1/******************************************************************************
2 *
3 * This file is provided under a dual BSD/GPLv2 license.  When using or
4 * redistributing this file, you may do so under either license.
5 *
6 * GPL LICENSE SUMMARY
7 *
8 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
22 * USA
23 *
24 * The full GNU General Public License is included in this distribution
25 * in the file called COPYING.
26 *
27 * Contact Information:
28 *  Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 *
31 * BSD LICENSE
32 *
33 * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
34 * All rights reserved.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 *
40 *  * Redistributions of source code must retain the above copyright
41 *    notice, this list of conditions and the following disclaimer.
42 *  * Redistributions in binary form must reproduce the above copyright
43 *    notice, this list of conditions and the following disclaimer in
44 *    the documentation and/or other materials provided with the
45 *    distribution.
46 *  * Neither the name Intel Corporation nor the names of its
47 *    contributors may be used to endorse or promote products derived
48 *    from this software without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *
62 *****************************************************************************/
63/*
64 * Please use this file (commands.h) only for uCode API definitions.
65 * Please use iwl-xxxx-hw.h for hardware-related definitions.
66 * Please use dev.h for driver implementation definitions.
67 */
68
69#ifndef __iwl_commands_h__
70#define __iwl_commands_h__
71
72#include <linux/ieee80211.h>
73#include <linux/types.h>
74
75
76enum {
77	REPLY_ALIVE = 0x1,
78	REPLY_ERROR = 0x2,
79	REPLY_ECHO = 0x3,		/* test command */
80
81	/* RXON and QOS commands */
82	REPLY_RXON = 0x10,
83	REPLY_RXON_ASSOC = 0x11,
84	REPLY_QOS_PARAM = 0x13,
85	REPLY_RXON_TIMING = 0x14,
86
87	/* Multi-Station support */
88	REPLY_ADD_STA = 0x18,
89	REPLY_REMOVE_STA = 0x19,
90	REPLY_REMOVE_ALL_STA = 0x1a,	/* not used */
91	REPLY_TXFIFO_FLUSH = 0x1e,
92
93	/* Security */
94	REPLY_WEPKEY = 0x20,
95
96	/* RX, TX, LEDs */
97	REPLY_TX = 0x1c,
98	REPLY_LEDS_CMD = 0x48,
99	REPLY_TX_LINK_QUALITY_CMD = 0x4e,
100
101	/* WiMAX coexistence */
102	COEX_PRIORITY_TABLE_CMD = 0x5a,
103	COEX_MEDIUM_NOTIFICATION = 0x5b,
104	COEX_EVENT_CMD = 0x5c,
105
106	/* Calibration */
107	TEMPERATURE_NOTIFICATION = 0x62,
108	CALIBRATION_CFG_CMD = 0x65,
109	CALIBRATION_RES_NOTIFICATION = 0x66,
110	CALIBRATION_COMPLETE_NOTIFICATION = 0x67,
111
112	/* 802.11h related */
113	REPLY_QUIET_CMD = 0x71,		/* not used */
114	REPLY_CHANNEL_SWITCH = 0x72,
115	CHANNEL_SWITCH_NOTIFICATION = 0x73,
116	REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74,
117	SPECTRUM_MEASURE_NOTIFICATION = 0x75,
118
119	/* Power Management */
120	POWER_TABLE_CMD = 0x77,
121	PM_SLEEP_NOTIFICATION = 0x7A,
122	PM_DEBUG_STATISTIC_NOTIFIC = 0x7B,
123
124	/* Scan commands and notifications */
125	REPLY_SCAN_CMD = 0x80,
126	REPLY_SCAN_ABORT_CMD = 0x81,
127	SCAN_START_NOTIFICATION = 0x82,
128	SCAN_RESULTS_NOTIFICATION = 0x83,
129	SCAN_COMPLETE_NOTIFICATION = 0x84,
130
131	/* IBSS/AP commands */
132	BEACON_NOTIFICATION = 0x90,
133	REPLY_TX_BEACON = 0x91,
134	WHO_IS_AWAKE_NOTIFICATION = 0x94,	/* not used */
135
136	/* Miscellaneous commands */
137	REPLY_TX_POWER_DBM_CMD = 0x95,
138	QUIET_NOTIFICATION = 0x96,		/* not used */
139	REPLY_TX_PWR_TABLE_CMD = 0x97,
140	REPLY_TX_POWER_DBM_CMD_V1 = 0x98,	/* old version of API */
141	TX_ANT_CONFIGURATION_CMD = 0x98,
142	MEASURE_ABORT_NOTIFICATION = 0x99,	/* not used */
143
144	/* Bluetooth device coexistence config command */
145	REPLY_BT_CONFIG = 0x9b,
146
147	/* Statistics */
148	REPLY_STATISTICS_CMD = 0x9c,
149	STATISTICS_NOTIFICATION = 0x9d,
150
151	/* RF-KILL commands and notifications */
152	REPLY_CARD_STATE_CMD = 0xa0,
153	CARD_STATE_NOTIFICATION = 0xa1,
154
155	/* Missed beacons notification */
156	MISSED_BEACONS_NOTIFICATION = 0xa2,
157
158	REPLY_CT_KILL_CONFIG_CMD = 0xa4,
159	SENSITIVITY_CMD = 0xa8,
160	REPLY_PHY_CALIBRATION_CMD = 0xb0,
161	REPLY_RX_PHY_CMD = 0xc0,
162	REPLY_RX_MPDU_CMD = 0xc1,
163	REPLY_RX = 0xc3,
164	REPLY_COMPRESSED_BA = 0xc5,
165
166	/* BT Coex */
167	REPLY_BT_COEX_PRIO_TABLE = 0xcc,
168	REPLY_BT_COEX_PROT_ENV = 0xcd,
169	REPLY_BT_COEX_PROFILE_NOTIF = 0xce,
170
171	/* PAN commands */
172	REPLY_WIPAN_PARAMS = 0xb2,
173	REPLY_WIPAN_RXON = 0xb3,	/* use REPLY_RXON structure */
174	REPLY_WIPAN_RXON_TIMING = 0xb4,	/* use REPLY_RXON_TIMING structure */
175	REPLY_WIPAN_RXON_ASSOC = 0xb6,	/* use REPLY_RXON_ASSOC structure */
176	REPLY_WIPAN_QOS_PARAM = 0xb7,	/* use REPLY_QOS_PARAM structure */
177	REPLY_WIPAN_WEPKEY = 0xb8,	/* use REPLY_WEPKEY structure */
178	REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9,
179	REPLY_WIPAN_NOA_NOTIFICATION = 0xbc,
180	REPLY_WIPAN_DEACTIVATION_COMPLETE = 0xbd,
181
182	REPLY_WOWLAN_PATTERNS = 0xe0,
183	REPLY_WOWLAN_WAKEUP_FILTER = 0xe1,
184	REPLY_WOWLAN_TSC_RSC_PARAMS = 0xe2,
185	REPLY_WOWLAN_TKIP_PARAMS = 0xe3,
186	REPLY_WOWLAN_KEK_KCK_MATERIAL = 0xe4,
187	REPLY_WOWLAN_GET_STATUS = 0xe5,
188	REPLY_D3_CONFIG = 0xd3,
189
190	REPLY_MAX = 0xff
191};
192
193/*
194 * Minimum number of queues. MAX_NUM is defined in hw specific files.
195 * Set the minimum to accommodate
196 *  - 4 standard TX queues
197 *  - the command queue
198 *  - 4 PAN TX queues
199 *  - the PAN multicast queue, and
200 *  - the AUX (TX during scan dwell) queue.
201 */
202#define IWL_MIN_NUM_QUEUES	11
203
204/*
205 * Command queue depends on iPAN support.
206 */
207#define IWL_DEFAULT_CMD_QUEUE_NUM	4
208#define IWL_IPAN_CMD_QUEUE_NUM		9
209
210#define IWL_TX_FIFO_BK		0	/* shared */
211#define IWL_TX_FIFO_BE		1
212#define IWL_TX_FIFO_VI		2	/* shared */
213#define IWL_TX_FIFO_VO		3
214#define IWL_TX_FIFO_BK_IPAN	IWL_TX_FIFO_BK
215#define IWL_TX_FIFO_BE_IPAN	4
216#define IWL_TX_FIFO_VI_IPAN	IWL_TX_FIFO_VI
217#define IWL_TX_FIFO_VO_IPAN	5
218/* re-uses the VO FIFO, uCode will properly flush/schedule */
219#define IWL_TX_FIFO_AUX		5
220#define IWL_TX_FIFO_UNUSED	255
221
222#define IWLAGN_CMD_FIFO_NUM	7
223
224/*
225 * This queue number is required for proper operation
226 * because the ucode will stop/start the scheduler as
227 * required.
228 */
229#define IWL_IPAN_MCAST_QUEUE	8
230
231/******************************************************************************
232 * (0)
233 * Commonly used structures and definitions:
234 * Command header, rate_n_flags, txpower
235 *
236 *****************************************************************************/
237
238/**
239 * iwlagn rate_n_flags bit fields
240 *
241 * rate_n_flags format is used in following iwlagn commands:
242 *  REPLY_RX (response only)
243 *  REPLY_RX_MPDU (response only)
244 *  REPLY_TX (both command and response)
245 *  REPLY_TX_LINK_QUALITY_CMD
246 *
247 * High-throughput (HT) rate format for bits 7:0 (bit 8 must be "1"):
248 *  2-0:  0)   6 Mbps
249 *        1)  12 Mbps
250 *        2)  18 Mbps
251 *        3)  24 Mbps
252 *        4)  36 Mbps
253 *        5)  48 Mbps
254 *        6)  54 Mbps
255 *        7)  60 Mbps
256 *
257 *  4-3:  0)  Single stream (SISO)
258 *        1)  Dual stream (MIMO)
259 *        2)  Triple stream (MIMO)
260 *
261 *    5:  Value of 0x20 in bits 7:0 indicates 6 Mbps HT40 duplicate data
262 *
263 * Legacy OFDM rate format for bits 7:0 (bit 8 must be "0", bit 9 "0"):
264 *  3-0:  0xD)   6 Mbps
265 *        0xF)   9 Mbps
266 *        0x5)  12 Mbps
267 *        0x7)  18 Mbps
268 *        0x9)  24 Mbps
269 *        0xB)  36 Mbps
270 *        0x1)  48 Mbps
271 *        0x3)  54 Mbps
272 *
273 * Legacy CCK rate format for bits 7:0 (bit 8 must be "0", bit 9 "1"):
274 *  6-0:   10)  1 Mbps
275 *         20)  2 Mbps
276 *         55)  5.5 Mbps
277 *        110)  11 Mbps
278 */
279#define RATE_MCS_CODE_MSK 0x7
280#define RATE_MCS_SPATIAL_POS 3
281#define RATE_MCS_SPATIAL_MSK 0x18
282#define RATE_MCS_HT_DUP_POS 5
283#define RATE_MCS_HT_DUP_MSK 0x20
284/* Both legacy and HT use bits 7:0 as the CCK/OFDM rate or HT MCS */
285#define RATE_MCS_RATE_MSK 0xff
286
287/* Bit 8: (1) HT format, (0) legacy format in bits 7:0 */
288#define RATE_MCS_FLAGS_POS 8
289#define RATE_MCS_HT_POS 8
290#define RATE_MCS_HT_MSK 0x100
291
292/* Bit 9: (1) CCK, (0) OFDM.  HT (bit 8) must be "0" for this bit to be valid */
293#define RATE_MCS_CCK_POS 9
294#define RATE_MCS_CCK_MSK 0x200
295
296/* Bit 10: (1) Use Green Field preamble */
297#define RATE_MCS_GF_POS 10
298#define RATE_MCS_GF_MSK 0x400
299
300/* Bit 11: (1) Use 40Mhz HT40 chnl width, (0) use 20 MHz legacy chnl width */
301#define RATE_MCS_HT40_POS 11
302#define RATE_MCS_HT40_MSK 0x800
303
304/* Bit 12: (1) Duplicate data on both 20MHz chnls. HT40 (bit 11) must be set. */
305#define RATE_MCS_DUP_POS 12
306#define RATE_MCS_DUP_MSK 0x1000
307
308/* Bit 13: (1) Short guard interval (0.4 usec), (0) normal GI (0.8 usec) */
309#define RATE_MCS_SGI_POS 13
310#define RATE_MCS_SGI_MSK 0x2000
311
312/**
313 * rate_n_flags Tx antenna masks
314 * 4965 has 2 transmitters
315 * 5100 has 1 transmitter B
316 * 5150 has 1 transmitter A
317 * 5300 has 3 transmitters
318 * 5350 has 3 transmitters
319 * bit14:16
320 */
321#define RATE_MCS_ANT_POS	14
322#define RATE_MCS_ANT_A_MSK	0x04000
323#define RATE_MCS_ANT_B_MSK	0x08000
324#define RATE_MCS_ANT_C_MSK	0x10000
325#define RATE_MCS_ANT_AB_MSK	(RATE_MCS_ANT_A_MSK | RATE_MCS_ANT_B_MSK)
326#define RATE_MCS_ANT_ABC_MSK	(RATE_MCS_ANT_AB_MSK | RATE_MCS_ANT_C_MSK)
327#define RATE_ANT_NUM 3
328
329#define POWER_TABLE_NUM_ENTRIES			33
330#define POWER_TABLE_NUM_HT_OFDM_ENTRIES		32
331#define POWER_TABLE_CCK_ENTRY			32
332
333#define IWL_PWR_NUM_HT_OFDM_ENTRIES		24
334#define IWL_PWR_CCK_ENTRIES			2
335
336/**
337 * struct tx_power_dual_stream
338 *
339 * Table entries in REPLY_TX_PWR_TABLE_CMD, REPLY_CHANNEL_SWITCH
340 *
341 * Same format as iwl_tx_power_dual_stream, but __le32
342 */
343struct tx_power_dual_stream {
344	__le32 dw;
345} __packed;
346
347/**
348 * Command REPLY_TX_POWER_DBM_CMD = 0x98
349 * struct iwlagn_tx_power_dbm_cmd
350 */
351#define IWLAGN_TX_POWER_AUTO 0x7f
352#define IWLAGN_TX_POWER_NO_CLOSED (0x1 << 6)
353
354struct iwlagn_tx_power_dbm_cmd {
355	s8 global_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
356	u8 flags;
357	s8 srv_chan_lmt; /*in half-dBm (e.g. 30 = 15 dBm) */
358	u8 reserved;
359} __packed;
360
361/**
362 * Command TX_ANT_CONFIGURATION_CMD = 0x98
363 * This command is used to configure valid Tx antenna.
364 * By default uCode concludes the valid antenna according to the radio flavor.
365 * This command enables the driver to override/modify this conclusion.
366 */
367struct iwl_tx_ant_config_cmd {
368	__le32 valid;
369} __packed;
370
371/******************************************************************************
372 * (0a)
373 * Alive and Error Commands & Responses:
374 *
375 *****************************************************************************/
376
377#define UCODE_VALID_OK	cpu_to_le32(0x1)
378
379/**
380 * REPLY_ALIVE = 0x1 (response only, not a command)
381 *
382 * uCode issues this "alive" notification once the runtime image is ready
383 * to receive commands from the driver.  This is the *second* "alive"
384 * notification that the driver will receive after rebooting uCode;
385 * this "alive" is indicated by subtype field != 9.
386 *
387 * See comments documenting "BSM" (bootstrap state machine).
388 *
389 * This response includes two pointers to structures within the device's
390 * data SRAM (access via HBUS_TARG_MEM_* regs) that are useful for debugging:
391 *
392 * 1)  log_event_table_ptr indicates base of the event log.  This traces
393 *     a 256-entry history of uCode execution within a circular buffer.
394 *     Its header format is:
395 *
396 *	__le32 log_size;     log capacity (in number of entries)
397 *	__le32 type;         (1) timestamp with each entry, (0) no timestamp
398 *	__le32 wraps;        # times uCode has wrapped to top of circular buffer
399 *      __le32 write_index;  next circular buffer entry that uCode would fill
400 *
401 *     The header is followed by the circular buffer of log entries.  Entries
402 *     with timestamps have the following format:
403 *
404 *	__le32 event_id;     range 0 - 1500
405 *	__le32 timestamp;    low 32 bits of TSF (of network, if associated)
406 *	__le32 data;         event_id-specific data value
407 *
408 *     Entries without timestamps contain only event_id and data.
409 *
410 *
411 * 2)  error_event_table_ptr indicates base of the error log.  This contains
412 *     information about any uCode error that occurs.  For agn, the format
413 *     of the error log is defined by struct iwl_error_event_table.
414 *
415 * The Linux driver can print both logs to the system log when a uCode error
416 * occurs.
417 */
418
419/*
420 * Note: This structure is read from the device with IO accesses,
421 * and the reading already does the endian conversion. As it is
422 * read with u32-sized accesses, any members with a different size
423 * need to be ordered correctly though!
424 */
425struct iwl_error_event_table {
426	u32 valid;		/* (nonzero) valid, (0) log is empty */
427	u32 error_id;		/* type of error */
428	u32 pc;			/* program counter */
429	u32 blink1;		/* branch link */
430	u32 blink2;		/* branch link */
431	u32 ilink1;		/* interrupt link */
432	u32 ilink2;		/* interrupt link */
433	u32 data1;		/* error-specific data */
434	u32 data2;		/* error-specific data */
435	u32 line;		/* source code line of error */
436	u32 bcon_time;		/* beacon timer */
437	u32 tsf_low;		/* network timestamp function timer */
438	u32 tsf_hi;		/* network timestamp function timer */
439	u32 gp1;		/* GP1 timer register */
440	u32 gp2;		/* GP2 timer register */
441	u32 gp3;		/* GP3 timer register */
442	u32 ucode_ver;		/* uCode version */
443	u32 hw_ver;		/* HW Silicon version */
444	u32 brd_ver;		/* HW board version */
445	u32 log_pc;		/* log program counter */
446	u32 frame_ptr;		/* frame pointer */
447	u32 stack_ptr;		/* stack pointer */
448	u32 hcmd;		/* last host command header */
449	u32 isr0;		/* isr status register LMPM_NIC_ISR0:
450				 * rxtx_flag */
451	u32 isr1;		/* isr status register LMPM_NIC_ISR1:
452				 * host_flag */
453	u32 isr2;		/* isr status register LMPM_NIC_ISR2:
454				 * enc_flag */
455	u32 isr3;		/* isr status register LMPM_NIC_ISR3:
456				 * time_flag */
457	u32 isr4;		/* isr status register LMPM_NIC_ISR4:
458				 * wico interrupt */
459	u32 isr_pref;		/* isr status register LMPM_NIC_PREF_STAT */
460	u32 wait_event;		/* wait event() caller address */
461	u32 l2p_control;	/* L2pControlField */
462	u32 l2p_duration;	/* L2pDurationField */
463	u32 l2p_mhvalid;	/* L2pMhValidBits */
464	u32 l2p_addr_match;	/* L2pAddrMatchStat */
465	u32 lmpm_pmg_sel;	/* indicate which clocks are turned on
466				 * (LMPM_PMG_SEL) */
467	u32 u_timestamp;	/* indicate when the date and time of the
468				 * compilation */
469	u32 flow_handler;	/* FH read/write pointers, RX credit */
470} __packed;
471
472struct iwl_alive_resp {
473	u8 ucode_minor;
474	u8 ucode_major;
475	__le16 reserved1;
476	u8 sw_rev[8];
477	u8 ver_type;
478	u8 ver_subtype;			/* not "9" for runtime alive */
479	__le16 reserved2;
480	__le32 log_event_table_ptr;	/* SRAM address for event log */
481	__le32 error_event_table_ptr;	/* SRAM address for error log */
482	__le32 timestamp;
483	__le32 is_valid;
484} __packed;
485
486/*
487 * REPLY_ERROR = 0x2 (response only, not a command)
488 */
489struct iwl_error_resp {
490	__le32 error_type;
491	u8 cmd_id;
492	u8 reserved1;
493	__le16 bad_cmd_seq_num;
494	__le32 error_info;
495	__le64 timestamp;
496} __packed;
497
498/******************************************************************************
499 * (1)
500 * RXON Commands & Responses:
501 *
502 *****************************************************************************/
503
504/*
505 * Rx config defines & structure
506 */
507/* rx_config device types  */
508enum {
509	RXON_DEV_TYPE_AP = 1,
510	RXON_DEV_TYPE_ESS = 3,
511	RXON_DEV_TYPE_IBSS = 4,
512	RXON_DEV_TYPE_SNIFFER = 6,
513	RXON_DEV_TYPE_CP = 7,
514	RXON_DEV_TYPE_2STA = 8,
515	RXON_DEV_TYPE_P2P = 9,
516};
517
518
519#define RXON_RX_CHAIN_DRIVER_FORCE_MSK		cpu_to_le16(0x1 << 0)
520#define RXON_RX_CHAIN_DRIVER_FORCE_POS		(0)
521#define RXON_RX_CHAIN_VALID_MSK			cpu_to_le16(0x7 << 1)
522#define RXON_RX_CHAIN_VALID_POS			(1)
523#define RXON_RX_CHAIN_FORCE_SEL_MSK		cpu_to_le16(0x7 << 4)
524#define RXON_RX_CHAIN_FORCE_SEL_POS		(4)
525#define RXON_RX_CHAIN_FORCE_MIMO_SEL_MSK	cpu_to_le16(0x7 << 7)
526#define RXON_RX_CHAIN_FORCE_MIMO_SEL_POS	(7)
527#define RXON_RX_CHAIN_CNT_MSK			cpu_to_le16(0x3 << 10)
528#define RXON_RX_CHAIN_CNT_POS			(10)
529#define RXON_RX_CHAIN_MIMO_CNT_MSK		cpu_to_le16(0x3 << 12)
530#define RXON_RX_CHAIN_MIMO_CNT_POS		(12)
531#define RXON_RX_CHAIN_MIMO_FORCE_MSK		cpu_to_le16(0x1 << 14)
532#define RXON_RX_CHAIN_MIMO_FORCE_POS		(14)
533
534/* rx_config flags */
535/* band & modulation selection */
536#define RXON_FLG_BAND_24G_MSK           cpu_to_le32(1 << 0)
537#define RXON_FLG_CCK_MSK                cpu_to_le32(1 << 1)
538/* auto detection enable */
539#define RXON_FLG_AUTO_DETECT_MSK        cpu_to_le32(1 << 2)
540/* TGg protection when tx */
541#define RXON_FLG_TGG_PROTECT_MSK        cpu_to_le32(1 << 3)
542/* cck short slot & preamble */
543#define RXON_FLG_SHORT_SLOT_MSK          cpu_to_le32(1 << 4)
544#define RXON_FLG_SHORT_PREAMBLE_MSK     cpu_to_le32(1 << 5)
545/* antenna selection */
546#define RXON_FLG_DIS_DIV_MSK            cpu_to_le32(1 << 7)
547#define RXON_FLG_ANT_SEL_MSK            cpu_to_le32(0x0f00)
548#define RXON_FLG_ANT_A_MSK              cpu_to_le32(1 << 8)
549#define RXON_FLG_ANT_B_MSK              cpu_to_le32(1 << 9)
550/* radar detection enable */
551#define RXON_FLG_RADAR_DETECT_MSK       cpu_to_le32(1 << 12)
552#define RXON_FLG_TGJ_NARROW_BAND_MSK    cpu_to_le32(1 << 13)
553/* rx response to host with 8-byte TSF
554* (according to ON_AIR deassertion) */
555#define RXON_FLG_TSF2HOST_MSK           cpu_to_le32(1 << 15)
556
557
558/* HT flags */
559#define RXON_FLG_CTRL_CHANNEL_LOC_POS		(22)
560#define RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK	cpu_to_le32(0x1 << 22)
561
562#define RXON_FLG_HT_OPERATING_MODE_POS		(23)
563
564#define RXON_FLG_HT_PROT_MSK			cpu_to_le32(0x1 << 23)
565#define RXON_FLG_HT40_PROT_MSK			cpu_to_le32(0x2 << 23)
566
567#define RXON_FLG_CHANNEL_MODE_POS		(25)
568#define RXON_FLG_CHANNEL_MODE_MSK		cpu_to_le32(0x3 << 25)
569
570/* channel mode */
571enum {
572	CHANNEL_MODE_LEGACY = 0,
573	CHANNEL_MODE_PURE_40 = 1,
574	CHANNEL_MODE_MIXED = 2,
575	CHANNEL_MODE_RESERVED = 3,
576};
577#define RXON_FLG_CHANNEL_MODE_LEGACY	cpu_to_le32(CHANNEL_MODE_LEGACY << RXON_FLG_CHANNEL_MODE_POS)
578#define RXON_FLG_CHANNEL_MODE_PURE_40	cpu_to_le32(CHANNEL_MODE_PURE_40 << RXON_FLG_CHANNEL_MODE_POS)
579#define RXON_FLG_CHANNEL_MODE_MIXED	cpu_to_le32(CHANNEL_MODE_MIXED << RXON_FLG_CHANNEL_MODE_POS)
580
581/* CTS to self (if spec allows) flag */
582#define RXON_FLG_SELF_CTS_EN			cpu_to_le32(0x1<<30)
583
584/* rx_config filter flags */
585/* accept all data frames */
586#define RXON_FILTER_PROMISC_MSK         cpu_to_le32(1 << 0)
587/* pass control & management to host */
588#define RXON_FILTER_CTL2HOST_MSK        cpu_to_le32(1 << 1)
589/* accept multi-cast */
590#define RXON_FILTER_ACCEPT_GRP_MSK      cpu_to_le32(1 << 2)
591/* don't decrypt uni-cast frames */
592#define RXON_FILTER_DIS_DECRYPT_MSK     cpu_to_le32(1 << 3)
593/* don't decrypt multi-cast frames */
594#define RXON_FILTER_DIS_GRP_DECRYPT_MSK cpu_to_le32(1 << 4)
595/* STA is associated */
596#define RXON_FILTER_ASSOC_MSK           cpu_to_le32(1 << 5)
597/* transfer to host non bssid beacons in associated state */
598#define RXON_FILTER_BCON_AWARE_MSK      cpu_to_le32(1 << 6)
599
600/**
601 * REPLY_RXON = 0x10 (command, has simple generic response)
602 *
603 * RXON tunes the radio tuner to a service channel, and sets up a number
604 * of parameters that are used primarily for Rx, but also for Tx operations.
