1 /*
2 * Copyright (c) 2005-2011 Atheros Communications Inc.
3 * Copyright (c) 2011-2013 Qualcomm Atheros, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18 #include "hif.h"
19 #include "pci.h"
20 #include "ce.h"
21 #include "debug.h"
22
23 /*
24 * Support for Copy Engine hardware, which is mainly used for
25 * communication between Host and Target over a PCIe interconnect.
26 */
27
28 /*
29 * A single CopyEngine (CE) comprises two "rings":
30 * a source ring
31 * a destination ring
32 *
33 * Each ring consists of a number of descriptors which specify
34 * an address, length, and meta-data.
35 *
36 * Typically, one side of the PCIe interconnect (Host or Target)
37 * controls one ring and the other side controls the other ring.
38 * The source side chooses when to initiate a transfer and it
39 * chooses what to send (buffer address, length). The destination
40 * side keeps a supply of "anonymous receive buffers" available and
41 * it handles incoming data as it arrives (when the destination
42 * recieves an interrupt).
43 *
44 * The sender may send a simple buffer (address/length) or it may
45 * send a small list of buffers. When a small list is sent, hardware
46 * "gathers" these and they end up in a single destination buffer
47 * with a single interrupt.
48 *
49 * There are several "contexts" managed by this layer -- more, it
50 * may seem -- than should be needed. These are provided mainly for
51 * maximum flexibility and especially to facilitate a simpler HIF
52 * implementation. There are per-CopyEngine recv, send, and watermark
53 * contexts. These are supplied by the caller when a recv, send,
54 * or watermark handler is established and they are echoed back to
55 * the caller when the respective callbacks are invoked. There is
56 * also a per-transfer context supplied by the caller when a buffer
57 * (or sendlist) is sent and when a buffer is enqueued for recv.
58 * These per-transfer contexts are echoed back to the caller when
59 * the buffer is sent/received.
60 */
61
ath10k_ce_dest_ring_write_index_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)62 static inline void ath10k_ce_dest_ring_write_index_set(struct ath10k *ar,
63 u32 ce_ctrl_addr,
64 unsigned int n)
65 {
66 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS, n);
67 }
68
ath10k_ce_dest_ring_write_index_get(struct ath10k * ar,u32 ce_ctrl_addr)69 static inline u32 ath10k_ce_dest_ring_write_index_get(struct ath10k *ar,
70 u32 ce_ctrl_addr)
71 {
72 return ath10k_pci_read32(ar, ce_ctrl_addr + DST_WR_INDEX_ADDRESS);
73 }
74
ath10k_ce_src_ring_write_index_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)75 static inline void ath10k_ce_src_ring_write_index_set(struct ath10k *ar,
76 u32 ce_ctrl_addr,
77 unsigned int n)
78 {
79 ath10k_pci_write32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS, n);
80 }
81
ath10k_ce_src_ring_write_index_get(struct ath10k * ar,u32 ce_ctrl_addr)82 static inline u32 ath10k_ce_src_ring_write_index_get(struct ath10k *ar,
83 u32 ce_ctrl_addr)
84 {
85 return ath10k_pci_read32(ar, ce_ctrl_addr + SR_WR_INDEX_ADDRESS);
86 }
87
ath10k_ce_src_ring_read_index_get(struct ath10k * ar,u32 ce_ctrl_addr)88 static inline u32 ath10k_ce_src_ring_read_index_get(struct ath10k *ar,
89 u32 ce_ctrl_addr)
90 {
91 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_SRRI_ADDRESS);
92 }
93
ath10k_ce_src_ring_base_addr_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int addr)94 static inline void ath10k_ce_src_ring_base_addr_set(struct ath10k *ar,
95 u32 ce_ctrl_addr,
96 unsigned int addr)
97 {
98 ath10k_pci_write32(ar, ce_ctrl_addr + SR_BA_ADDRESS, addr);
99 }
100
ath10k_ce_src_ring_size_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)101 static inline void ath10k_ce_src_ring_size_set(struct ath10k *ar,
102 u32 ce_ctrl_addr,
103 unsigned int n)
104 {
105 ath10k_pci_write32(ar, ce_ctrl_addr + SR_SIZE_ADDRESS, n);
106 }
107
ath10k_ce_src_ring_dmax_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)108 static inline void ath10k_ce_src_ring_dmax_set(struct ath10k *ar,
109 u32 ce_ctrl_addr,
110 unsigned int n)
111 {
112 u32 ctrl1_addr = ath10k_pci_read32((ar),
113 (ce_ctrl_addr) + CE_CTRL1_ADDRESS);
114
115 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
116 (ctrl1_addr & ~CE_CTRL1_DMAX_LENGTH_MASK) |
117 CE_CTRL1_DMAX_LENGTH_SET(n));
118 }
119
ath10k_ce_src_ring_byte_swap_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)120 static inline void ath10k_ce_src_ring_byte_swap_set(struct ath10k *ar,
121 u32 ce_ctrl_addr,
122 unsigned int n)
123 {
124 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
125
126 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
127 (ctrl1_addr & ~CE_CTRL1_SRC_RING_BYTE_SWAP_EN_MASK) |
128 CE_CTRL1_SRC_RING_BYTE_SWAP_EN_SET(n));
129 }
130
ath10k_ce_dest_ring_byte_swap_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)131 static inline void ath10k_ce_dest_ring_byte_swap_set(struct ath10k *ar,
132 u32 ce_ctrl_addr,
133 unsigned int n)
134 {
