1 /*
2 * Generic PPP layer for Linux.
3 *
4 * Copyright 1999-2002 Paul Mackerras.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 *
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h. Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
17 *
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
21 *
22 * ==FILEVERSION 20041108==
23 */
24
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/kmod.h>
28 #include <linux/init.h>
29 #include <linux/list.h>
30 #include <linux/idr.h>
31 #include <linux/netdevice.h>
32 #include <linux/poll.h>
33 #include <linux/ppp_defs.h>
34 #include <linux/filter.h>
35 #include <linux/ppp-ioctl.h>
36 #include <linux/ppp_channel.h>
37 #include <linux/ppp-comp.h>
38 #include <linux/skbuff.h>
39 #include <linux/rtnetlink.h>
40 #include <linux/if_arp.h>
41 #include <linux/ip.h>
42 #include <linux/tcp.h>
43 #include <linux/spinlock.h>
44 #include <linux/rwsem.h>
45 #include <linux/stddef.h>
46 #include <linux/device.h>
47 #include <linux/mutex.h>
48 #include <linux/slab.h>
49 #include <asm/unaligned.h>
50 #include <net/slhc_vj.h>
51 #include <linux/atomic.h>
52
53 #include <linux/nsproxy.h>
54 #include <net/net_namespace.h>
55 #include <net/netns/generic.h>
56
57 #define PPP_VERSION "2.4.2"
58
59 /*
60 * Network protocols we support.
61 */
62 #define NP_IP 0 /* Internet Protocol V4 */
63 #define NP_IPV6 1 /* Internet Protocol V6 */
64 #define NP_IPX 2 /* IPX protocol */
65 #define NP_AT 3 /* Appletalk protocol */
66 #define NP_MPLS_UC 4 /* MPLS unicast */
67 #define NP_MPLS_MC 5 /* MPLS multicast */
68 #define NUM_NP 6 /* Number of NPs. */
69
70 #define MPHDRLEN 6 /* multilink protocol header length */
71 #define MPHDRLEN_SSN 4 /* ditto with short sequence numbers */
72
73 /*
74 * An instance of /dev/ppp can be associated with either a ppp
75 * interface unit or a ppp channel. In both cases, file->private_data
76 * points to one of these.
77 */
78 struct ppp_file {
79 enum {
80 INTERFACE=1, CHANNEL
81 } kind;
82 struct sk_buff_head xq; /* pppd transmit queue */
83 struct sk_buff_head rq; /* receive queue for pppd */
84 wait_queue_head_t rwait; /* for poll on reading /dev/ppp */
85 atomic_t refcnt; /* # refs (incl /dev/ppp attached) */
86 int hdrlen; /* space to leave for headers */
87 int index; /* interface unit / channel number */
88 int dead; /* unit/channel has been shut down */
89 };
90
91 #define PF_TO_X(pf, X) container_of(pf, X, file)
92
93 #define PF_TO_PPP(pf) PF_TO_X(pf, struct ppp)
94 #define PF_TO_CHANNEL(pf) PF_TO_X(pf, struct channel)
95
96 /*
97 * Data structure to hold primary network stats for which
98 * we want to use 64 bit storage. Other network stats
99 * are stored in dev->stats of the ppp strucute.
100 */
101 struct ppp_link_stats {
102 u64 rx_packets;
103 u64 tx_packets;
104 u64 rx_bytes;
105 u64 tx_bytes;
106 };
107
108 /*
109 * Data structure describing one ppp unit.
110 * A ppp unit corresponds to a ppp network interface device
111 * and represents a multilink bundle.
112 * It can have 0 or more ppp channels connected to it.
113 */
114 struct ppp {
115 struct ppp_file file; /* stuff for read/write/poll 0 */
116 struct file *owner; /* file that owns this unit 48 */
117 struct list_head channels; /* list of attached channels 4c */
118 int n_channels; /* how many channels are attached 54 */
119 spinlock_t rlock; /* lock for receive side 58 */
120 spinlock_t wlock; /* lock for transmit side 5c */
121 int mru; /* max receive unit 60 */
122 unsigned int flags; /* control bits 64 */
123 unsigned int xstate; /* transmit state bits 68 */
124 unsigned int rstate; /* receive state bits 6c */
125 int debug; /* debug flags 70 */
126 struct slcompress *vj; /* state for VJ header compression */
127 enum NPmode npmode[NUM_NP]; /* what to do with each net proto 78 */
128 struct sk_buff *xmit_pending; /* a packet ready to go out 88 */
129 struct compressor *xcomp; /* transmit packet compressor 8c */
130 void *xc_state; /* its internal state 90 */
131 struct compressor *rcomp; /* receive decompressor 94 */
132 void *rc_state; /* its internal state 98 */
133 unsigned long last_xmit; /* jiffies when last pkt sent 9c */
134 unsigned long last_recv; /* jiffies when last pkt rcvd a0 */
135 struct net_device *dev; /* network interface device a4 */
136 int closing; /* is device closing down? a8 */
137 #ifdef CONFIG_PPP_MULTILINK
138 int nxchan; /* next channel to send something on */
139 u32 nxseq; /* next sequence number to send */
140 int mrru; /* MP: max reconst. receive unit */
141 u32 nextseq; /* MP: seq no of next packet */
142 u32 minseq; /* MP: min of most recent seqnos */
143 struct sk_buff_head mrq; /* MP: receive reconstruction queue */
144 #endif /* CONFIG_PPP_MULTILINK */
145 #ifdef CONFIG_PPP_FILTER
146 struct bpf_prog *pass_filter; /* filter for packets to pass */
147 struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148 #endif /* CONFIG_PPP_FILTER */
149 struct net *ppp_net; /* the net we belong to */
150 struct ppp_link_stats stats64; /* 64 bit network stats */
151 };
152
153 /*
154 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156 * SC_MUST_COMP
157 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158 * Bits in xstate: SC_COMP_RUN
159 */
160 #define SC_FLAG_BITS (SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163
164 /*
165 * Private data structure for each channel.
166 * This includes the data structure used for multilink.
167 */
168 struct channel {
169 struct ppp_file file; /* stuff for read/write/poll */
170 struct list_head list; /* link in all/new_channels list */
171 struct ppp_channel *chan; /* public channel data structure */
172 struct rw_semaphore chan_sem; /* protects `chan' during chan ioctl */
173 spinlock_t downl; /* protects `chan', file.xq dequeue */
174 struct ppp *ppp; /* ppp unit we're connected to */
175 struct net *chan_net; /* the net channel belongs to */
176 struct list_head clist; /* link in list of channels per unit */
177 rwlock_t upl; /* protects `ppp' */
178 #ifdef CONFIG_PPP_MULTILINK
179 u8 avail; /* flag used in multilink stuff */
180 u8 had_frag; /* >= 1 fragments have been sent */
181 u32 lastseq; /* MP: last sequence # received */
182 int speed; /* speed of the corresponding ppp channel*/
183 #endif /* CONFIG_PPP_MULTILINK */
184 };
185
186 /*
187 * SMP locking issues:
188 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189 * list and the ppp.n_channels field, you need to take both locks
190 * before you modify them.
191 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192 * channel.downl.
193 */
194
195 static DEFINE_MUTEX(ppp_mutex);
196 static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197 static atomic_t channel_count = ATOMIC_INIT(0);
198
199 /* per-net private data for this module */
200 static int ppp_net_id __read_mostly;
201 struct ppp_net {
202 /* units to ppp mapping */
203 struct idr units_idr;
204
205 /*
206 * all_ppp_mutex protects the units_idr mapping.
207 * It also ensures that finding a ppp unit in the units_idr
208 * map and updating its file.refcnt field is atomic.
209 */
210 struct mutex all_ppp_mutex;
211
212 /* channels */
213 struct list_head all_channels;
214 struct list_head new_channels;
215 int last_channel_index;
216
217 /*
218 * all_channels_lock protects all_channels and
219 * last_channel_index, and the atomicity of find
220 * a channel and updating its file.refcnt field.
221 */
222 spinlock_t all_channels_lock;
223 };
224
225 /* Get the PPP protocol number from a skb */
226 #define PPP_PROTO(skb) get_unaligned_be16((skb)->data)
227
228 /* We limit the length of ppp->file.rq to this (arbitrary) value */
229 #define PPP_MAX_RQLEN 32
230
231 /*
232 * Maximum number of multilink fragments queued up.
233 * This has to be large enough to cope with the maximum latency of
234 * the slowest channel relative to the others. Strictly it should
235 * depend on the number of channels and their characteristics.
236 */
237 #define PPP_MP_MAX_QLEN 128
238
239 /* Multilink header bits. */
240 #define B 0x80 /* this fragment begins a packet */
241 #define E 0x40 /* this fragment ends a packet */
242
243 /* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244 #define seq_before(a, b) ((s32)((a) - (b)) < 0)
245 #define seq_after(a, b) ((s32)((a) - (b)) > 0)
246
247 /* Prototypes. */
248 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249 struct file *file, unsigned int cmd, unsigned long arg);
250 static void ppp_xmit_process(struct ppp *ppp);
251 static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252 static void ppp_push(struct ppp *ppp);
253 static void ppp_channel_push(struct channel *pch);
254 static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255 struct channel *pch);
256 static void ppp_receive_error(struct ppp *ppp);
257 static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258 static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259 struct sk_buff *skb);
260 #ifdef CONFIG_PPP_MULTILINK
261 static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262 struct channel *pch);
263 static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264 static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266 #endif /* CONFIG_PPP_MULTILINK */
267 static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268 static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269 static void ppp_ccp_closed(struct ppp *ppp);
270 static struct compressor *find_compressor(int type);
271 static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272 static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
273 static void init_ppp_file(struct ppp_file *pf, int kind);
274 static void ppp_shutdown_interface(struct ppp *ppp);
275 static void ppp_destroy_interface(struct ppp *ppp);
276 static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277 static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278 static int ppp_connect_channel(struct channel *pch, int unit);
279 static int ppp_disconnect_channel(struct channel *pch);
280 static void ppp_destroy_channel(struct channel *pch);
281 static int unit_get(struct idr *p, void *ptr);
282 static int unit_set(struct idr *p, void *ptr, int n);
283 static void unit_put(struct idr *p, int n);
284 static void *unit_find(struct idr *p, int n);
285
286 static struct class *ppp_class;
287
288 /* per net-namespace data */
ppp_pernet(struct net * net)289 static inline struct ppp_net *ppp_pernet(struct net *net)
290 {
291 BUG_ON(!net);
292
293 return net_generic(net, ppp_net_id);
294 }
295
296 /* Translates a PPP protocol number to a NP index (NP == network protocol) */
proto_to_npindex(int proto)297 static inline int proto_to_npindex(int proto)
298 {
299 switch (proto) {
300 case PPP_IP:
301 return NP_IP;
302 case PPP_IPV6:
303 return NP_IPV6;
304 case PPP_IPX:
305 return NP_IPX;
306 case PPP_AT:
307 return NP_AT;
308 case PPP_MPLS_UC:
309 return NP_MPLS_UC;
310 case PPP_MPLS_MC:
311 return NP_MPLS_MC;
312 }
313 return -EINVAL;
314 }
315
316 /* Translates an NP index into a PPP protocol number */
317 static const int npindex_to_proto[NUM_NP] = {
318 PPP_IP,
319 PPP_IPV6,
320 PPP_IPX,
321 PPP_AT,
322 PPP_MPLS_UC,
323 PPP_MPLS_MC,
324 };
325
326 /* Translates an ethertype into an NP index */
ethertype_to_npindex(int ethertype)327 static inline int ethertype_to_npindex(int ethertype)
328 {
329 switch (ethertype) {
330 case ETH_P_IP:
331 return NP_IP;
332 case ETH_P_IPV6:
333 return NP_IPV6;
334 case ETH_P_IPX:
335 return NP_IPX;
336 case ETH_P_PPPTALK:
337 case ETH_P_ATALK:
338 return NP_AT;
339 case ETH_P_MPLS_UC:
340 return NP_MPLS_UC;
341 case ETH_P_MPLS_MC:
342 return NP_MPLS_MC;
343 }
344 return -1;
345 }
346
347 /* Translates an NP index into an ethertype */
348 static const int npindex_to_ethertype[NUM_NP] = {
349 ETH_P_IP,
350 ETH_P_IPV6,
351 ETH_P_IPX,
352 ETH_P_PPPTALK,
353 ETH_P_MPLS_UC,
354 ETH_P_MPLS_MC,
355 };
356
357 /*
358 * Locking shorthand.