605 *
606 * NOTE:  When tuning to a new channel, driver must set the
607 *        RXON_FILTER_ASSOC_MSK to 0.  This will clear station-dependent
608 *        info within the device, including the station tables, tx retry
609 *        rate tables, and txpower tables.  Driver must build a new station
610 *        table and txpower table before transmitting anything on the RXON
611 *        channel.
612 *
613 * NOTE:  All RXONs wipe clean the internal txpower table.  Driver must
614 *        issue a new REPLY_TX_PWR_TABLE_CMD after each REPLY_RXON (0x10),
615 *        regardless of whether RXON_FILTER_ASSOC_MSK is set.
616 */
617
618struct iwl_rxon_cmd {
619	u8 node_addr[6];
620	__le16 reserved1;
621	u8 bssid_addr[6];
622	__le16 reserved2;
623	u8 wlap_bssid_addr[6];
624	__le16 reserved3;
625	u8 dev_type;
626	u8 air_propagation;
627	__le16 rx_chain;
628	u8 ofdm_basic_rates;
629	u8 cck_basic_rates;
630	__le16 assoc_id;
631	__le32 flags;
632	__le32 filter_flags;
633	__le16 channel;
634	u8 ofdm_ht_single_stream_basic_rates;
635	u8 ofdm_ht_dual_stream_basic_rates;
636	u8 ofdm_ht_triple_stream_basic_rates;
637	u8 reserved5;
638	__le16 acquisition_data;
639	__le16 reserved6;
640} __packed;
641
642/*
643 * REPLY_RXON_ASSOC = 0x11 (command, has simple generic response)
644 */
645struct iwl_rxon_assoc_cmd {
646	__le32 flags;
647	__le32 filter_flags;
648	u8 ofdm_basic_rates;
649	u8 cck_basic_rates;
650	__le16 reserved1;
651	u8 ofdm_ht_single_stream_basic_rates;
652	u8 ofdm_ht_dual_stream_basic_rates;
653	u8 ofdm_ht_triple_stream_basic_rates;
654	u8 reserved2;
655	__le16 rx_chain_select_flags;
656	__le16 acquisition_data;
657	__le32 reserved3;
658} __packed;
659
660#define IWL_CONN_MAX_LISTEN_INTERVAL	10
661#define IWL_MAX_UCODE_BEACON_INTERVAL	4 /* 4096 */
662
663/*
664 * REPLY_RXON_TIMING = 0x14 (command, has simple generic response)
665 */
666struct iwl_rxon_time_cmd {
667	__le64 timestamp;
668	__le16 beacon_interval;
669	__le16 atim_window;
670	__le32 beacon_init_val;
671	__le16 listen_interval;
672	u8 dtim_period;
673	u8 delta_cp_bss_tbtts;
674} __packed;
675
676/*
677 * REPLY_CHANNEL_SWITCH = 0x72 (command, has simple generic response)
678 */
679/**
680 * struct iwl5000_channel_switch_cmd
681 * @band: 0- 5.2GHz, 1- 2.4GHz
682 * @expect_beacon: 0- resume transmits after channel switch
683 *		   1- wait for beacon to resume transmits
684 * @channel: new channel number
685 * @rxon_flags: Rx on flags
686 * @rxon_filter_flags: filtering parameters
687 * @switch_time: switch time in extended beacon format
688 * @reserved: reserved bytes
689 */
690struct iwl5000_channel_switch_cmd {
691	u8 band;
692	u8 expect_beacon;
693	__le16 channel;
694	__le32 rxon_flags;
695	__le32 rxon_filter_flags;
696	__le32 switch_time;
697	__le32 reserved[2][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
698} __packed;
699
700/**
701 * struct iwl6000_channel_switch_cmd
702 * @band: 0- 5.2GHz, 1- 2.4GHz
703 * @expect_beacon: 0- resume transmits after channel switch
704 *		   1- wait for beacon to resume transmits
705 * @channel: new channel number
706 * @rxon_flags: Rx on flags
707 * @rxon_filter_flags: filtering parameters
708 * @switch_time: switch time in extended beacon format
709 * @reserved: reserved bytes
710 */
711struct iwl6000_channel_switch_cmd {
712	u8 band;
713	u8 expect_beacon;
714	__le16 channel;
715	__le32 rxon_flags;
716	__le32 rxon_filter_flags;
717	__le32 switch_time;
718	__le32 reserved[3][IWL_PWR_NUM_HT_OFDM_ENTRIES + IWL_PWR_CCK_ENTRIES];
719} __packed;
720
721/*
722 * CHANNEL_SWITCH_NOTIFICATION = 0x73 (notification only, not a command)
723 */
724struct iwl_csa_notification {
725	__le16 band;
726	__le16 channel;
727	__le32 status;		/* 0 - OK, 1 - fail */
728} __packed;
729
730/******************************************************************************
731 * (2)
732 * Quality-of-Service (QOS) Commands & Responses:
733 *
734 *****************************************************************************/
735
736/**
737 * struct iwl_ac_qos -- QOS timing params for REPLY_QOS_PARAM
738 * One for each of 4 EDCA access categories in struct iwl_qosparam_cmd
739 *
740 * @cw_min: Contention window, start value in numbers of slots.
741 *          Should be a power-of-2, minus 1.  Device's default is 0x0f.
742 * @cw_max: Contention window, max value in numbers of slots.
743 *          Should be a power-of-2, minus 1.  Device's default is 0x3f.
744 * @aifsn:  Number of slots in Arbitration Interframe Space (before
745 *          performing random backoff timing prior to Tx).  Device default 1.
746 * @edca_txop:  Length of Tx opportunity, in uSecs.  Device default is 0.
747 *
748 * Device will automatically increase contention window by (2*CW) + 1 for each
749 * transmission retry.  Device uses cw_max as a bit mask, ANDed with new CW
750 * value, to cap the CW value.
751 */
752struct iwl_ac_qos {
753	__le16 cw_min;
754	__le16 cw_max;
755	u8 aifsn;
756	u8 reserved1;
757	__le16 edca_txop;
758} __packed;
759
760/* QoS flags defines */
761#define QOS_PARAM_FLG_UPDATE_EDCA_MSK	cpu_to_le32(0x01)
762#define QOS_PARAM_FLG_TGN_MSK		cpu_to_le32(0x02)
763#define QOS_PARAM_FLG_TXOP_TYPE_MSK	cpu_to_le32(0x10)
764
765/* Number of Access Categories (AC) (EDCA), queues 0..3 */
766#define AC_NUM                4
767
768/*
769 * REPLY_QOS_PARAM = 0x13 (command, has simple generic response)
770 *
771 * This command sets up timings for each of the 4 prioritized EDCA Tx FIFOs
772 * 0: Background, 1: Best Effort, 2: Video, 3: Voice.
773 */
774struct iwl_qosparam_cmd {
775	__le32 qos_flags;
776	struct iwl_ac_qos ac[AC_NUM];
777} __packed;
778
779/******************************************************************************
780 * (3)
781 * Add/Modify Stations Commands & Responses:
782 *
783 *****************************************************************************/
784/*
785 * Multi station support
786 */
787
788/* Special, dedicated locations within device's station table */
789#define	IWL_AP_ID		0
790#define	IWL_AP_ID_PAN		1
791#define	IWL_STA_ID		2
792#define IWLAGN_PAN_BCAST_ID	14
793#define IWLAGN_BROADCAST_ID	15
794#define	IWLAGN_STATION_COUNT	16
795
796#define IWL_TID_NON_QOS IWL_MAX_TID_COUNT
797
798#define STA_FLG_TX_RATE_MSK		cpu_to_le32(1 << 2)
799#define STA_FLG_PWR_SAVE_MSK		cpu_to_le32(1 << 8)
800#define STA_FLG_PAN_STATION		cpu_to_le32(1 << 13)
801#define STA_FLG_RTS_MIMO_PROT_MSK	cpu_to_le32(1 << 17)
802#define STA_FLG_AGG_MPDU_8US_MSK	cpu_to_le32(1 << 18)
803#define STA_FLG_MAX_AGG_SIZE_POS	(19)
804#define STA_FLG_MAX_AGG_SIZE_MSK	cpu_to_le32(3 << 19)
805#define STA_FLG_HT40_EN_MSK		cpu_to_le32(1 << 21)
806#define STA_FLG_MIMO_DIS_MSK		cpu_to_le32(1 << 22)
807#define STA_FLG_AGG_MPDU_DENSITY_POS	(23)
808#define STA_FLG_AGG_MPDU_DENSITY_MSK	cpu_to_le32(7 << 23)
809
810/* Use in mode field.  1: modify existing entry, 0: add new station entry */
811#define STA_CONTROL_MODIFY_MSK		0x01
812
813/* key flags __le16*/
814#define STA_KEY_FLG_ENCRYPT_MSK	cpu_to_le16(0x0007)
815#define STA_KEY_FLG_NO_ENC	cpu_to_le16(0x0000)
816#define STA_KEY_FLG_WEP		cpu_to_le16(0x0001)
817#define STA_KEY_FLG_CCMP	cpu_to_le16(0x0002)
818#define STA_KEY_FLG_TKIP	cpu_to_le16(0x0003)
819
820#define STA_KEY_FLG_KEYID_POS	8
821#define STA_KEY_FLG_INVALID 	cpu_to_le16(0x0800)
822/* wep key is either from global key (0) or from station info array (1) */
823#define STA_KEY_FLG_MAP_KEY_MSK	cpu_to_le16(0x0008)
824
825/* wep key in STA: 5-bytes (0) or 13-bytes (1) */
826#define STA_KEY_FLG_KEY_SIZE_MSK     cpu_to_le16(0x1000)
827#define STA_KEY_MULTICAST_MSK        cpu_to_le16(0x4000)
828#define STA_KEY_MAX_NUM		8
829#define STA_KEY_MAX_NUM_PAN	16
830/* must not match WEP_INVALID_OFFSET */
831#define IWLAGN_HW_KEY_DEFAULT	0xfe
832
833/* Flags indicate whether to modify vs. don't change various station params */
834#define	STA_MODIFY_KEY_MASK		0x01
835#define	STA_MODIFY_TID_DISABLE_TX	0x02
836#define	STA_MODIFY_TX_RATE_MSK		0x04
837#define STA_MODIFY_ADDBA_TID_MSK	0x08
838#define STA_MODIFY_DELBA_TID_MSK	0x10
839#define STA_MODIFY_SLEEP_TX_COUNT_MSK	0x20
840
841/* agn */
842struct iwl_keyinfo {
843	__le16 key_flags;
844	u8 tkip_rx_tsc_byte2;	/* TSC[2] for key mix ph1 detection */
845	u8 reserved1;
846	__le16 tkip_rx_ttak[5];	/* 10-byte unicast TKIP TTAK */
847	u8 key_offset;
848	u8 reserved2;
849	u8 key[16];		/* 16-byte unicast decryption key */
850	__le64 tx_secur_seq_cnt;
851	__le64 hw_tkip_mic_rx_key;
852	__le64 hw_tkip_mic_tx_key;
853} __packed;
854
855/**
856 * struct sta_id_modify
857 * @addr[ETH_ALEN]: station's MAC address
858 * @sta_id: index of station in uCode's station table
859 * @modify_mask: STA_MODIFY_*, 1: modify, 0: don't change
860 *
861 * Driver selects unused table index when adding new station,
862 * or the index to a pre-existing station entry when modifying that station.
863 * Some indexes have special purposes (IWL_AP_ID, index 0, is for AP).
864 *
865 * modify_mask flags select which parameters to modify vs. leave alone.
866 */
867struct sta_id_modify {
868	u8 addr[ETH_ALEN];
869	__le16 reserved1;
870	u8 sta_id;
871	u8 modify_mask;
872	__le16 reserved2;
873} __packed;
874
875/*
876 * REPLY_ADD_STA = 0x18 (command)
877 *
878 * The device contains an internal table of per-station information,
879 * with info on security keys, aggregation parameters, and Tx rates for
880 * initial Tx attempt and any retries (agn devices uses
881 * REPLY_TX_LINK_QUALITY_CMD,
882 *
883 * REPLY_ADD_STA sets up the table entry for one station, either creating
884 * a new entry, or modifying a pre-existing one.
885 *
886 * NOTE:  RXON command (without "associated" bit set) wipes the station table
887 *        clean.  Moving into RF_KILL state does this also.  Driver must set up
888 *        new station table before transmitting anything on the RXON channel
889 *        (except active scans or active measurements; those commands carry
890 *        their own txpower/rate setup data).
891 *
892 *        When getting started on a new channel, driver must set up the
893 *        IWL_BROADCAST_ID entry (last entry in the table).  For a client
894 *        station in a BSS, once an AP is selected, driver sets up the AP STA
895 *        in the IWL_AP_ID entry (1st entry in the table).  BROADCAST and AP
896 *        are all that are needed for a BSS client station.  If the device is
897 *        used as AP, or in an IBSS network, driver must set up station table
898 *        entries for all STAs in network, starting with index IWL_STA_ID.
899 */
900
901struct iwl_addsta_cmd {
902	u8 mode;		/* 1: modify existing, 0: add new station */
903	u8 reserved[3];
904	struct sta_id_modify sta;
905	struct iwl_keyinfo key;
906	__le32 station_flags;		/* STA_FLG_* */
907	__le32 station_flags_msk;	/* STA_FLG_* */
908
909	/* bit field to disable (1) or enable (0) Tx for Traffic ID (TID)
910	 * corresponding to bit (e.g. bit 5 controls TID 5).
911	 * Set modify_mask bit STA_MODIFY_TID_DISABLE_TX to use this field. */
912	__le16 tid_disable_tx;
913	__le16 legacy_reserved;
914
915	/* TID for which to add block-ack support.
916	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
917	u8 add_immediate_ba_tid;
918
919	/* TID for which to remove block-ack support.
920	 * Set modify_mask bit STA_MODIFY_DELBA_TID_MSK to use this field. */
921	u8 remove_immediate_ba_tid;
922
923	/* Starting Sequence Number for added block-ack support.
924	 * Set modify_mask bit STA_MODIFY_ADDBA_TID_MSK to use this field. */
925	__le16 add_immediate_ba_ssn;
926
927	/*
928	 * Number of packets OK to transmit to station even though
929	 * it is asleep -- used to synchronise PS-poll and u-APSD
930	 * responses while ucode keeps track of STA sleep state.
931	 */
932	__le16 sleep_tx_count;
933
934	__le16 reserved2;
935} __packed;
936
937
938#define ADD_STA_SUCCESS_MSK		0x1
939#define ADD_STA_NO_ROOM_IN_TABLE	0x2
940#define ADD_STA_NO_BLOCK_ACK_RESOURCE	0x4
941#define ADD_STA_MODIFY_NON_EXIST_STA	0x8
942/*
943 * REPLY_ADD_STA = 0x18 (response)
944 */
945struct iwl_add_sta_resp {
946	u8 status;	/* ADD_STA_* */
947} __packed;
948
949#define REM_STA_SUCCESS_MSK              0x1
950/*
951 *  REPLY_REM_STA = 0x19 (response)
952 */
953struct iwl_rem_sta_resp {
954	u8 status;
955} __packed;
956
957/*
958 *  REPLY_REM_STA = 0x19 (command)
959 */
960struct iwl_rem_sta_cmd {
961	u8 num_sta;     /* number of removed stations */
962	u8 reserved[3];
963	u8 addr[ETH_ALEN]; /* MAC addr of the first station */
964	u8 reserved2[2];
965} __packed;
966
967
968/* WiFi queues mask */
969#define IWL_SCD_BK_MSK			BIT(0)
970#define IWL_SCD_BE_MSK			BIT(1)
971#define IWL_SCD_VI_MSK			BIT(2)
972#define IWL_SCD_VO_MSK			BIT(3)
973#define IWL_SCD_MGMT_MSK		BIT(3)
974
975/* PAN queues mask */
976#define IWL_PAN_SCD_BK_MSK		BIT(4)
977#define IWL_PAN_SCD_BE_MSK		BIT(5)
978#define IWL_PAN_SCD_VI_MSK		BIT(6)
979#define IWL_PAN_SCD_VO_MSK		BIT(7)
980#define IWL_PAN_SCD_MGMT_MSK		BIT(7)
981#define IWL_PAN_SCD_MULTICAST_MSK	BIT(8)
982
983#define IWL_AGG_TX_QUEUE_MSK		0xffc00
984
985#define IWL_DROP_ALL			BIT(1)
986
987/*
988 * REPLY_TXFIFO_FLUSH = 0x1e(command and response)
989 *
990 * When using full FIFO flush this command checks the scheduler HW block WR/RD
991 * pointers to check if all the frames were transferred by DMA into the
992 * relevant TX FIFO queue. Only when the DMA is finished and the queue is
993 * empty the command can finish.
994 * This command is used to flush the TXFIFO from transmit commands, it may
995 * operate on single or multiple queues, the command queue can't be flushed by
996 * this command. The command response is returned when all the queue flush
997 * operations are done. Each TX command flushed return response with the FLUSH
998 * status set in the TX response status. When FIFO flush operation is used,
999 * the flush operation ends when both the scheduler DMA done and TXFIFO empty
1000 * are set.
1001 *
1002 * @queue_control: bit mask for which queues to flush
1003 * @flush_control: flush controls
1004 *	0: Dump single MSDU
1005 *	1: Dump multiple MSDU according to PS, INVALID STA, TTL, TID disable.
1006 *	2: Dump all FIFO
1007 */
1008struct iwl_txfifo_flush_cmd_v3 {
1009	__le32 queue_control;
1010	__le16 flush_control;
1011	__le16 reserved;
1012} __packed;
1013
1014struct iwl_txfifo_flush_cmd_v2 {
1015	__le16 queue_control;
1016	__le16 flush_control;
1017} __packed;
1018
1019/*
1020 * REPLY_WEP_KEY = 0x20
1021 */
1022struct iwl_wep_key {
1023	u8 key_index;
1024	u8 key_offset;
1025	u8 reserved1[2];
1026	u8 key_size;
1027	u8 reserved2[3];
1028	u8 key[16];
1029} __packed;
1030
1031struct iwl_wep_cmd {
1032	u8 num_keys;
1033	u8 global_key_type;
1034	u8 flags;
1035	u8 reserved;
1036	struct iwl_wep_key key[0];
1037} __packed;
1038
1039#define WEP_KEY_WEP_TYPE 1
1040#define WEP_KEYS_MAX 4
1041#define WEP_INVALID_OFFSET 0xff
1042#define WEP_KEY_LEN_64 5
1043#define WEP_KEY_LEN_128 13
1044
1045/******************************************************************************
1046 * (4)
1047 * Rx Responses:
1048 *
1049 *****************************************************************************/
1050
1051#define RX_RES_STATUS_NO_CRC32_ERROR	cpu_to_le32(1 << 0)
1052#define RX_RES_STATUS_NO_RXE_OVERFLOW	cpu_to_le32(1 << 1)
1053
1054#define RX_RES_PHY_FLAGS_BAND_24_MSK	cpu_to_le16(1 << 0)
1055#define RX_RES_PHY_FLAGS_MOD_CCK_MSK		cpu_to_le16(1 << 1)
1056#define RX_RES_PHY_FLAGS_SHORT_PREAMBLE_MSK	cpu_to_le16(1 << 2)
1057#define RX_RES_PHY_FLAGS_NARROW_BAND_MSK	cpu_to_le16(1 << 3)
1058#define RX_RES_PHY_FLAGS_ANTENNA_MSK		0x70
1059#define RX_RES_PHY_FLAGS_ANTENNA_POS		4
1060#define RX_RES_PHY_FLAGS_AGG_MSK		cpu_to_le16(1 << 7)
1061
1062#define RX_RES_STATUS_SEC_TYPE_MSK	(0x7 << 8)
1063#define RX_RES_STATUS_SEC_TYPE_NONE	(0x0 << 8)
1064#define RX_RES_STATUS_SEC_TYPE_WEP	(0x1 << 8)
1065#define RX_RES_STATUS_SEC_TYPE_CCMP	(0x2 << 8)
1066#define RX_RES_STATUS_SEC_TYPE_TKIP	(0x3 << 8)
1067#define	RX_RES_STATUS_SEC_TYPE_ERR	(0x7 << 8)
1068
1069#define RX_RES_STATUS_STATION_FOUND	(1<<6)
1070#define RX_RES_STATUS_NO_STATION_INFO_MISMATCH	(1<<7)
1071
1072#define RX_RES_STATUS_DECRYPT_TYPE_MSK	(0x3 << 11)
1073#define RX_RES_STATUS_NOT_DECRYPT	(0x0 << 11)
1074#define RX_RES_STATUS_DECRYPT_OK	(0x3 << 11)
1075#define RX_RES_STATUS_BAD_ICV_MIC	(0x1 << 11)
1076#define RX_RES_STATUS_BAD_KEY_TTAK	(0x2 << 11)
1077
1078#define RX_MPDU_RES_STATUS_ICV_OK	(0x20)
1079#define RX_MPDU_RES_STATUS_MIC_OK	(0x40)
1080#define RX_MPDU_RES_STATUS_TTAK_OK	(1 << 7)
1081#define RX_MPDU_RES_STATUS_DEC_DONE_MSK	(0x800)
1082
1083
1084#define IWLAGN_RX_RES_PHY_CNT 8
1085#define IWLAGN_RX_RES_AGC_IDX     1
1086#define IWLAGN_RX_RES_RSSI_AB_IDX 2
1087#define IWLAGN_RX_RES_RSSI_C_IDX  3
1088#define IWLAGN_OFDM_AGC_MSK 0xfe00
1089#define IWLAGN_OFDM_AGC_BIT_POS 9
1090#define IWLAGN_OFDM_RSSI_INBAND_A_BITMSK 0x00ff
1091#define IWLAGN_OFDM_RSSI_ALLBAND_A_BITMSK 0xff00
1092#define IWLAGN_OFDM_RSSI_A_BIT_POS 0
1093#define IWLAGN_OFDM_RSSI_INBAND_B_BITMSK 0xff0000
1094#define IWLAGN_OFDM_RSSI_ALLBAND_B_BITMSK 0xff000000
1095#define IWLAGN_OFDM_RSSI_B_BIT_POS 16
1096#define IWLAGN_OFDM_RSSI_INBAND_C_BITMSK 0x00ff
1097#define IWLAGN_OFDM_RSSI_ALLBAND_C_BITMSK 0xff00
1098#define IWLAGN_OFDM_RSSI_C_BIT_POS 0
1099
1100struct iwlagn_non_cfg_phy {
1101	__le32 non_cfg_phy[IWLAGN_RX_RES_PHY_CNT];  /* up to 8 phy entries */
1102} __packed;
1103
1104
1105/*
1106 * REPLY_RX = 0xc3 (response only, not a command)
1107 * Used only for legacy (non 11n) frames.