135 u32 ctrl1_addr = ath10k_pci_read32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS);
136
137 ath10k_pci_write32(ar, ce_ctrl_addr + CE_CTRL1_ADDRESS,
138 (ctrl1_addr & ~CE_CTRL1_DST_RING_BYTE_SWAP_EN_MASK) |
139 CE_CTRL1_DST_RING_BYTE_SWAP_EN_SET(n));
140 }
141
ath10k_ce_dest_ring_read_index_get(struct ath10k * ar,u32 ce_ctrl_addr)142 static inline u32 ath10k_ce_dest_ring_read_index_get(struct ath10k *ar,
143 u32 ce_ctrl_addr)
144 {
145 return ath10k_pci_read32(ar, ce_ctrl_addr + CURRENT_DRRI_ADDRESS);
146 }
147
ath10k_ce_dest_ring_base_addr_set(struct ath10k * ar,u32 ce_ctrl_addr,u32 addr)148 static inline void ath10k_ce_dest_ring_base_addr_set(struct ath10k *ar,
149 u32 ce_ctrl_addr,
150 u32 addr)
151 {
152 ath10k_pci_write32(ar, ce_ctrl_addr + DR_BA_ADDRESS, addr);
153 }
154
ath10k_ce_dest_ring_size_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)155 static inline void ath10k_ce_dest_ring_size_set(struct ath10k *ar,
156 u32 ce_ctrl_addr,
157 unsigned int n)
158 {
159 ath10k_pci_write32(ar, ce_ctrl_addr + DR_SIZE_ADDRESS, n);
160 }
161
ath10k_ce_src_ring_highmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)162 static inline void ath10k_ce_src_ring_highmark_set(struct ath10k *ar,
163 u32 ce_ctrl_addr,
164 unsigned int n)
165 {
166 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
167
168 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
169 (addr & ~SRC_WATERMARK_HIGH_MASK) |
170 SRC_WATERMARK_HIGH_SET(n));
171 }
172
ath10k_ce_src_ring_lowmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)173 static inline void ath10k_ce_src_ring_lowmark_set(struct ath10k *ar,
174 u32 ce_ctrl_addr,
175 unsigned int n)
176 {
177 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS);
178
179 ath10k_pci_write32(ar, ce_ctrl_addr + SRC_WATERMARK_ADDRESS,
180 (addr & ~SRC_WATERMARK_LOW_MASK) |
181 SRC_WATERMARK_LOW_SET(n));
182 }
183
ath10k_ce_dest_ring_highmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)184 static inline void ath10k_ce_dest_ring_highmark_set(struct ath10k *ar,
185 u32 ce_ctrl_addr,
186 unsigned int n)
187 {
188 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
189
190 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
191 (addr & ~DST_WATERMARK_HIGH_MASK) |
192 DST_WATERMARK_HIGH_SET(n));
193 }
194
ath10k_ce_dest_ring_lowmark_set(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int n)195 static inline void ath10k_ce_dest_ring_lowmark_set(struct ath10k *ar,
196 u32 ce_ctrl_addr,
197 unsigned int n)
198 {
199 u32 addr = ath10k_pci_read32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS);
200
201 ath10k_pci_write32(ar, ce_ctrl_addr + DST_WATERMARK_ADDRESS,
202 (addr & ~DST_WATERMARK_LOW_MASK) |
203 DST_WATERMARK_LOW_SET(n));
204 }
205
ath10k_ce_copy_complete_inter_enable(struct ath10k * ar,u32 ce_ctrl_addr)206 static inline void ath10k_ce_copy_complete_inter_enable(struct ath10k *ar,
207 u32 ce_ctrl_addr)
208 {
209 u32 host_ie_addr = ath10k_pci_read32(ar,
210 ce_ctrl_addr + HOST_IE_ADDRESS);
211
212 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
213 host_ie_addr | HOST_IE_COPY_COMPLETE_MASK);
214 }
215
ath10k_ce_copy_complete_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)216 static inline void ath10k_ce_copy_complete_intr_disable(struct ath10k *ar,
217 u32 ce_ctrl_addr)
218 {
219 u32 host_ie_addr = ath10k_pci_read32(ar,
220 ce_ctrl_addr + HOST_IE_ADDRESS);
221
222 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
223 host_ie_addr & ~HOST_IE_COPY_COMPLETE_MASK);
224 }
225
ath10k_ce_watermark_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)226 static inline void ath10k_ce_watermark_intr_disable(struct ath10k *ar,
227 u32 ce_ctrl_addr)
228 {
229 u32 host_ie_addr = ath10k_pci_read32(ar,
230 ce_ctrl_addr + HOST_IE_ADDRESS);
231
232 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IE_ADDRESS,
233 host_ie_addr & ~CE_WATERMARK_MASK);
234 }
235
ath10k_ce_error_intr_enable(struct ath10k * ar,u32 ce_ctrl_addr)236 static inline void ath10k_ce_error_intr_enable(struct ath10k *ar,
237 u32 ce_ctrl_addr)
238 {
239 u32 misc_ie_addr = ath10k_pci_read32(ar,
240 ce_ctrl_addr + MISC_IE_ADDRESS);
241
242 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
243 misc_ie_addr | CE_ERROR_MASK);
244 }
245
ath10k_ce_error_intr_disable(struct ath10k * ar,u32 ce_ctrl_addr)246 static inline void ath10k_ce_error_intr_disable(struct ath10k *ar,
247 u32 ce_ctrl_addr)
248 {
249 u32 misc_ie_addr = ath10k_pci_read32(ar,
250 ce_ctrl_addr + MISC_IE_ADDRESS);
251
252 ath10k_pci_write32(ar, ce_ctrl_addr + MISC_IE_ADDRESS,
253 misc_ie_addr & ~CE_ERROR_MASK);
254 }
255
ath10k_ce_engine_int_status_clear(struct ath10k * ar,u32 ce_ctrl_addr,unsigned int mask)256 static inline void ath10k_ce_engine_int_status_clear(struct ath10k *ar,
257 u32 ce_ctrl_addr,
258 unsigned int mask)
259 {
260 ath10k_pci_write32(ar, ce_ctrl_addr + HOST_IS_ADDRESS, mask);
261 }
262
263 /*
264 * Guts of ath10k_ce_send, used by both ath10k_ce_send and
265 * ath10k_ce_sendlist_send.
266 * The caller takes responsibility for any needed locking.
