT_BIT_RF_KILL)
1123 		iwl_enable_rfkill_int(trans);
1124 
1125 out:
1126 	lock_map_release(&trans->sync_cmd_lockdep_map);
1127 	return IRQ_HANDLED;
1128 }
1129 
1130 /******************************************************************************
1131  *
1132  * ICT functions
1133  *
1134  ******************************************************************************/
1135 
1136 /* Free dram table */
iwl_pcie_free_ict(struct iwl_trans * trans)1137 void iwl_pcie_free_ict(struct iwl_trans *trans)
1138 {
1139 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1140 
1141 	if (trans_pcie->ict_tbl) {
1142 		dma_free_coherent(trans->dev, ICT_SIZE,
1143 				  trans_pcie->ict_tbl,
1144 				  trans_pcie->ict_tbl_dma);
1145 		trans_pcie->ict_tbl = NULL;
1146 		trans_pcie->ict_tbl_dma = 0;
1147 	}
1148 }
1149 
1150 /*
1151  * allocate dram shared table, it is an aligned memory
1152  * block of ICT_SIZE.
1153  * also reset all data related to ICT table interrupt.
1154  */
iwl_pcie_alloc_ict(struct iwl_trans * trans)1155 int iwl_pcie_alloc_ict(struct iwl_trans *trans)
1156 {
1157 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1158 
1159 	trans_pcie->ict_tbl =
1160 		dma_zalloc_coherent(trans->dev, ICT_SIZE,
1161 				   &trans_pcie->ict_tbl_dma,
1162 				   GFP_KERNEL);
1163 	if (!trans_pcie->ict_tbl)
1164 		return -ENOMEM;
1165 
1166 	/* just an API sanity check ... it is guaranteed to be aligned */
1167 	if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
1168 		iwl_pcie_free_ict(trans);
1169 		return -EINVAL;
1170 	}
1171 
1172 	IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
1173 		      (unsigned long long)trans_pcie->ict_tbl_dma,
1174 		      trans_pcie->ict_tbl);
1175 
1176 	return 0;
1177 }
1178 
1179 /* Device is going up inform it about using ICT interrupt table,
1180  * also we need to tell the driver to start using ICT interrupt.
1181  */
iwl_pcie_reset_ict(struct iwl_trans * trans)1182 void iwl_pcie_reset_ict(struct iwl_trans *trans)
1183 {
1184 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1185 	u32 val;
1186 
1187 	if (!trans_pcie->ict_tbl)
1188 		return;
1189 
1190 	spin_lock(&trans_pcie->irq_lock);
1191 	iwl_disable_interrupts(trans);
1192 
1193 	memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
1194 
1195 	val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
1196 
1197 	val |= CSR_DRAM_INT_TBL_ENABLE;
1198 	val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
1199 
1200 	IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
1201 
1202 	iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
1203 	trans_pcie->use_ict = true;
1204 	trans_pcie->ict_index = 0;
1205 	iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
1206 	iwl_enable_interrupts(trans);
1207 	spin_unlock(&trans_pcie->irq_lock);
1208 }
1209 
1210 /* Device is going down disable ict interrupt usage */
iwl_pcie_disable_ict(struct iwl_trans * trans)1211 void iwl_pcie_disable_ict(struct iwl_trans *trans)
1212 {
1213 	struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
1214 
1215 	spin_lock(&trans_pcie->irq_lock);
1216 	trans_pcie->use_ict = false;
1217 	spin_unlock(&trans_pcie->irq_lock);
1218 }
1219 
iwl_pcie_isr(int irq,void * data)1220 irqreturn_t iwl_pcie_isr(int irq, void *data)
1221 {
1222 	struct iwl_trans *trans = data;
1223 
1224 	if (!trans)
1225 		return IRQ_NONE;
1226 
1227 	/* Disable (but don't clear!) interrupts here to avoid
1228 	 * back-to-back ISRs and sporadic interrupts from our NIC.
1229 	 * If we have something to service, the tasklet will re-enable ints.
1230 	 * If we *don't* have something, we'll re-enable before leaving here.
1231 	 */
1232 	iwl_write32(trans, CSR_INT_MASK, 0x00000000);
1233 
1234 	return IRQ_WAKE_THREAD;
1235 }
1236