1108 */
1109struct iwl_rx_phy_res {
1110	u8 non_cfg_phy_cnt;     /* non configurable DSP phy data byte count */
1111	u8 cfg_phy_cnt;		/* configurable DSP phy data byte count */
1112	u8 stat_id;		/* configurable DSP phy data set ID */
1113	u8 reserved1;
1114	__le64 timestamp;	/* TSF at on air rise */
1115	__le32 beacon_time_stamp; /* beacon at on-air rise */
1116	__le16 phy_flags;	/* general phy flags: band, modulation, ... */
1117	__le16 channel;		/* channel number */
1118	u8 non_cfg_phy_buf[32]; /* for various implementations of non_cfg_phy */
1119	__le32 rate_n_flags;	/* RATE_MCS_* */
1120	__le16 byte_count;	/* frame's byte-count */
1121	__le16 frame_time;	/* frame's time on the air */
1122} __packed;
1123
1124struct iwl_rx_mpdu_res_start {
1125	__le16 byte_count;
1126	__le16 reserved;
1127} __packed;
1128
1129
1130/******************************************************************************
1131 * (5)
1132 * Tx Commands & Responses:
1133 *
1134 * Driver must place each REPLY_TX command into one of the prioritized Tx
1135 * queues in host DRAM, shared between driver and device (see comments for
1136 * SCD registers and Tx/Rx Queues).  When the device's Tx scheduler and uCode
1137 * are preparing to transmit, the device pulls the Tx command over the PCI
1138 * bus via one of the device's Tx DMA channels, to fill an internal FIFO
1139 * from which data will be transmitted.
1140 *
1141 * uCode handles all timing and protocol related to control frames
1142 * (RTS/CTS/ACK), based on flags in the Tx command.  uCode and Tx scheduler
1143 * handle reception of block-acks; uCode updates the host driver via
1144 * REPLY_COMPRESSED_BA.
1145 *
1146 * uCode handles retrying Tx when an ACK is expected but not received.
1147 * This includes trying lower data rates than the one requested in the Tx
1148 * command, as set up by the REPLY_TX_LINK_QUALITY_CMD (agn).
1149 *
1150 * Driver sets up transmit power for various rates via REPLY_TX_PWR_TABLE_CMD.
1151 * This command must be executed after every RXON command, before Tx can occur.
1152 *****************************************************************************/
1153
1154/* REPLY_TX Tx flags field */
1155
1156/*
1157 * 1: Use RTS/CTS protocol or CTS-to-self if spec allows it
1158 * before this frame. if CTS-to-self required check
1159 * RXON_FLG_SELF_CTS_EN status.
1160 */
1161#define TX_CMD_FLG_PROT_REQUIRE_MSK cpu_to_le32(1 << 0)
1162
1163/* 1: Expect ACK from receiving station
1164 * 0: Don't expect ACK (MAC header's duration field s/b 0)
1165 * Set this for unicast frames, but not broadcast/multicast. */
1166#define TX_CMD_FLG_ACK_MSK cpu_to_le32(1 << 3)
1167
1168/* For agn devices:
1169 * 1: Use rate scale table (see REPLY_TX_LINK_QUALITY_CMD).
1170 *    Tx command's initial_rate_index indicates first rate to try;
1171 *    uCode walks through table for additional Tx attempts.
1172 * 0: Use Tx rate/MCS from Tx command's rate_n_flags field.
1173 *    This rate will be used for all Tx attempts; it will not be scaled. */
1174#define TX_CMD_FLG_STA_RATE_MSK cpu_to_le32(1 << 4)
1175
1176/* 1: Expect immediate block-ack.
1177 * Set when Txing a block-ack request frame.  Also set TX_CMD_FLG_ACK_MSK. */
1178#define TX_CMD_FLG_IMM_BA_RSP_MASK  cpu_to_le32(1 << 6)
1179
1180/* Tx antenna selection field; reserved (0) for agn devices. */
1181#define TX_CMD_FLG_ANT_SEL_MSK cpu_to_le32(0xf00)
1182
1183/* 1: Ignore Bluetooth priority for this frame.
1184 * 0: Delay Tx until Bluetooth device is done (normal usage). */
1185#define TX_CMD_FLG_IGNORE_BT cpu_to_le32(1 << 12)
1186
1187/* 1: uCode overrides sequence control field in MAC header.
1188 * 0: Driver provides sequence control field in MAC header.
1189 * Set this for management frames, non-QOS data frames, non-unicast frames,
1190 * and also in Tx command embedded in REPLY_SCAN_CMD for active scans. */
1191#define TX_CMD_FLG_SEQ_CTL_MSK cpu_to_le32(1 << 13)
1192
1193/* 1: This frame is non-last MPDU; more fragments are coming.
1194 * 0: Last fragment, or not using fragmentation. */
1195#define TX_CMD_FLG_MORE_FRAG_MSK cpu_to_le32(1 << 14)
1196
1197/* 1: uCode calculates and inserts Timestamp Function (TSF) in outgoing frame.
1198 * 0: No TSF required in outgoing frame.
1199 * Set this for transmitting beacons and probe responses. */
1200#define TX_CMD_FLG_TSF_MSK cpu_to_le32(1 << 16)
1201
1202/* 1: Driver inserted 2 bytes pad after the MAC header, for (required) dword
1203 *    alignment of frame's payload data field.
1204 * 0: No pad
1205 * Set this for MAC headers with 26 or 30 bytes, i.e. those with QOS or ADDR4
1206 * field (but not both).  Driver must align frame data (i.e. data following
1207 * MAC header) to DWORD boundary. */
1208#define TX_CMD_FLG_MH_PAD_MSK cpu_to_le32(1 << 20)
1209
1210/* accelerate aggregation support
1211 * 0 - no CCMP encryption; 1 - CCMP encryption */
1212#define TX_CMD_FLG_AGG_CCMP_MSK cpu_to_le32(1 << 22)
1213
1214/* HCCA-AP - disable duration overwriting. */
1215#define TX_CMD_FLG_DUR_MSK cpu_to_le32(1 << 25)
1216
1217
1218/*
1219 * TX command security control
1220 */
1221#define TX_CMD_SEC_WEP  	0x01
1222#define TX_CMD_SEC_CCM  	0x02
1223#define TX_CMD_SEC_TKIP		0x03
1224#define TX_CMD_SEC_MSK		0x03
1225#define TX_CMD_SEC_SHIFT	6
1226#define TX_CMD_SEC_KEY128	0x08
1227
1228/*
1229 * REPLY_TX = 0x1c (command)
1230 */
1231
1232/*
1233 * 4965 uCode updates these Tx attempt count values in host DRAM.
1234 * Used for managing Tx retries when expecting block-acks.
1235 * Driver should set these fields to 0.
1236 */
1237struct iwl_dram_scratch {
1238	u8 try_cnt;		/* Tx attempts */
1239	u8 bt_kill_cnt;		/* Tx attempts blocked by Bluetooth device */
1240	__le16 reserved;
1241} __packed;
1242
1243struct iwl_tx_cmd {
1244	/*
1245	 * MPDU byte count:
1246	 * MAC header (24/26/30/32 bytes) + 2 bytes pad if 26/30 header size,
1247	 * + 8 byte IV for CCM or TKIP (not used for WEP)
1248	 * + Data payload
1249	 * + 8-byte MIC (not used for CCM/WEP)
1250	 * NOTE:  Does not include Tx command bytes, post-MAC pad bytes,
1251	 *        MIC (CCM) 8 bytes, ICV (WEP/TKIP/CKIP) 4 bytes, CRC 4 bytes.i
1252	 * Range: 14-2342 bytes.
1253	 */
1254	__le16 len;
1255
1256	/*
1257	 * MPDU or MSDU byte count for next frame.
1258	 * Used for fragmentation and bursting, but not 11n aggregation.
1259	 * Same as "len", but for next frame.  Set to 0 if not applicable.
1260	 */
1261	__le16 next_frame_len;
1262
1263	__le32 tx_flags;	/* TX_CMD_FLG_* */
1264
1265	/* uCode may modify this field of the Tx command (in host DRAM!).
1266	 * Driver must also set dram_lsb_ptr and dram_msb_ptr in this cmd. */
1267	struct iwl_dram_scratch scratch;
1268
1269	/* Rate for *all* Tx attempts, if TX_CMD_FLG_STA_RATE_MSK is cleared. */
1270	__le32 rate_n_flags;	/* RATE_MCS_* */
1271
1272	/* Index of destination station in uCode's station table */
1273	u8 sta_id;
1274
1275	/* Type of security encryption:  CCM or TKIP */
1276	u8 sec_ctl;		/* TX_CMD_SEC_* */
1277
1278	/*
1279	 * Index into rate table (see REPLY_TX_LINK_QUALITY_CMD) for initial
1280	 * Tx attempt, if TX_CMD_FLG_STA_RATE_MSK is set.  Normally "0" for
1281	 * data frames, this field may be used to selectively reduce initial
1282	 * rate (via non-0 value) for special frames (e.g. management), while
1283	 * still supporting rate scaling for all frames.
1284	 */
1285	u8 initial_rate_index;
1286	u8 reserved;
1287	u8 key[16];
1288	__le16 next_frame_flags;
1289	__le16 reserved2;
1290	union {
1291		__le32 life_time;
1292		__le32 attempt;
1293	} stop_time;
1294
1295	/* Host DRAM physical address pointer to "scratch" in this command.
1296	 * Must be dword aligned.  "0" in dram_lsb_ptr disables usage. */
1297	__le32 dram_lsb_ptr;
1298	u8 dram_msb_ptr;
1299
1300	u8 rts_retry_limit;	/*byte 50 */
1301	u8 data_retry_limit;	/*byte 51 */
1302	u8 tid_tspec;
1303	union {
1304		__le16 pm_frame_timeout;
1305		__le16 attempt_duration;
1306	} timeout;
1307
1308	/*
1309	 * Duration of EDCA burst Tx Opportunity, in 32-usec units.
1310	 * Set this if txop time is not specified by HCCA protocol (e.g. by AP).
1311	 */
1312	__le16 driver_txop;
1313
1314	/*
1315	 * MAC header goes here, followed by 2 bytes padding if MAC header
1316	 * length is 26 or 30 bytes, followed by payload data
1317	 */
1318	u8 payload[0];
1319	struct ieee80211_hdr hdr[0];
1320} __packed;
1321
1322/*
1323 * TX command response is sent after *agn* transmission attempts.
1324 *
1325 * both postpone and abort status are expected behavior from uCode. there is
1326 * no special operation required from driver; except for RFKILL_FLUSH,
1327 * which required tx flush host command to flush all the tx frames in queues
1328 */
1329enum {
1330	TX_STATUS_SUCCESS = 0x01,
1331	TX_STATUS_DIRECT_DONE = 0x02,
1332	/* postpone TX */
1333	TX_STATUS_POSTPONE_DELAY = 0x40,
1334	TX_STATUS_POSTPONE_FEW_BYTES = 0x41,
1335	TX_STATUS_POSTPONE_BT_PRIO = 0x42,
1336	TX_STATUS_POSTPONE_QUIET_PERIOD = 0x43,
1337	TX_STATUS_POSTPONE_CALC_TTAK = 0x44,
1338	/* abort TX */
1339	TX_STATUS_FAIL_INTERNAL_CROSSED_RETRY = 0x81,
1340	TX_STATUS_FAIL_SHORT_LIMIT = 0x82,
1341	TX_STATUS_FAIL_LONG_LIMIT = 0x83,
1342	TX_STATUS_FAIL_FIFO_UNDERRUN = 0x84,
1343	TX_STATUS_FAIL_DRAIN_FLOW = 0x85,
1344	TX_STATUS_FAIL_RFKILL_FLUSH = 0x86,
1345	TX_STATUS_FAIL_LIFE_EXPIRE = 0x87,
1346	TX_STATUS_FAIL_DEST_PS = 0x88,
1347	TX_STATUS_FAIL_HOST_ABORTED = 0x89,
1348	TX_STATUS_FAIL_BT_RETRY = 0x8a,
1349	TX_STATUS_FAIL_STA_INVALID = 0x8b,
1350	TX_STATUS_FAIL_FRAG_DROPPED = 0x8c,
1351	TX_STATUS_FAIL_TID_DISABLE = 0x8d,
1352	TX_STATUS_FAIL_FIFO_FLUSHED = 0x8e,
1353	TX_STATUS_FAIL_INSUFFICIENT_CF_POLL = 0x8f,
1354	TX_STATUS_FAIL_PASSIVE_NO_RX = 0x90,
1355	TX_STATUS_FAIL_NO_BEACON_ON_RADAR = 0x91,
1356};
1357
1358#define	TX_PACKET_MODE_REGULAR		0x0000
1359#define	TX_PACKET_MODE_BURST_SEQ	0x0100
1360#define	TX_PACKET_MODE_BURST_FIRST	0x0200
1361
1362enum {
1363	TX_POWER_PA_NOT_ACTIVE = 0x0,
1364};
1365
1366enum {
1367	TX_STATUS_MSK = 0x000000ff,		/* bits 0:7 */
1368	TX_STATUS_DELAY_MSK = 0x00000040,
1369	TX_STATUS_ABORT_MSK = 0x00000080,
1370	TX_PACKET_MODE_MSK = 0x0000ff00,	/* bits 8:15 */
1371	TX_FIFO_NUMBER_MSK = 0x00070000,	/* bits 16:18 */
1372	TX_RESERVED = 0x00780000,		/* bits 19:22 */
1373	TX_POWER_PA_DETECT_MSK = 0x7f800000,	/* bits 23:30 */
1374	TX_ABORT_REQUIRED_MSK = 0x80000000,	/* bits 31:31 */
1375};
1376
1377/* *******************************
1378 * TX aggregation status
1379 ******************************* */
1380
1381enum {
1382	AGG_TX_STATE_TRANSMITTED = 0x00,
1383	AGG_TX_STATE_UNDERRUN_MSK = 0x01,
1384	AGG_TX_STATE_BT_PRIO_MSK = 0x02,
1385	AGG_TX_STATE_FEW_BYTES_MSK = 0x04,
1386	AGG_TX_STATE_ABORT_MSK = 0x08,
1387	AGG_TX_STATE_LAST_SENT_TTL_MSK = 0x10,
1388	AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK = 0x20,
1389	AGG_TX_STATE_LAST_SENT_BT_KILL_MSK = 0x40,
1390	AGG_TX_STATE_SCD_QUERY_MSK = 0x80,
1391	AGG_TX_STATE_TEST_BAD_CRC32_MSK = 0x100,
1392	AGG_TX_STATE_RESPONSE_MSK = 0x1ff,
1393	AGG_TX_STATE_DUMP_TX_MSK = 0x200,
1394	AGG_TX_STATE_DELAY_TX_MSK = 0x400
1395};
1396
1397#define AGG_TX_STATUS_MSK	0x00000fff	/* bits 0:11 */
1398#define AGG_TX_TRY_MSK		0x0000f000	/* bits 12:15 */
1399#define AGG_TX_TRY_POS		12
1400
1401#define AGG_TX_STATE_LAST_SENT_MSK  (AGG_TX_STATE_LAST_SENT_TTL_MSK | \
1402				     AGG_TX_STATE_LAST_SENT_TRY_CNT_MSK | \
1403				     AGG_TX_STATE_LAST_SENT_BT_KILL_MSK)
1404
1405/* # tx attempts for first frame in aggregation */
1406#define AGG_TX_STATE_TRY_CNT_POS 12
1407#define AGG_TX_STATE_TRY_CNT_MSK 0xf000
1408
1409/* Command ID and sequence number of Tx command for this frame */
1410#define AGG_TX_STATE_SEQ_NUM_POS 16
1411#define AGG_TX_STATE_SEQ_NUM_MSK 0xffff0000
1412
1413/*
1414 * REPLY_TX = 0x1c (response)
1415 *
1416 * This response may be in one of two slightly different formats, indicated
1417 * by the frame_count field:
1418 *
1419 * 1)  No aggregation (frame_count == 1).  This reports Tx results for
1420 *     a single frame.  Multiple attempts, at various bit rates, may have
1421 *     been made for this frame.
1422 *
1423 * 2)  Aggregation (frame_count > 1).  This reports Tx results for
1424 *     2 or more frames that used block-acknowledge.  All frames were
1425 *     transmitted at same rate.  Rate scaling may have been used if first
1426 *     frame in this new agg block failed in previous agg block(s).
1427 *
1428 *     Note that, for aggregation, ACK (block-ack) status is not delivered here;
1429 *     block-ack has not been received by the time the agn device records
1430 *     this status.
1431 *     This status relates to reasons the tx might have been blocked or aborted
1432 *     within the sending station (this agn device), rather than whether it was
1433 *     received successfully by the destination station.
1434 */
1435struct agg_tx_status {
1436	__le16 status;
1437	__le16 sequence;
1438} __packed;
1439
1440/*
1441 * definitions for initial rate index field
1442 * bits [3:0] initial rate index
1443 * bits [6:4] rate table color, used for the initial rate
1444 * bit-7 invalid rate indication
1445 *   i.e. rate was not chosen from rate table
1446 *   or rate table color was changed during frame retries
1447 * refer tlc rate info
1448 */
1449
1450#define IWL50_TX_RES_INIT_RATE_INDEX_POS	0
1451#define IWL50_TX_RES_INIT_RATE_INDEX_MSK	0x0f
1452#define IWL50_TX_RES_RATE_TABLE_COLOR_POS	4
1453#define IWL50_TX_RES_RATE_TABLE_COLOR_MSK	0x70
1454#define IWL50_TX_RES_INV_RATE_INDEX_MSK	0x80
1455
1456/* refer to ra_tid */
1457#define IWLAGN_TX_RES_TID_POS	0
1458#define IWLAGN_TX_RES_TID_MSK	0x0f
1459#define IWLAGN_TX_RES_RA_POS	4
1460#define IWLAGN_TX_RES_RA_MSK	0xf0
1461
1462struct iwlagn_tx_resp {
1463	u8 frame_count;		/* 1 no aggregation, >1 aggregation */
1464	u8 bt_kill_count;	/* # blocked by bluetooth (unused for agg) */
1465	u8 failure_rts;		/* # failures due to unsuccessful RTS */
1466	u8 failure_frame;	/* # failures due to no ACK (unused for agg) */
1467
1468	/* For non-agg:  Rate at which frame was successful.
1469	 * For agg:  Rate at which all frames were transmitted. */
1470	__le32 rate_n_flags;	/* RATE_MCS_*  */
1471
1472	/* For non-agg:  RTS + CTS + frame tx attempts time + ACK.
1473	 * For agg:  RTS + CTS + aggregation tx time + block-ack time. */
1474	__le16 wireless_media_time;	/* uSecs */
1475
1476	u8 pa_status;		/* RF power amplifier measurement (not used) */
1477	u8 pa_integ_res_a[3];
1478	u8 pa_integ_res_b[3];
1479	u8 pa_integ_res_C[3];
1480
1481	__le32 tfd_info;
1482	__le16 seq_ctl;
1483	__le16 byte_cnt;
1484	u8 tlc_info;
1485	u8 ra_tid;		/* tid (0:3), sta_id (4:7) */
1486	__le16 frame_ctrl;
1487	/*
1488	 * For non-agg:  frame status TX_STATUS_*
1489	 * For agg:  status of 1st frame, AGG_TX_STATE_*; other frame status
1490	 *           fields follow this one, up to frame_count.
1491	 *           Bit fields:
1492	 *           11- 0:  AGG_TX_STATE_* status code
1493	 *           15-12:  Retry count for 1st frame in aggregation (retries
1494	 *                   occur if tx failed for this frame when it was a
1495	 *                   member of a previous aggregation block).  If rate
1496	 *                   scaling is used, retry count indicates the rate
1497	 *                   table entry used for all frames in the new agg.
1498	 *           31-16:  Sequence # for this frame's Tx cmd (not SSN!)
1499	 */
1500	struct agg_tx_status status;	/* TX status (in aggregation -
1501					 * status of 1st frame) */
1502} __packed;
1503/*
1504 * REPLY_COMPRESSED_BA = 0xc5 (response only, not a command)
1505 *
1506 * Reports Block-Acknowledge from recipient station
1507 */
1508struct iwl_compressed_ba_resp {
1509	__le32 sta_addr_lo32;
1510	__le16 sta_addr_hi16;
1511	__le16 reserved;
1512
1513	/* Index of recipient (BA-sending) station in uCode's station table */
1514	u8 sta_id;
1515	u8 tid;
1516	__le16 seq_ctl;
1517	__le64 bitmap;
1518	__le16 scd_flow;
1519	__le16 scd_ssn;
1520	u8 txed;	/* number of frames sent */
1521	u8 txed_2_done; /* number of frames acked */
1522	__le16 reserved1;
1523} __packed;
1524
1525/*
1526 * REPLY_TX_PWR_TABLE_CMD = 0x97 (command, has simple generic response)
1527 *
1528 */
1529
1530/*RS_NEW_API: only TLC_RTS remains and moved to bit 0 */
1531#define  LINK_QUAL_FLAGS_SET_STA_TLC_RTS_MSK	(1 << 0)
1532
1533/* # of EDCA prioritized tx fifos */
1534#define  LINK_QUAL_AC_NUM AC_NUM
1535
1536/* # entries in rate scale table to support Tx retries */
1537#define  LINK_QUAL_MAX_RETRY_NUM 16
1538
1539/* Tx antenna selection values */
1540#define  LINK_QUAL_ANT_A_MSK (1 << 0)
1541#define  LINK_QUAL_ANT_B_MSK (1 << 1)
1542#define  LINK_QUAL_ANT_MSK   (LINK_QUAL_ANT_A_MSK|LINK_QUAL_ANT_B_MSK)
1543
1544
1545/**
1546 * struct iwl_link_qual_general_params
1547 *
1548 * Used in REPLY_TX_LINK_QUALITY_CMD
1549 */
1550struct iwl_link_qual_general_params {
1551	u8 flags;
1552
1553	/* No entries at or above this (driver chosen) index contain MIMO */
1554	u8 mimo_delimiter;
1555
1556	/* Best single antenna to use for single stream (legacy, SISO). */
1557	u8 single_stream_ant_msk;	/* LINK_QUAL_ANT_* */
1558
1559	/* Best antennas to use for MIMO (unused for 4965, assumes both). */
1560	u8 dual_stream_ant_msk;		/* LINK_QUAL_ANT_* */
1561
1562	/*
1563	 * If driver needs to use different initial rates for different
1564	 * EDCA QOS access categories (as implemented by tx fifos 0-3),
1565	 * this table will set that up, by indicating the indexes in the
1566	 * rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table at which to start.