267 */
ath10k_ce_send_nolock(struct ath10k_ce_pipe * ce_state,void * per_transfer_context,u32 buffer,unsigned int nbytes,unsigned int transfer_id,unsigned int flags)268 int ath10k_ce_send_nolock(struct ath10k_ce_pipe *ce_state,
269 void *per_transfer_context,
270 u32 buffer,
271 unsigned int nbytes,
272 unsigned int transfer_id,
273 unsigned int flags)
274 {
275 struct ath10k *ar = ce_state->ar;
276 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
277 struct ce_desc *desc, *sdesc;
278 unsigned int nentries_mask = src_ring->nentries_mask;
279 unsigned int sw_index = src_ring->sw_index;
280 unsigned int write_index = src_ring->write_index;
281 u32 ctrl_addr = ce_state->ctrl_addr;
282 u32 desc_flags = 0;
283 int ret = 0;
284
285 if (nbytes > ce_state->src_sz_max)
286 ath10k_warn(ar, "%s: send more we can (nbytes: %d, max: %d)\n",
287 __func__, nbytes, ce_state->src_sz_max);
288
289 if (unlikely(CE_RING_DELTA(nentries_mask,
290 write_index, sw_index - 1) <= 0)) {
291 ret = -ENOSR;
292 goto exit;
293 }
294
295 desc = CE_SRC_RING_TO_DESC(src_ring->base_addr_owner_space,
296 write_index);
297 sdesc = CE_SRC_RING_TO_DESC(src_ring->shadow_base, write_index);
298
299 desc_flags |= SM(transfer_id, CE_DESC_FLAGS_META_DATA);
300
301 if (flags & CE_SEND_FLAG_GATHER)
302 desc_flags |= CE_DESC_FLAGS_GATHER;
303 if (flags & CE_SEND_FLAG_BYTE_SWAP)
304 desc_flags |= CE_DESC_FLAGS_BYTE_SWAP;
305
306 sdesc->addr = __cpu_to_le32(buffer);
307 sdesc->nbytes = __cpu_to_le16(nbytes);
308 sdesc->flags = __cpu_to_le16(desc_flags);
309
310 *desc = *sdesc;
311
312 src_ring->per_transfer_context[write_index] = per_transfer_context;
313
314 /* Update Source Ring Write Index */
315 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
316
317 /* WORKAROUND */
318 if (!(flags & CE_SEND_FLAG_GATHER))
319 ath10k_ce_src_ring_write_index_set(ar, ctrl_addr, write_index);
320
321 src_ring->write_index = write_index;
322 exit:
323 return ret;
324 }
325
__ath10k_ce_send_revert(struct ath10k_ce_pipe * pipe)326 void __ath10k_ce_send_revert(struct ath10k_ce_pipe *pipe)
327 {
328 struct ath10k *ar = pipe->ar;
329 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
330 struct ath10k_ce_ring *src_ring = pipe->src_ring;
331 u32 ctrl_addr = pipe->ctrl_addr;
332
333 lockdep_assert_held(&ar_pci->ce_lock);
334
335 /*
336 * This function must be called only if there is an incomplete
337 * scatter-gather transfer (before index register is updated)
338 * that needs to be cleaned up.
339 */
340 if (WARN_ON_ONCE(src_ring->write_index == src_ring->sw_index))
341 return;
342
343 if (WARN_ON_ONCE(src_ring->write_index ==
344 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr)))
345 return;
346
347 src_ring->write_index--;
348 src_ring->write_index &= src_ring->nentries_mask;
349
350 src_ring->per_transfer_context[src_ring->write_index] = NULL;
351 }
352
ath10k_ce_send(struct ath10k_ce_pipe * ce_state,void * per_transfer_context,u32 buffer,unsigned int nbytes,unsigned int transfer_id,unsigned int flags)353 int ath10k_ce_send(struct ath10k_ce_pipe *ce_state,
354 void *per_transfer_context,
355 u32 buffer,
356 unsigned int nbytes,
357 unsigned int transfer_id,
358 unsigned int flags)
359 {
360 struct ath10k *ar = ce_state->ar;
361 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
362 int ret;
363
364 spin_lock_bh(&ar_pci->ce_lock);
365 ret = ath10k_ce_send_nolock(ce_state, per_transfer_context,
366 buffer, nbytes, transfer_id, flags);
367 spin_unlock_bh(&ar_pci->ce_lock);
368
369 return ret;
370 }
371
ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe * pipe)372 int ath10k_ce_num_free_src_entries(struct ath10k_ce_pipe *pipe)
373 {
374 struct ath10k *ar = pipe->ar;
375 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
376 int delta;
377
378 spin_lock_bh(&ar_pci->ce_lock);
379 delta = CE_RING_DELTA(pipe->src_ring->nentries_mask,
380 pipe->src_ring->write_index,
381 pipe->src_ring->sw_index - 1);
382 spin_unlock_bh(&ar_pci->ce_lock);
383
384 return delta;
385 }
386
__ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe * pipe)387 int __ath10k_ce_rx_num_free_bufs(struct ath10k_ce_pipe *pipe)
388 {
389 struct ath10k *ar = pipe->ar;
390 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
391 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
392 unsigned int nentries_mask = dest_ring->nentries_mask;
393 unsigned int write_index = dest_ring->write_index;
394 unsigned int sw_index = dest_ring->sw_index;
395
396 lockdep_assert_held(&ar_pci->ce_lock);
397
398 return CE_RING_DELTA(nentries_mask, write_index, sw_index - 1);
399 }
400
__ath10k_ce_rx_post_buf(struct ath10k_ce_pipe * pipe,void * ctx,u32 paddr)401 int __ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
402 {
403 struct ath10k *ar = pipe->ar;
404 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
405 struct ath10k_ce_ring *dest_ring = pipe->dest_ring;
406 unsigned int nentries_mask = dest_ring->nentries_mask;
407 unsigned int write_index = dest_ring->write_index;
408 unsigned int sw_index = dest_ring->sw_index;
409 struct ce_desc *base = dest_ring->base_addr_owner_space;
410 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, write_index);
411 u32 ctrl_addr = pipe->ctrl_addr;
412
413 lockdep_assert_held(&ar_pci->ce_lock);
414
415 if (CE_RING_DELTA(nentries_mask, write_index, sw_index - 1) == 0)
416 return -EIO;
417
418 desc->addr = __cpu_to_le32(paddr);
419 desc->nbytes = 0;
420
421 dest_ring->per_transfer_context[write_index] = ctx;
422 write_index = CE_RING_IDX_INCR(nentries_mask, write_index);
423 ath10k_ce_dest_ring_write_index_set(ar, ctrl_addr, write_index);
424 dest_ring->write_index = write_index;
425
426 return 0;
427 }
428
ath10k_ce_rx_post_buf(struct ath10k_ce_pipe * pipe,void * ctx,u32 paddr)429 int ath10k_ce_rx_post_buf(struct ath10k_ce_pipe *pipe, void *ctx, u32 paddr)
430 {
431 struct ath10k *ar = pipe->ar;
432 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
433 int ret;
434
435 spin_lock_bh(&ar_pci->ce_lock);
436 ret = __ath10k_ce_rx_post_buf(pipe, ctx, paddr);
437 spin_unlock_bh(&ar_pci->ce_lock);
438
439 return ret;
440 }
441
442 /*
443 * Guts of ath10k_ce_completed_recv_next.