359 */
360 #define ppp_xmit_lock(ppp) spin_lock_bh(&(ppp)->wlock)
361 #define ppp_xmit_unlock(ppp) spin_unlock_bh(&(ppp)->wlock)
362 #define ppp_recv_lock(ppp) spin_lock_bh(&(ppp)->rlock)
363 #define ppp_recv_unlock(ppp) spin_unlock_bh(&(ppp)->rlock)
364 #define ppp_lock(ppp) do { ppp_xmit_lock(ppp); \
365 ppp_recv_lock(ppp); } while (0)
366 #define ppp_unlock(ppp) do { ppp_recv_unlock(ppp); \
367 ppp_xmit_unlock(ppp); } while (0)
368
369 /*
370 * /dev/ppp device routines.
371 * The /dev/ppp device is used by pppd to control the ppp unit.
372 * It supports the read, write, ioctl and poll functions.
373 * Open instances of /dev/ppp can be in one of three states:
374 * unattached, attached to a ppp unit, or attached to a ppp channel.
375 */
ppp_open(struct inode * inode,struct file * file)376 static int ppp_open(struct inode *inode, struct file *file)
377 {
378 /*
379 * This could (should?) be enforced by the permissions on /dev/ppp.
380 */
381 if (!capable(CAP_NET_ADMIN))
382 return -EPERM;
383 return 0;
384 }
385
ppp_release(struct inode * unused,struct file * file)386 static int ppp_release(struct inode *unused, struct file *file)
387 {
388 struct ppp_file *pf = file->private_data;
389 struct ppp *ppp;
390
391 if (pf) {
392 file->private_data = NULL;
393 if (pf->kind == INTERFACE) {
394 ppp = PF_TO_PPP(pf);
395 if (file == ppp->owner)
396 ppp_shutdown_interface(ppp);
397 }
398 if (atomic_dec_and_test(&pf->refcnt)) {
399 switch (pf->kind) {
400 case INTERFACE:
401 ppp_destroy_interface(PF_TO_PPP(pf));
402 break;
403 case CHANNEL:
404 ppp_destroy_channel(PF_TO_CHANNEL(pf));
405 break;
406 }
407 }
408 }
409 return 0;
410 }
411
ppp_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)412 static ssize_t ppp_read(struct file *file, char __user *buf,
413 size_t count, loff_t *ppos)
414 {
415 struct ppp_file *pf = file->private_data;
416 DECLARE_WAITQUEUE(wait, current);
417 ssize_t ret;
418 struct sk_buff *skb = NULL;
419 struct iovec iov;
420 struct iov_iter to;
421
422 ret = count;
423
424 if (!pf)
425 return -ENXIO;
426 add_wait_queue(&pf->rwait, &wait);
427 for (;;) {
428 set_current_state(TASK_INTERRUPTIBLE);
429 skb = skb_dequeue(&pf->rq);
430 if (skb)
431 break;
432 ret = 0;
433 if (pf->dead)
434 break;
435 if (pf->kind == INTERFACE) {
436 /*
437 * Return 0 (EOF) on an interface that has no
438 * channels connected, unless it is looping
439 * network traffic (demand mode).
440 */
441 struct ppp *ppp = PF_TO_PPP(pf);
442 if (ppp->n_channels == 0 &&
443 (ppp->flags & SC_LOOP_TRAFFIC) == 0)
444 break;
445 }
446 ret = -EAGAIN;
447 if (file->f_flags & O_NONBLOCK)
448 break;
449 ret = -ERESTARTSYS;
450 if (signal_pending(current))
451 break;
452 schedule();
453 }
454 set_current_state(TASK_RUNNING);
455 remove_wait_queue(&pf->rwait, &wait);
456
457 if (!skb)
458 goto out;
459
460 ret = -EOVERFLOW;
461 if (skb->len > count)
462 goto outf;
463 ret = -EFAULT;
464 iov.iov_base = buf;
465 iov.iov_len = count;
466 iov_iter_init(&to, READ, &iov, 1, count);
467 if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
468 goto outf;
469 ret = skb->len;
470
471 outf:
472 kfree_skb(skb);
473 out:
474 return ret;
475 }
476
ppp_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)477 static ssize_t ppp_write(struct file *file, const char __user *buf,
478 size_t count, loff_t *ppos)
479 {
480 struct ppp_file *pf = file->private_data;
481 struct sk_buff *skb;
482 ssize_t ret;
483
484 if (!pf)
485 return -ENXIO;
486 ret = -ENOMEM;
487 skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
488 if (!skb)
489 goto out;
490 skb_reserve(skb, pf->hdrlen);
491 ret = -EFAULT;
492 if (copy_from_user(skb_put(skb, count), buf, count)) {
493 kfree_skb(skb);
494 goto out;
495 }
496
497 skb_queue_tail(&pf->xq, skb);
498
499 switch (pf->kind) {
500 case INTERFACE:
501 ppp_xmit_process(PF_TO_PPP(pf));
502 break;
503 case CHANNEL:
504 ppp_channel_push(PF_TO_CHANNEL(pf));
505 break;
506 }
507
508 ret = count;
509
510 out:
511 return ret;
512 }
513
514 /* No kernel lock - fine */
ppp_poll(struct file * file,poll_table * wait)515 static unsigned int ppp_poll(struct file *file, poll_table *wait)
516 {
517 struct ppp_file *pf = file->private_data;
518 unsigned int mask;
519
520 if (!pf)
521 return 0;
522 poll_wait(file, &pf->rwait, wait);
523 mask = POLLOUT | POLLWRNORM;
524 if (skb_peek(&pf->rq))
525 mask |= POLLIN | POLLRDNORM;
526 if (pf->dead)
527 mask |= POLLHUP;
528 else if (pf->kind == INTERFACE) {
529 /* see comment in ppp_read */
530 struct ppp *ppp = PF_TO_PPP(pf);
531 if (ppp->n_channels == 0 &&
532 (ppp->flags & SC_LOOP_TRAFFIC) == 0)
533 mask |= POLLIN | POLLRDNORM;
534 }
535
536 return mask;
537 }
538
539 #ifdef CONFIG_PPP_FILTER
get_filter(void __user * arg,struct sock_filter ** p)540 static int get_filter(void __user *arg, struct sock_filter **p)
541 {
542 struct sock_fprog uprog;
543 struct sock_filter *code = NULL;
544 int len;
545
546 if (copy_from_user(&uprog, arg, sizeof(uprog)))
547 return -EFAULT;
548
549 if (!uprog.len) {
550 *p = NULL;
551 return 0;
552 }
553
554 len = uprog.len * sizeof(struct sock_filter);
555 code = memdup_user(uprog.filter, len);
556 if (IS_ERR(code))
557 return PTR_ERR(code);
558
559 *p = code;
560 return uprog.len;
561 }
562 #endif /* CONFIG_PPP_FILTER */
563
ppp_ioctl(struct file * file,unsigned int cmd,unsigned long arg)564 static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
565 {
566 struct ppp_file *pf = file->private_data;
567 struct ppp *ppp;
568 int err = -EFAULT, val, val2, i;
569 struct ppp_idle idle;
570 struct npioctl npi;
571 int unit, cflags;
572 struct slcompress *vj;
573 void __user *argp = (void __user *)arg;
574 int __user *p = argp;
575
576 if (!pf)
577 return ppp_unattached_ioctl(current->nsproxy->net_ns,
578 pf, file, cmd, arg);
579
580 if (cmd == PPPIOCDETACH) {
581 /*
582 * We have to be careful here... if the file descriptor
583 * has been dup'd, we could have another process in the
584 * middle of a poll using the same file *, so we had
585 * better not free the interface data structures -
586 * instead we fail the ioctl. Even in this case, we
587 * shut down the interface if we are the owner of it.
588 * Actually, we should get rid of PPPIOCDETACH, userland
589 * (i.e. pppd) could achieve the same effect by closing
590 * this fd and reopening /dev/ppp.
591 */
592 err = -EINVAL;
593 mutex_lock(&ppp_mutex);
594 if (pf->kind == INTERFACE) {
595 ppp = PF_TO_PPP(pf);
596 if (file == ppp->owner)
597 ppp_shutdown_interface(ppp);
598 }
599 if (atomic_long_read(&file->f_count) < 2) {
600 ppp_release(NULL, file);
601 err = 0;
602 } else
603 pr_warn("PPPIOCDETACH file->f_count=%ld\n",
604 atomic_long_read(&file->f_count));
605 mutex_unlock(&ppp_mutex);
606 return err;
607 }
608
609 if (pf->kind == CHANNEL) {
610 struct channel *pch;
611 struct ppp_channel *chan;
612
613 mutex_lock(&ppp_mutex);
614 pch = PF_TO_CHANNEL(pf);
615
616 switch (cmd) {
617 case PPPIOCCONNECT:
618 if (get_user(unit, p))
619 break;
620 err = ppp_connect_channel(pch, unit);
621 break;
622
623 case PPPIOCDISCONN:
624 err = ppp_disconnect_channel(pch);
625 break;
626
627 default:
628 down_read(&pch->chan_sem);
629 chan = pch->chan;
630 err = -ENOTTY;
631 if (chan && chan->ops->ioctl)
632 err = chan->ops->ioctl(chan, cmd, arg);
633 up_read(&pch->chan_sem);
634 }
635 mutex_unlock(&ppp_mutex);
636 return err;
637 }
638
639 if (pf->kind != INTERFACE) {
640 /* can't happen */
641 pr_err("PPP: not interface or channel??\n");
642 return -EINVAL;
643 }
644
645 mutex_lock(&ppp_mutex);
646 ppp = PF_TO_PPP(pf);
647 switch (cmd) {
648 case PPPIOCSMRU:
649 if (get_user(val, p))
650 break;
651 ppp->mru = val;
652 err = 0;
653 break;
654
655 case PPPIOCSFLAGS:
656 if (get_user(val, p))
657 break;
658 ppp_lock(ppp);
659 cflags = ppp->flags & ~val;
660 #ifdef CONFIG_PPP_MULTILINK
661 if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
662 ppp->nextseq = 0;
663 #endif
664 ppp->flags = val & SC_FLAG_BITS;
665 ppp_unlock(ppp);
666 if (cflags & SC_CCP_OPEN)
667 ppp_ccp_closed(ppp);
668 err = 0;
669 break;
670
671 case PPPIOCGFLAGS:
672 val = ppp->flags | ppp->xstate | ppp->rstate;
673 if (put_user(val, p))
674 break;
675 err = 0;
676 break;
677
678 case PPPIOCSCOMPRESS:
679 err = ppp_set_compress(ppp, arg);
680 break;
681
682 case PPPIOCGUNIT:
683 if (put_user(ppp->file.index, p))
684 break;
685 err = 0;
686 break;
687
688 case PPPIOCSDEBUG:
689 if (get_user(val, p))
690 break;
691 ppp->debug = val;
692 err = 0;
693 break;
694
695 case PPPIOCGDEBUG:
696 if (put_user(ppp->debug, p))
697 break;
698 err = 0;
699 break;
700
701 case PPPIOCGIDLE:
702 idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
703 idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
704 if (copy_to_user(argp, &idle, sizeof(idle)))
705 break;
706 err = 0;
707 break;
708
709 case PPPIOCSMAXCID:
710 if (get_user(val, p))
711 break;
712 val2 = 15;
713 if ((val >> 16) != 0) {
714 val2 = val >> 16;
715 val &= 0xffff;
716 }
717 vj = slhc_init(val2+1, val+1);
718 if (IS_ERR(vj)) {
719 err = PTR_ERR(vj);
720 break;
721 }
722 ppp_lock(ppp);
723 if (ppp->vj)
724 slhc_free(ppp->vj);
725 ppp->vj = vj;
726 ppp_unlock(ppp);
727 err = 0;
728 break;
729
730 case PPPIOCGNPMODE:
731 case PPPIOCSNPMODE:
732 if (copy_from_user(&npi, argp, sizeof(npi)))
733 break;
734 err = proto_to_npindex(npi.protocol);
735 if (err < 0)
736 break;
737 i = err;
738 if (cmd == PPPIOCGNPMODE) {