1567	 * Otherwise, driver should set all entries to 0.
1568	 *
1569	 * Entry usage:
1570	 * 0 = Background, 1 = Best Effort (normal), 2 = Video, 3 = Voice
1571	 * TX FIFOs above 3 use same value (typically 0) as TX FIFO 3.
1572	 */
1573	u8 start_rate_index[LINK_QUAL_AC_NUM];
1574} __packed;
1575
1576#define LINK_QUAL_AGG_TIME_LIMIT_DEF	(4000) /* 4 milliseconds */
1577#define LINK_QUAL_AGG_TIME_LIMIT_MAX	(8000)
1578#define LINK_QUAL_AGG_TIME_LIMIT_MIN	(100)
1579
1580#define LINK_QUAL_AGG_DISABLE_START_DEF	(3)
1581#define LINK_QUAL_AGG_DISABLE_START_MAX	(255)
1582#define LINK_QUAL_AGG_DISABLE_START_MIN	(0)
1583
1584#define LINK_QUAL_AGG_FRAME_LIMIT_DEF	(63)
1585#define LINK_QUAL_AGG_FRAME_LIMIT_MAX	(63)
1586#define LINK_QUAL_AGG_FRAME_LIMIT_MIN	(0)
1587
1588/**
1589 * struct iwl_link_qual_agg_params
1590 *
1591 * Used in REPLY_TX_LINK_QUALITY_CMD
1592 */
1593struct iwl_link_qual_agg_params {
1594
1595	/*
1596	 *Maximum number of uSec in aggregation.
1597	 * default set to 4000 (4 milliseconds) if not configured in .cfg
1598	 */
1599	__le16 agg_time_limit;
1600
1601	/*
1602	 * Number of Tx retries allowed for a frame, before that frame will
1603	 * no longer be considered for the start of an aggregation sequence
1604	 * (scheduler will then try to tx it as single frame).
1605	 * Driver should set this to 3.
1606	 */
1607	u8 agg_dis_start_th;
1608
1609	/*
1610	 * Maximum number of frames in aggregation.
1611	 * 0 = no limit (default).  1 = no aggregation.
1612	 * Other values = max # frames in aggregation.
1613	 */
1614	u8 agg_frame_cnt_limit;
1615
1616	__le32 reserved;
1617} __packed;
1618
1619/*
1620 * REPLY_TX_LINK_QUALITY_CMD = 0x4e (command, has simple generic response)
1621 *
1622 * For agn devices
1623 *
1624 * Each station in the agn device's internal station table has its own table
1625 * of 16
1626 * Tx rates and modulation modes (e.g. legacy/SISO/MIMO) for retrying Tx when
1627 * an ACK is not received.  This command replaces the entire table for
1628 * one station.
1629 *
1630 * NOTE:  Station must already be in agn device's station table.
1631 *	  Use REPLY_ADD_STA.
1632 *
1633 * The rate scaling procedures described below work well.  Of course, other
1634 * procedures are possible, and may work better for particular environments.
1635 *
1636 *
1637 * FILLING THE RATE TABLE
1638 *
1639 * Given a particular initial rate and mode, as determined by the rate
1640 * scaling algorithm described below, the Linux driver uses the following
1641 * formula to fill the rs_table[LINK_QUAL_MAX_RETRY_NUM] rate table in the
1642 * Link Quality command:
1643 *
1644 *
1645 * 1)  If using High-throughput (HT) (SISO or MIMO) initial rate:
1646 *     a) Use this same initial rate for first 3 entries.
1647 *     b) Find next lower available rate using same mode (SISO or MIMO),
1648 *        use for next 3 entries.  If no lower rate available, switch to
1649 *        legacy mode (no HT40 channel, no MIMO, no short guard interval).
1650 *     c) If using MIMO, set command's mimo_delimiter to number of entries
1651 *        using MIMO (3 or 6).
1652 *     d) After trying 2 HT rates, switch to legacy mode (no HT40 channel,
1653 *        no MIMO, no short guard interval), at the next lower bit rate
1654 *        (e.g. if second HT bit rate was 54, try 48 legacy), and follow
1655 *        legacy procedure for remaining table entries.
1656 *
1657 * 2)  If using legacy initial rate:
1658 *     a) Use the initial rate for only one entry.
1659 *     b) For each following entry, reduce the rate to next lower available
1660 *        rate, until reaching the lowest available rate.
1661 *     c) When reducing rate, also switch antenna selection.
1662 *     d) Once lowest available rate is reached, repeat this rate until
1663 *        rate table is filled (16 entries), switching antenna each entry.
1664 *
1665 *
1666 * ACCUMULATING HISTORY
1667 *
1668 * The rate scaling algorithm for agn devices, as implemented in Linux driver,
1669 * uses two sets of frame Tx success history:  One for the current/active
1670 * modulation mode, and one for a speculative/search mode that is being
1671 * attempted. If the speculative mode turns out to be more effective (i.e.
1672 * actual transfer rate is better), then the driver continues to use the
1673 * speculative mode as the new current active mode.
1674 *
1675 * Each history set contains, separately for each possible rate, data for a
1676 * sliding window of the 62 most recent tx attempts at that rate.  The data
1677 * includes a shifting bitmap of success(1)/failure(0), and sums of successful
1678 * and attempted frames, from which the driver can additionally calculate a
1679 * success ratio (success / attempted) and number of failures
1680 * (attempted - success), and control the size of the window (attempted).
1681 * The driver uses the bit map to remove successes from the success sum, as
1682 * the oldest tx attempts fall out of the window.
1683 *
1684 * When the agn device makes multiple tx attempts for a given frame, each
1685 * attempt might be at a different rate, and have different modulation
1686 * characteristics (e.g. antenna, fat channel, short guard interval), as set
1687 * up in the rate scaling table in the Link Quality command.  The driver must
1688 * determine which rate table entry was used for each tx attempt, to determine
1689 * which rate-specific history to update, and record only those attempts that
1690 * match the modulation characteristics of the history set.
1691 *
1692 * When using block-ack (aggregation), all frames are transmitted at the same
1693 * rate, since there is no per-attempt acknowledgment from the destination
1694 * station.  The Tx response struct iwl_tx_resp indicates the Tx rate in
1695 * rate_n_flags field.  After receiving a block-ack, the driver can update
1696 * history for the entire block all at once.
1697 *
1698 *
1699 * FINDING BEST STARTING RATE:
1700 *
1701 * When working with a selected initial modulation mode (see below), the
1702 * driver attempts to find a best initial rate.  The initial rate is the
1703 * first entry in the Link Quality command's rate table.
1704 *
1705 * 1)  Calculate actual throughput (success ratio * expected throughput, see
1706 *     table below) for current initial rate.  Do this only if enough frames
1707 *     have been attempted to make the value meaningful:  at least 6 failed
1708 *     tx attempts, or at least 8 successes.  If not enough, don't try rate
1709 *     scaling yet.
1710 *
1711 * 2)  Find available rates adjacent to current initial rate.  Available means:
1712 *     a)  supported by hardware &&
1713 *     b)  supported by association &&
1714 *     c)  within any constraints selected by user
1715 *
1716 * 3)  Gather measured throughputs for adjacent rates.  These might not have
1717 *     enough history to calculate a throughput.  That's okay, we might try
1718 *     using one of them anyway!
1719 *
1720 * 4)  Try decreasing rate if, for current rate:
1721 *     a)  success ratio is < 15% ||
1722 *     b)  lower adjacent rate has better measured throughput ||
1723 *     c)  higher adjacent rate has worse throughput, and lower is unmeasured
1724 *
1725 *     As a sanity check, if decrease was determined above, leave rate
1726 *     unchanged if:
1727 *     a)  lower rate unavailable
1728 *     b)  success ratio at current rate > 85% (very good)
1729 *     c)  current measured throughput is better than expected throughput
1730 *         of lower rate (under perfect 100% tx conditions, see table below)
1731 *
1732 * 5)  Try increasing rate if, for current rate:
1733 *     a)  success ratio is < 15% ||
1734 *     b)  both adjacent rates' throughputs are unmeasured (try it!) ||
1735 *     b)  higher adjacent rate has better measured throughput ||
1736 *     c)  lower adjacent rate has worse throughput, and higher is unmeasured
1737 *
1738 *     As a sanity check, if increase was determined above, leave rate
1739 *     unchanged if:
1740 *     a)  success ratio at current rate < 70%.  This is not particularly
1741 *         good performance; higher rate is sure to have poorer success.
1742 *
1743 * 6)  Re-evaluate the rate after each tx frame.  If working with block-
1744 *     acknowledge, history and statistics may be calculated for the entire
1745 *     block (including prior history that fits within the history windows),
1746 *     before re-evaluation.
1747 *
1748 * FINDING BEST STARTING MODULATION MODE:
1749 *
1750 * After working with a modulation mode for a "while" (and doing rate scaling),
1751 * the driver searches for a new initial mode in an attempt to improve
1752 * throughput.  The "while" is measured by numbers of attempted frames:
1753 *
1754 * For legacy mode, search for new mode after:
1755 *   480 successful frames, or 160 failed frames
1756 * For high-throughput modes (SISO or MIMO), search for new mode after:
1757 *   4500 successful frames, or 400 failed frames
1758 *
1759 * Mode switch possibilities are (3 for each mode):
1760 *
1761 * For legacy:
1762 *   Change antenna, try SISO (if HT association), try MIMO (if HT association)
1763 * For SISO:
1764 *   Change antenna, try MIMO, try shortened guard interval (SGI)
1765 * For MIMO:
1766 *   Try SISO antenna A, SISO antenna B, try shortened guard interval (SGI)
1767 *
1768 * When trying a new mode, use the same bit rate as the old/current mode when
1769 * trying antenna switches and shortened guard interval.  When switching to
1770 * SISO from MIMO or legacy, or to MIMO from SISO or legacy, use a rate
1771 * for which the expected throughput (under perfect conditions) is about the
1772 * same or slightly better than the actual measured throughput delivered by
1773 * the old/current mode.
1774 *
1775 * Actual throughput can be estimated by multiplying the expected throughput
1776 * by the success ratio (successful / attempted tx frames).  Frame size is
1777 * not considered in this calculation; it assumes that frame size will average
1778 * out to be fairly consistent over several samples.  The following are
1779 * metric values for expected throughput assuming 100% success ratio.
1780 * Only G band has support for CCK rates:
1781 *
1782 *           RATE:  1    2    5   11    6   9   12   18   24   36   48   54   60
1783 *
1784 *              G:  7   13   35   58   40  57   72   98  121  154  177  186  186
1785 *              A:  0    0    0    0   40  57   72   98  121  154  177  186  186
1786 *     SISO 20MHz:  0    0    0    0   42  42   76  102  124  159  183  193  202
1787 * SGI SISO 20MHz:  0    0    0    0   46  46   82  110  132  168  192  202  211
1788 *     MIMO 20MHz:  0    0    0    0   74  74  123  155  179  214  236  244  251
1789 * SGI MIMO 20MHz:  0    0    0    0   81  81  131  164  188  222  243  251  257
1790 *     SISO 40MHz:  0    0    0    0   77  77  127  160  184  220  242  250  257
1791 * SGI SISO 40MHz:  0    0    0    0   83  83  135  169  193  229  250  257  264
1792 *     MIMO 40MHz:  0    0    0    0  123 123  182  214  235  264  279  285  289
1793 * SGI MIMO 40MHz:  0    0    0    0  131 131  191  222  242  270  284  289  293
1794 *
1795 * After the new mode has been tried for a short while (minimum of 6 failed
1796 * frames or 8 successful frames), compare success ratio and actual throughput
1797 * estimate of the new mode with the old.  If either is better with the new
1798 * mode, continue to use the new mode.
1799 *
1800 * Continue comparing modes until all 3 possibilities have been tried.
1801 * If moving from legacy to HT, try all 3 possibilities from the new HT
1802 * mode.  After trying all 3, a best mode is found.  Continue to use this mode
1803 * for the longer "while" described above (e.g. 480 successful frames for
1804 * legacy), and then repeat the search process.
1805 *
1806 */
1807struct iwl_link_quality_cmd {
1808
1809	/* Index of destination/recipient station in uCode's station table */
1810	u8 sta_id;
1811	u8 reserved1;
1812	__le16 control;		/* not used */
1813	struct iwl_link_qual_general_params general_params;
1814	struct iwl_link_qual_agg_params agg_params;
1815
1816	/*
1817	 * Rate info; when using rate-scaling, Tx command's initial_rate_index
1818	 * specifies 1st Tx rate attempted, via index into this table.
1819	 * agn devices works its way through table when retrying Tx.
1820	 */
1821	struct {
1822		__le32 rate_n_flags;	/* RATE_MCS_*, IWL_RATE_* */
1823	} rs_table[LINK_QUAL_MAX_RETRY_NUM];
1824	__le32 reserved2;
1825} __packed;
1826
1827/*
1828 * BT configuration enable flags:
1829 *   bit 0 - 1: BT channel announcement enabled
1830 *           0: disable
1831 *   bit 1 - 1: priority of BT device enabled
1832 *           0: disable
1833 *   bit 2 - 1: BT 2 wire support enabled
1834 *           0: disable
1835 */
1836#define BT_COEX_DISABLE (0x0)
1837#define BT_ENABLE_CHANNEL_ANNOUNCE BIT(0)
1838#define BT_ENABLE_PRIORITY	   BIT(1)
1839#define BT_ENABLE_2_WIRE	   BIT(2)
1840
1841#define BT_COEX_DISABLE (0x0)
1842#define BT_COEX_ENABLE  (BT_ENABLE_CHANNEL_ANNOUNCE | BT_ENABLE_PRIORITY)
1843
1844#define BT_LEAD_TIME_MIN (0x0)
1845#define BT_LEAD_TIME_DEF (0x1E)
1846#define BT_LEAD_TIME_MAX (0xFF)
1847
1848#define BT_MAX_KILL_MIN (0x1)
1849#define BT_MAX_KILL_DEF (0x5)
1850#define BT_MAX_KILL_MAX (0xFF)
1851
1852#define BT_DURATION_LIMIT_DEF	625
1853#define BT_DURATION_LIMIT_MAX	1250
1854#define BT_DURATION_LIMIT_MIN	625
1855
1856#define BT_ON_THRESHOLD_DEF	4
1857#define BT_ON_THRESHOLD_MAX	1000
1858#define BT_ON_THRESHOLD_MIN	1
1859
1860#define BT_FRAG_THRESHOLD_DEF	0
1861#define BT_FRAG_THRESHOLD_MAX	0
1862#define BT_FRAG_THRESHOLD_MIN	0
1863
1864#define BT_AGG_THRESHOLD_DEF	1200
1865#define BT_AGG_THRESHOLD_MAX	8000
1866#define BT_AGG_THRESHOLD_MIN	400
1867
1868/*
1869 * REPLY_BT_CONFIG = 0x9b (command, has simple generic response)
1870 *
1871 * agn devices support hardware handshake with Bluetooth device on
1872 * same platform.  Bluetooth device alerts wireless device when it will Tx;
1873 * wireless device can delay or kill its own Tx to accommodate.
1874 */
1875struct iwl_bt_cmd {
1876	u8 flags;
1877	u8 lead_time;
1878	u8 max_kill;
1879	u8 reserved;
1880	__le32 kill_ack_mask;
1881	__le32 kill_cts_mask;
1882} __packed;
1883
1884#define IWLAGN_BT_FLAG_CHANNEL_INHIBITION	BIT(0)
1885
1886#define IWLAGN_BT_FLAG_COEX_MODE_MASK		(BIT(3)|BIT(4)|BIT(5))
1887#define IWLAGN_BT_FLAG_COEX_MODE_SHIFT		3
1888#define IWLAGN_BT_FLAG_COEX_MODE_DISABLED	0
1889#define IWLAGN_BT_FLAG_COEX_MODE_LEGACY_2W	1
1890#define IWLAGN_BT_FLAG_COEX_MODE_3W		2
1891#define IWLAGN_BT_FLAG_COEX_MODE_4W		3
1892
1893#define IWLAGN_BT_FLAG_UCODE_DEFAULT		BIT(6)
1894/* Disable Sync PSPoll on SCO/eSCO */
1895#define IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE	BIT(7)
1896
1897#define IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD	-75 /* dBm */
1898#define IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD	-65 /* dBm */
1899
1900#define IWLAGN_BT_PRIO_BOOST_MAX	0xFF
1901#define IWLAGN_BT_PRIO_BOOST_MIN	0x00
1902#define IWLAGN_BT_PRIO_BOOST_DEFAULT	0xF0
1903#define IWLAGN_BT_PRIO_BOOST_DEFAULT32	0xF0F0F0F0
1904
1905#define IWLAGN_BT_MAX_KILL_DEFAULT	5
1906
1907#define IWLAGN_BT3_T7_DEFAULT		1
1908
1909enum iwl_bt_kill_idx {
1910	IWL_BT_KILL_DEFAULT = 0,
1911	IWL_BT_KILL_OVERRIDE = 1,
1912	IWL_BT_KILL_REDUCE = 2,
1913};
1914
1915#define IWLAGN_BT_KILL_ACK_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1916#define IWLAGN_BT_KILL_CTS_MASK_DEFAULT	cpu_to_le32(0xffff0000)
1917#define IWLAGN_BT_KILL_ACK_CTS_MASK_SCO	cpu_to_le32(0xffffffff)
1918#define IWLAGN_BT_KILL_ACK_CTS_MASK_REDUCE	cpu_to_le32(0)
1919
1920#define IWLAGN_BT3_PRIO_SAMPLE_DEFAULT	2
1921
1922#define IWLAGN_BT3_T2_DEFAULT		0xc
1923
1924#define IWLAGN_BT_VALID_ENABLE_FLAGS	cpu_to_le16(BIT(0))
1925#define IWLAGN_BT_VALID_BOOST		cpu_to_le16(BIT(1))
1926#define IWLAGN_BT_VALID_MAX_KILL	cpu_to_le16(BIT(2))
1927#define IWLAGN_BT_VALID_3W_TIMERS	cpu_to_le16(BIT(3))
1928#define IWLAGN_BT_VALID_KILL_ACK_MASK	cpu_to_le16(BIT(4))
1929#define IWLAGN_BT_VALID_KILL_CTS_MASK	cpu_to_le16(BIT(5))
1930#define IWLAGN_BT_VALID_REDUCED_TX_PWR	cpu_to_le16(BIT(6))
1931#define IWLAGN_BT_VALID_3W_LUT		cpu_to_le16(BIT(7))
1932
1933#define IWLAGN_BT_ALL_VALID_MSK		(IWLAGN_BT_VALID_ENABLE_FLAGS | \
1934					IWLAGN_BT_VALID_BOOST | \
1935					IWLAGN_BT_VALID_MAX_KILL | \
1936					IWLAGN_BT_VALID_3W_TIMERS | \
1937					IWLAGN_BT_VALID_KILL_ACK_MASK | \
1938					IWLAGN_BT_VALID_KILL_CTS_MASK | \
1939					IWLAGN_BT_VALID_REDUCED_TX_PWR | \
1940					IWLAGN_BT_VALID_3W_LUT)
1941
1942#define IWLAGN_BT_REDUCED_TX_PWR	BIT(0)
1943
1944#define IWLAGN_BT_DECISION_LUT_SIZE	12
1945
1946struct iwl_basic_bt_cmd {
1947	u8 flags;
1948	u8 ledtime; /* unused */
1949	u8 max_kill;
1950	u8 bt3_timer_t7_value;
1951	__le32 kill_ack_mask;
1952	__le32 kill_cts_mask;
1953	u8 bt3_prio_sample_time;
1954	u8 bt3_timer_t2_value;
1955	__le16 bt4_reaction_time; /* unused */
1956	__le32 bt3_lookup_table[IWLAGN_BT_DECISION_LUT_SIZE];
1957	/*
1958	 * bit 0: use reduced tx power for control frame
1959	 * bit 1 - 7: reserved
1960	 */
1961	u8 reduce_txpower;
1962	u8 reserved;
1963	__le16 valid;
1964};
1965
1966struct iwl_bt_cmd_v1 {
1967	struct iwl_basic_bt_cmd basic;
1968	u8 prio_boost;
1969	/*
1970	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1971	 * if configure the following patterns
1972	 */
1973	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1974	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1975};
1976
1977struct iwl_bt_cmd_v2 {
1978	struct iwl_basic_bt_cmd basic;
1979	__le32 prio_boost;
1980	/*
1981	 * set IWLAGN_BT_VALID_BOOST to "1" in "valid" bitmask
1982	 * if configure the following patterns
1983	 */
1984	u8 reserved;
1985	u8 tx_prio_boost;	/* SW boost of WiFi tx priority */
1986	__le16 rx_prio_boost;	/* SW boost of WiFi rx priority */
1987};
1988
1989#define IWLAGN_BT_SCO_ACTIVE	cpu_to_le32(BIT(0))
1990
1991struct iwlagn_bt_sco_cmd {
1992	__le32 flags;
1993};
1994
1995/******************************************************************************
1996 * (6)
1997 * Spectrum Management (802.11h) Commands, Responses, Notifications:
1998 *
1999 *****************************************************************************/
2000
2001/*
2002 * Spectrum Management
2003 */
2004#define MEASUREMENT_FILTER_FLAG (RXON_FILTER_PROMISC_MSK         | \
2005				 RXON_FILTER_CTL2HOST_MSK        | \
2006				 RXON_FILTER_ACCEPT_GRP_MSK      | \
2007				 RXON_FILTER_DIS_DECRYPT_MSK     | \
2008				 RXON_FILTER_DIS_GRP_DECRYPT_MSK | \
2009				 RXON_FILTER_ASSOC_MSK           | \
2010				 RXON_FILTER_BCON_AWARE_MSK)
2011
2012struct iwl_measure_channel {
2013	__le32 duration;	/* measurement duration in extended beacon
2014				 * format */
2015	u8 channel;		/* channel to measure */
2016	u8 type;		/* see enum iwl_measure_type */
2017	__le16 reserved;
2018} __packed;
2019
2020/*
2021 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (command)
2022 */
2023struct iwl_spectrum_cmd {
2024	__le16 len;		/* number of bytes starting from token */
2025	u8 token;		/* token id */
2026	u8 id;			/* measurement id -- 0 or 1 */
2027	u8 origin;		/* 0 = TGh, 1 = other, 2 = TGk */
2028	u8 periodic;		/* 1 = periodic */
2029	__le16 path_loss_timeout;
2030	__le32 start_time;	/* start time in extended beacon format */
2031	__le32 reserved2;
2032	__le32 flags;		/* rxon flags */
2033	__le32 filter_flags;	/* rxon filter flags */
2034	__le16 channel_count;	/* minimum 1, maximum 10 */
2035	__le16 reserved3;
2036	struct iwl_measure_channel channels[10];
2037} __packed;
2038
2039/*
2040 * REPLY_SPECTRUM_MEASUREMENT_CMD = 0x74 (response)
2041 */
2042struct iwl_spectrum_resp {
2043	u8 token;
2044	u8 id;			/* id of the prior command replaced, or 0xff */
2045	__le16 status;		/* 0 - command will be handled
2046				 * 1 - cannot handle (conflicts with another
2047				 *     measurement) */
2048} __packed;
2049
2050enum iwl_measurement_state {
2051	IWL_MEASUREMENT_START = 0,
2052	IWL_MEASUREMENT_STOP = 1,
2053};
2054
2055enum iwl_measurement_status {
2056	IWL_MEASUREMENT_OK = 0,
2057	IWL_MEASUREMENT_CONCURRENT = 1,
2058	IWL_MEASUREMENT_CSA_CONFLICT = 2,
2059	IWL_MEASUREMENT_TGH_CONFLICT = 3,
2060	/* 4-5 reserved */
2061	IWL_MEASUREMENT_STOPPED = 6,
2062	IWL_MEASUREMENT_TIMEOUT = 7,
2063	IWL_MEASUREMENT_PERIODIC_FAILED = 8,
2064};
2065
2066#define NUM_ELEMENTS_IN_HISTOGRAM 8
2067
2068struct iwl_measurement_histogram {
2069	__le32 ofdm[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 0.8usec counts */
2070	__le32 cck[NUM_ELEMENTS_IN_HISTOGRAM];	/* in 1usec counts */
2071} __packed;
2072
2073/* clear channel availability counters */
2074struct iwl_measurement_cca_counters {
2075	__le32 ofdm;
2076	__le32 cck;
2077} __packed;
2078
2079enum iwl_measure_type {
2080	IWL_MEASURE_BASIC = (1 << 0),
2081	IWL_MEASURE_CHANNEL_LOAD = (1 << 1),
2082	IWL_MEASURE_HISTOGRAM_RPI = (1 << 2),
2083	IWL_MEASURE_HISTOGRAM_NOISE = (1 << 3),
2084	IWL_MEASURE_FRAME = (1 << 4),
2085	/* bits 5:6 are reserved */
2086	IWL_MEASURE_IDLE = (1 << 7),
2087};
2088
2089/*
2090 * SPECTRUM_MEASURE_NOTIFICATION = 0x75 (notification only, not a command)
2091 */
2092struct iwl_spectrum_notification {
2093	u8 id;			/* measurement id -- 0 or 1 */
2094	u8 token;
2095	u8 channel_index;	/* index in measurement channel list */
2096	u8 state;		/* 0 - start, 1 - stop */
2097	__le32 start_time;	/* lower 32-bits of TSF */
2098	u8 band;		/* 0 - 5.2GHz, 1 - 2.4GHz */
2099	u8 channel;
2100	u8 type;		/* see enum iwl_measurement_type */
2101	u8 reserved1;
2102	/* NOTE:  cca_ofdm, cca_cck, basic_type, and histogram are only only
2103	 * valid if applicable for measurement type requested. */
2104	__le32 cca_ofdm;	/* cca fraction time in 40Mhz clock periods */
2105	__le32 cca_cck;		/* cca fraction time in 44Mhz clock periods */
2106	__le32 cca_time;	/* channel load time in usecs */
2107	u8 basic_type;		/* 0 - bss, 1 - ofdm preamble, 2 -
2108				 * unidentified */
2109	u8 reserved2[3];
2110	struct iwl_measurement_histogram histogram;
2111	__le32 stop_time;	/* lower 32-bits of TSF */
2112	__le32 status;		/* see iwl_measurement_status */
2113} __packed;
2114
2115/******************************************************************************
2116 * (7)
2117 * Power Management Commands, Responses, Notifications:
2118 *
2119 *****************************************************************************/
2120
2121/**
2122 * struct iwl_powertable_cmd - Power Table Command
2123 * @flags: See below:
2124 *
2125 * POWER_TABLE_CMD = 0x77 (command, has simple generic response)
2126 *
2127 * PM allow:
2128 *   bit 0 - '0' Driver not allow power management
2129 *           '1' Driver allow PM (use rest of parameters)
2130 *
2131 * uCode send sleep notifications:
2132 *   bit 1 - '0' Don't send sleep notification
2133 *           '1' send sleep notification (SEND_PM_NOTIFICATION)
2134 *
2135 * Sleep over DTIM
2136 *   bit 2 - '0' PM have to walk up every DTIM
2137 *           '1' PM could sleep over DTIM till listen Interval.