444 * The caller takes responsibility for any necessary locking.
445 */
ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp,unsigned int * flagsp)446 int ath10k_ce_completed_recv_next_nolock(struct ath10k_ce_pipe *ce_state,
447 void **per_transfer_contextp,
448 u32 *bufferp,
449 unsigned int *nbytesp,
450 unsigned int *transfer_idp,
451 unsigned int *flagsp)
452 {
453 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
454 unsigned int nentries_mask = dest_ring->nentries_mask;
455 unsigned int sw_index = dest_ring->sw_index;
456
457 struct ce_desc *base = dest_ring->base_addr_owner_space;
458 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
459 struct ce_desc sdesc;
460 u16 nbytes;
461
462 /* Copy in one go for performance reasons */
463 sdesc = *desc;
464
465 nbytes = __le16_to_cpu(sdesc.nbytes);
466 if (nbytes == 0) {
467 /*
468 * This closes a relatively unusual race where the Host
469 * sees the updated DRRI before the update to the
470 * corresponding descriptor has completed. We treat this
471 * as a descriptor that is not yet done.
472 */
473 return -EIO;
474 }
475
476 desc->nbytes = 0;
477
478 /* Return data from completed destination descriptor */
479 *bufferp = __le32_to_cpu(sdesc.addr);
480 *nbytesp = nbytes;
481 *transfer_idp = MS(__le16_to_cpu(sdesc.flags), CE_DESC_FLAGS_META_DATA);
482
483 if (__le16_to_cpu(sdesc.flags) & CE_DESC_FLAGS_BYTE_SWAP)
484 *flagsp = CE_RECV_FLAG_SWAPPED;
485 else
486 *flagsp = 0;
487
488 if (per_transfer_contextp)
489 *per_transfer_contextp =
490 dest_ring->per_transfer_context[sw_index];
491
492 /* sanity */
493 dest_ring->per_transfer_context[sw_index] = NULL;
494
495 /* Update sw_index */
496 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
497 dest_ring->sw_index = sw_index;
498
499 return 0;
500 }
501
ath10k_ce_completed_recv_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp,unsigned int * flagsp)502 int ath10k_ce_completed_recv_next(struct ath10k_ce_pipe *ce_state,
503 void **per_transfer_contextp,
504 u32 *bufferp,
505 unsigned int *nbytesp,
506 unsigned int *transfer_idp,
507 unsigned int *flagsp)
508 {
509 struct ath10k *ar = ce_state->ar;
510 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
511 int ret;
512
513 spin_lock_bh(&ar_pci->ce_lock);
514 ret = ath10k_ce_completed_recv_next_nolock(ce_state,
515 per_transfer_contextp,
516 bufferp, nbytesp,
517 transfer_idp, flagsp);
518 spin_unlock_bh(&ar_pci->ce_lock);
519
520 return ret;
521 }
522
ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp)523 int ath10k_ce_revoke_recv_next(struct ath10k_ce_pipe *ce_state,
524 void **per_transfer_contextp,
525 u32 *bufferp)
526 {
527 struct ath10k_ce_ring *dest_ring;
528 unsigned int nentries_mask;
529 unsigned int sw_index;
530 unsigned int write_index;
531 int ret;
532 struct ath10k *ar;
533 struct ath10k_pci *ar_pci;
534
535 dest_ring = ce_state->dest_ring;
536
537 if (!dest_ring)
538 return -EIO;
539
540 ar = ce_state->ar;
541 ar_pci = ath10k_pci_priv(ar);
542
543 spin_lock_bh(&ar_pci->ce_lock);
544
545 nentries_mask = dest_ring->nentries_mask;
546 sw_index = dest_ring->sw_index;
547 write_index = dest_ring->write_index;
548 if (write_index != sw_index) {
549 struct ce_desc *base = dest_ring->base_addr_owner_space;
550 struct ce_desc *desc = CE_DEST_RING_TO_DESC(base, sw_index);
551
552 /* Return data from completed destination descriptor */
553 *bufferp = __le32_to_cpu(desc->addr);
554
555 if (per_transfer_contextp)
556 *per_transfer_contextp =
557 dest_ring->per_transfer_context[sw_index];
558
559 /* sanity */
560 dest_ring->per_transfer_context[sw_index] = NULL;
561 desc->nbytes = 0;
562
563 /* Update sw_index */
564 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
565 dest_ring->sw_index = sw_index;
566 ret = 0;
567 } else {
568 ret = -EIO;
569 }
570
571 spin_unlock_bh(&ar_pci->ce_lock);
572
573 return ret;
574 }
575
576 /*
577 * Guts of ath10k_ce_completed_send_next.