739 err = -EFAULT;
740 npi.mode = ppp->npmode[i];
741 if (copy_to_user(argp, &npi, sizeof(npi)))
742 break;
743 } else {
744 ppp->npmode[i] = npi.mode;
745 /* we may be able to transmit more packets now (??) */
746 netif_wake_queue(ppp->dev);
747 }
748 err = 0;
749 break;
750
751 #ifdef CONFIG_PPP_FILTER
752 case PPPIOCSPASS:
753 {
754 struct sock_filter *code;
755
756 err = get_filter(argp, &code);
757 if (err >= 0) {
758 struct bpf_prog *pass_filter = NULL;
759 struct sock_fprog_kern fprog = {
760 .len = err,
761 .filter = code,
762 };
763
764 err = 0;
765 if (fprog.filter)
766 err = bpf_prog_create(&pass_filter, &fprog);
767 if (!err) {
768 ppp_lock(ppp);
769 if (ppp->pass_filter)
770 bpf_prog_destroy(ppp->pass_filter);
771 ppp->pass_filter = pass_filter;
772 ppp_unlock(ppp);
773 }
774 kfree(code);
775 }
776 break;
777 }
778 case PPPIOCSACTIVE:
779 {
780 struct sock_filter *code;
781
782 err = get_filter(argp, &code);
783 if (err >= 0) {
784 struct bpf_prog *active_filter = NULL;
785 struct sock_fprog_kern fprog = {
786 .len = err,
787 .filter = code,
788 };
789
790 err = 0;
791 if (fprog.filter)
792 err = bpf_prog_create(&active_filter, &fprog);
793 if (!err) {
794 ppp_lock(ppp);
795 if (ppp->active_filter)
796 bpf_prog_destroy(ppp->active_filter);
797 ppp->active_filter = active_filter;
798 ppp_unlock(ppp);
799 }
800 kfree(code);
801 }
802 break;
803 }
804 #endif /* CONFIG_PPP_FILTER */
805
806 #ifdef CONFIG_PPP_MULTILINK
807 case PPPIOCSMRRU:
808 if (get_user(val, p))
809 break;
810 ppp_recv_lock(ppp);
811 ppp->mrru = val;
812 ppp_recv_unlock(ppp);
813 err = 0;
814 break;
815 #endif /* CONFIG_PPP_MULTILINK */
816
817 default:
818 err = -ENOTTY;
819 }
820 mutex_unlock(&ppp_mutex);
821 return err;
822 }
823
ppp_unattached_ioctl(struct net * net,struct ppp_file * pf,struct file * file,unsigned int cmd,unsigned long arg)824 static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
825 struct file *file, unsigned int cmd, unsigned long arg)
826 {
827 int unit, err = -EFAULT;
828 struct ppp *ppp;
829 struct channel *chan;
830 struct ppp_net *pn;
831 int __user *p = (int __user *)arg;
832
833 mutex_lock(&ppp_mutex);
834 switch (cmd) {
835 case PPPIOCNEWUNIT:
836 /* Create a new ppp unit */
837 if (get_user(unit, p))
838 break;
839 ppp = ppp_create_interface(net, unit, &err);
840 if (!ppp)
841 break;
842 file->private_data = &ppp->file;
843 ppp->owner = file;
844 err = -EFAULT;
845 if (put_user(ppp->file.index, p))
846 break;
847 err = 0;
848 break;
849
850 case PPPIOCATTACH:
851 /* Attach to an existing ppp unit */
852 if (get_user(unit, p))
853 break;
854 err = -ENXIO;
855 pn = ppp_pernet(net);
856 mutex_lock(&pn->all_ppp_mutex);
857 ppp = ppp_find_unit(pn, unit);
858 if (ppp) {
859 atomic_inc(&ppp->file.refcnt);
860 file->private_data = &ppp->file;
861 err = 0;
862 }
863 mutex_unlock(&pn->all_ppp_mutex);
864 break;
865
866 case PPPIOCATTCHAN:
867 if (get_user(unit, p))
868 break;
869 err = -ENXIO;
870 pn = ppp_pernet(net);
871 spin_lock_bh(&pn->all_channels_lock);
872 chan = ppp_find_channel(pn, unit);
873 if (chan) {
874 atomic_inc(&chan->file.refcnt);
875 file->private_data = &chan->file;
876 err = 0;
877 }
878 spin_unlock_bh(&pn->all_channels_lock);
879 break;
880
881 default:
882 err = -ENOTTY;
883 }
884 mutex_unlock(&ppp_mutex);
885 return err;
886 }
887
888 static const struct file_operations ppp_device_fops = {
889 .owner = THIS_MODULE,
890 .read = ppp_read,
891 .write = ppp_write,
892 .poll = ppp_poll,
893 .unlocked_ioctl = ppp_ioctl,
894 .open = ppp_open,
895 .release = ppp_release,
896 .llseek = noop_llseek,
897 };
898
ppp_init_net(struct net * net)899 static __net_init int ppp_init_net(struct net *net)
900 {
901 struct ppp_net *pn = net_generic(net, ppp_net_id);
902
903 idr_init(&pn->units_idr);
904 mutex_init(&pn->all_ppp_mutex);
905
906 INIT_LIST_HEAD(&pn->all_channels);
907 INIT_LIST_HEAD(&pn->new_channels);
908
909 spin_lock_init(&pn->all_channels_lock);
910
911 return 0;
912 }
913
ppp_exit_net(struct net * net)914 static __net_exit void ppp_exit_net(struct net *net)
915 {
916 struct ppp_net *pn = net_generic(net, ppp_net_id);
917
918 idr_destroy(&pn->units_idr);
919 }
920
921 static struct pernet_operations ppp_net_ops = {
922 .init = ppp_init_net,
923 .exit = ppp_exit_net,
924 .id = &ppp_net_id,
925 .size = sizeof(struct ppp_net),
926 };
927
928 #define PPP_MAJOR 108
929
930 /* Called at boot time if ppp is compiled into the kernel,
931 or at module load time (from init_module) if compiled as a module. */
ppp_init(void)932 static int __init ppp_init(void)
933 {
934 int err;
935
936 pr_info("PPP generic driver version " PPP_VERSION "\n");
937
938 err = register_pernet_device(&ppp_net_ops);
939 if (err) {
940 pr_err("failed to register PPP pernet device (%d)\n", err);
941 goto out;
942 }
943
944 err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
945 if (err) {
946 pr_err("failed to register PPP device (%d)\n", err);
947 goto out_net;
948 }
949
950 ppp_class = class_create(THIS_MODULE, "ppp");
951 if (IS_ERR(ppp_class)) {
952 err = PTR_ERR(ppp_class);
953 goto out_chrdev;
954 }
955
956 /* not a big deal if we fail here :-) */
957 device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
958
959 return 0;
960
961 out_chrdev:
962 unregister_chrdev(PPP_MAJOR, "ppp");
963 out_net:
964 unregister_pernet_device(&ppp_net_ops);
965 out:
966 return err;
967 }
968
969 /*
970 * Network interface unit routines.
971 */
972 static netdev_tx_t
ppp_start_xmit(struct sk_buff * skb,struct net_device * dev)973 ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
974 {
975 struct ppp *ppp = netdev_priv(dev);
976 int npi, proto;
977 unsigned char *pp;
978
979 npi = ethertype_to_npindex(ntohs(skb->protocol));
980 if (npi < 0)
981 goto outf;
982
983 /* Drop, accept or reject the packet */
984 switch (ppp->npmode[npi]) {
985 case NPMODE_PASS:
986 break;
987 case NPMODE_QUEUE:
988 /* it would be nice to have a way to tell the network
989 system to queue this one up for later. */
990 goto outf;
991 case NPMODE_DROP:
992 case NPMODE_ERROR:
993 goto outf;
994 }
995
996 /* Put the 2-byte PPP protocol number on the front,
997 making sure there is room for the address and control fields. */
998 if (skb_cow_head(skb, PPP_HDRLEN))
999 goto outf;
1000
1001 pp = skb_push(skb, 2);
1002 proto = npindex_to_proto[npi];
1003 put_unaligned_be16(proto, pp);
1004
1005 skb_queue_tail(&ppp->file.xq, skb);
1006 ppp_xmit_process(ppp);
1007 return NETDEV_TX_OK;
1008
1009 outf:
1010 kfree_skb(skb);
1011 ++dev->stats.tx_dropped;
1012 return NETDEV_TX_OK;
1013 }
1014
1015 static int
ppp_net_ioctl(struct net_device * dev,struct ifreq * ifr,int cmd)1016 ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1017 {
1018 struct ppp *ppp = netdev_priv(dev);
1019 int err = -EFAULT;
1020 void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1021 struct ppp_stats stats;
1022 struct ppp_comp_stats cstats;
1023 char *vers;
1024
1025 switch (cmd) {
1026 case SIOCGPPPSTATS:
1027 ppp_get_stats(ppp, &stats);
1028 if (copy_to_user(addr, &stats, sizeof(stats)))
1029 break;
1030 err = 0;
1031 break;
1032
1033 case SIOCGPPPCSTATS:
1034 memset(&cstats, 0, sizeof(cstats));
1035 if (ppp->xc_state)
1036 ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1037 if (ppp->rc_state)
1038 ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1039 if (copy_to_user(addr, &cstats, sizeof(cstats)))
1040 break;
1041 err = 0;
1042 break;
1043
1044 case SIOCGPPPVER:
1045 vers = PPP_VERSION;
1046 if (copy_to_user(addr, vers, strlen(vers) + 1))
1047 break;
1048 err = 0;
1049 break;
1050
1051 default:
1052 err = -EINVAL;
1053 }
1054
1055 return err;
1056 }
1057
1058 static struct rtnl_link_stats64*
ppp_get_stats64(struct net_device * dev,struct rtnl_link_stats64 * stats64)1059 ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1060 {
1061 struct ppp *ppp = netdev_priv(dev);
1062
1063 ppp_recv_lock(ppp);
1064 stats64->rx_packets = ppp->stats64.rx_packets;
1065 stats64->rx_bytes = ppp->stats64.rx_bytes;
1066 ppp_recv_unlock(ppp);
1067
1068 ppp_xmit_lock(ppp);
1069 stats64->tx_packets = ppp->stats64.tx_packets;
1070 stats64->tx_bytes = ppp->stats64.tx_bytes;
1071 ppp_xmit_unlock(ppp);
1072
1073 stats64->rx_errors = dev->stats.rx_errors;
1074 stats64->tx_errors = dev->stats.tx_errors;
1075 stats64->rx_dropped = dev->stats.rx_dropped;
1076 stats64->tx_dropped = dev->stats.tx_dropped;
1077 stats64->rx_length_errors = dev->stats.rx_length_errors;
1078
1079 return stats64;
1080 }
1081
1082 static struct lock_class_key ppp_tx_busylock;
ppp_dev_init(struct net_device * dev)1083 static int ppp_dev_init(struct net_device *dev)
1084 {
1085 dev->qdisc_tx_busylock = &ppp_tx_busylock;
1086 return 0;
1087 }
1088
1089 static const struct net_device_ops ppp_netdev_ops = {
1090 .ndo_init = ppp_dev_init,
1091 .ndo_start_xmit = ppp_start_xmit,
1092 .ndo_do_ioctl = ppp_net_ioctl,
1093 .ndo_get_stats64 = ppp_get_stats64,
1094 };
1095
ppp_setup(struct net_device * dev)1096 static void ppp_setup(struct net_device *dev)
1097 {
1098 dev->netdev_ops = &ppp_netdev_ops;
1099 dev->hard_header_len = PPP_HDRLEN;
1100 dev->mtu = PPP_MRU;
1101 dev->addr_len = 0;
1102 dev->tx_queue_len = 3;
1103 dev->type = ARPHRD_PPP;
1104 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1105 dev->features |= NETIF_F_NETNS_LOCAL;
1106 netif_keep_dst(dev);
1107 }
1108
1109 /*
1110 * Transmit-side routines.