2138 *
2139 * PCI power managed
2140 *   bit 3 - '0' (PCI_CFG_LINK_CTRL & 0x1)
2141 *           '1' !(PCI_CFG_LINK_CTRL & 0x1)
2142 *
2143 * Fast PD
2144 *   bit 4 - '1' Put radio to sleep when receiving frame for others
2145 *
2146 * Force sleep Modes
2147 *   bit 31/30- '00' use both mac/xtal sleeps
2148 *              '01' force Mac sleep
2149 *              '10' force xtal sleep
2150 *              '11' Illegal set
2151 *
2152 * NOTE: if sleep_interval[SLEEP_INTRVL_TABLE_SIZE-1] > DTIM period then
2153 * ucode assume sleep over DTIM is allowed and we don't need to wake up
2154 * for every DTIM.
2155 */
2156#define IWL_POWER_VEC_SIZE 5
2157
2158#define IWL_POWER_DRIVER_ALLOW_SLEEP_MSK	cpu_to_le16(BIT(0))
2159#define IWL_POWER_POWER_SAVE_ENA_MSK		cpu_to_le16(BIT(0))
2160#define IWL_POWER_POWER_MANAGEMENT_ENA_MSK	cpu_to_le16(BIT(1))
2161#define IWL_POWER_SLEEP_OVER_DTIM_MSK		cpu_to_le16(BIT(2))
2162#define IWL_POWER_PCI_PM_MSK			cpu_to_le16(BIT(3))
2163#define IWL_POWER_FAST_PD			cpu_to_le16(BIT(4))
2164#define IWL_POWER_BEACON_FILTERING		cpu_to_le16(BIT(5))
2165#define IWL_POWER_SHADOW_REG_ENA		cpu_to_le16(BIT(6))
2166#define IWL_POWER_CT_KILL_SET			cpu_to_le16(BIT(7))
2167#define IWL_POWER_BT_SCO_ENA			cpu_to_le16(BIT(8))
2168#define IWL_POWER_ADVANCE_PM_ENA_MSK		cpu_to_le16(BIT(9))
2169
2170struct iwl_powertable_cmd {
2171	__le16 flags;
2172	u8 keep_alive_seconds;
2173	u8 debug_flags;
2174	__le32 rx_data_timeout;
2175	__le32 tx_data_timeout;
2176	__le32 sleep_interval[IWL_POWER_VEC_SIZE];
2177	__le32 keep_alive_beacons;
2178} __packed;
2179
2180/*
2181 * PM_SLEEP_NOTIFICATION = 0x7A (notification only, not a command)
2182 * all devices identical.
2183 */
2184struct iwl_sleep_notification {
2185	u8 pm_sleep_mode;
2186	u8 pm_wakeup_src;
2187	__le16 reserved;
2188	__le32 sleep_time;
2189	__le32 tsf_low;
2190	__le32 bcon_timer;
2191} __packed;
2192
2193/* Sleep states.  all devices identical. */
2194enum {
2195	IWL_PM_NO_SLEEP = 0,
2196	IWL_PM_SLP_MAC = 1,
2197	IWL_PM_SLP_FULL_MAC_UNASSOCIATE = 2,
2198	IWL_PM_SLP_FULL_MAC_CARD_STATE = 3,
2199	IWL_PM_SLP_PHY = 4,
2200	IWL_PM_SLP_REPENT = 5,
2201	IWL_PM_WAKEUP_BY_TIMER = 6,
2202	IWL_PM_WAKEUP_BY_DRIVER = 7,
2203	IWL_PM_WAKEUP_BY_RFKILL = 8,
2204	/* 3 reserved */
2205	IWL_PM_NUM_OF_MODES = 12,
2206};
2207
2208/*
2209 * REPLY_CARD_STATE_CMD = 0xa0 (command, has simple generic response)
2210 */
2211#define CARD_STATE_CMD_DISABLE 0x00	/* Put card to sleep */
2212#define CARD_STATE_CMD_ENABLE  0x01	/* Wake up card */
2213#define CARD_STATE_CMD_HALT    0x02	/* Power down permanently */
2214struct iwl_card_state_cmd {
2215	__le32 status;		/* CARD_STATE_CMD_* request new power state */
2216} __packed;
2217
2218/*
2219 * CARD_STATE_NOTIFICATION = 0xa1 (notification only, not a command)
2220 */
2221struct iwl_card_state_notif {
2222	__le32 flags;
2223} __packed;
2224
2225#define HW_CARD_DISABLED   0x01
2226#define SW_CARD_DISABLED   0x02
2227#define CT_CARD_DISABLED   0x04
2228#define RXON_CARD_DISABLED 0x10
2229
2230struct iwl_ct_kill_config {
2231	__le32   reserved;
2232	__le32   critical_temperature_M;
2233	__le32   critical_temperature_R;
2234}  __packed;
2235
2236/* 1000, and 6x00 */
2237struct iwl_ct_kill_throttling_config {
2238	__le32   critical_temperature_exit;
2239	__le32   reserved;
2240	__le32   critical_temperature_enter;
2241}  __packed;
2242
2243/******************************************************************************
2244 * (8)
2245 * Scan Commands, Responses, Notifications:
2246 *
2247 *****************************************************************************/
2248
2249#define SCAN_CHANNEL_TYPE_PASSIVE cpu_to_le32(0)
2250#define SCAN_CHANNEL_TYPE_ACTIVE  cpu_to_le32(1)
2251
2252/**
2253 * struct iwl_scan_channel - entry in REPLY_SCAN_CMD channel table
2254 *
2255 * One for each channel in the scan list.
2256 * Each channel can independently select:
2257 * 1)  SSID for directed active scans
2258 * 2)  Txpower setting (for rate specified within Tx command)
2259 * 3)  How long to stay on-channel (behavior may be modified by quiet_time,
2260 *     quiet_plcp_th, good_CRC_th)
2261 *
2262 * To avoid uCode errors, make sure the following are true (see comments
2263 * under struct iwl_scan_cmd about max_out_time and quiet_time):
2264 * 1)  If using passive_dwell (i.e. passive_dwell != 0):
2265 *     active_dwell <= passive_dwell (< max_out_time if max_out_time != 0)
2266 * 2)  quiet_time <= active_dwell
2267 * 3)  If restricting off-channel time (i.e. max_out_time !=0):
2268 *     passive_dwell < max_out_time
2269 *     active_dwell < max_out_time
2270 */
2271
2272struct iwl_scan_channel {
2273	/*
2274	 * type is defined as:
2275	 * 0:0 1 = active, 0 = passive
2276	 * 1:20 SSID direct bit map; if a bit is set, then corresponding
2277	 *     SSID IE is transmitted in probe request.
2278	 * 21:31 reserved
2279	 */
2280	__le32 type;
2281	__le16 channel;	/* band is selected by iwl_scan_cmd "flags" field */
2282	u8 tx_gain;		/* gain for analog radio */
2283	u8 dsp_atten;		/* gain for DSP */
2284	__le16 active_dwell;	/* in 1024-uSec TU (time units), typ 5-50 */
2285	__le16 passive_dwell;	/* in 1024-uSec TU (time units), typ 20-500 */
2286} __packed;
2287
2288/* set number of direct probes __le32 type */
2289#define IWL_SCAN_PROBE_MASK(n) 	cpu_to_le32((BIT(n) | (BIT(n) - BIT(1))))
2290
2291/**
2292 * struct iwl_ssid_ie - directed scan network information element
2293 *
2294 * Up to 20 of these may appear in REPLY_SCAN_CMD,
2295 * selected by "type" bit field in struct iwl_scan_channel;
2296 * each channel may select different ssids from among the 20 entries.
2297 * SSID IEs get transmitted in reverse order of entry.
2298 */
2299struct iwl_ssid_ie {
2300	u8 id;
2301	u8 len;
2302	u8 ssid[32];
2303} __packed;
2304
2305#define PROBE_OPTION_MAX		20
2306#define TX_CMD_LIFE_TIME_INFINITE	cpu_to_le32(0xFFFFFFFF)
2307#define IWL_GOOD_CRC_TH_DISABLED	0
2308#define IWL_GOOD_CRC_TH_DEFAULT		cpu_to_le16(1)
2309#define IWL_GOOD_CRC_TH_NEVER		cpu_to_le16(0xffff)
2310#define IWL_MAX_CMD_SIZE 4096
2311
2312/*
2313 * REPLY_SCAN_CMD = 0x80 (command)
2314 *
2315 * The hardware scan command is very powerful; the driver can set it up to
2316 * maintain (relatively) normal network traffic while doing a scan in the
2317 * background.  The max_out_time and suspend_time control the ratio of how
2318 * long the device stays on an associated network channel ("service channel")
2319 * vs. how long it's away from the service channel, i.e. tuned to other channels
2320 * for scanning.
2321 *
2322 * max_out_time is the max time off-channel (in usec), and suspend_time
2323 * is how long (in "extended beacon" format) that the scan is "suspended"
2324 * after returning to the service channel.  That is, suspend_time is the
2325 * time that we stay on the service channel, doing normal work, between
2326 * scan segments.  The driver may set these parameters differently to support
2327 * scanning when associated vs. not associated, and light vs. heavy traffic
2328 * loads when associated.
2329 *
2330 * After receiving this command, the device's scan engine does the following;
2331 *
2332 * 1)  Sends SCAN_START notification to driver
2333 * 2)  Checks to see if it has time to do scan for one channel
2334 * 3)  Sends NULL packet, with power-save (PS) bit set to 1,
2335 *     to tell AP that we're going off-channel
2336 * 4)  Tunes to first channel in scan list, does active or passive scan
2337 * 5)  Sends SCAN_RESULT notification to driver
2338 * 6)  Checks to see if it has time to do scan on *next* channel in list
2339 * 7)  Repeats 4-6 until it no longer has time to scan the next channel
2340 *     before max_out_time expires
2341 * 8)  Returns to service channel
2342 * 9)  Sends NULL packet with PS=0 to tell AP that we're back
2343 * 10) Stays on service channel until suspend_time expires
2344 * 11) Repeats entire process 2-10 until list is complete
2345 * 12) Sends SCAN_COMPLETE notification
2346 *
2347 * For fast, efficient scans, the scan command also has support for staying on
2348 * a channel for just a short time, if doing active scanning and getting no
2349 * responses to the transmitted probe request.  This time is controlled by
2350 * quiet_time, and the number of received packets below which a channel is
2351 * considered "quiet" is controlled by quiet_plcp_threshold.
2352 *
2353 * For active scanning on channels that have regulatory restrictions against
2354 * blindly transmitting, the scan can listen before transmitting, to make sure
2355 * that there is already legitimate activity on the channel.  If enough
2356 * packets are cleanly received on the channel (controlled by good_CRC_th,
2357 * typical value 1), the scan engine starts transmitting probe requests.
2358 *
2359 * Driver must use separate scan commands for 2.4 vs. 5 GHz bands.
2360 *
2361 * To avoid uCode errors, see timing restrictions described under
2362 * struct iwl_scan_channel.
2363 */
2364
2365enum iwl_scan_flags {
2366	/* BIT(0) currently unused */
2367	IWL_SCAN_FLAGS_ACTION_FRAME_TX	= BIT(1),
2368	/* bits 2-7 reserved */
2369};
2370
2371struct iwl_scan_cmd {
2372	__le16 len;
2373	u8 scan_flags;		/* scan flags: see enum iwl_scan_flags */
2374	u8 channel_count;	/* # channels in channel list */
2375	__le16 quiet_time;	/* dwell only this # millisecs on quiet channel
2376				 * (only for active scan) */
2377	__le16 quiet_plcp_th;	/* quiet chnl is < this # pkts (typ. 1) */
2378	__le16 good_CRC_th;	/* passive -> active promotion threshold */
2379	__le16 rx_chain;	/* RXON_RX_CHAIN_* */
2380	__le32 max_out_time;	/* max usec to be away from associated (service)
2381				 * channel */
2382	__le32 suspend_time;	/* pause scan this long (in "extended beacon
2383				 * format") when returning to service chnl:
2384				 */
2385	__le32 flags;		/* RXON_FLG_* */
2386	__le32 filter_flags;	/* RXON_FILTER_* */
2387
2388	/* For active scans (set to all-0s for passive scans).
2389	 * Does not include payload.  Must specify Tx rate; no rate scaling. */
2390	struct iwl_tx_cmd tx_cmd;
2391
2392	/* For directed active scans (set to all-0s otherwise) */
2393	struct iwl_ssid_ie direct_scan[PROBE_OPTION_MAX];
2394
2395	/*
2396	 * Probe request frame, followed by channel list.
2397	 *
2398	 * Size of probe request frame is specified by byte count in tx_cmd.
2399	 * Channel list follows immediately after probe request frame.
2400	 * Number of channels in list is specified by channel_count.
2401	 * Each channel in list is of type:
2402	 *
2403	 * struct iwl_scan_channel channels[0];
2404	 *
2405	 * NOTE:  Only one band of channels can be scanned per pass.  You
2406	 * must not mix 2.4GHz channels and 5.2GHz channels, and you must wait
2407	 * for one scan to complete (i.e. receive SCAN_COMPLETE_NOTIFICATION)
2408	 * before requesting another scan.