578 * The caller takes responsibility for any necessary locking.
579 */
ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp)580 int ath10k_ce_completed_send_next_nolock(struct ath10k_ce_pipe *ce_state,
581 void **per_transfer_contextp,
582 u32 *bufferp,
583 unsigned int *nbytesp,
584 unsigned int *transfer_idp)
585 {
586 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
587 u32 ctrl_addr = ce_state->ctrl_addr;
588 struct ath10k *ar = ce_state->ar;
589 unsigned int nentries_mask = src_ring->nentries_mask;
590 unsigned int sw_index = src_ring->sw_index;
591 struct ce_desc *sdesc, *sbase;
592 unsigned int read_index;
593
594 if (src_ring->hw_index == sw_index) {
595 /*
596 * The SW completion index has caught up with the cached
597 * version of the HW completion index.
598 * Update the cached HW completion index to see whether
599 * the SW has really caught up to the HW, or if the cached
600 * value of the HW index has become stale.
601 */
602
603 read_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
604 if (read_index == 0xffffffff)
605 return -ENODEV;
606
607 read_index &= nentries_mask;
608 src_ring->hw_index = read_index;
609 }
610
611 read_index = src_ring->hw_index;
612
613 if (read_index == sw_index)
614 return -EIO;
615
616 sbase = src_ring->shadow_base;
617 sdesc = CE_SRC_RING_TO_DESC(sbase, sw_index);
618
619 /* Return data from completed source descriptor */
620 *bufferp = __le32_to_cpu(sdesc->addr);
621 *nbytesp = __le16_to_cpu(sdesc->nbytes);
622 *transfer_idp = MS(__le16_to_cpu(sdesc->flags),
623 CE_DESC_FLAGS_META_DATA);
624
625 if (per_transfer_contextp)
626 *per_transfer_contextp =
627 src_ring->per_transfer_context[sw_index];
628
629 /* sanity */
630 src_ring->per_transfer_context[sw_index] = NULL;
631
632 /* Update sw_index */
633 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
634 src_ring->sw_index = sw_index;
635
636 return 0;
637 }
638
639 /* NB: Modeled after ath10k_ce_completed_send_next */
ath10k_ce_cancel_send_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp)640 int ath10k_ce_cancel_send_next(struct ath10k_ce_pipe *ce_state,
641 void **per_transfer_contextp,
642 u32 *bufferp,
643 unsigned int *nbytesp,
644 unsigned int *transfer_idp)
645 {
646 struct ath10k_ce_ring *src_ring;
647 unsigned int nentries_mask;
648 unsigned int sw_index;
649 unsigned int write_index;
650 int ret;
651 struct ath10k *ar;
652 struct ath10k_pci *ar_pci;
653
654 src_ring = ce_state->src_ring;
655
656 if (!src_ring)
657 return -EIO;
658
659 ar = ce_state->ar;
660 ar_pci = ath10k_pci_priv(ar);
661
662 spin_lock_bh(&ar_pci->ce_lock);
663
664 nentries_mask = src_ring->nentries_mask;
665 sw_index = src_ring->sw_index;
666 write_index = src_ring->write_index;
667
668 if (write_index != sw_index) {
669 struct ce_desc *base = src_ring->base_addr_owner_space;
670 struct ce_desc *desc = CE_SRC_RING_TO_DESC(base, sw_index);
671
672 /* Return data from completed source descriptor */
673 *bufferp = __le32_to_cpu(desc->addr);
674 *nbytesp = __le16_to_cpu(desc->nbytes);
675 *transfer_idp = MS(__le16_to_cpu(desc->flags),
676 CE_DESC_FLAGS_META_DATA);
677
678 if (per_transfer_contextp)
679 *per_transfer_contextp =
680 src_ring->per_transfer_context[sw_index];
681
682 /* sanity */
683 src_ring->per_transfer_context[sw_index] = NULL;
684
685 /* Update sw_index */
686 sw_index = CE_RING_IDX_INCR(nentries_mask, sw_index);
687 src_ring->sw_index = sw_index;
688 ret = 0;
689 } else {
690 ret = -EIO;
691 }
692
693 spin_unlock_bh(&ar_pci->ce_lock);
694
695 return ret;
696 }
697
ath10k_ce_completed_send_next(struct ath10k_ce_pipe * ce_state,void ** per_transfer_contextp,u32 * bufferp,unsigned int * nbytesp,unsigned int * transfer_idp)698 int ath10k_ce_completed_send_next(struct ath10k_ce_pipe *ce_state,
699 void **per_transfer_contextp,
700 u32 *bufferp,
701 unsigned int *nbytesp,
702 unsigned int *transfer_idp)
703 {
704 struct ath10k *ar = ce_state->ar;
705 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
706 int ret;
707
708 spin_lock_bh(&ar_pci->ce_lock);
709 ret = ath10k_ce_completed_send_next_nolock(ce_state,
710 per_transfer_contextp,
711 bufferp, nbytesp,
712 transfer_idp);
713 spin_unlock_bh(&ar_pci->ce_lock);
714
715 return ret;
716 }
717
718 /*
719 * Guts of interrupt handler for per-engine interrupts on a particular CE.
720 *
721 * Invokes registered callbacks for recv_complete,
722 * send_complete, and watermarks.
723 */
ath10k_ce_per_engine_service(struct ath10k * ar,unsigned int ce_id)724 void ath10k_ce_per_engine_service(struct ath10k *ar, unsigned int ce_id)
725 {
726 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
727 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
728 u32 ctrl_addr = ce_state->ctrl_addr;
729
730 spin_lock_bh(&ar_pci->ce_lock);
731
732 /* Clear the copy-complete interrupts that will be handled here. */
733 ath10k_ce_engine_int_status_clear(ar, ctrl_addr,
734 HOST_IS_COPY_COMPLETE_MASK);
735
736 spin_unlock_bh(&ar_pci->ce_lock);
737
738 if (ce_state->recv_cb)
739 ce_state->recv_cb(ce_state);
740
741 if (ce_state->send_cb)
742 ce_state->send_cb(ce_state);
743
744 spin_lock_bh(&ar_pci->ce_lock);
745
746 /*
747 * Misc CE interrupts are not being handled, but still need
748 * to be cleared.