1111 */
1112
1113 /*
1114 * Called to do any work queued up on the transmit side
1115 * that can now be done.
1116 */
1117 static void
ppp_xmit_process(struct ppp * ppp)1118 ppp_xmit_process(struct ppp *ppp)
1119 {
1120 struct sk_buff *skb;
1121
1122 ppp_xmit_lock(ppp);
1123 if (!ppp->closing) {
1124 ppp_push(ppp);
1125 while (!ppp->xmit_pending &&
1126 (skb = skb_dequeue(&ppp->file.xq)))
1127 ppp_send_frame(ppp, skb);
1128 /* If there's no work left to do, tell the core net
1129 code that we can accept some more. */
1130 if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1131 netif_wake_queue(ppp->dev);
1132 else
1133 netif_stop_queue(ppp->dev);
1134 }
1135 ppp_xmit_unlock(ppp);
1136 }
1137
1138 static inline struct sk_buff *
pad_compress_skb(struct ppp * ppp,struct sk_buff * skb)1139 pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1140 {
1141 struct sk_buff *new_skb;
1142 int len;
1143 int new_skb_size = ppp->dev->mtu +
1144 ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1145 int compressor_skb_size = ppp->dev->mtu +
1146 ppp->xcomp->comp_extra + PPP_HDRLEN;
1147 new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1148 if (!new_skb) {
1149 if (net_ratelimit())
1150 netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1151 return NULL;
1152 }
1153 if (ppp->dev->hard_header_len > PPP_HDRLEN)
1154 skb_reserve(new_skb,
1155 ppp->dev->hard_header_len - PPP_HDRLEN);
1156
1157 /* compressor still expects A/C bytes in hdr */
1158 len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1159 new_skb->data, skb->len + 2,
1160 compressor_skb_size);
1161 if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1162 consume_skb(skb);
1163 skb = new_skb;
1164 skb_put(skb, len);
1165 skb_pull(skb, 2); /* pull off A/C bytes */
1166 } else if (len == 0) {
1167 /* didn't compress, or CCP not up yet */
1168 consume_skb(new_skb);
1169 new_skb = skb;
1170 } else {
1171 /*
1172 * (len < 0)
1173 * MPPE requires that we do not send unencrypted
1174 * frames. The compressor will return -1 if we
1175 * should drop the frame. We cannot simply test
1176 * the compress_proto because MPPE and MPPC share
1177 * the same number.
1178 */
1179 if (net_ratelimit())
1180 netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1181 kfree_skb(skb);
1182 consume_skb(new_skb);
1183 new_skb = NULL;
1184 }
1185 return new_skb;
1186 }
1187
1188 /*
1189 * Compress and send a frame.
1190 * The caller should have locked the xmit path,
1191 * and xmit_pending should be 0.
1192 */
1193 static void
ppp_send_frame(struct ppp * ppp,struct sk_buff * skb)1194 ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1195 {
1196 int proto = PPP_PROTO(skb);
1197 struct sk_buff *new_skb;
1198 int len;
1199 unsigned char *cp;
1200
1201 if (proto < 0x8000) {
1202 #ifdef CONFIG_PPP_FILTER
1203 /* check if we should pass this packet */
1204 /* the filter instructions are constructed assuming
1205 a four-byte PPP header on each packet */
1206 *skb_push(skb, 2) = 1;
1207 if (ppp->pass_filter &&
1208 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1209 if (ppp->debug & 1)
1210 netdev_printk(KERN_DEBUG, ppp->dev,
1211 "PPP: outbound frame "
1212 "not passed\n");
1213 kfree_skb(skb);
1214 return;
1215 }
1216 /* if this packet passes the active filter, record the time */
1217 if (!(ppp->active_filter &&
1218 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1219 ppp->last_xmit = jiffies;
1220 skb_pull(skb, 2);
1221 #else
1222 /* for data packets, record the time */
1223 ppp->last_xmit = jiffies;
1224 #endif /* CONFIG_PPP_FILTER */
1225 }
1226
1227 ++ppp->stats64.tx_packets;
1228 ppp->stats64.tx_bytes += skb->len - 2;
1229
1230 switch (proto) {
1231 case PPP_IP:
1232 if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1233 break;
1234 /* try to do VJ TCP header compression */
1235 new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1236 GFP_ATOMIC);
1237 if (!new_skb) {
1238 netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1239 goto drop;
1240 }
1241 skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1242 cp = skb->data + 2;
1243 len = slhc_compress(ppp->vj, cp, skb->len - 2,
1244 new_skb->data + 2, &cp,
1245 !(ppp->flags & SC_NO_TCP_CCID));
1246 if (cp == skb->data + 2) {
1247 /* didn't compress */
1248 consume_skb(new_skb);
1249 } else {
1250 if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1251 proto = PPP_VJC_COMP;
1252 cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1253 } else {
1254 proto = PPP_VJC_UNCOMP;
1255 cp[0] = skb->data[2];
1256 }
1257 consume_skb(skb);
1258 skb = new_skb;
1259 cp = skb_put(skb, len + 2);
1260 cp[0] = 0;
1261 cp[1] = proto;
1262 }
1263 break;
1264
1265 case PPP_CCP:
1266 /* peek at outbound CCP frames */
1267 ppp_ccp_peek(ppp, skb, 0);
1268 break;
1269 }
1270
1271 /* try to do packet compression */
1272 if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1273 proto != PPP_LCP && proto != PPP_CCP) {
1274 if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1275 if (net_ratelimit())
1276 netdev_err(ppp->dev,
1277 "ppp: compression required but "
1278 "down - pkt dropped.\n");
1279 goto drop;
1280 }
1281 skb = pad_compress_skb(ppp, skb);
1282 if (!skb)
1283 goto drop;
1284 }
1285
1286 /*
1287 * If we are waiting for traffic (demand dialling),
1288 * queue it up for pppd to receive.
1289 */
1290 if (ppp->flags & SC_LOOP_TRAFFIC) {
1291 if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1292 goto drop;
1293 skb_queue_tail(&ppp->file.rq, skb);
1294 wake_up_interruptible(&ppp->file.rwait);
1295 return;
1296 }
1297
1298 ppp->xmit_pending = skb;
1299 ppp_push(ppp);
1300 return;
1301
1302 drop:
1303 kfree_skb(skb);
1304 ++ppp->dev->stats.tx_errors;
1305 }
1306
1307 /*
1308 * Try to send the frame in xmit_pending.
1309 * The caller should have the xmit path locked.
1310 */
1311 static void
ppp_push(struct ppp * ppp)1312 ppp_push(struct ppp *ppp)
1313 {
1314 struct list_head *list;
1315 struct channel *pch;
1316 struct sk_buff *skb = ppp->xmit_pending;
1317
1318 if (!skb)
1319 return;
1320
1321 list = &ppp->channels;
1322 if (list_empty(list)) {
1323 /* nowhere to send the packet, just drop it */
1324 ppp->xmit_pending = NULL;
1325 kfree_skb(skb);
1326 return;
1327 }
1328
1329 if ((ppp->flags & SC_MULTILINK) == 0) {
1330 /* not doing multilink: send it down the first channel */
1331 list = list->next;
1332 pch = list_entry(list, struct channel, clist);
1333
1334 spin_lock_bh(&pch->downl);
1335 if (pch->chan) {
1336 if (pch->chan->ops->start_xmit(pch->chan, skb))
1337 ppp->xmit_pending = NULL;
1338 } else {
1339 /* channel got unregistered */
1340 kfree_skb(skb);
1341 ppp->xmit_pending = NULL;
1342 }
1343 spin_unlock_bh(&pch->downl);
1344 return;
1345 }
1346
1347 #ifdef CONFIG_PPP_MULTILINK
1348 /* Multilink: fragment the packet over as many links
1349 as can take the packet at the moment. */
1350 if (!ppp_mp_explode(ppp, skb))
1351 return;
1352 #endif /* CONFIG_PPP_MULTILINK */
1353
1354 ppp->xmit_pending = NULL;
1355 kfree_skb(skb);
1356 }
1357
1358 #ifdef CONFIG_PPP_MULTILINK
1359 static bool mp_protocol_compress __read_mostly = true;
1360 module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1361 MODULE_PARM_DESC(mp_protocol_compress,
1362 "compress protocol id in multilink fragments");
1363
1364 /*
1365 * Divide a packet to be transmitted into fragments and
1366 * send them out the individual links.
1367 */
ppp_mp_explode(struct ppp * ppp,struct sk_buff * skb)1368 static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1369 {
1370 int len, totlen;
1371 int i, bits, hdrlen, mtu;
1372 int flen;
1373 int navail, nfree, nzero;
1374 int nbigger;
1375 int totspeed;
1376 int totfree;
1377 unsigned char *p, *q;
1378 struct list_head *list;
1379 struct channel *pch;
1380 struct sk_buff *frag;
1381 struct ppp_channel *chan;
1382
1383 totspeed = 0; /*total bitrate of the bundle*/
1384 nfree = 0; /* # channels which have no packet already queued */
1385 navail = 0; /* total # of usable channels (not deregistered) */
1386 nzero = 0; /* number of channels with zero speed associated*/
1387 totfree = 0; /*total # of channels available and
1388 *having no queued packets before
1389 *starting the fragmentation*/
1390
1391 hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1392 i = 0;
1393 list_for_each_entry(pch, &ppp->channels, clist) {
1394 if (pch->chan) {
1395 pch->avail = 1;
1396 navail++;
1397 pch->speed = pch->chan->speed;
1398 } else {
1399 pch->avail = 0;
1400 }
1401 if (pch->avail) {
1402 if (skb_queue_empty(&pch->file.xq) ||
1403 !pch->had_frag) {
1404 if (pch->speed == 0)
1405 nzero++;
1406 else
1407 totspeed += pch->speed;
1408
1409 pch->avail = 2;
1410 ++nfree;
1411 ++totfree;
1412 }
1413 if (!pch->had_frag && i < ppp->nxchan)
1414 ppp->nxchan = i;
1415 }
1416 ++i;
1417 }
1418 /*
1419 * Don't start sending this packet unless at least half of
1420 * the channels are free. This gives much better TCP
1421 * performance if we have a lot of channels.
1422 */
1423 if (nfree == 0 || nfree < navail / 2)
1424 return 0; /* can't take now, leave it in xmit_pending */
1425
1426 /* Do protocol field compression */
1427 p = skb->data;
1428 len = skb->len;
1429 if (*p == 0 && mp_protocol_compress) {
1430 ++p;
1431 --len;
1432 }
1433
1434 totlen = len;
1435 nbigger = len % nfree;
1436
1437 /* skip to the channel after the one we last used
1438 and start at that one */
1439 list = &ppp->channels;
1440 for (i = 0; i < ppp->nxchan; ++i) {
1441 list = list->next;
1442 if (list == &ppp->channels) {
1443 i = 0;
1444 break;
1445 }
1446 }
1447
1448 /* create a fragment for each channel */
1449 bits = B;
1450 while (len > 0) {
1451 list = list->next;
1452 if (list == &ppp->channels) {
1453 i = 0;
1454 continue;
1455 }
1456 pch = list_entry(list, struct channel, clist);
1457 ++i;
1458 if (!pch->avail)
1459 continue;
1460
1461 /*
1462 * Skip this channel if it has a fragment pending already and
1463 * we haven't given a fragment to all of the free channels.