2409	 */
2410	u8 data[0];
2411} __packed;
2412
2413/* Can abort will notify by complete notification with abort status. */
2414#define CAN_ABORT_STATUS	cpu_to_le32(0x1)
2415/* complete notification statuses */
2416#define ABORT_STATUS            0x2
2417
2418/*
2419 * REPLY_SCAN_CMD = 0x80 (response)
2420 */
2421struct iwl_scanreq_notification {
2422	__le32 status;		/* 1: okay, 2: cannot fulfill request */
2423} __packed;
2424
2425/*
2426 * SCAN_START_NOTIFICATION = 0x82 (notification only, not a command)
2427 */
2428struct iwl_scanstart_notification {
2429	__le32 tsf_low;
2430	__le32 tsf_high;
2431	__le32 beacon_timer;
2432	u8 channel;
2433	u8 band;
2434	u8 reserved[2];
2435	__le32 status;
2436} __packed;
2437
2438#define  SCAN_OWNER_STATUS 0x1
2439#define  MEASURE_OWNER_STATUS 0x2
2440
2441#define IWL_PROBE_STATUS_OK		0
2442#define IWL_PROBE_STATUS_TX_FAILED	BIT(0)
2443/* error statuses combined with TX_FAILED */
2444#define IWL_PROBE_STATUS_FAIL_TTL	BIT(1)
2445#define IWL_PROBE_STATUS_FAIL_BT	BIT(2)
2446
2447#define NUMBER_OF_STATISTICS 1	/* first __le32 is good CRC */
2448/*
2449 * SCAN_RESULTS_NOTIFICATION = 0x83 (notification only, not a command)
2450 */
2451struct iwl_scanresults_notification {
2452	u8 channel;
2453	u8 band;
2454	u8 probe_status;
2455	u8 num_probe_not_sent; /* not enough time to send */
2456	__le32 tsf_low;
2457	__le32 tsf_high;
2458	__le32 statistics[NUMBER_OF_STATISTICS];
2459} __packed;
2460
2461/*
2462 * SCAN_COMPLETE_NOTIFICATION = 0x84 (notification only, not a command)
2463 */
2464struct iwl_scancomplete_notification {
2465	u8 scanned_channels;
2466	u8 status;
2467	u8 bt_status;	/* BT On/Off status */
2468	u8 last_channel;
2469	__le32 tsf_low;
2470	__le32 tsf_high;
2471} __packed;
2472
2473
2474/******************************************************************************
2475 * (9)
2476 * IBSS/AP Commands and Notifications:
2477 *
2478 *****************************************************************************/
2479
2480enum iwl_ibss_manager {
2481	IWL_NOT_IBSS_MANAGER = 0,
2482	IWL_IBSS_MANAGER = 1,
2483};
2484
2485/*
2486 * BEACON_NOTIFICATION = 0x90 (notification only, not a command)
2487 */
2488
2489struct iwlagn_beacon_notif {
2490	struct iwlagn_tx_resp beacon_notify_hdr;
2491	__le32 low_tsf;
2492	__le32 high_tsf;
2493	__le32 ibss_mgr_status;
2494} __packed;
2495
2496/*
2497 * REPLY_TX_BEACON = 0x91 (command, has simple generic response)
2498 */
2499
2500struct iwl_tx_beacon_cmd {
2501	struct iwl_tx_cmd tx;
2502	__le16 tim_idx;
2503	u8 tim_size;
2504	u8 reserved1;
2505	struct ieee80211_hdr frame[0];	/* beacon frame */
2506} __packed;
2507
2508/******************************************************************************
2509 * (10)
2510 * Statistics Commands and Notifications:
2511 *
2512 *****************************************************************************/
2513
2514#define IWL_TEMP_CONVERT 260
2515
2516#define SUP_RATE_11A_MAX_NUM_CHANNELS  8
2517#define SUP_RATE_11B_MAX_NUM_CHANNELS  4
2518#define SUP_RATE_11G_MAX_NUM_CHANNELS  12
2519
2520/* Used for passing to driver number of successes and failures per rate */
2521struct rate_histogram {
2522	union {
2523		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2524		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2525		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2526	} success;
2527	union {
2528		__le32 a[SUP_RATE_11A_MAX_NUM_CHANNELS];
2529		__le32 b[SUP_RATE_11B_MAX_NUM_CHANNELS];
2530		__le32 g[SUP_RATE_11G_MAX_NUM_CHANNELS];
2531	} failed;
2532} __packed;
2533
2534/* statistics command response */
2535
2536struct statistics_dbg {
2537	__le32 burst_check;
2538	__le32 burst_count;
2539	__le32 wait_for_silence_timeout_cnt;
2540	__le32 reserved[3];
2541} __packed;
2542
2543struct statistics_rx_phy {
2544	__le32 ina_cnt;
2545	__le32 fina_cnt;
2546	__le32 plcp_err;
2547	__le32 crc32_err;
2548	__le32 overrun_err;
2549	__le32 early_overrun_err;
2550	__le32 crc32_good;
2551	__le32 false_alarm_cnt;
2552	__le32 fina_sync_err_cnt;
2553	__le32 sfd_timeout;
2554	__le32 fina_timeout;
2555	__le32 unresponded_rts;
2556	__le32 rxe_frame_limit_overrun;
2557	__le32 sent_ack_cnt;
2558	__le32 sent_cts_cnt;
2559	__le32 sent_ba_rsp_cnt;
2560	__le32 dsp_self_kill;
2561	__le32 mh_format_err;
2562	__le32 re_acq_main_rssi_sum;
2563	__le32 reserved3;
2564} __packed;
2565
2566struct statistics_rx_ht_phy {
2567	__le32 plcp_err;
2568	__le32 overrun_err;
2569	__le32 early_overrun_err;
2570	__le32 crc32_good;
2571	__le32 crc32_err;
2572	__le32 mh_format_err;
2573	__le32 agg_crc32_good;
2574	__le32 agg_mpdu_cnt;
2575	__le32 agg_cnt;
2576	__le32 unsupport_mcs;
2577} __packed;
2578
2579#define INTERFERENCE_DATA_AVAILABLE      cpu_to_le32(1)
2580
2581struct statistics_rx_non_phy {
2582	__le32 bogus_cts;	/* CTS received when not expecting CTS */
2583	__le32 bogus_ack;	/* ACK received when not expecting ACK */
2584	__le32 non_bssid_frames;	/* number of frames with BSSID that
2585					 * doesn't belong to the STA BSSID */
2586	__le32 filtered_frames;	/* count frames that were dumped in the
2587				 * filtering process */
2588	__le32 non_channel_beacons;	/* beacons with our bss id but not on
2589					 * our serving channel */
2590	__le32 channel_beacons;	/* beacons with our bss id and in our
2591				 * serving channel */
2592	__le32 num_missed_bcon;	/* number of missed beacons */
2593	__le32 adc_rx_saturation_time;	/* count in 0.8us units the time the
2594					 * ADC was in saturation */
2595	__le32 ina_detection_search_time;/* total time (in 0.8us) searched
2596					  * for INA */
2597	__le32 beacon_silence_rssi_a;	/* RSSI silence after beacon frame */
2598	__le32 beacon_silence_rssi_b;	/* RSSI silence after beacon frame */
2599	__le32 beacon_silence_rssi_c;	/* RSSI silence after beacon frame */
2600	__le32 interference_data_flag;	/* flag for interference data
2601					 * availability. 1 when data is
2602					 * available. */
2603	__le32 channel_load;		/* counts RX Enable time in uSec */
2604	__le32 dsp_false_alarms;	/* DSP false alarm (both OFDM
2605					 * and CCK) counter */
2606	__le32 beacon_rssi_a;
2607	__le32 beacon_rssi_b;
2608	__le32 beacon_rssi_c;
2609	__le32 beacon_energy_a;
2610	__le32 beacon_energy_b;
2611	__le32 beacon_energy_c;
2612} __packed;
2613
2614struct statistics_rx_non_phy_bt {
2615	struct statistics_rx_non_phy common;
2616	/* additional stats for bt */
2617	__le32 num_bt_kills;
2618	__le32 reserved[2];
2619} __packed;
2620
2621struct statistics_rx {
2622	struct statistics_rx_phy ofdm;
2623	struct statistics_rx_phy cck;
2624	struct statistics_rx_non_phy general;
2625	struct statistics_rx_ht_phy ofdm_ht;
2626} __packed;
2627
2628struct statistics_rx_bt {
2629	struct statistics_rx_phy ofdm;
2630	struct statistics_rx_phy cck;
2631	struct statistics_rx_non_phy_bt general;
2632	struct statistics_rx_ht_phy ofdm_ht;
2633} __packed;
2634
2635/**
2636 * struct statistics_tx_power - current tx power
2637 *
2638 * @ant_a: current tx power on chain a in 1/2 dB step
2639 * @ant_b: current tx power on chain b in 1/2 dB step
2640 * @ant_c: current tx power on chain c in 1/2 dB step
2641 */
2642struct statistics_tx_power {
2643	u8 ant_a;
2644	u8 ant_b;
2645	u8 ant_c;
2646	u8 reserved;
2647} __packed;
2648
2649struct statistics_tx_non_phy_agg {
2650	__le32 ba_timeout;
2651	__le32 ba_reschedule_frames;
2652	__le32 scd_query_agg_frame_cnt;
2653	__le32 scd_query_no_agg;
2654	__le32 scd_query_agg;
2655	__le32 scd_query_mismatch;
2656	__le32 frame_not_ready;
2657	__le32 underrun;
2658	__le32 bt_prio_kill;
2659	__le32 rx_ba_rsp_cnt;
2660} __packed;
2661
2662struct statistics_tx {
2663	__le32 preamble_cnt;
2664	__le32 rx_detected_cnt;
2665	__le32 bt_prio_defer_cnt;
2666	__le32 bt_prio_kill_cnt;
2667	__le32 few_bytes_cnt;
2668	__le32 cts_timeout;
2669	__le32 ack_timeout;
2670	__le32 expected_ack_cnt;
2671	__le32 actual_ack_cnt;
2672	__le32 dump_msdu_cnt;
2673	__le32 burst_abort_next_frame_mismatch_cnt;
2674	__le32 burst_abort_missing_next_frame_cnt;
2675	__le32 cts_timeout_collision;
2676	__le32 ack_or_ba_timeout_collision;
2677	struct statistics_tx_non_phy_agg agg;
2678	/*
2679	 * "tx_power" are optional parameters provided by uCode,
2680	 * 6000 series is the only device provide the information,
2681	 * Those are reserved fields for all the other devices
2682	 */
2683	struct statistics_tx_power tx_power;
2684	__le32 reserved1;
2685} __packed;
2686
2687
2688struct statistics_div {
2689	__le32 tx_on_a;
2690	__le32 tx_on_b;
2691	__le32 exec_time;
2692	__le32 probe_time;
2693	__le32 reserved1;
2694	__le32 reserved2;
2695} __packed;
2696
2697struct statistics_general_common {
2698	__le32 temperature;   /* radio temperature */
2699	__le32 temperature_m; /* radio voltage */
2700	struct statistics_dbg dbg;
2701	__le32 sleep_time;
2702	__le32 slots_out;
2703	__le32 slots_idle;
2704	__le32 ttl_timestamp;
2705	struct statistics_div div;
2706	__le32 rx_enable_counter;
2707	/*
2708	 * num_of_sos_states:
2709	 *  count the number of times we have to re-tune
2710	 *  in order to get out of bad PHY status
2711	 */
2712	__le32 num_of_sos_states;
2713} __packed;
2714
2715struct statistics_bt_activity {
2716	/* Tx statistics */
2717	__le32 hi_priority_tx_req_cnt;
2718	__le32 hi_priority_tx_denied_cnt;
2719	__le32 lo_priority_tx_req_cnt;
2720	__le32 lo_priority_tx_denied_cnt;
2721	/* Rx statistics */
2722	__le32 hi_priority_rx_req_cnt;
2723	__le32 hi_priority_rx_denied_cnt;
2724	__le32 lo_priority_rx_req_cnt;
2725	__le32 lo_priority_rx_denied_cnt;
2726} __packed;
2727
2728struct statistics_general {
2729	struct statistics_general_common common;
2730	__le32 reserved2;
2731	__le32 reserved3;
2732} __packed;
2733
2734struct statistics_general_bt {
2735	struct statistics_general_common common;
2736	struct statistics_bt_activity activity;
2737	__le32 reserved2;
2738	__le32 reserved3;
2739} __packed;
2740
2741#define UCODE_STATISTICS_CLEAR_MSK		(0x1 << 0)
2742#define UCODE_STATISTICS_FREQUENCY_MSK		(0x1 << 1)
2743#define UCODE_STATISTICS_NARROW_BAND_MSK	(0x1 << 2)
2744
2745/*
2746 * REPLY_STATISTICS_CMD = 0x9c,
2747 * all devices identical.
2748 *
2749 * This command triggers an immediate response containing uCode statistics.
2750 * The response is in the same format as STATISTICS_NOTIFICATION 0x9d, below.
2751 *
2752 * If the CLEAR_STATS configuration flag is set, uCode will clear its
2753 * internal copy of the statistics (counters) after issuing the response.
2754 * This flag does not affect STATISTICS_NOTIFICATIONs after beacons (see below).
2755 *
2756 * If the DISABLE_NOTIF configuration flag is set, uCode will not issue
2757 * STATISTICS_NOTIFICATIONs after received beacons (see below).  This flag
2758 * does not affect the response to the REPLY_STATISTICS_CMD 0x9c itself.
2759 */
2760#define IWL_STATS_CONF_CLEAR_STATS cpu_to_le32(0x1)	/* see above */
2761#define IWL_STATS_CONF_DISABLE_NOTIF cpu_to_le32(0x2)/* see above */
2762struct iwl_statistics_cmd {
2763	__le32 configuration_flags;	/* IWL_STATS_CONF_* */
2764} __packed;
2765
2766/*
2767 * STATISTICS_NOTIFICATION = 0x9d (notification only, not a command)
2768 *
2769 * By default, uCode issues this notification after receiving a beacon
2770 * while associated.  To disable this behavior, set DISABLE_NOTIF flag in the
2771 * REPLY_STATISTICS_CMD 0x9c, above.
2772 *
2773 * Statistics counters continue to increment beacon after beacon, but are
2774 * cleared when changing channels or when driver issues REPLY_STATISTICS_CMD
2775 * 0x9c with CLEAR_STATS bit set (see above).
2776 *
2777 * uCode also issues this notification during scans.  uCode clears statistics
2778 * appropriately so that each notification contains statistics for only the
2779 * one channel that has just been scanned.
2780 */
2781#define STATISTICS_REPLY_FLG_BAND_24G_MSK         cpu_to_le32(0x2)
2782#define STATISTICS_REPLY_FLG_HT40_MODE_MSK        cpu_to_le32(0x8)
2783
2784struct iwl_notif_statistics {
2785	__le32 flag;
2786	struct statistics_rx rx;
2787	struct statistics_tx tx;
2788	struct statistics_general general;
2789} __packed;
2790
2791struct iwl_bt_notif_statistics {
2792	__le32 flag;
2793	struct statistics_rx_bt rx;
2794	struct statistics_tx tx;
2795	struct statistics_general_bt general;
2796} __packed;
2797
2798/*
2799 * MISSED_BEACONS_NOTIFICATION = 0xa2 (notification only, not a command)
2800 *
2801 * uCode send MISSED_BEACONS_NOTIFICATION to driver when detect beacon missed
2802 * in regardless of how many missed beacons, which mean when driver receive the
2803 * notification, inside the command, it can find all the beacons information
2804 * which include number of total missed beacons, number of consecutive missed
2805 * beacons, number of beacons received and number of beacons expected to
2806 * receive.
2807 *
2808 * If uCode detected consecutive_missed_beacons > 5, it will reset the radio
2809 * in order to bring the radio/PHY back to working state; which has no relation
2810 * to when driver will perform sensitivity calibration.
2811 *
2812 * Driver should set it own missed_beacon_threshold to decide when to perform
2813 * sensitivity calibration based on number of consecutive missed beacons in
2814 * order to improve overall performance, especially in noisy environment.
2815 *
2816 */
2817
2818#define IWL_MISSED_BEACON_THRESHOLD_MIN	(1)
2819#define IWL_MISSED_BEACON_THRESHOLD_DEF	(5)
2820#define IWL_MISSED_BEACON_THRESHOLD_MAX	IWL_MISSED_BEACON_THRESHOLD_DEF
2821
2822struct iwl_missed_beacon_notif {
2823	__le32 consecutive_missed_beacons;
2824	__le32 total_missed_becons;
2825	__le32 num_expected_beacons;
2826	__le32 num_recvd_beacons;
2827} __packed;
2828
2829
2830/******************************************************************************
2831 * (11)
2832 * Rx Calibration Commands:
2833 *
2834 * With the uCode used for open source drivers, most Tx calibration (except
2835 * for Tx Power) and most Rx calibration is done by uCode during the
2836 * "initialize" phase of uCode boot.  Driver must calibrate only:
2837 *
2838 * 1)  Tx power (depends on temperature), described elsewhere
2839 * 2)  Receiver gain balance (optimize MIMO, and detect disconnected antennas)
2840 * 3)  Receiver sensitivity (to optimize signal detection)
2841 *
2842 *****************************************************************************/
2843
2844/**
2845 * SENSITIVITY_CMD = 0xa8 (command, has simple generic response)
2846 *
2847 * This command sets up the Rx signal detector for a sensitivity level that
2848 * is high enough to lock onto all signals within the associated network,
2849 * but low enough to ignore signals that are below a certain threshold, so as
2850 * not to have too many "false alarms".  False alarms are signals that the
2851 * Rx DSP tries to lock onto, but then discards after determining that they
2852 * are noise.
2853 *
2854 * The optimum number of false alarms is between 5 and 50 per 200 TUs
2855 * (200 * 1024 uSecs, i.e. 204.8 milliseconds) of actual Rx time (i.e.
2856 * time listening, not transmitting).  Driver must adjust sensitivity so that
2857 * the ratio of actual false alarms to actual Rx time falls within this range.
2858 *
2859 * While associated, uCode delivers STATISTICS_NOTIFICATIONs after each
2860 * received beacon.  These provide information to the driver to analyze the
2861 * sensitivity.  Don't analyze statistics that come in from scanning, or any
2862 * other non-associated-network source.  Pertinent statistics include:
2863 *
2864 * From "general" statistics (struct statistics_rx_non_phy):
2865 *
2866 * (beacon_energy_[abc] & 0x0FF00) >> 8 (unsigned, higher value is lower level)
2867 *   Measure of energy of desired signal.  Used for establishing a level
2868 *   below which the device does not detect signals.
2869 *
2870 * (beacon_silence_rssi_[abc] & 0x0FF00) >> 8 (unsigned, units in dB)
2871 *   Measure of background noise in silent period after beacon.
2872 *
2873 * channel_load
2874 *   uSecs of actual Rx time during beacon period (varies according to
2875 *   how much time was spent transmitting).
2876 *
2877 * From "cck" and "ofdm" statistics (struct statistics_rx_phy), separately:
2878 *
2879 * false_alarm_cnt
2880 *   Signal locks abandoned early (before phy-level header).
2881 *
2882 * plcp_err
2883 *   Signal locks abandoned late (during phy-level header).
2884 *
2885 * NOTE:  Both false_alarm_cnt and plcp_err increment monotonically from
2886 *        beacon to beacon, i.e. each value is an accumulation of all errors
2887 *        before and including the latest beacon.  Values will wrap around to 0
2888 *        after counting up to 2^32 - 1.  Driver must differentiate vs.
2889 *        previous beacon's values to determine # false alarms in the current
2890 *        beacon period.
2891 *
2892 * Total number of false alarms = false_alarms + plcp_errs
2893 *
2894 * For OFDM, adjust the following table entries in struct iwl_sensitivity_cmd
2895 * (notice that the start points for OFDM are at or close to settings for
2896 * maximum sensitivity):
2897 *
2898 *                                             START  /  MIN  /  MAX
2899 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          90   /   85  /  120
2900 *   HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX     170   /  170  /  210
2901 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX         105   /  105  /  140
2902 *   HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX     220   /  220  /  270
2903 *
2904 *   If actual rate of OFDM false alarms (+ plcp_errors) is too high
2905 *   (greater than 50 for each 204.8 msecs listening), reduce sensitivity
2906 *   by *adding* 1 to all 4 of the table entries above, up to the max for
2907 *   each entry.  Conversely, if false alarm rate is too low (less than 5
2908 *   for each 204.8 msecs listening), *subtract* 1 from each entry to
2909 *   increase sensitivity.
2910 *
2911 * For CCK sensitivity, keep track of the following:
2912 *
2913 *   1).  20-beacon history of maximum background noise, indicated by
2914 *        (beacon_silence_rssi_[abc] & 0x0FF00), units in dB, across the
2915 *        3 receivers.  For any given beacon, the "silence reference" is
2916 *        the maximum of last 60 samples (20 beacons * 3 receivers).
2917 *
2918 *   2).  10-beacon history of strongest signal level, as indicated
2919 *        by (beacon_energy_[abc] & 0x0FF00) >> 8, across the 3 receivers,
2920 *        i.e. the strength of the signal through the best receiver at the
2921 *        moment.  These measurements are "upside down", with lower values
2922 *        for stronger signals, so max energy will be *minimum* value.
2923 *
2924 *        Then for any given beacon, the driver must determine the *weakest*
2925 *        of the strongest signals; this is the minimum level that needs to be
2926 *        successfully detected, when using the best receiver at the moment.
2927 *        "Max cck energy" is the maximum (higher value means lower energy!)
2928 *        of the last 10 minima.  Once this is determined, driver must add
2929 *        a little margin by adding "6" to it.
2930 *
2931 *   3).  Number of consecutive beacon periods with too few false alarms.
2932 *        Reset this to 0 at the first beacon period that falls within the
2933 *        "good" range (5 to 50 false alarms per 204.8 milliseconds rx).
2934 *
2935 * Then, adjust the following CCK table entries in struct iwl_sensitivity_cmd
2936 * (notice that the start points for CCK are at maximum sensitivity):
2937 *
2938 *                                             START  /  MIN  /  MAX
2939 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX         125   /  125  /  200
2940 *   HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX     200   /  200  /  400
2941 *   HD_MIN_ENERGY_CCK_DET_INDEX                100   /    0  /  100
2942 *
2943 *   If actual rate of CCK false alarms (+ plcp_errors) is too high
2944 *   (greater than 50 for each 204.8 msecs listening), method for reducing
2945 *   sensitivity is:
2946 *
2947 *   1)  *Add* 3 to value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2948 *       up to max 400.
2949 *
2950 *   2)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is < 160,
2951 *       sensitivity has been reduced a significant amount; bring it up to
2952 *       a moderate 161.  Otherwise, *add* 3, up to max 200.
2953 *
2954 *   3)  a)  If current value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX is > 160,
2955 *       sensitivity has been reduced only a moderate or small amount;
2956 *       *subtract* 2 from value in HD_MIN_ENERGY_CCK_DET_INDEX,
2957 *       down to min 0.  Otherwise (if gain has been significantly reduced),
2958 *       don't change the HD_MIN_ENERGY_CCK_DET_INDEX value.
2959 *
2960 *       b)  Save a snapshot of the "silence reference".
2961 *
2962 *   If actual rate of CCK false alarms (+ plcp_errors) is too low
2963 *   (less than 5 for each 204.8 msecs listening), method for increasing
2964 *   sensitivity is used only if:
2965 *
2966 *   1a)  Previous beacon did not have too many false alarms
2967 *   1b)  AND difference between previous "silence reference" and current
2968 *        "silence reference" (prev - current) is 2 or more,
2969 *   OR 2)  100 or more consecutive beacon periods have had rate of
2970 *          less than 5 false alarms per 204.8 milliseconds rx time.
2971 *
2972 *   Method for increasing sensitivity:
2973 *
2974 *   1)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX,
2975 *       down to min 125.
2976 *
2977 *   2)  *Subtract* 3 from value in HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX,
2978 *       down to min 200.
2979 *
2980 *   3)  *Add* 2 to value in HD_MIN_ENERGY_CCK_DET_INDEX, up to max 100.
2981 *
2982 *   If actual rate of CCK false alarms (+ plcp_errors) is within good range
2983 *   (between 5 and 50 for each 204.8 msecs listening):
2984 *
2985 *   1)  Save a snapshot of the silence reference.
2986 *
2987 *   2)  If previous beacon had too many CCK false alarms (+ plcp_errors),
2988 *       give some extra margin to energy threshold by *subtracting* 8
2989 *       from value in HD_MIN_ENERGY_CCK_DET_INDEX.
2990 *
2991 *   For all cases (too few, too many, good range), make sure that the CCK
2992 *   detection threshold (energy) is below the energy level for robust
2993 *   detection over the past 10 beacon periods, the "Max cck energy".
2994 *   Lower values mean higher energy; this means making sure that the value
2995 *   in HD_MIN_ENERGY_CCK_DET_INDEX is at or *above* "Max cck energy".
2996 *
2997 */
2998
2999/*
3000 * Table entries in SENSITIVITY_CMD (struct iwl_sensitivity_cmd)
3001 */
3002#define HD_TABLE_SIZE  (11)	/* number of entries */
3003#define HD_MIN_ENERGY_CCK_DET_INDEX                 (0)	/* table indexes */
3004#define HD_MIN_ENERGY_OFDM_DET_INDEX                (1)
3005#define HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX          (2)
3006#define HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX      (3)
3007#define HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX      (4)
3008#define HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX          (5)
3009#define HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX      (6)
3010#define HD_BARKER_CORR_TH_ADD_MIN_INDEX             (7)
3011#define HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX         (8)
3012#define HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX          (9)
3013#define HD_OFDM_ENERGY_TH_IN_INDEX                  (10)
3014
3015/*
3016 * Additional table entries in enhance SENSITIVITY_CMD
3017 */
3018#define HD_INA_NON_SQUARE_DET_OFDM_INDEX		(11)
3019#define HD_INA_NON_SQUARE_DET_CCK_INDEX			(12)
3020#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_INDEX		(13)
3021#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_INDEX		(14)
3022#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(15)
3023#define HD_OFDM_NON_SQUARE_DET_SLOPE_INDEX		(16)
3024#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_INDEX		(17)
3025#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_INDEX		(18)
3026#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_INDEX	(19)
3027#define HD_CCK_NON_SQUARE_DET_SLOPE_INDEX		(20)
3028#define HD_CCK_NON_SQUARE_DET_INTERCEPT_INDEX		(21)
3029#define HD_RESERVED					(22)
3030
3031/* number of entries for enhanced tbl */
3032#define ENHANCE_HD_TABLE_SIZE  (23)
3033
3034/* number of additional entries for enhanced tbl */
3035#define ENHANCE_HD_TABLE_ENTRIES  (ENHANCE_HD_TABLE_SIZE - HD_TABLE_SIZE)
3036
3037#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V1		cpu_to_le16(0)
3038#define HD_INA_NON_SQUARE_DET_CCK_DATA_V1		cpu_to_le16(0)
3039#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V1		cpu_to_le16(0)
3040#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V1	cpu_to_le16(668)
3041#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3042#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(486)
3043#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V1	cpu_to_le16(37)
3044#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V1		cpu_to_le16(853)
3045#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V1	cpu_to_le16(4)
3046#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V1		cpu_to_le16(476)
3047#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V1		cpu_to_le16(99)
3048
3049#define HD_INA_NON_SQUARE_DET_OFDM_DATA_V2		cpu_to_le16(1)
3050#define HD_INA_NON_SQUARE_DET_CCK_DATA_V2		cpu_to_le16(1)
3051#define HD_CORR_11_INSTEAD_OF_CORR_9_EN_DATA_V2		cpu_to_le16(1)
3052#define HD_OFDM_NON_SQUARE_DET_SLOPE_MRC_DATA_V2	cpu_to_le16(600)
3053#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(40)
3054#define HD_OFDM_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(486)
3055#define HD_OFDM_NON_SQUARE_DET_INTERCEPT_DATA_V2	cpu_to_le16(45)
3056#define HD_CCK_NON_SQUARE_DET_SLOPE_MRC_DATA_V2		cpu_to_le16(853)
3057#define HD_CCK_NON_SQUARE_DET_INTERCEPT_MRC_DATA_V2	cpu_to_le16(60)
3058#define HD_CCK_NON_SQUARE_DET_SLOPE_DATA_V2		cpu_to_le16(476)
3059#define HD_CCK_NON_SQUARE_DET_INTERCEPT_DATA_V2		cpu_to_le16(99)
3060
3061
3062/* Control field in struct iwl_sensitivity_cmd */
3063#define SENSITIVITY_CMD_CONTROL_DEFAULT_TABLE	cpu_to_le16(0)
3064#define SENSITIVITY_CMD_CONTROL_WORK_TABLE	cpu_to_le16(1)
3065
3066/**
3067 * struct iwl_sensitivity_cmd
3068 * @control:  (1) updates working table, (0) updates default table
3069 * @table:  energy threshold values, use HD_* as index into table
3070 *
3071 * Always use "1" in "control" to update uCode's working table and DSP.