749 */
750 ath10k_ce_engine_int_status_clear(ar, ctrl_addr, CE_WATERMARK_MASK);
751
752 spin_unlock_bh(&ar_pci->ce_lock);
753 }
754
755 /*
756 * Handler for per-engine interrupts on ALL active CEs.
757 * This is used in cases where the system is sharing a
758 * single interrput for all CEs
759 */
760
ath10k_ce_per_engine_service_any(struct ath10k * ar)761 void ath10k_ce_per_engine_service_any(struct ath10k *ar)
762 {
763 int ce_id;
764 u32 intr_summary;
765
766 intr_summary = CE_INTERRUPT_SUMMARY(ar);
767
768 for (ce_id = 0; intr_summary && (ce_id < CE_COUNT); ce_id++) {
769 if (intr_summary & (1 << ce_id))
770 intr_summary &= ~(1 << ce_id);
771 else
772 /* no intr pending on this CE */
773 continue;
774
775 ath10k_ce_per_engine_service(ar, ce_id);
776 }
777 }
778
779 /*
780 * Adjust interrupts for the copy complete handler.
781 * If it's needed for either send or recv, then unmask
782 * this interrupt; otherwise, mask it.
783 *
784 * Called with ce_lock held.
785 */
ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe * ce_state)786 static void ath10k_ce_per_engine_handler_adjust(struct ath10k_ce_pipe *ce_state)
787 {
788 u32 ctrl_addr = ce_state->ctrl_addr;
789 struct ath10k *ar = ce_state->ar;
790 bool disable_copy_compl_intr = ce_state->attr_flags & CE_ATTR_DIS_INTR;
791
792 if ((!disable_copy_compl_intr) &&
793 (ce_state->send_cb || ce_state->recv_cb))
794 ath10k_ce_copy_complete_inter_enable(ar, ctrl_addr);
795 else
796 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
797
798 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
799 }
800
ath10k_ce_disable_interrupts(struct ath10k * ar)801 int ath10k_ce_disable_interrupts(struct ath10k *ar)
802 {
803 int ce_id;
804
805 for (ce_id = 0; ce_id < CE_COUNT; ce_id++) {
806 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
807
808 ath10k_ce_copy_complete_intr_disable(ar, ctrl_addr);
809 ath10k_ce_error_intr_disable(ar, ctrl_addr);
810 ath10k_ce_watermark_intr_disable(ar, ctrl_addr);
811 }
812
813 return 0;
814 }
815
ath10k_ce_enable_interrupts(struct ath10k * ar)816 void ath10k_ce_enable_interrupts(struct ath10k *ar)
817 {
818 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
819 int ce_id;
820
821 /* Skip the last copy engine, CE7 the diagnostic window, as that
822 * uses polling and isn't initialized for interrupts.
823 */
824 for (ce_id = 0; ce_id < CE_COUNT - 1; ce_id++)
825 ath10k_ce_per_engine_handler_adjust(&ar_pci->ce_states[ce_id]);
826 }
827
ath10k_ce_init_src_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)828 static int ath10k_ce_init_src_ring(struct ath10k *ar,
829 unsigned int ce_id,
830 const struct ce_attr *attr)
831 {
832 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
833 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
834 struct ath10k_ce_ring *src_ring = ce_state->src_ring;
835 u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
836
837 nentries = roundup_pow_of_two(attr->src_nentries);
838
839 memset(src_ring->base_addr_owner_space, 0,
840 nentries * sizeof(struct ce_desc));
841
842 src_ring->sw_index = ath10k_ce_src_ring_read_index_get(ar, ctrl_addr);
843 src_ring->sw_index &= src_ring->nentries_mask;
844 src_ring->hw_index = src_ring->sw_index;
845
846 src_ring->write_index =
847 ath10k_ce_src_ring_write_index_get(ar, ctrl_addr);
848 src_ring->write_index &= src_ring->nentries_mask;
849
850 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr,
851 src_ring->base_addr_ce_space);
852 ath10k_ce_src_ring_size_set(ar, ctrl_addr, nentries);
853 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, attr->src_sz_max);
854 ath10k_ce_src_ring_byte_swap_set(ar, ctrl_addr, 0);
855 ath10k_ce_src_ring_lowmark_set(ar, ctrl_addr, 0);
856 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, nentries);
857
858 ath10k_dbg(ar, ATH10K_DBG_BOOT,
859 "boot init ce src ring id %d entries %d base_addr %p\n",
860 ce_id, nentries, src_ring->base_addr_owner_space);
861
862 return 0;
863 }
864
ath10k_ce_init_dest_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)865 static int ath10k_ce_init_dest_ring(struct ath10k *ar,
866 unsigned int ce_id,
867 const struct ce_attr *attr)
868 {
869 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
870 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
871 struct ath10k_ce_ring *dest_ring = ce_state->dest_ring;
872 u32 nentries, ctrl_addr = ath10k_ce_base_address(ar, ce_id);
873
874 nentries = roundup_pow_of_two(attr->dest_nentries);
875
876 memset(dest_ring->base_addr_owner_space, 0,
877 nentries * sizeof(struct ce_desc));
878
879 dest_ring->sw_index = ath10k_ce_dest_ring_read_index_get(ar, ctrl_addr);