1464 */
1465 if (pch->avail == 1) {
1466 if (nfree > 0)
1467 continue;
1468 } else {
1469 pch->avail = 1;
1470 }
1471
1472 /* check the channel's mtu and whether it is still attached. */
1473 spin_lock_bh(&pch->downl);
1474 if (pch->chan == NULL) {
1475 /* can't use this channel, it's being deregistered */
1476 if (pch->speed == 0)
1477 nzero--;
1478 else
1479 totspeed -= pch->speed;
1480
1481 spin_unlock_bh(&pch->downl);
1482 pch->avail = 0;
1483 totlen = len;
1484 totfree--;
1485 nfree--;
1486 if (--navail == 0)
1487 break;
1488 continue;
1489 }
1490
1491 /*
1492 *if the channel speed is not set divide
1493 *the packet evenly among the free channels;
1494 *otherwise divide it according to the speed
1495 *of the channel we are going to transmit on
1496 */
1497 flen = len;
1498 if (nfree > 0) {
1499 if (pch->speed == 0) {
1500 flen = len/nfree;
1501 if (nbigger > 0) {
1502 flen++;
1503 nbigger--;
1504 }
1505 } else {
1506 flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1507 ((totspeed*totfree)/pch->speed)) - hdrlen;
1508 if (nbigger > 0) {
1509 flen += ((totfree - nzero)*pch->speed)/totspeed;
1510 nbigger -= ((totfree - nzero)*pch->speed)/
1511 totspeed;
1512 }
1513 }
1514 nfree--;
1515 }
1516
1517 /*
1518 *check if we are on the last channel or
1519 *we exceded the length of the data to
1520 *fragment
1521 */
1522 if ((nfree <= 0) || (flen > len))
1523 flen = len;
1524 /*
1525 *it is not worth to tx on slow channels:
1526 *in that case from the resulting flen according to the
1527 *above formula will be equal or less than zero.
1528 *Skip the channel in this case
1529 */
1530 if (flen <= 0) {
1531 pch->avail = 2;
1532 spin_unlock_bh(&pch->downl);
1533 continue;
1534 }
1535
1536 /*
1537 * hdrlen includes the 2-byte PPP protocol field, but the
1538 * MTU counts only the payload excluding the protocol field.
1539 * (RFC1661 Section 2)
1540 */
1541 mtu = pch->chan->mtu - (hdrlen - 2);
1542 if (mtu < 4)
1543 mtu = 4;
1544 if (flen > mtu)
1545 flen = mtu;
1546 if (flen == len)
1547 bits |= E;
1548 frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1549 if (!frag)
1550 goto noskb;
1551 q = skb_put(frag, flen + hdrlen);
1552
1553 /* make the MP header */
1554 put_unaligned_be16(PPP_MP, q);
1555 if (ppp->flags & SC_MP_XSHORTSEQ) {
1556 q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1557 q[3] = ppp->nxseq;
1558 } else {
1559 q[2] = bits;
1560 q[3] = ppp->nxseq >> 16;
1561 q[4] = ppp->nxseq >> 8;
1562 q[5] = ppp->nxseq;
1563 }
1564
1565 memcpy(q + hdrlen, p, flen);
1566
1567 /* try to send it down the channel */
1568 chan = pch->chan;
1569 if (!skb_queue_empty(&pch->file.xq) ||
1570 !chan->ops->start_xmit(chan, frag))
1571 skb_queue_tail(&pch->file.xq, frag);
1572 pch->had_frag = 1;
1573 p += flen;
1574 len -= flen;
1575 ++ppp->nxseq;
1576 bits = 0;
1577 spin_unlock_bh(&pch->downl);
1578 }
1579 ppp->nxchan = i;
1580
1581 return 1;
1582
1583 noskb:
1584 spin_unlock_bh(&pch->downl);
1585 if (ppp->debug & 1)
1586 netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1587 ++ppp->dev->stats.tx_errors;
1588 ++ppp->nxseq;
1589 return 1; /* abandon the frame */
1590 }
1591 #endif /* CONFIG_PPP_MULTILINK */
1592
1593 /*
1594 * Try to send data out on a channel.
1595 */
1596 static void
ppp_channel_push(struct channel * pch)1597 ppp_channel_push(struct channel *pch)
1598 {
1599 struct sk_buff *skb;
1600 struct ppp *ppp;
1601
1602 spin_lock_bh(&pch->downl);
1603 if (pch->chan) {
1604 while (!skb_queue_empty(&pch->file.xq)) {
1605 skb = skb_dequeue(&pch->file.xq);
1606 if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1607 /* put the packet back and try again later */
1608 skb_queue_head(&pch->file.xq, skb);
1609 break;
1610 }
1611 }
1612 } else {
1613 /* channel got deregistered */
1614 skb_queue_purge(&pch->file.xq);
1615 }
1616 spin_unlock_bh(&pch->downl);
1617 /* see if there is anything from the attached unit to be sent */
1618 if (skb_queue_empty(&pch->file.xq)) {
1619 read_lock_bh(&pch->upl);
1620 ppp = pch->ppp;
1621 if (ppp)
1622 ppp_xmit_process(ppp);
1623 read_unlock_bh(&pch->upl);
1624 }
1625 }
1626
1627 /*
1628 * Receive-side routines.
1629 */
1630
1631 struct ppp_mp_skb_parm {
1632 u32 sequence;
1633 u8 BEbits;
1634 };
1635 #define PPP_MP_CB(skb) ((struct ppp_mp_skb_parm *)((skb)->cb))
1636
1637 static inline void
ppp_do_recv(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1638 ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1639 {
1640 ppp_recv_lock(ppp);
1641 if (!ppp->closing)
1642 ppp_receive_frame(ppp, skb, pch);
1643 else
1644 kfree_skb(skb);
1645 ppp_recv_unlock(ppp);
1646 }
1647
1648 void
ppp_input(struct ppp_channel * chan,struct sk_buff * skb)1649 ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1650 {
1651 struct channel *pch = chan->ppp;
1652 int proto;
1653
1654 if (!pch) {
1655 kfree_skb(skb);
1656 return;
1657 }
1658
1659 read_lock_bh(&pch->upl);
1660 if (!pskb_may_pull(skb, 2)) {
1661 kfree_skb(skb);
1662 if (pch->ppp) {
1663 ++pch->ppp->dev->stats.rx_length_errors;
1664 ppp_receive_error(pch->ppp);
1665 }
1666 goto done;
1667 }
1668
1669 proto = PPP_PROTO(skb);
1670 if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1671 /* put it on the channel queue */
1672 skb_queue_tail(&pch->file.rq, skb);
1673 /* drop old frames if queue too long */
1674 while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1675 (skb = skb_dequeue(&pch->file.rq)))
1676 kfree_skb(skb);
1677 wake_up_interruptible(&pch->file.rwait);
1678 } else {
1679 ppp_do_recv(pch->ppp, skb, pch);
1680 }
1681
1682 done:
1683 read_unlock_bh(&pch->upl);
1684 }
1685
1686 /* Put a 0-length skb in the receive queue as an error indication */
1687 void
ppp_input_error(struct ppp_channel * chan,int code)1688 ppp_input_error(struct ppp_channel *chan, int code)
1689 {
1690 struct channel *pch = chan->ppp;
1691 struct sk_buff *skb;
1692
1693 if (!pch)
1694 return;
1695
1696 read_lock_bh(&pch->upl);
1697 if (pch->ppp) {
1698 skb = alloc_skb(0, GFP_ATOMIC);
1699 if (skb) {
1700 skb->len = 0; /* probably unnecessary */
1701 skb->cb[0] = code;
1702 ppp_do_recv(pch->ppp, skb, pch);
1703 }
1704 }
1705 read_unlock_bh(&pch->upl);
1706 }
1707
1708 /*
1709 * We come in here to process a received frame.
1710 * The receive side of the ppp unit is locked.
1711 */
1712 static void
ppp_receive_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1713 ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1714 {
1715 /* note: a 0-length skb is used as an error indication */
1716 if (skb->len > 0) {
1717 skb_checksum_complete_unset(skb);
1718 #ifdef CONFIG_PPP_MULTILINK
1719 /* XXX do channel-level decompression here */
1720 if (PPP_PROTO(skb) == PPP_MP)
1721 ppp_receive_mp_frame(ppp, skb, pch);
1722 else
1723 #endif /* CONFIG_PPP_MULTILINK */
1724 ppp_receive_nonmp_frame(ppp, skb);
1725 } else {
1726 kfree_skb(skb);
1727 ppp_receive_error(ppp);
1728 }
1729 }
1730
1731 static void
ppp_receive_error(struct ppp * ppp)1732 ppp_receive_error(struct ppp *ppp)
1733 {
1734 ++ppp->dev->stats.rx_errors;
1735 if (ppp->vj)
1736 slhc_toss(ppp->vj);
1737 }
1738
1739 static void
ppp_receive_nonmp_frame(struct ppp * ppp,struct sk_buff * skb)1740 ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1741 {
1742 struct sk_buff *ns;
1743 int proto, len, npi;
1744
1745 /*
1746 * Decompress the frame, if compressed.
1747 * Note that some decompressors need to see uncompressed frames
1748 * that come in as well as compressed frames.
1749 */
1750 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1751 (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1752 skb = ppp_decompress_frame(ppp, skb);
1753
1754 if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1755 goto err;
1756
1757 proto = PPP_PROTO(skb);
1758 switch (proto) {
1759 case PPP_VJC_COMP:
1760 /* decompress VJ compressed packets */
1761 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1762 goto err;
1763
1764 if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1765 /* copy to a new sk_buff with more tailroom */
1766 ns = dev_alloc_skb(skb->len + 128);
1767 if (!ns) {
1768 netdev_err(ppp->dev, "PPP: no memory "
1769 "(VJ decomp)\n");
1770 goto err;
1771 }
1772 skb_reserve(ns, 2);
1773 skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1774 consume_skb(skb);
1775 skb = ns;
1776 }
1777 else
1778 skb->ip_summed = CHECKSUM_NONE;
1779
1780 len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1781 if (len <= 0) {
1782 netdev_printk(KERN_DEBUG, ppp->dev,
1783 "PPP: VJ decompression error\n");
1784 goto err;
1785 }
1786 len += 2;
1787 if (len > skb->len)
1788 skb_put(skb, len - skb->len);
1789 else if (len < skb->len)
1790 skb_trim(skb, len);
1791 proto = PPP_IP;
1792 break;
1793
1794 case PPP_VJC_UNCOMP:
1795 if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1796 goto err;
1797
1798 /* Until we fix the decompressor need to make sure
1799 * data portion is linear.
1800 */
1801 if (!pskb_may_pull(skb, skb->len))
1802 goto err;
1803
1804 if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1805 netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1806 goto err;
1807 }
1808 proto = PPP_IP;
1809 break;
1810
1811 case PPP_CCP:
1812 ppp_ccp_peek(ppp, skb, 1);
1813 break;
1814 }
1815
1816 ++ppp->stats64.rx_packets;
1817 ppp->stats64.rx_bytes += skb->len - 2;
1818
1819 npi = proto_to_npindex(proto);
1820 if (npi < 0) {
1821 /* control or unknown frame - pass it to pppd */
1822 skb_queue_tail(&ppp->file.rq, skb);
1823 /* limit queue length by dropping old frames */
1824 while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1825 (skb = skb_dequeue(&ppp->file.rq)))
1826 kfree_skb(skb);
1827 /* wake up any process polling or blocking on read */
1828 wake_up_interruptible(&ppp->file.rwait);
1829
1830 } else {
1831 /* network protocol frame - give it to the kernel */
1832
1833 #ifdef CONFIG_PPP_FILTER
1834 /* check if the packet passes the pass and active filters */
1835 /* the filter instructions are constructed assuming
1836 a four-byte PPP header on each packet */
1837 if (ppp->pass_filter || ppp->active_filter) {
1838 if (skb_unclone(skb, GFP_ATOMIC))
1839 goto err;
1840
1841 *skb_push(skb, 2) = 0;
1842 if (ppp->pass_filter &&
1843 BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1844 if (ppp->debug & 1)
1845 netdev_printk(KERN_DEBUG, ppp->dev,
1846 "PPP: inbound frame "
1847 "not passed\n");
1848 kfree_skb(skb);
1849 return;
1850 }
1851 if (!(ppp->active_filter &&
1852 BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1853 ppp->last_recv = jiffies;
1854 __skb_pull(skb, 2);
1855 } else
1856 #endif /* CONFIG_PPP_FILTER */
1857 ppp->last_recv = jiffies;
1858
1859 if ((ppp->dev->flags & IFF_UP) == 0 ||
1860 ppp->npmode[npi] != NPMODE_PASS) {
1861 kfree_skb(skb);
1862 } else {
1863 /* chop off protocol */
1864 skb_pull_rcsum(skb, 2);
1865 skb->dev = ppp->dev;
1866 skb->protocol = htons(npindex_to_ethertype[npi]);
1867 skb_reset_mac_header(skb);
1868 netif_rx(skb);
1869 }
1870 }
1871 return;
1872
1873 err:
1874 kfree_skb(skb);
1875 ppp_receive_error(ppp);
1876 }
1877
1878 static struct sk_buff *
ppp_decompress_frame(struct ppp * ppp,struct sk_buff * skb)1879 ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1880 {
1881 int proto = PPP_PROTO(skb);
1882 struct sk_buff *ns;
1883 int len;
1884
1885 /* Until we fix all the decompressor's need to make sure
1886 * data portion is linear.