3072 */
3073struct iwl_sensitivity_cmd {
3074	__le16 control;			/* always use "1" */
3075	__le16 table[HD_TABLE_SIZE];	/* use HD_* as index */
3076} __packed;
3077
3078/*
3079 *
3080 */
3081struct iwl_enhance_sensitivity_cmd {
3082	__le16 control;			/* always use "1" */
3083	__le16 enhance_table[ENHANCE_HD_TABLE_SIZE];	/* use HD_* as index */
3084} __packed;
3085
3086
3087/**
3088 * REPLY_PHY_CALIBRATION_CMD = 0xb0 (command, has simple generic response)
3089 *
3090 * This command sets the relative gains of agn device's 3 radio receiver chains.
3091 *
3092 * After the first association, driver should accumulate signal and noise
3093 * statistics from the STATISTICS_NOTIFICATIONs that follow the first 20
3094 * beacons from the associated network (don't collect statistics that come
3095 * in from scanning, or any other non-network source).
3096 *
3097 * DISCONNECTED ANTENNA:
3098 *
3099 * Driver should determine which antennas are actually connected, by comparing
3100 * average beacon signal levels for the 3 Rx chains.  Accumulate (add) the
3101 * following values over 20 beacons, one accumulator for each of the chains
3102 * a/b/c, from struct statistics_rx_non_phy:
3103 *
3104 * beacon_rssi_[abc] & 0x0FF (unsigned, units in dB)
3105 *
3106 * Find the strongest signal from among a/b/c.  Compare the other two to the
3107 * strongest.  If any signal is more than 15 dB (times 20, unless you
3108 * divide the accumulated values by 20) below the strongest, the driver
3109 * considers that antenna to be disconnected, and should not try to use that
3110 * antenna/chain for Rx or Tx.  If both A and B seem to be disconnected,
3111 * driver should declare the stronger one as connected, and attempt to use it
3112 * (A and B are the only 2 Tx chains!).
3113 *
3114 *
3115 * RX BALANCE:
3116 *
3117 * Driver should balance the 3 receivers (but just the ones that are connected
3118 * to antennas, see above) for gain, by comparing the average signal levels
3119 * detected during the silence after each beacon (background noise).
3120 * Accumulate (add) the following values over 20 beacons, one accumulator for
3121 * each of the chains a/b/c, from struct statistics_rx_non_phy:
3122 *
3123 * beacon_silence_rssi_[abc] & 0x0FF (unsigned, units in dB)
3124 *
3125 * Find the weakest background noise level from among a/b/c.  This Rx chain
3126 * will be the reference, with 0 gain adjustment.  Attenuate other channels by
3127 * finding noise difference:
3128 *
3129 * (accum_noise[i] - accum_noise[reference]) / 30
3130 *
3131 * The "30" adjusts the dB in the 20 accumulated samples to units of 1.5 dB.
3132 * For use in diff_gain_[abc] fields of struct iwl_calibration_cmd, the
3133 * driver should limit the difference results to a range of 0-3 (0-4.5 dB),
3134 * and set bit 2 to indicate "reduce gain".  The value for the reference
3135 * (weakest) chain should be "0".
3136 *
3137 * diff_gain_[abc] bit fields:
3138 *   2: (1) reduce gain, (0) increase gain
3139 * 1-0: amount of gain, units of 1.5 dB
3140 */
3141
3142/* Phy calibration command for series */
3143enum {
3144	IWL_PHY_CALIBRATE_DC_CMD		= 8,
3145	IWL_PHY_CALIBRATE_LO_CMD		= 9,
3146	IWL_PHY_CALIBRATE_TX_IQ_CMD		= 11,
3147	IWL_PHY_CALIBRATE_CRYSTAL_FRQ_CMD	= 15,
3148	IWL_PHY_CALIBRATE_BASE_BAND_CMD		= 16,
3149	IWL_PHY_CALIBRATE_TX_IQ_PERD_CMD	= 17,
3150	IWL_PHY_CALIBRATE_TEMP_OFFSET_CMD	= 18,
3151};
3152
3153/* This enum defines the bitmap of various calibrations to enable in both
3154 * init ucode and runtime ucode through CALIBRATION_CFG_CMD.
3155 */
3156enum iwl_ucode_calib_cfg {
3157	IWL_CALIB_CFG_RX_BB_IDX			= BIT(0),
3158	IWL_CALIB_CFG_DC_IDX			= BIT(1),
3159	IWL_CALIB_CFG_LO_IDX			= BIT(2),
3160	IWL_CALIB_CFG_TX_IQ_IDX			= BIT(3),
3161	IWL_CALIB_CFG_RX_IQ_IDX			= BIT(4),
3162	IWL_CALIB_CFG_NOISE_IDX			= BIT(5),
3163	IWL_CALIB_CFG_CRYSTAL_IDX		= BIT(6),
3164	IWL_CALIB_CFG_TEMPERATURE_IDX		= BIT(7),
3165	IWL_CALIB_CFG_PAPD_IDX			= BIT(8),
3166	IWL_CALIB_CFG_SENSITIVITY_IDX		= BIT(9),
3167	IWL_CALIB_CFG_TX_PWR_IDX		= BIT(10),
3168};
3169
3170#define IWL_CALIB_INIT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3171					IWL_CALIB_CFG_DC_IDX |		\
3172					IWL_CALIB_CFG_LO_IDX |		\
3173					IWL_CALIB_CFG_TX_IQ_IDX |	\
3174					IWL_CALIB_CFG_RX_IQ_IDX |	\
3175					IWL_CALIB_CFG_CRYSTAL_IDX)
3176
3177#define IWL_CALIB_RT_CFG_ALL	cpu_to_le32(IWL_CALIB_CFG_RX_BB_IDX |	\
3178					IWL_CALIB_CFG_DC_IDX |		\
3179					IWL_CALIB_CFG_LO_IDX |		\
3180					IWL_CALIB_CFG_TX_IQ_IDX |	\
3181					IWL_CALIB_CFG_RX_IQ_IDX |	\
3182					IWL_CALIB_CFG_TEMPERATURE_IDX |	\
3183					IWL_CALIB_CFG_PAPD_IDX |	\
3184					IWL_CALIB_CFG_TX_PWR_IDX |	\
3185					IWL_CALIB_CFG_CRYSTAL_IDX)
3186
3187#define IWL_CALIB_CFG_FLAG_SEND_COMPLETE_NTFY_MSK	cpu_to_le32(BIT(0))
3188
3189struct iwl_calib_cfg_elmnt_s {
3190	__le32 is_enable;
3191	__le32 start;
3192	__le32 send_res;
3193	__le32 apply_res;
3194	__le32 reserved;
3195} __packed;
3196
3197struct iwl_calib_cfg_status_s {
3198	struct iwl_calib_cfg_elmnt_s once;
3199	struct iwl_calib_cfg_elmnt_s perd;
3200	__le32 flags;
3201} __packed;
3202
3203struct iwl_calib_cfg_cmd {
3204	struct iwl_calib_cfg_status_s ucd_calib_cfg;
3205	struct iwl_calib_cfg_status_s drv_calib_cfg;
3206	__le32 reserved1;
3207} __packed;
3208
3209struct iwl_calib_hdr {
3210	u8 op_code;
3211	u8 first_group;
3212	u8 groups_num;
3213	u8 data_valid;
3214} __packed;
3215
3216struct iwl_calib_cmd {
3217	struct iwl_calib_hdr hdr;
3218	u8 data[0];
3219} __packed;
3220
3221struct iwl_calib_xtal_freq_cmd {
3222	struct iwl_calib_hdr hdr;
3223	u8 cap_pin1;
3224	u8 cap_pin2;
3225	u8 pad[2];
3226} __packed;
3227
3228#define DEFAULT_RADIO_SENSOR_OFFSET    cpu_to_le16(2700)
3229struct iwl_calib_temperature_offset_cmd {
3230	struct iwl_calib_hdr hdr;
3231	__le16 radio_sensor_offset;
3232	__le16 reserved;
3233} __packed;
3234
3235struct iwl_calib_temperature_offset_v2_cmd {
3236	struct iwl_calib_hdr hdr;
3237	__le16 radio_sensor_offset_high;
3238	__le16 radio_sensor_offset_low;
3239	__le16 burntVoltageRef;
3240	__le16 reserved;
3241} __packed;
3242
3243/* IWL_PHY_CALIBRATE_CHAIN_NOISE_RESET_CMD */
3244struct iwl_calib_chain_noise_reset_cmd {
3245	struct iwl_calib_hdr hdr;
3246	u8 data[0];
3247};
3248
3249/* IWL_PHY_CALIBRATE_CHAIN_NOISE_GAIN_CMD */
3250struct iwl_calib_chain_noise_gain_cmd {
3251	struct iwl_calib_hdr hdr;
3252	u8 delta_gain_1;
3253	u8 delta_gain_2;
3254	u8 pad[2];
3255} __packed;
3256
3257/******************************************************************************
3258 * (12)
3259 * Miscellaneous Commands:
3260 *
3261 *****************************************************************************/
3262
3263/*
3264 * LEDs Command & Response
3265 * REPLY_LEDS_CMD = 0x48 (command, has simple generic response)
3266 *
3267 * For each of 3 possible LEDs (Activity/Link/Tech, selected by "id" field),
3268 * this command turns it on or off, or sets up a periodic blinking cycle.
3269 */
3270struct iwl_led_cmd {
3271	__le32 interval;	/* "interval" in uSec */
3272	u8 id;			/* 1: Activity, 2: Link, 3: Tech */
3273	u8 off;			/* # intervals off while blinking;
3274				 * "0", with >0 "on" value, turns LED on */
3275	u8 on;			/* # intervals on while blinking;
3276				 * "0", regardless of "off", turns LED off */
3277	u8 reserved;
3278} __packed;
3279
3280/*
3281 * station priority table entries
3282 * also used as potential "events" value for both
3283 * COEX_MEDIUM_NOTIFICATION and COEX_EVENT_CMD
3284 */
3285
3286/*
3287 * COEX events entry flag masks
3288 * RP - Requested Priority
3289 * WP - Win Medium Priority: priority assigned when the contention has been won
3290 */
3291#define COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG        (0x1)
3292#define COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG        (0x2)
3293#define COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG  (0x4)
3294
3295#define COEX_CU_UNASSOC_IDLE_RP               4
3296#define COEX_CU_UNASSOC_MANUAL_SCAN_RP        4
3297#define COEX_CU_UNASSOC_AUTO_SCAN_RP          4
3298#define COEX_CU_CALIBRATION_RP                4
3299#define COEX_CU_PERIODIC_CALIBRATION_RP       4
3300#define COEX_CU_CONNECTION_ESTAB_RP           4
3301#define COEX_CU_ASSOCIATED_IDLE_RP            4
3302#define COEX_CU_ASSOC_MANUAL_SCAN_RP          4
3303#define COEX_CU_ASSOC_AUTO_SCAN_RP            4
3304#define COEX_CU_ASSOC_ACTIVE_LEVEL_RP         4
3305#define COEX_CU_RF_ON_RP                      6
3306#define COEX_CU_RF_OFF_RP                     4
3307#define COEX_CU_STAND_ALONE_DEBUG_RP          6
3308#define COEX_CU_IPAN_ASSOC_LEVEL_RP           4
3309#define COEX_CU_RSRVD1_RP                     4
3310#define COEX_CU_RSRVD2_RP                     4
3311
3312#define COEX_CU_UNASSOC_IDLE_WP               3
3313#define COEX_CU_UNASSOC_MANUAL_SCAN_WP        3
3314#define COEX_CU_UNASSOC_AUTO_SCAN_WP          3
3315#define COEX_CU_CALIBRATION_WP                3
3316#define COEX_CU_PERIODIC_CALIBRATION_WP       3
3317#define COEX_CU_CONNECTION_ESTAB_WP           3
3318#define COEX_CU_ASSOCIATED_IDLE_WP            3
3319#define COEX_CU_ASSOC_MANUAL_SCAN_WP          3
3320#define COEX_CU_ASSOC_AUTO_SCAN_WP            3
3321#define COEX_CU_ASSOC_ACTIVE_LEVEL_WP         3
3322#define COEX_CU_RF_ON_WP                      3
3323#define COEX_CU_RF_OFF_WP                     3
3324#define COEX_CU_STAND_ALONE_DEBUG_WP          6
3325#define COEX_CU_IPAN_ASSOC_LEVEL_WP           3
3326#define COEX_CU_RSRVD1_WP                     3
3327#define COEX_CU_RSRVD2_WP                     3
3328
3329#define COEX_UNASSOC_IDLE_FLAGS                     0
3330#define COEX_UNASSOC_MANUAL_SCAN_FLAGS		\
3331	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3332	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3333#define COEX_UNASSOC_AUTO_SCAN_FLAGS		\
3334	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3335	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3336#define COEX_CALIBRATION_FLAGS			\
3337	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3338	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3339#define COEX_PERIODIC_CALIBRATION_FLAGS             0
3340/*
3341 * COEX_CONNECTION_ESTAB:
3342 * we need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3343 */
3344#define COEX_CONNECTION_ESTAB_FLAGS		\
3345	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3346	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3347	COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3348#define COEX_ASSOCIATED_IDLE_FLAGS                  0
3349#define COEX_ASSOC_MANUAL_SCAN_FLAGS		\
3350	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3351	COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3352#define COEX_ASSOC_AUTO_SCAN_FLAGS		\
3353	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3354	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3355#define COEX_ASSOC_ACTIVE_LEVEL_FLAGS               0
3356#define COEX_RF_ON_FLAGS                            0
3357#define COEX_RF_OFF_FLAGS                           0
3358#define COEX_STAND_ALONE_DEBUG_FLAGS		\
3359	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3360	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG)
3361#define COEX_IPAN_ASSOC_LEVEL_FLAGS		\
3362	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3363	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3364	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3365#define COEX_RSRVD1_FLAGS                           0
3366#define COEX_RSRVD2_FLAGS                           0
3367/*
3368 * COEX_CU_RF_ON is the event wrapping all radio ownership.
3369 * We need DELAY_MEDIUM_FREE_NTFY to let WiMAX disconnect from network.
3370 */
3371#define COEX_CU_RF_ON_FLAGS			\
3372	(COEX_EVT_FLAG_MEDIUM_FREE_NTFY_FLG |	\
3373	 COEX_EVT_FLAG_MEDIUM_ACTV_NTFY_FLG |	\
3374	 COEX_EVT_FLAG_DELAY_MEDIUM_FREE_NTFY_FLG)
3375
3376
3377enum {
3378	/* un-association part */
3379	COEX_UNASSOC_IDLE		= 0,
3380	COEX_UNASSOC_MANUAL_SCAN	= 1,
3381	COEX_UNASSOC_AUTO_SCAN		= 2,
3382	/* calibration */
3383	COEX_CALIBRATION		= 3,
3384	COEX_PERIODIC_CALIBRATION	= 4,
3385	/* connection */
3386	COEX_CONNECTION_ESTAB		= 5,
3387	/* association part */
3388	COEX_ASSOCIATED_IDLE		= 6,
3389	COEX_ASSOC_MANUAL_SCAN		= 7,
3390	COEX_ASSOC_AUTO_SCAN		= 8,
3391	COEX_ASSOC_ACTIVE_LEVEL		= 9,
3392	/* RF ON/OFF */
3393	COEX_RF_ON			= 10,
3394	COEX_RF_OFF			= 11,
3395	COEX_STAND_ALONE_DEBUG		= 12,
3396	/* IPAN */
3397	COEX_IPAN_ASSOC_LEVEL		= 13,
3398	/* reserved */
3399	COEX_RSRVD1			= 14,
3400	COEX_RSRVD2			= 15,
3401	COEX_NUM_OF_EVENTS		= 16
3402};
3403
3404/*
3405 * Coexistence WIFI/WIMAX  Command
3406 * COEX_PRIORITY_TABLE_CMD = 0x5a
3407 *
3408 */
3409struct iwl_wimax_coex_event_entry {
3410	u8 request_prio;
3411	u8 win_medium_prio;
3412	u8 reserved;
3413	u8 flags;
3414} __packed;
3415
3416/* COEX flag masks */
3417
3418/* Station table is valid */
3419#define COEX_FLAGS_STA_TABLE_VALID_MSK      (0x1)
3420/* UnMask wake up src at unassociated sleep */
3421#define COEX_FLAGS_UNASSOC_WA_UNMASK_MSK    (0x4)
3422/* UnMask wake up src at associated sleep */
3423#define COEX_FLAGS_ASSOC_WA_UNMASK_MSK      (0x8)
3424/* Enable CoEx feature. */
3425#define COEX_FLAGS_COEX_ENABLE_MSK          (0x80)
3426
3427struct iwl_wimax_coex_cmd {
3428	u8 flags;
3429	u8 reserved[3];
3430	struct iwl_wimax_coex_event_entry sta_prio[COEX_NUM_OF_EVENTS];
3431} __packed;
3432
3433/*
3434 * Coexistence MEDIUM NOTIFICATION
3435 * COEX_MEDIUM_NOTIFICATION = 0x5b
3436 *
3437 * notification from uCode to host to indicate medium changes
3438 *
3439 */
3440/*
3441 * status field
3442 * bit 0 - 2: medium status
3443 * bit 3: medium change indication
3444 * bit 4 - 31: reserved
3445 */
3446/* status option values, (0 - 2 bits) */
3447#define COEX_MEDIUM_BUSY	(0x0) /* radio belongs to WiMAX */
3448#define COEX_MEDIUM_ACTIVE	(0x1) /* radio belongs to WiFi */
3449#define COEX_MEDIUM_PRE_RELEASE	(0x2) /* received radio release */
3450#define COEX_MEDIUM_MSK		(0x7)
3451
3452/* send notification status (1 bit) */
3453#define COEX_MEDIUM_CHANGED	(0x8)
3454#define COEX_MEDIUM_CHANGED_MSK	(0x8)
3455#define COEX_MEDIUM_SHIFT	(3)
3456
3457struct iwl_coex_medium_notification {
3458	__le32 status;
3459	__le32 events;
3460} __packed;
3461
3462/*
3463 * Coexistence EVENT  Command
3464 * COEX_EVENT_CMD = 0x5c
3465 *
3466 * send from host to uCode for coex event request.
3467 */
3468/* flags options */
3469#define COEX_EVENT_REQUEST_MSK	(0x1)
3470
3471struct iwl_coex_event_cmd {
3472	u8 flags;
3473	u8 event;
3474	__le16 reserved;
3475} __packed;
3476
3477struct iwl_coex_event_resp {
3478	__le32 status;
3479} __packed;
3480
3481
3482/******************************************************************************
3483 * Bluetooth Coexistence commands
3484 *
3485 *****************************************************************************/
3486
3487/*
3488 * BT Status notification
3489 * REPLY_BT_COEX_PROFILE_NOTIF = 0xce
3490 */
3491enum iwl_bt_coex_profile_traffic_load {
3492	IWL_BT_COEX_TRAFFIC_LOAD_NONE = 	0,
3493	IWL_BT_COEX_TRAFFIC_LOAD_LOW =		1,
3494	IWL_BT_COEX_TRAFFIC_LOAD_HIGH = 	2,
3495	IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS =	3,
3496/*
3497 * There are no more even though below is a u8, the
3498 * indication from the BT device only has two bits.