880 dest_ring->sw_index &= dest_ring->nentries_mask;
881 dest_ring->write_index =
882 ath10k_ce_dest_ring_write_index_get(ar, ctrl_addr);
883 dest_ring->write_index &= dest_ring->nentries_mask;
884
885 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr,
886 dest_ring->base_addr_ce_space);
887 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, nentries);
888 ath10k_ce_dest_ring_byte_swap_set(ar, ctrl_addr, 0);
889 ath10k_ce_dest_ring_lowmark_set(ar, ctrl_addr, 0);
890 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, nentries);
891
892 ath10k_dbg(ar, ATH10K_DBG_BOOT,
893 "boot ce dest ring id %d entries %d base_addr %p\n",
894 ce_id, nentries, dest_ring->base_addr_owner_space);
895
896 return 0;
897 }
898
899 static struct ath10k_ce_ring *
ath10k_ce_alloc_src_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)900 ath10k_ce_alloc_src_ring(struct ath10k *ar, unsigned int ce_id,
901 const struct ce_attr *attr)
902 {
903 struct ath10k_ce_ring *src_ring;
904 u32 nentries = attr->src_nentries;
905 dma_addr_t base_addr;
906
907 nentries = roundup_pow_of_two(nentries);
908
909 src_ring = kzalloc(sizeof(*src_ring) +
910 (nentries *
911 sizeof(*src_ring->per_transfer_context)),
912 GFP_KERNEL);
913 if (src_ring == NULL)
914 return ERR_PTR(-ENOMEM);
915
916 src_ring->nentries = nentries;
917 src_ring->nentries_mask = nentries - 1;
918
919 /*
920 * Legacy platforms that do not support cache
921 * coherent DMA are unsupported
922 */
923 src_ring->base_addr_owner_space_unaligned =
924 dma_alloc_coherent(ar->dev,
925 (nentries * sizeof(struct ce_desc) +
926 CE_DESC_RING_ALIGN),
927 &base_addr, GFP_KERNEL);
928 if (!src_ring->base_addr_owner_space_unaligned) {
929 kfree(src_ring);
930 return ERR_PTR(-ENOMEM);
931 }
932
933 src_ring->base_addr_ce_space_unaligned = base_addr;
934
935 src_ring->base_addr_owner_space = PTR_ALIGN(
936 src_ring->base_addr_owner_space_unaligned,
937 CE_DESC_RING_ALIGN);
938 src_ring->base_addr_ce_space = ALIGN(
939 src_ring->base_addr_ce_space_unaligned,
940 CE_DESC_RING_ALIGN);
941
942 /*
943 * Also allocate a shadow src ring in regular
944 * mem to use for faster access.
945 */
946 src_ring->shadow_base_unaligned =
947 kmalloc((nentries * sizeof(struct ce_desc) +
948 CE_DESC_RING_ALIGN), GFP_KERNEL);
949 if (!src_ring->shadow_base_unaligned) {
950 dma_free_coherent(ar->dev,
951 (nentries * sizeof(struct ce_desc) +
952 CE_DESC_RING_ALIGN),
953 src_ring->base_addr_owner_space,
954 src_ring->base_addr_ce_space);
955 kfree(src_ring);
956 return ERR_PTR(-ENOMEM);
957 }
958
959 src_ring->shadow_base = PTR_ALIGN(
960 src_ring->shadow_base_unaligned,
961 CE_DESC_RING_ALIGN);
962
963 return src_ring;
964 }
965
966 static struct ath10k_ce_ring *
ath10k_ce_alloc_dest_ring(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)967 ath10k_ce_alloc_dest_ring(struct ath10k *ar, unsigned int ce_id,
968 const struct ce_attr *attr)
969 {
970 struct ath10k_ce_ring *dest_ring;
971 u32 nentries;
972 dma_addr_t base_addr;
973
974 nentries = roundup_pow_of_two(attr->dest_nentries);
975
976 dest_ring = kzalloc(sizeof(*dest_ring) +
977 (nentries *
978 sizeof(*dest_ring->per_transfer_context)),
979 GFP_KERNEL);
980 if (dest_ring == NULL)
981 return ERR_PTR(-ENOMEM);
982
983 dest_ring->nentries = nentries;
984 dest_ring->nentries_mask = nentries - 1;
985
986 /*
987 * Legacy platforms that do not support cache
988 * coherent DMA are unsupported
989 */
990 dest_ring->base_addr_owner_space_unaligned =
991 dma_alloc_coherent(ar->dev,
992 (nentries * sizeof(struct ce_desc) +
993 CE_DESC_RING_ALIGN),
994 &base_addr, GFP_KERNEL);
995 if (!dest_ring->base_addr_owner_space_unaligned) {
996 kfree(dest_ring);
997 return ERR_PTR(-ENOMEM);
998 }
999
1000 dest_ring->base_addr_ce_space_unaligned = base_addr;
1001
1002 /*
1003 * Correctly initialize memory to 0 to prevent garbage
1004 * data crashing system when download firmware
1005 */
1006 memset(dest_ring->base_addr_owner_space_unaligned, 0,
1007 nentries * sizeof(struct ce_desc) + CE_DESC_RING_ALIGN);
1008
1009 dest_ring->base_addr_owner_space = PTR_ALIGN(
1010 dest_ring->base_addr_owner_space_unaligned,
1011 CE_DESC_RING_ALIGN);
1012 dest_ring->base_addr_ce_space = ALIGN(
1013 dest_ring->base_addr_ce_space_unaligned,
1014 CE_DESC_RING_ALIGN);
1015
1016 return dest_ring;
1017 }
1018
1019 /*
1020 * Initialize a Copy Engine based on caller-supplied attributes.
1021 * This may be called once to initialize both source and destination
1022 * rings or it may be called twice for separate source and destination
1023 * initialization. It may be that only one side or the other is
1024 * initialized by software/firmware.