1887 */
1888 if (!pskb_may_pull(skb, skb->len))
1889 goto err;
1890
1891 if (proto == PPP_COMP) {
1892 int obuff_size;
1893
1894 switch(ppp->rcomp->compress_proto) {
1895 case CI_MPPE:
1896 obuff_size = ppp->mru + PPP_HDRLEN + 1;
1897 break;
1898 default:
1899 obuff_size = ppp->mru + PPP_HDRLEN;
1900 break;
1901 }
1902
1903 ns = dev_alloc_skb(obuff_size);
1904 if (!ns) {
1905 netdev_err(ppp->dev, "ppp_decompress_frame: "
1906 "no memory\n");
1907 goto err;
1908 }
1909 /* the decompressor still expects the A/C bytes in the hdr */
1910 len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1911 skb->len + 2, ns->data, obuff_size);
1912 if (len < 0) {
1913 /* Pass the compressed frame to pppd as an
1914 error indication. */
1915 if (len == DECOMP_FATALERROR)
1916 ppp->rstate |= SC_DC_FERROR;
1917 kfree_skb(ns);
1918 goto err;
1919 }
1920
1921 consume_skb(skb);
1922 skb = ns;
1923 skb_put(skb, len);
1924 skb_pull(skb, 2); /* pull off the A/C bytes */
1925
1926 } else {
1927 /* Uncompressed frame - pass to decompressor so it
1928 can update its dictionary if necessary. */
1929 if (ppp->rcomp->incomp)
1930 ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1931 skb->len + 2);
1932 }
1933
1934 return skb;
1935
1936 err:
1937 ppp->rstate |= SC_DC_ERROR;
1938 ppp_receive_error(ppp);
1939 return skb;
1940 }
1941
1942 #ifdef CONFIG_PPP_MULTILINK
1943 /*
1944 * Receive a multilink frame.
1945 * We put it on the reconstruction queue and then pull off
1946 * as many completed frames as we can.
1947 */
1948 static void
ppp_receive_mp_frame(struct ppp * ppp,struct sk_buff * skb,struct channel * pch)1949 ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1950 {
1951 u32 mask, seq;
1952 struct channel *ch;
1953 int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1954
1955 if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1956 goto err; /* no good, throw it away */
1957
1958 /* Decode sequence number and begin/end bits */
1959 if (ppp->flags & SC_MP_SHORTSEQ) {
1960 seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1961 mask = 0xfff;
1962 } else {
1963 seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1964 mask = 0xffffff;
1965 }
1966 PPP_MP_CB(skb)->BEbits = skb->data[2];
1967 skb_pull(skb, mphdrlen); /* pull off PPP and MP headers */
1968
1969 /*
1970 * Do protocol ID decompression on the first fragment of each packet.
1971 */
1972 if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1973 *skb_push(skb, 1) = 0;
1974
1975 /*
1976 * Expand sequence number to 32 bits, making it as close
1977 * as possible to ppp->minseq.
1978 */
1979 seq |= ppp->minseq & ~mask;
1980 if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1981 seq += mask + 1;
1982 else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1983 seq -= mask + 1; /* should never happen */
1984 PPP_MP_CB(skb)->sequence = seq;
1985 pch->lastseq = seq;
1986
1987 /*
1988 * If this packet comes before the next one we were expecting,
1989 * drop it.
1990 */
1991 if (seq_before(seq, ppp->nextseq)) {
1992 kfree_skb(skb);
1993 ++ppp->dev->stats.rx_dropped;
1994 ppp_receive_error(ppp);
1995 return;
1996 }
1997
1998 /*
1999 * Reevaluate minseq, the minimum over all channels of the
2000 * last sequence number received on each channel. Because of
2001 * the increasing sequence number rule, we know that any fragment
2002 * before `minseq' which hasn't arrived is never going to arrive.
2003 * The list of channels can't change because we have the receive
2004 * side of the ppp unit locked.
2005 */
2006 list_for_each_entry(ch, &ppp->channels, clist) {
2007 if (seq_before(ch->lastseq, seq))
2008 seq = ch->lastseq;
2009 }
2010 if (seq_before(ppp->minseq, seq))
2011 ppp->minseq = seq;
2012
2013 /* Put the fragment on the reconstruction queue */
2014 ppp_mp_insert(ppp, skb);
2015
2016 /* If the queue is getting long, don't wait any longer for packets
2017 before the start of the queue. */
2018 if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2019 struct sk_buff *mskb = skb_peek(&ppp->mrq);
2020 if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2021 ppp->minseq = PPP_MP_CB(mskb)->sequence;
2022 }
2023
2024 /* Pull completed packets off the queue and receive them. */
2025 while ((skb = ppp_mp_reconstruct(ppp))) {
2026 if (pskb_may_pull(skb, 2))
2027 ppp_receive_nonmp_frame(ppp, skb);
2028 else {
2029 ++ppp->dev->stats.rx_length_errors;
2030 kfree_skb(skb);
2031 ppp_receive_error(ppp);
2032 }
2033 }
2034
2035 return;
2036
2037 err:
2038 kfree_skb(skb);
2039 ppp_receive_error(ppp);
2040 }
2041
2042 /*
2043 * Insert a fragment on the MP reconstruction queue.
2044 * The queue is ordered by increasing sequence number.
2045 */
2046 static void
ppp_mp_insert(struct ppp * ppp,struct sk_buff * skb)2047 ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2048 {
2049 struct sk_buff *p;
2050 struct sk_buff_head *list = &ppp->mrq;
2051 u32 seq = PPP_MP_CB(skb)->sequence;
2052
2053 /* N.B. we don't need to lock the list lock because we have the
2054 ppp unit receive-side lock. */
2055 skb_queue_walk(list, p) {
2056 if (seq_before(seq, PPP_MP_CB(p)->sequence))
2057 break;
2058 }
2059 __skb_queue_before(list, p, skb);
2060 }
2061
2062 /*
2063 * Reconstruct a packet from the MP fragment queue.
2064 * We go through increasing sequence numbers until we find a
2065 * complete packet, or we get to the sequence number for a fragment
2066 * which hasn't arrived but might still do so.
2067 */
2068 static struct sk_buff *
ppp_mp_reconstruct(struct ppp * ppp)2069 ppp_mp_reconstruct(struct ppp *ppp)
2070 {
2071 u32 seq = ppp->nextseq;
2072 u32 minseq = ppp->minseq;
2073 struct sk_buff_head *list = &ppp->mrq;
2074 struct sk_buff *p, *tmp;
2075 struct sk_buff *head, *tail;
2076 struct sk_buff *skb = NULL;
2077 int lost = 0, len = 0;
2078
2079 if (ppp->mrru == 0) /* do nothing until mrru is set */
2080 return NULL;
2081 head = list->next;
2082 tail = NULL;
2083 skb_queue_walk_safe(list, p, tmp) {
2084 again:
2085 if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2086 /* this can't happen, anyway ignore the skb */
2087 netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2088 "seq %u < %u\n",
2089 PPP_MP_CB(p)->sequence, seq);
2090 __skb_unlink(p, list);
2091 kfree_skb(p);
2092 continue;
2093 }
2094 if (PPP_MP_CB(p)->sequence != seq) {
2095 u32 oldseq;
2096 /* Fragment `seq' is missing. If it is after
2097 minseq, it might arrive later, so stop here. */
2098 if (seq_after(seq, minseq))
2099 break;
2100 /* Fragment `seq' is lost, keep going. */
2101 lost = 1;
2102 oldseq = seq;
2103 seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2104 minseq + 1: PPP_MP_CB(p)->sequence;
2105
2106 if (ppp->debug & 1)
2107 netdev_printk(KERN_DEBUG, ppp->dev,
2108 "lost frag %u..%u\n",
2109 oldseq, seq-1);
2110
2111 goto again;
2112 }
2113
2114 /*
2115 * At this point we know that all the fragments from
2116 * ppp->nextseq to seq are either present or lost.
2117 * Also, there are no complete packets in the queue
2118 * that have no missing fragments and end before this
2119 * fragment.
2120 */
2121
2122 /* B bit set indicates this fragment starts a packet */
2123 if (PPP_MP_CB(p)->BEbits & B) {
2124 head = p;
2125 lost = 0;
2126 len = 0;
2127 }
2128
2129 len += p->len;
2130
2131 /* Got a complete packet yet? */
2132 if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2133 (PPP_MP_CB(head)->BEbits & B)) {
2134 if (len > ppp->mrru + 2) {
2135 ++ppp->dev->stats.rx_length_errors;
2136 netdev_printk(KERN_DEBUG, ppp->dev,
2137 "PPP: reconstructed packet"
2138 " is too long (%d)\n", len);
2139 } else {
2140 tail = p;
2141 break;
2142 }
2143 ppp->nextseq = seq + 1;
2144 }
2145
2146 /*
2147 * If this is the ending fragment of a packet,
2148 * and we haven't found a complete valid packet yet,
2149 * we can discard up to and including this fragment.
2150 */
2151 if (PPP_MP_CB(p)->BEbits & E) {
2152 struct sk_buff *tmp2;
2153
2154 skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2155 if (ppp->debug & 1)
2156 netdev_printk(KERN_DEBUG, ppp->dev,
2157 "discarding frag %u\n",
2158 PPP_MP_CB(p)->sequence);
2159 __skb_unlink(p, list);
2160 kfree_skb(p);
2161 }
2162 head = skb_peek(list);
2163 if (!head)
2164 break;
2165 }
2166 ++seq;
2167 }
2168
2169 /* If we have a complete packet, copy it all into one skb. */
2170 if (tail != NULL) {
2171 /* If we have discarded any fragments,
2172 signal a receive error. */
2173 if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2174 skb_queue_walk_safe(list, p, tmp) {
2175 if (p == head)
2176 break;
2177 if (ppp->debug & 1)
2178 netdev_printk(KERN_DEBUG, ppp->dev,
2179 "discarding frag %u\n",
2180 PPP_MP_CB(p)->sequence);
2181 __skb_unlink(p, list);
2182 kfree_skb(p);
2183 }
2184
2185 if (ppp->debug & 1)
2186 netdev_printk(KERN_DEBUG, ppp->dev,
2187 " missed pkts %u..%u\n",
2188 ppp->nextseq,
2189 PPP_MP_CB(head)->sequence-1);
2190 ++ppp->dev->stats.rx_dropped;
2191 ppp_receive_error(ppp);
2192 }
2193
2194 skb = head;
2195 if (head != tail) {
2196 struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2197 p = skb_queue_next(list, head);
2198 __skb_unlink(skb, list);
2199 skb_queue_walk_from_safe(list, p, tmp) {
2200 __skb_unlink(p, list);
2201 *fragpp = p;
2202 p->next = NULL;
2203 fragpp = &p->next;
2204
2205 skb->len += p->len;
2206 skb->data_len += p->len;
2207 skb->truesize += p->truesize;
2208
2209 if (p == tail)
2210 break;
2211 }
2212 } else {
2213 __skb_unlink(skb, list);
2214 }
2215
2216 ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2217 }
2218
2219 return skb;
2220 }
2221 #endif /* CONFIG_PPP_MULTILINK */
2222
2223 /*
2224 * Channel interface.