3499 */
3500};
3501
3502#define BT_SESSION_ACTIVITY_1_UART_MSG		0x1
3503#define BT_SESSION_ACTIVITY_2_UART_MSG		0x2
3504
3505/* BT UART message - Share Part (BT -> WiFi) */
3506#define BT_UART_MSG_FRAME1MSGTYPE_POS		(0)
3507#define BT_UART_MSG_FRAME1MSGTYPE_MSK		\
3508		(0x7 << BT_UART_MSG_FRAME1MSGTYPE_POS)
3509#define BT_UART_MSG_FRAME1SSN_POS		(3)
3510#define BT_UART_MSG_FRAME1SSN_MSK		\
3511		(0x3 << BT_UART_MSG_FRAME1SSN_POS)
3512#define BT_UART_MSG_FRAME1UPDATEREQ_POS		(5)
3513#define BT_UART_MSG_FRAME1UPDATEREQ_MSK		\
3514		(0x1 << BT_UART_MSG_FRAME1UPDATEREQ_POS)
3515#define BT_UART_MSG_FRAME1RESERVED_POS		(6)
3516#define BT_UART_MSG_FRAME1RESERVED_MSK		\
3517		(0x3 << BT_UART_MSG_FRAME1RESERVED_POS)
3518
3519#define BT_UART_MSG_FRAME2OPENCONNECTIONS_POS	(0)
3520#define BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK	\
3521		(0x3 << BT_UART_MSG_FRAME2OPENCONNECTIONS_POS)
3522#define BT_UART_MSG_FRAME2TRAFFICLOAD_POS	(2)
3523#define BT_UART_MSG_FRAME2TRAFFICLOAD_MSK	\
3524		(0x3 << BT_UART_MSG_FRAME2TRAFFICLOAD_POS)
3525#define BT_UART_MSG_FRAME2CHLSEQN_POS		(4)
3526#define BT_UART_MSG_FRAME2CHLSEQN_MSK		\
3527		(0x1 << BT_UART_MSG_FRAME2CHLSEQN_POS)
3528#define BT_UART_MSG_FRAME2INBAND_POS		(5)
3529#define BT_UART_MSG_FRAME2INBAND_MSK		\
3530		(0x1 << BT_UART_MSG_FRAME2INBAND_POS)
3531#define BT_UART_MSG_FRAME2RESERVED_POS		(6)
3532#define BT_UART_MSG_FRAME2RESERVED_MSK		\
3533		(0x3 << BT_UART_MSG_FRAME2RESERVED_POS)
3534
3535#define BT_UART_MSG_FRAME3SCOESCO_POS		(0)
3536#define BT_UART_MSG_FRAME3SCOESCO_MSK		\
3537		(0x1 << BT_UART_MSG_FRAME3SCOESCO_POS)
3538#define BT_UART_MSG_FRAME3SNIFF_POS		(1)
3539#define BT_UART_MSG_FRAME3SNIFF_MSK		\
3540		(0x1 << BT_UART_MSG_FRAME3SNIFF_POS)
3541#define BT_UART_MSG_FRAME3A2DP_POS		(2)
3542#define BT_UART_MSG_FRAME3A2DP_MSK		\
3543		(0x1 << BT_UART_MSG_FRAME3A2DP_POS)
3544#define BT_UART_MSG_FRAME3ACL_POS		(3)
3545#define BT_UART_MSG_FRAME3ACL_MSK		\
3546		(0x1 << BT_UART_MSG_FRAME3ACL_POS)
3547#define BT_UART_MSG_FRAME3MASTER_POS		(4)
3548#define BT_UART_MSG_FRAME3MASTER_MSK		\
3549		(0x1 << BT_UART_MSG_FRAME3MASTER_POS)
3550#define BT_UART_MSG_FRAME3OBEX_POS		(5)
3551#define BT_UART_MSG_FRAME3OBEX_MSK		\
3552		(0x1 << BT_UART_MSG_FRAME3OBEX_POS)
3553#define BT_UART_MSG_FRAME3RESERVED_POS		(6)
3554#define BT_UART_MSG_FRAME3RESERVED_MSK		\
3555		(0x3 << BT_UART_MSG_FRAME3RESERVED_POS)
3556
3557#define BT_UART_MSG_FRAME4IDLEDURATION_POS	(0)
3558#define BT_UART_MSG_FRAME4IDLEDURATION_MSK	\
3559		(0x3F << BT_UART_MSG_FRAME4IDLEDURATION_POS)
3560#define BT_UART_MSG_FRAME4RESERVED_POS		(6)
3561#define BT_UART_MSG_FRAME4RESERVED_MSK		\
3562		(0x3 << BT_UART_MSG_FRAME4RESERVED_POS)
3563
3564#define BT_UART_MSG_FRAME5TXACTIVITY_POS	(0)
3565#define BT_UART_MSG_FRAME5TXACTIVITY_MSK	\
3566		(0x3 << BT_UART_MSG_FRAME5TXACTIVITY_POS)
3567#define BT_UART_MSG_FRAME5RXACTIVITY_POS	(2)
3568#define BT_UART_MSG_FRAME5RXACTIVITY_MSK	\
3569		(0x3 << BT_UART_MSG_FRAME5RXACTIVITY_POS)
3570#define BT_UART_MSG_FRAME5ESCORETRANSMIT_POS	(4)
3571#define BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK	\
3572		(0x3 << BT_UART_MSG_FRAME5ESCORETRANSMIT_POS)
3573#define BT_UART_MSG_FRAME5RESERVED_POS		(6)
3574#define BT_UART_MSG_FRAME5RESERVED_MSK		\
3575		(0x3 << BT_UART_MSG_FRAME5RESERVED_POS)
3576
3577#define BT_UART_MSG_FRAME6SNIFFINTERVAL_POS	(0)
3578#define BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK	\
3579		(0x1F << BT_UART_MSG_FRAME6SNIFFINTERVAL_POS)
3580#define BT_UART_MSG_FRAME6DISCOVERABLE_POS	(5)
3581#define BT_UART_MSG_FRAME6DISCOVERABLE_MSK	\
3582		(0x1 << BT_UART_MSG_FRAME6DISCOVERABLE_POS)
3583#define BT_UART_MSG_FRAME6RESERVED_POS		(6)
3584#define BT_UART_MSG_FRAME6RESERVED_MSK		\
3585		(0x3 << BT_UART_MSG_FRAME6RESERVED_POS)
3586
3587#define BT_UART_MSG_FRAME7SNIFFACTIVITY_POS	(0)
3588#define BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK	\
3589		(0x7 << BT_UART_MSG_FRAME7SNIFFACTIVITY_POS)
3590#define BT_UART_MSG_FRAME7PAGE_POS		(3)
3591#define BT_UART_MSG_FRAME7PAGE_MSK		\
3592		(0x1 << BT_UART_MSG_FRAME7PAGE_POS)
3593#define BT_UART_MSG_FRAME7INQUIRY_POS		(4)
3594#define BT_UART_MSG_FRAME7INQUIRY_MSK		\
3595		(0x1 << BT_UART_MSG_FRAME7INQUIRY_POS)
3596#define BT_UART_MSG_FRAME7CONNECTABLE_POS	(5)
3597#define BT_UART_MSG_FRAME7CONNECTABLE_MSK	\
3598		(0x1 << BT_UART_MSG_FRAME7CONNECTABLE_POS)
3599#define BT_UART_MSG_FRAME7RESERVED_POS		(6)
3600#define BT_UART_MSG_FRAME7RESERVED_MSK		\
3601		(0x3 << BT_UART_MSG_FRAME7RESERVED_POS)
3602
3603/* BT Session Activity 2 UART message (BT -> WiFi) */
3604#define BT_UART_MSG_2_FRAME1RESERVED1_POS	(5)
3605#define BT_UART_MSG_2_FRAME1RESERVED1_MSK	\
3606		(0x1<<BT_UART_MSG_2_FRAME1RESERVED1_POS)
3607#define BT_UART_MSG_2_FRAME1RESERVED2_POS	(6)
3608#define BT_UART_MSG_2_FRAME1RESERVED2_MSK	\
3609		(0x3<<BT_UART_MSG_2_FRAME1RESERVED2_POS)
3610
3611#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS	(0)
3612#define BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_MSK	\
3613		(0x3F<<BT_UART_MSG_2_FRAME2AGGTRAFFICLOAD_POS)
3614#define BT_UART_MSG_2_FRAME2RESERVED_POS	(6)
3615#define BT_UART_MSG_2_FRAME2RESERVED_MSK	\
3616		(0x3<<BT_UART_MSG_2_FRAME2RESERVED_POS)
3617
3618#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS	(0)
3619#define BT_UART_MSG_2_FRAME3BRLASTTXPOWER_MSK	\
3620		(0xF<<BT_UART_MSG_2_FRAME3BRLASTTXPOWER_POS)
3621#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS	(4)
3622#define BT_UART_MSG_2_FRAME3INQPAGESRMODE_MSK	\
3623		(0x1<<BT_UART_MSG_2_FRAME3INQPAGESRMODE_POS)
3624#define BT_UART_MSG_2_FRAME3LEMASTER_POS	(5)
3625#define BT_UART_MSG_2_FRAME3LEMASTER_MSK	\
3626		(0x1<<BT_UART_MSG_2_FRAME3LEMASTER_POS)
3627#define BT_UART_MSG_2_FRAME3RESERVED_POS	(6)
3628#define BT_UART_MSG_2_FRAME3RESERVED_MSK	\
3629		(0x3<<BT_UART_MSG_2_FRAME3RESERVED_POS)
3630
3631#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS	(0)
3632#define BT_UART_MSG_2_FRAME4LELASTTXPOWER_MSK	\
3633		(0xF<<BT_UART_MSG_2_FRAME4LELASTTXPOWER_POS)
3634#define BT_UART_MSG_2_FRAME4NUMLECONN_POS	(4)
3635#define BT_UART_MSG_2_FRAME4NUMLECONN_MSK	\
3636		(0x3<<BT_UART_MSG_2_FRAME4NUMLECONN_POS)
3637#define BT_UART_MSG_2_FRAME4RESERVED_POS	(6)
3638#define BT_UART_MSG_2_FRAME4RESERVED_MSK	\
3639		(0x3<<BT_UART_MSG_2_FRAME4RESERVED_POS)
3640
3641#define BT_UART_MSG_2_FRAME5BTMINRSSI_POS	(0)
3642#define BT_UART_MSG_2_FRAME5BTMINRSSI_MSK	\
3643		(0xF<<BT_UART_MSG_2_FRAME5BTMINRSSI_POS)
3644#define BT_UART_MSG_2_FRAME5LESCANINITMODE_POS	(4)
3645#define BT_UART_MSG_2_FRAME5LESCANINITMODE_MSK	\
3646		(0x1<<BT_UART_MSG_2_FRAME5LESCANINITMODE_POS)
3647#define BT_UART_MSG_2_FRAME5LEADVERMODE_POS	(5)
3648#define BT_UART_MSG_2_FRAME5LEADVERMODE_MSK	\
3649		(0x1<<BT_UART_MSG_2_FRAME5LEADVERMODE_POS)
3650#define BT_UART_MSG_2_FRAME5RESERVED_POS	(6)
3651#define BT_UART_MSG_2_FRAME5RESERVED_MSK	\
3652		(0x3<<BT_UART_MSG_2_FRAME5RESERVED_POS)
3653
3654#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS	(0)
3655#define BT_UART_MSG_2_FRAME6LECONNINTERVAL_MSK	\
3656		(0x1F<<BT_UART_MSG_2_FRAME6LECONNINTERVAL_POS)
3657#define BT_UART_MSG_2_FRAME6RFU_POS		(5)
3658#define BT_UART_MSG_2_FRAME6RFU_MSK		\
3659		(0x1<<BT_UART_MSG_2_FRAME6RFU_POS)
3660#define BT_UART_MSG_2_FRAME6RESERVED_POS	(6)
3661#define BT_UART_MSG_2_FRAME6RESERVED_MSK	\
3662		(0x3<<BT_UART_MSG_2_FRAME6RESERVED_POS)
3663
3664#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS	(0)
3665#define BT_UART_MSG_2_FRAME7LECONNSLAVELAT_MSK	\
3666		(0x7<<BT_UART_MSG_2_FRAME7LECONNSLAVELAT_POS)
3667#define BT_UART_MSG_2_FRAME7LEPROFILE1_POS	(3)
3668#define BT_UART_MSG_2_FRAME7LEPROFILE1_MSK	\
3669		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE1_POS)
3670#define BT_UART_MSG_2_FRAME7LEPROFILE2_POS	(4)
3671#define BT_UART_MSG_2_FRAME7LEPROFILE2_MSK	\
3672		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILE2_POS)
3673#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS	(5)
3674#define BT_UART_MSG_2_FRAME7LEPROFILEOTHER_MSK	\
3675		(0x1<<BT_UART_MSG_2_FRAME7LEPROFILEOTHER_POS)
3676#define BT_UART_MSG_2_FRAME7RESERVED_POS	(6)
3677#define BT_UART_MSG_2_FRAME7RESERVED_MSK	\
3678		(0x3<<BT_UART_MSG_2_FRAME7RESERVED_POS)
3679
3680
3681#define BT_ENABLE_REDUCED_TXPOWER_THRESHOLD	(-62)
3682#define BT_DISABLE_REDUCED_TXPOWER_THRESHOLD	(-65)
3683
3684struct iwl_bt_uart_msg {
3685	u8 header;
3686	u8 frame1;
3687	u8 frame2;
3688	u8 frame3;
3689	u8 frame4;
3690	u8 frame5;
3691	u8 frame6;
3692	u8 frame7;
3693} __packed;
3694
3695struct iwl_bt_coex_profile_notif {
3696	struct iwl_bt_uart_msg last_bt_uart_msg;
3697	u8 bt_status; /* 0 - off, 1 - on */
3698	u8 bt_traffic_load; /* 0 .. 3? */
3699	u8 bt_ci_compliance; /* 0 - not complied, 1 - complied */
3700	u8 reserved;
3701} __packed;
3702
3703#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_POS	0
3704#define IWL_BT_COEX_PRIO_TBL_SHARED_ANTENNA_MSK	0x1
3705#define IWL_BT_COEX_PRIO_TBL_PRIO_POS		1
3706#define IWL_BT_COEX_PRIO_TBL_PRIO_MASK		0x0e
3707#define IWL_BT_COEX_PRIO_TBL_RESERVED_POS	4
3708#define IWL_BT_COEX_PRIO_TBL_RESERVED_MASK	0xf0
3709#define IWL_BT_COEX_PRIO_TBL_PRIO_SHIFT		1
3710
3711/*
3712 * BT Coexistence Priority table
3713 * REPLY_BT_COEX_PRIO_TABLE = 0xcc
3714 */
3715enum bt_coex_prio_table_events {
3716	BT_COEX_PRIO_TBL_EVT_INIT_CALIB1 = 0,
3717	BT_COEX_PRIO_TBL_EVT_INIT_CALIB2 = 1,
3718	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW1 = 2,
3719	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_LOW2 = 3, /* DC calib */
3720	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH1 = 4,
3721	BT_COEX_PRIO_TBL_EVT_PERIODIC_CALIB_HIGH2 = 5,
3722	BT_COEX_PRIO_TBL_EVT_DTIM = 6,
3723	BT_COEX_PRIO_TBL_EVT_SCAN52 = 7,
3724	BT_COEX_PRIO_TBL_EVT_SCAN24 = 8,
3725	BT_COEX_PRIO_TBL_EVT_RESERVED0 = 9,
3726	BT_COEX_PRIO_TBL_EVT_RESERVED1 = 10,
3727	BT_COEX_PRIO_TBL_EVT_RESERVED2 = 11,
3728	BT_COEX_PRIO_TBL_EVT_RESERVED3 = 12,
3729	BT_COEX_PRIO_TBL_EVT_RESERVED4 = 13,
3730	BT_COEX_PRIO_TBL_EVT_RESERVED5 = 14,
3731	BT_COEX_PRIO_TBL_EVT_RESERVED6 = 15,
3732	/* BT_COEX_PRIO_TBL_EVT_MAX should always be last */
3733	BT_COEX_PRIO_TBL_EVT_MAX,
3734};
3735
3736enum bt_coex_prio_table_priorities {
3737	BT_COEX_PRIO_TBL_DISABLED = 0,
3738	BT_COEX_PRIO_TBL_PRIO_LOW = 1,
3739	BT_COEX_PRIO_TBL_PRIO_HIGH = 2,
3740	BT_COEX_PRIO_TBL_PRIO_BYPASS = 3,
3741	BT_COEX_PRIO_TBL_PRIO_COEX_OFF = 4,
3742	BT_COEX_PRIO_TBL_PRIO_COEX_ON = 5,
3743	BT_COEX_PRIO_TBL_PRIO_RSRVD1 = 6,
3744	BT_COEX_PRIO_TBL_PRIO_RSRVD2 = 7,
3745	BT_COEX_PRIO_TBL_MAX,
3746};
3747
3748struct iwl_bt_coex_prio_table_cmd {
3749	u8 prio_tbl[BT_COEX_PRIO_TBL_EVT_MAX];
3750} __packed;
3751
3752#define IWL_BT_COEX_ENV_CLOSE	0
3753#define IWL_BT_COEX_ENV_OPEN	1
3754/*
3755 * BT Protection Envelope
3756 * REPLY_BT_COEX_PROT_ENV = 0xcd
3757 */
3758struct iwl_bt_coex_prot_env_cmd {
3759	u8 action; /* 0 = closed, 1 = open */
3760	u8 type; /* 0 .. 15 */
3761	u8 reserved[2];
3762} __packed;
3763
3764/*
3765 * REPLY_D3_CONFIG
3766 */
3767enum iwlagn_d3_wakeup_filters {
3768	IWLAGN_D3_WAKEUP_RFKILL		= BIT(0),
3769	IWLAGN_D3_WAKEUP_SYSASSERT	= BIT(1),
3770};
3771
3772struct iwlagn_d3_config_cmd {
3773	__le32 min_sleep_time;
3774	__le32 wakeup_flags;
3775} __packed;
3776
3777/*
3778 * REPLY_WOWLAN_PATTERNS
3779 */
3780#define IWLAGN_WOWLAN_MIN_PATTERN_LEN	16
3781#define IWLAGN_WOWLAN_MAX_PATTERN_LEN	128
3782
3783struct iwlagn_wowlan_pattern {
3784	u8 mask[IWLAGN_WOWLAN_MAX_PATTERN_LEN / 8];
3785	u8 pattern[IWLAGN_WOWLAN_MAX_PATTERN_LEN];
3786	u8 mask_size;
3787	u8 pattern_size;
3788	__le16 reserved;
3789} __packed;
3790
3791#define IWLAGN_WOWLAN_MAX_PATTERNS	20
3792
3793struct iwlagn_wowlan_patterns_cmd {
3794	__le32 n_patterns;
3795	struct iwlagn_wowlan_pattern patterns[];
3796} __packed;
3797
3798/*
3799 * REPLY_WOWLAN_WAKEUP_FILTER
3800 */
3801enum iwlagn_wowlan_wakeup_filters {
3802	IWLAGN_WOWLAN_WAKEUP_MAGIC_PACKET	= BIT(0),
3803	IWLAGN_WOWLAN_WAKEUP_PATTERN_MATCH	= BIT(1),
3804	IWLAGN_WOWLAN_WAKEUP_BEACON_MISS	= BIT(2),
3805	IWLAGN_WOWLAN_WAKEUP_LINK_CHANGE	= BIT(3),
3806	IWLAGN_WOWLAN_WAKEUP_GTK_REKEY_FAIL	= BIT(4),
3807	IWLAGN_WOWLAN_WAKEUP_EAP_IDENT_REQ	= BIT(5),
3808	IWLAGN_WOWLAN_WAKEUP_4WAY_HANDSHAKE	= BIT(6),
3809	IWLAGN_WOWLAN_WAKEUP_ALWAYS		= BIT(7),
3810	IWLAGN_WOWLAN_WAKEUP_ENABLE_NET_DETECT	= BIT(8),
3811};
3812
3813struct iwlagn_wowlan_wakeup_filter_cmd {
3814	__le32 enabled;
3815	__le16 non_qos_seq;
3816	__le16 reserved;
3817	__le16 qos_seq[8];
3818};
3819
3820/*
3821 * REPLY_WOWLAN_TSC_RSC_PARAMS
3822 */
3823#define IWLAGN_NUM_RSC	16
3824
3825struct tkip_sc {
3826	__le16 iv16;
3827	__le16 pad;
3828	__le32 iv32;
3829} __packed;
3830
3831struct iwlagn_tkip_rsc_tsc {
3832	struct tkip_sc unicast_rsc[IWLAGN_NUM_RSC];
3833	struct tkip_sc multicast_rsc[IWLAGN_NUM_RSC];
3834	struct tkip_sc tsc;
3835} __packed;
3836
3837struct aes_sc {
3838	__le64 pn;
3839} __packed;
3840
3841struct iwlagn_aes_rsc_tsc {
3842	struct aes_sc unicast_rsc[IWLAGN_NUM_RSC];
3843	struct aes_sc multicast_rsc[IWLAGN_NUM_RSC];
3844	struct aes_sc tsc;
3845} __packed;
3846
3847union iwlagn_all_tsc_rsc {
3848	struct iwlagn_tkip_rsc_tsc tkip;
3849	struct iwlagn_aes_rsc_tsc aes;
3850};
3851
3852struct iwlagn_wowlan_rsc_tsc_params_cmd {
3853	union iwlagn_all_tsc_rsc all_tsc_rsc;
3854} __packed;
3855
3856/*
3857 * REPLY_WOWLAN_TKIP_PARAMS
3858 */
3859#define IWLAGN_MIC_KEY_SIZE	8
3860#define IWLAGN_P1K_SIZE		5
3861struct iwlagn_mic_keys {
3862	u8 tx[IWLAGN_MIC_KEY_SIZE];
3863	u8 rx_unicast[IWLAGN_MIC_KEY_SIZE];
3864	u8 rx_mcast[IWLAGN_MIC_KEY_SIZE];
3865} __packed;
3866
3867struct iwlagn_p1k_cache {
3868	__le16 p1k[IWLAGN_P1K_SIZE];
3869} __packed;
3870
3871#define IWLAGN_NUM_RX_P1K_CACHE	2
3872
3873struct iwlagn_wowlan_tkip_params_cmd {
3874	struct iwlagn_mic_keys mic_keys;
3875	struct iwlagn_p1k_cache tx;
3876	struct iwlagn_p1k_cache rx_uni[IWLAGN_NUM_RX_P1K_CACHE];
3877	struct iwlagn_p1k_cache rx_multi[IWLAGN_NUM_RX_P1K_CACHE];
3878} __packed;
3879
3880/*
3881 * REPLY_WOWLAN_KEK_KCK_MATERIAL
3882 */
3883
3884#define IWLAGN_KCK_MAX_SIZE	32
3885#define IWLAGN_KEK_MAX_SIZE	32
3886
3887struct iwlagn_wowlan_kek_kck_material_cmd {
3888	u8	kck[IWLAGN_KCK_MAX_SIZE];
3889	u8	kek[IWLAGN_KEK_MAX_SIZE];
3890	__le16	kck_len;
3891	__le16	kek_len;
3892	__le64	replay_ctr;
3893} __packed;
3894
3895#define RF_KILL_INDICATOR_FOR_WOWLAN	0x87
3896
3897/*
3898 * REPLY_WOWLAN_GET_STATUS = 0xe5
3899 */
3900struct iwlagn_wowlan_status {
3901	__le64 replay_ctr;
3902	__le32 rekey_status;
3903	__le32 wakeup_reason;
3904	u8 pattern_number;
3905	u8 reserved1;
3906	__le16 qos_seq_ctr[8];
3907	__le16 non_qos_seq_ctr;
3908	__le16 reserved2;
3909	union iwlagn_all_tsc_rsc tsc_rsc;
3910	__le16 reserved3;
3911} __packed;
3912
3913/*
3914 * REPLY_WIPAN_PARAMS = 0xb2 (Commands and Notification)
3915 */
3916
3917/*
3918 * Minimum slot time in TU
3919 */
3920#define IWL_MIN_SLOT_TIME	20
3921
3922/**
3923 * struct iwl_wipan_slot
3924 * @width: Time in TU
3925 * @type:
3926 *   0 - BSS
3927 *   1 - PAN
3928 */
3929struct iwl_wipan_slot {
3930	__le16 width;
3931	u8 type;
3932	u8 reserved;
3933} __packed;
3934
3935#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_CTS		BIT(1)	/* reserved */
3936#define IWL_WIPAN_PARAMS_FLG_LEAVE_CHANNEL_QUIET	BIT(2)	/* reserved */
3937#define IWL_WIPAN_PARAMS_FLG_SLOTTED_MODE		BIT(3)	/* reserved */
3938#define IWL_WIPAN_PARAMS_FLG_FILTER_BEACON_NOTIF	BIT(4)
3939#define IWL_WIPAN_PARAMS_FLG_FULL_SLOTTED_MODE		BIT(5)
3940
3941/**
3942 * struct iwl_wipan_params_cmd
3943 * @flags:
3944 *   bit0: reserved
3945 *   bit1: CP leave channel with CTS
3946 *   bit2: CP leave channel qith Quiet
3947 *   bit3: slotted mode
3948 *     1 - work in slotted mode
3949 *     0 - work in non slotted mode
3950 *   bit4: filter beacon notification
3951 *   bit5: full tx slotted mode. if this flag is set,
3952 *         uCode will perform leaving channel methods in context switch
3953 *         also when working in same channel mode
3954 * @num_slots: 1 - 10
3955 */
3956struct iwl_wipan_params_cmd {
3957	__le16 flags;
3958	u8 reserved;
3959	u8 num_slots;
3960	struct iwl_wipan_slot slots[10];
3961} __packed;
3962
3963/*
3964 * REPLY_WIPAN_P2P_CHANNEL_SWITCH = 0xb9
3965 *
3966 * TODO: Figure out what this is used for,
3967 *	 it can only switch between 2.4 GHz
3968 *	 channels!!
3969 */
3970
3971struct iwl_wipan_p2p_channel_switch_cmd {
3972	__le16 channel;
3973	__le16 reserved;
3974};
3975
3976/*
3977 * REPLY_WIPAN_NOA_NOTIFICATION = 0xbc
3978 *
3979 * This is used by the device to notify us of the
3980 * NoA schedule it determined so we can forward it
3981 * to userspace for inclusion in probe responses.
3982 *
3983 * In beacons, the NoA schedule is simply appended
3984 * to the frame we give the device.
3985 */
3986
3987struct iwl_wipan_noa_descriptor {
3988	u8 count;
3989	__le32 duration;
3990	__le32 interval;
3991	__le32 starttime;
3992} __packed;
3993
3994struct iwl_wipan_noa_attribute {
3995	u8 id;
3996	__le16 length;
3997	u8 index;
3998	u8 ct_window;
3999	struct iwl_wipan_noa_descriptor descr0, descr1;
4000	u8 reserved;
4001} __packed;
4002
4003struct iwl_wipan_noa_notification {
4004	u32 noa_active;
4005	struct iwl_wipan_noa_attribute noa_attribute;
4006} __packed;
4007
4008#endif				/* __iwl_commands_h__ */
4009