1025 */
ath10k_ce_init_pipe(struct ath10k * ar,unsigned int ce_id,const struct ce_attr * attr)1026 int ath10k_ce_init_pipe(struct ath10k *ar, unsigned int ce_id,
1027 const struct ce_attr *attr)
1028 {
1029 int ret;
1030
1031 if (attr->src_nentries) {
1032 ret = ath10k_ce_init_src_ring(ar, ce_id, attr);
1033 if (ret) {
1034 ath10k_err(ar, "Failed to initialize CE src ring for ID: %d (%d)\n",
1035 ce_id, ret);
1036 return ret;
1037 }
1038 }
1039
1040 if (attr->dest_nentries) {
1041 ret = ath10k_ce_init_dest_ring(ar, ce_id, attr);
1042 if (ret) {
1043 ath10k_err(ar, "Failed to initialize CE dest ring for ID: %d (%d)\n",
1044 ce_id, ret);
1045 return ret;
1046 }
1047 }
1048
1049 return 0;
1050 }
1051
ath10k_ce_deinit_src_ring(struct ath10k * ar,unsigned int ce_id)1052 static void ath10k_ce_deinit_src_ring(struct ath10k *ar, unsigned int ce_id)
1053 {
1054 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1055
1056 ath10k_ce_src_ring_base_addr_set(ar, ctrl_addr, 0);
1057 ath10k_ce_src_ring_size_set(ar, ctrl_addr, 0);
1058 ath10k_ce_src_ring_dmax_set(ar, ctrl_addr, 0);
1059 ath10k_ce_src_ring_highmark_set(ar, ctrl_addr, 0);
1060 }
1061
ath10k_ce_deinit_dest_ring(struct ath10k * ar,unsigned int ce_id)1062 static void ath10k_ce_deinit_dest_ring(struct ath10k *ar, unsigned int ce_id)
1063 {
1064 u32 ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1065
1066 ath10k_ce_dest_ring_base_addr_set(ar, ctrl_addr, 0);
1067 ath10k_ce_dest_ring_size_set(ar, ctrl_addr, 0);
1068 ath10k_ce_dest_ring_highmark_set(ar, ctrl_addr, 0);
1069 }
1070
ath10k_ce_deinit_pipe(struct ath10k * ar,unsigned int ce_id)1071 void ath10k_ce_deinit_pipe(struct ath10k *ar, unsigned int ce_id)
1072 {
1073 ath10k_ce_deinit_src_ring(ar, ce_id);
1074 ath10k_ce_deinit_dest_ring(ar, ce_id);
1075 }
1076
ath10k_ce_alloc_pipe(struct ath10k * ar,int ce_id,const struct ce_attr * attr,void (* send_cb)(struct ath10k_ce_pipe *),void (* recv_cb)(struct ath10k_ce_pipe *))1077 int ath10k_ce_alloc_pipe(struct ath10k *ar, int ce_id,
1078 const struct ce_attr *attr,
1079 void (*send_cb)(struct ath10k_ce_pipe *),
1080 void (*recv_cb)(struct ath10k_ce_pipe *))
1081 {
1082 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1083 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1084 int ret;
1085
1086 /*
1087 * Make sure there's enough CE ringbuffer entries for HTT TX to avoid
1088 * additional TX locking checks.
1089 *
1090 * For the lack of a better place do the check here.
1091 */
1092 BUILD_BUG_ON(2*TARGET_NUM_MSDU_DESC >
1093 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1094 BUILD_BUG_ON(2*TARGET_10X_NUM_MSDU_DESC >
1095 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1096 BUILD_BUG_ON(2*TARGET_TLV_NUM_MSDU_DESC >
1097 (CE_HTT_H2T_MSG_SRC_NENTRIES - 1));
1098
1099 ce_state->ar = ar;
1100 ce_state->id = ce_id;
1101 ce_state->ctrl_addr = ath10k_ce_base_address(ar, ce_id);
1102 ce_state->attr_flags = attr->flags;
1103 ce_state->src_sz_max = attr->src_sz_max;
1104
1105 if (attr->src_nentries)
1106 ce_state->send_cb = send_cb;
1107
1108 if (attr->dest_nentries)
1109 ce_state->recv_cb = recv_cb;
1110
1111 if (attr->src_nentries) {
1112 ce_state->src_ring = ath10k_ce_alloc_src_ring(ar, ce_id, attr);
1113 if (IS_ERR(ce_state->src_ring)) {
1114 ret = PTR_ERR(ce_state->src_ring);
1115 ath10k_err(ar, "failed to allocate copy engine source ring %d: %d\n",
1116 ce_id, ret);
1117 ce_state->src_ring = NULL;
1118 return ret;
1119 }
1120 }
1121
1122 if (attr->dest_nentries) {
1123 ce_state->dest_ring = ath10k_ce_alloc_dest_ring(ar, ce_id,
1124 attr);
1125 if (IS_ERR(ce_state->dest_ring)) {
1126 ret = PTR_ERR(ce_state->dest_ring);
1127 ath10k_err(ar, "failed to allocate copy engine destination ring %d: %d\n",
1128 ce_id, ret);
1129 ce_state->dest_ring = NULL;
1130 return ret;
1131 }
1132 }
1133
1134 return 0;
1135 }
1136
ath10k_ce_free_pipe(struct ath10k * ar,int ce_id)1137 void ath10k_ce_free_pipe(struct ath10k *ar, int ce_id)
1138 {
1139 struct ath10k_pci *ar_pci = ath10k_pci_priv(ar);
1140 struct ath10k_ce_pipe *ce_state = &ar_pci->ce_states[ce_id];
1141
1142 if (ce_state->src_ring) {
1143 kfree(ce_state->src_ring->shadow_base_unaligned);
1144 dma_free_coherent(ar->dev,
1145 (ce_state->src_ring->nentries *
1146 sizeof(struct ce_desc) +
1147 CE_DESC_RING_ALIGN),
1148 ce_state->src_ring->base_addr_owner_space,
1149 ce_state->src_ring->base_addr_ce_space);
1150 kfree(ce_state->src_ring);
1151 }
1152
1153 if (ce_state->dest_ring) {
1154 dma_free_coherent(ar->dev,
1155 (ce_state->dest_ring->nentries *
1156 sizeof(struct ce_desc) +
1157 CE_DESC_RING_ALIGN),
1158 ce_state->dest_ring->base_addr_owner_space,
1159 ce_state->dest_ring->base_addr_ce_space);
1160 kfree(ce_state->dest_ring);
1161 }
1162
1163 ce_state->src_ring = NULL;
1164 ce_state->dest_ring = NULL;
1165 }
1166