2225 */
2226
2227 /* Create a new, unattached ppp channel. */
ppp_register_channel(struct ppp_channel * chan)2228 int ppp_register_channel(struct ppp_channel *chan)
2229 {
2230 return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2231 }
2232
2233 /* Create a new, unattached ppp channel for specified net. */
ppp_register_net_channel(struct net * net,struct ppp_channel * chan)2234 int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2235 {
2236 struct channel *pch;
2237 struct ppp_net *pn;
2238
2239 pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2240 if (!pch)
2241 return -ENOMEM;
2242
2243 pn = ppp_pernet(net);
2244
2245 pch->ppp = NULL;
2246 pch->chan = chan;
2247 pch->chan_net = net;
2248 chan->ppp = pch;
2249 init_ppp_file(&pch->file, CHANNEL);
2250 pch->file.hdrlen = chan->hdrlen;
2251 #ifdef CONFIG_PPP_MULTILINK
2252 pch->lastseq = -1;
2253 #endif /* CONFIG_PPP_MULTILINK */
2254 init_rwsem(&pch->chan_sem);
2255 spin_lock_init(&pch->downl);
2256 rwlock_init(&pch->upl);
2257
2258 spin_lock_bh(&pn->all_channels_lock);
2259 pch->file.index = ++pn->last_channel_index;
2260 list_add(&pch->list, &pn->new_channels);
2261 atomic_inc(&channel_count);
2262 spin_unlock_bh(&pn->all_channels_lock);
2263
2264 return 0;
2265 }
2266
2267 /*
2268 * Return the index of a channel.
2269 */
ppp_channel_index(struct ppp_channel * chan)2270 int ppp_channel_index(struct ppp_channel *chan)
2271 {
2272 struct channel *pch = chan->ppp;
2273
2274 if (pch)
2275 return pch->file.index;
2276 return -1;
2277 }
2278
2279 /*
2280 * Return the PPP unit number to which a channel is connected.
2281 */
ppp_unit_number(struct ppp_channel * chan)2282 int ppp_unit_number(struct ppp_channel *chan)
2283 {
2284 struct channel *pch = chan->ppp;
2285 int unit = -1;
2286
2287 if (pch) {
2288 read_lock_bh(&pch->upl);
2289 if (pch->ppp)
2290 unit = pch->ppp->file.index;
2291 read_unlock_bh(&pch->upl);
2292 }
2293 return unit;
2294 }
2295
2296 /*
2297 * Return the PPP device interface name of a channel.
2298 */
ppp_dev_name(struct ppp_channel * chan)2299 char *ppp_dev_name(struct ppp_channel *chan)
2300 {
2301 struct channel *pch = chan->ppp;
2302 char *name = NULL;
2303
2304 if (pch) {
2305 read_lock_bh(&pch->upl);
2306 if (pch->ppp && pch->ppp->dev)
2307 name = pch->ppp->dev->name;
2308 read_unlock_bh(&pch->upl);
2309 }
2310 return name;
2311 }
2312
2313
2314 /*
2315 * Disconnect a channel from the generic layer.
2316 * This must be called in process context.
2317 */
2318 void
ppp_unregister_channel(struct ppp_channel * chan)2319 ppp_unregister_channel(struct ppp_channel *chan)
2320 {
2321 struct channel *pch = chan->ppp;
2322 struct ppp_net *pn;
2323
2324 if (!pch)
2325 return; /* should never happen */
2326
2327 chan->ppp = NULL;
2328
2329 /*
2330 * This ensures that we have returned from any calls into the
2331 * the channel's start_xmit or ioctl routine before we proceed.
2332 */
2333 down_write(&pch->chan_sem);
2334 spin_lock_bh(&pch->downl);
2335 pch->chan = NULL;
2336 spin_unlock_bh(&pch->downl);
2337 up_write(&pch->chan_sem);
2338 ppp_disconnect_channel(pch);
2339
2340 pn = ppp_pernet(pch->chan_net);
2341 spin_lock_bh(&pn->all_channels_lock);
2342 list_del(&pch->list);
2343 spin_unlock_bh(&pn->all_channels_lock);
2344
2345 pch->file.dead = 1;
2346 wake_up_interruptible(&pch->file.rwait);
2347 if (atomic_dec_and_test(&pch->file.refcnt))
2348 ppp_destroy_channel(pch);
2349 }
2350
2351 /*
2352 * Callback from a channel when it can accept more to transmit.
2353 * This should be called at BH/softirq level, not interrupt level.
2354 */
2355 void
ppp_output_wakeup(struct ppp_channel * chan)2356 ppp_output_wakeup(struct ppp_channel *chan)
2357 {
2358 struct channel *pch = chan->ppp;
2359
2360 if (!pch)
2361 return;
2362 ppp_channel_push(pch);
2363 }
2364
2365 /*
2366 * Compression control.
2367 */
2368
2369 /* Process the PPPIOCSCOMPRESS ioctl. */
2370 static int
ppp_set_compress(struct ppp * ppp,unsigned long arg)2371 ppp_set_compress(struct ppp *ppp, unsigned long arg)
2372 {
2373 int err;
2374 struct compressor *cp, *ocomp;
2375 struct ppp_option_data data;
2376 void *state, *ostate;
2377 unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2378
2379 err = -EFAULT;
2380 if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2381 (data.length <= CCP_MAX_OPTION_LENGTH &&
2382 copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2383 goto out;
2384 err = -EINVAL;
2385 if (data.length > CCP_MAX_OPTION_LENGTH ||
2386 ccp_option[1] < 2 || ccp_option[1] > data.length)
2387 goto out;
2388
2389 cp = try_then_request_module(
2390 find_compressor(ccp_option[0]),
2391 "ppp-compress-%d", ccp_option[0]);
2392 if (!cp)
2393 goto out;
2394
2395 err = -ENOBUFS;
2396 if (data.transmit) {
2397 state = cp->comp_alloc(ccp_option, data.length);
2398 if (state) {
2399 ppp_xmit_lock(ppp);
2400 ppp->xstate &= ~SC_COMP_RUN;
2401 ocomp = ppp->xcomp;
2402 ostate = ppp->xc_state;
2403 ppp->xcomp = cp;
2404 ppp->xc_state = state;
2405 ppp_xmit_unlock(ppp);
2406 if (ostate) {
2407 ocomp->comp_free(ostate);
2408 module_put(ocomp->owner);
2409 }
2410 err = 0;
2411 } else
2412 module_put(cp->owner);
2413
2414 } else {
2415 state = cp->decomp_alloc(ccp_option, data.length);
2416 if (state) {
2417 ppp_recv_lock(ppp);
2418 ppp->rstate &= ~SC_DECOMP_RUN;
2419 ocomp = ppp->rcomp;
2420 ostate = ppp->rc_state;
2421 ppp->rcomp = cp;
2422 ppp->rc_state = state;
2423 ppp_recv_unlock(ppp);
2424 if (ostate) {
2425 ocomp->decomp_free(ostate);
2426 module_put(ocomp->owner);
2427 }
2428 err = 0;
2429 } else
2430 module_put(cp->owner);
2431 }
2432
2433 out:
2434 return err;
2435 }
2436
2437 /*
2438 * Look at a CCP packet and update our state accordingly.
2439 * We assume the caller has the xmit or recv path locked.
2440 */
2441 static void
ppp_ccp_peek(struct ppp * ppp,struct sk_buff * skb,int inbound)2442 ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2443 {
2444 unsigned char *dp;
2445 int len;
2446
2447 if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2448 return; /* no header */
2449 dp = skb->data + 2;
2450
2451 switch (CCP_CODE(dp)) {
2452 case CCP_CONFREQ:
2453
2454 /* A ConfReq starts negotiation of compression
2455 * in one direction of transmission,
2456 * and hence brings it down...but which way?
2457 *
2458 * Remember:
2459 * A ConfReq indicates what the sender would like to receive
2460 */
2461 if(inbound)
2462 /* He is proposing what I should send */
2463 ppp->xstate &= ~SC_COMP_RUN;
2464 else
2465 /* I am proposing to what he should send */
2466 ppp->rstate &= ~SC_DECOMP_RUN;
2467
2468 break;
2469
2470 case CCP_TERMREQ:
2471 case CCP_TERMACK:
2472 /*
2473 * CCP is going down, both directions of transmission
2474 */
2475 ppp->rstate &= ~SC_DECOMP_RUN;
2476 ppp->xstate &= ~SC_COMP_RUN;
2477 break;
2478
2479 case CCP_CONFACK:
2480 if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2481 break;
2482 len = CCP_LENGTH(dp);
2483 if (!pskb_may_pull(skb, len + 2))
2484 return; /* too short */
2485 dp += CCP_HDRLEN;
2486 len -= CCP_HDRLEN;
2487 if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2488 break;
2489 if (inbound) {
2490 /* we will start receiving compressed packets */
2491 if (!ppp->rc_state)
2492 break;
2493 if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2494 ppp->file.index, 0, ppp->mru, ppp->debug)) {
2495 ppp->rstate |= SC_DECOMP_RUN;
2496 ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2497 }
2498 } else {
2499 /* we will soon start sending compressed packets */
2500 if (!ppp->xc_state)
2501 break;
2502 if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2503 ppp->file.index, 0, ppp->debug))
2504 ppp->xstate |= SC_COMP_RUN;
2505 }
2506 break;
2507
2508 case CCP_RESETACK:
2509 /* reset the [de]compressor */
2510 if ((ppp->flags & SC_CCP_UP) == 0)
2511 break;
2512 if (inbound) {
2513 if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2514 ppp->rcomp->decomp_reset(ppp->rc_state);
2515 ppp->rstate &= ~SC_DC_ERROR;
2516 }
2517 } else {
2518 if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2519 ppp->xcomp->comp_reset(ppp->xc_state);
2520 }
2521 break;
2522 }
2523 }
2524
2525 /* Free up compression resources. */
2526 static void
ppp_ccp_closed(struct ppp * ppp)2527 ppp_ccp_closed(struct ppp *ppp)
2528 {
2529 void *xstate, *rstate;
2530 struct compressor *xcomp, *rcomp;
2531
2532 ppp_lock(ppp);
2533 ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2534 ppp->xstate = 0;
2535 xcomp = ppp->xcomp;
2536 xstate = ppp->xc_state;
2537 ppp->xc_state = NULL;
2538 ppp->rstate = 0;
2539 rcomp = ppp->rcomp;
2540 rstate = ppp->rc_state;
2541 ppp->rc_state = NULL;
2542 ppp_unlock(ppp);
2543
2544 if (xstate) {
2545 xcomp->comp_free(xstate);
2546 module_put(xcomp->owner);
2547 }
2548 if (rstate) {
2549 rcomp->decomp_free(rstate);
2550 module_put(rcomp->owner);
2551 }
2552 }
2553
2554 /* List of compressors. */
2555 static LIST_HEAD(compressor_list);
2556 static DEFINE_SPINLOCK(compressor_list_lock);
2557
2558 struct compressor_entry {
2559 struct list_head list;
2560 struct compressor *comp;
2561 };
2562
2563 static struct compressor_entry *
find_comp_entry(int proto)2564 find_comp_entry(int proto)
2565 {
2566 struct compressor_entry *ce;
2567
2568 list_for_each_entry(ce, &compressor_list, list) {
2569 if (ce->comp->compress_proto == proto)
2570 return ce;
2571 }
2572 return NULL;
2573 }
2574
2575 /* Register a compressor */
2576 int
ppp_register_compressor(struct compressor * cp)2577 ppp_register_compressor(struct compressor *cp)
2578 {
2579 struct compressor_entry *ce;
2580 int ret;
2581 spin_lock(&compressor_list_lock);
2582 ret = -EEXIST;
2583 if (find_comp_entry(cp->compress_proto))
2584 goto out;
2585 ret = -ENOMEM;
2586 ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2587 if (!ce)
2588 goto out;
2589 ret = 0;
2590 ce->comp = cp;
2591 list_add(&ce->list, &compressor_list);
2592 out:
2593 spin_unlock(&compressor_list_lock);
2594 return ret;
2595 }
2596
2597 /* Unregister a compressor */
2598 void
ppp_unregister_compressor(struct compressor * cp)2599 ppp_unregister_compressor(struct compressor *cp)
2600 {
2601 struct compressor_entry *ce;
2602
2603 spin_lock(&compressor_list_lock);
2604 ce = find_comp_entry(cp->compress_proto);
2605 if (ce && ce->comp == cp) {
2606 list_del(&ce->list);
2607 kfree(ce);
2608 }
2609 spin_unlock(&compressor_list_lock);
2610 }
2611
2612 /* Find a compressor. */
2613 static struct compressor *
find_compressor(int type)2614 find_compressor(int type)
2615 {
2616 struct compressor_entry *ce;
2617 struct compressor *cp = NULL;
2618
2619 spin_lock(&compressor_list_lock);
2620 ce = find_comp_entry(type);
2621 if (ce) {
2622 cp = ce->comp;
2623 if (!try_module_get(cp->owner))
2624 cp = NULL;
2625 }
2626 spin_unlock(&compressor_list_lock);
2627 return cp;
2628 }
2629
2630 /*
2631 * Miscelleneous stuff.
2632 */
2633
2634 static void
ppp_get_stats(struct ppp * ppp,struct ppp_stats * st)2635 ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2636 {
2637 struct slcompress *vj = ppp->vj;
2638
2639 memset(st, 0, sizeof(*st));
2640 st->p.ppp_ipackets = ppp->stats64.rx_packets;
2641 st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2642 st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2643 st->p.ppp_opackets = ppp->stats64.tx_packets;
2644 st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2645 st->p.ppp_obytes = ppp->stats64.tx_bytes;
2646 if (!vj)
2647 return;
2648 st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2649 st->vj.vjs_compressed = vj->sls_o_compressed;
2650 st->vj.vjs_searches = vj->sls_o_searches;
2651 st->vj.vjs_misses = vj->sls_o_misses;
2652 st->vj.vjs_errorin = vj->sls_i_error;
2653 st->vj.vjs_tossed = vj->sls_i_tossed;
2654 st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2655 st->vj.vjs_compressedin = vj->sls_i_compressed;
2656 }
2657
2658 /*
2659 * Stuff for handling the lists of ppp units and channels
2660 * and for initialization.
2661 */
2662
2663 /*
2664 * Create a new ppp interface unit. Fails if it can't allocate memory
2665 * or if there is already a unit with the requested number.
2666 * unit == -1 means allocate a new number.
2667 */
2668 static struct ppp *
ppp_create_interface(struct net * net,int unit,int * retp)2669 ppp_create_interface(struct net *net, int unit, int *retp)
2670 {
2671 struct ppp *ppp;
2672 struct ppp_net *pn;
2673 struct net_device *dev = NULL;
2674 int ret = -ENOMEM;
2675 int i;
2676
2677 dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2678 ppp_setup);
2679 if (!dev)
2680 goto out1;
2681
2682 pn = ppp_pernet(net);
2683
2684 ppp = netdev_priv(dev);
2685 ppp->dev = dev;
2686 ppp->mru = PPP_MRU;
2687 init_ppp_file(&ppp->file, INTERFACE);
2688 ppp->file.hdrlen = PPP_HDRLEN - 2; /* don't count proto bytes */
2689 for (i = 0; i < NUM_NP; ++i)
2690 ppp->npmode[i] = NPMODE_PASS;
2691 INIT_LIST_HEAD(&ppp->channels);
2692 spin_lock_init(&ppp->rlock);
2693 spin_lock_init(&ppp->wlock);
2694 #ifdef CONFIG_PPP_MULTILINK
2695 ppp->minseq = -1;
2696 skb_queue_head_init(&ppp->mrq);
2697 #endif /* CONFIG_PPP_MULTILINK */
2698 #ifdef CONFIG_PPP_FILTER
2699 ppp->pass_filter = NULL;
2700 ppp->active_filter = NULL;
2701 #endif /* CONFIG_PPP_FILTER */
2702
2703 /*
2704 * drum roll: don't forget to set
2705 * the net device is belong to
2706 */
2707 dev_net_set(dev, net);
2708
2709 mutex_lock(&pn->all_ppp_mutex);
2710
2711 if (unit < 0) {
2712 unit = unit_get(&pn->units_idr, ppp);
2713 if (unit < 0) {
2714 ret = unit;
2715 goto out2;
2716 }
2717 } else {
2718 ret = -EEXIST;
2719 if (unit_find(&pn->units_idr, unit))
2720 goto out2; /* unit already exists */
2721 /*
2722 * if caller need a specified unit number
2723 * lets try to satisfy him, otherwise --
2724 * he should better ask us for new unit number
2725 *
2726 * NOTE: yes I know that returning EEXIST it's not
2727 * fair but at least pppd will ask us to allocate
2728 * new unit in this case so user is happy :)
2729 */
2730 unit = unit_set(&pn->units_idr, ppp, unit);
2731 if (unit < 0)
2732 goto out2;
2733 }
2734
2735 /* Initialize the new ppp unit */
2736 ppp->file.index = unit;
2737 sprintf(dev->name, "ppp%d", unit);
2738
2739 ret = register_netdev(dev);
2740 if (ret != 0) {
2741 unit_put(&pn->units_idr, unit);
2742 netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2743 dev->name, ret);
2744 goto out2;
2745 }
2746
2747 ppp->ppp_net = net;
2748
2749 atomic_inc(&ppp_unit_count);
2750 mutex_unlock(&pn->all_ppp_mutex);
2751
2752 *retp = 0;
2753 return ppp;
2754
2755 out2:
2756 mutex_unlock(&pn->all_ppp_mutex);
2757 free_netdev(dev);
2758 out1:
2759 *retp = ret;
2760 return NULL;
2761 }
2762
2763 /*
2764 * Initialize a ppp_file structure.
2765 */
2766 static void
init_ppp_file(struct ppp_file * pf,int kind)2767 init_ppp_file(struct ppp_file *pf, int kind)
2768 {
2769 pf->kind = kind;
2770 skb_queue_head_init(&pf->xq);
2771 skb_queue_head_init(&pf->rq);
2772 atomic_set(&pf->refcnt, 1);
2773 init_waitqueue_head(&pf->rwait);
2774 }
2775
2776 /*
2777 * Take down a ppp interface unit - called when the owning file
2778 * (the one that created the unit) is closed or detached.
2779 */
ppp_shutdown_interface(struct ppp * ppp)2780 static void ppp_shutdown_interface(struct ppp *ppp)
2781 {
2782 struct ppp_net *pn;
2783
2784 pn = ppp_pernet(ppp->ppp_net);
2785 mutex_lock(&pn->all_ppp_mutex);
2786
2787 /* This will call dev_close() for us. */
2788 ppp_lock(ppp);
2789 if (!ppp->closing) {
2790 ppp->closing = 1;
2791 ppp_unlock(ppp);
2792 unregister_netdev(ppp->dev);
2793 unit_put(&pn->units_idr, ppp->file.index);
2794 } else
2795 ppp_unlock(ppp);
2796
2797 ppp->file.dead = 1;
2798 ppp->owner = NULL;
2799 wake_up_interruptible(&ppp->file.rwait);
2800
2801 mutex_unlock(&pn->all_ppp_mutex);
2802 }
2803
2804 /*
2805 * Free the memory used by a ppp unit. This is only called once
2806 * there are no channels connected to the unit and no file structs
2807 * that reference the unit.
2808 */
ppp_destroy_interface(struct ppp * ppp)2809 static void ppp_destroy_interface(struct ppp *ppp)
2810 {
2811 atomic_dec(&ppp_unit_count);
2812
2813 if (!ppp->file.dead || ppp->n_channels) {
2814 /* "can't happen" */
2815 netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2816 "but dead=%d n_channels=%d !\n",
2817 ppp, ppp->file.dead, ppp->n_channels);
2818 return;
2819 }
2820
2821 ppp_ccp_closed(ppp);
2822 if (ppp->vj) {
2823 slhc_free(ppp->vj);
2824 ppp->vj = NULL;
2825 }
2826 skb_queue_purge(&ppp->file.xq);
2827 skb_queue_purge(&ppp->file.rq);
2828 #ifdef CONFIG_PPP_MULTILINK
2829 skb_queue_purge(&ppp->mrq);
2830 #endif /* CONFIG_PPP_MULTILINK */
2831 #ifdef CONFIG_PPP_FILTER
2832 if (ppp->pass_filter) {
2833 bpf_prog_destroy(ppp->pass_filter);
2834 ppp->pass_filter = NULL;
2835 }
2836
2837 if (ppp->active_filter) {
2838 bpf_prog_destroy(ppp->active_filter);
2839 ppp->active_filter = NULL;
2840 }
2841 #endif /* CONFIG_PPP_FILTER */
2842
2843 kfree_skb(ppp->xmit_pending);
2844
2845 free_netdev(ppp->dev);
2846 }
2847
2848 /*
2849 * Locate an existing ppp unit.
2850 * The caller should have locked the all_ppp_mutex.
2851 */
2852 static struct ppp *
ppp_find_unit(struct ppp_net * pn,int unit)2853 ppp_find_unit(struct ppp_net *pn, int unit)
2854 {
2855 return unit_find(&pn->units_idr, unit);
2856 }
2857
2858 /*
2859 * Locate an existing ppp channel.
2860 * The caller should have locked the all_channels_lock.
2861 * First we look in the new_channels list, then in the
2862 * all_channels list. If found in the new_channels list,
2863 * we move it to the all_channels list. This is for speed
2864 * when we have a lot of channels in use.
2865 */
2866 static struct channel *
ppp_find_channel(struct ppp_net * pn,int unit)2867 ppp_find_channel(struct ppp_net *pn, int unit)
2868 {
2869 struct channel *pch;
2870
2871 list_for_each_entry(pch, &pn->new_channels, list) {
2872 if (pch->file.index == unit) {
2873 list_move(&pch->list, &pn->all_channels);
2874 return pch;
2875 }
2876 }
2877
2878 list_for_each_entry(pch, &pn->all_channels, list) {
2879 if (pch->file.index == unit)
2880 return pch;
2881 }
2882
2883 return NULL;
2884 }
2885
2886 /*
2887 * Connect a PPP channel to a PPP interface unit.
2888 */
2889 static int
ppp_connect_channel(struct channel * pch,int unit)2890 ppp_connect_channel(struct channel *pch, int unit)
2891 {
2892 struct ppp *ppp;
2893 struct ppp_net *pn;
2894 int ret = -ENXIO;
2895 int hdrlen;
2896
2897 pn = ppp_pernet(pch->chan_net);
2898
2899 mutex_lock(&pn->all_ppp_mutex);
2900 ppp = ppp_find_unit(pn, unit);
2901 if (!ppp)
2902 goto out;
2903 write_lock_bh(&pch->upl);
2904 ret = -EINVAL;
2905 if (pch->ppp)
2906 goto outl;
2907
2908 ppp_lock(ppp);
2909 if (pch->file.hdrlen > ppp->file.hdrlen)
2910 ppp->file.hdrlen = pch->file.hdrlen;
2911 hdrlen = pch->file.hdrlen + 2; /* for protocol bytes */
2912 if (hdrlen > ppp->dev->hard_header_len)
2913 ppp->dev->hard_header_len = hdrlen;
2914 list_add_tail(&pch->clist, &ppp->channels);
2915 ++ppp->n_channels;
2916 pch->ppp = ppp;
2917 atomic_inc(&ppp->file.refcnt);
2918 ppp_unlock(ppp);
2919 ret = 0;
2920
2921 outl:
2922 write_unlock_bh(&pch->upl);
2923 out:
2924 mutex_unlock(&pn->all_ppp_mutex);
2925 return ret;
2926 }
2927
2928 /*
2929 * Disconnect a channel from its ppp unit.
2930 */
2931 static int
ppp_disconnect_channel(struct channel * pch)2932 ppp_disconnect_channel(struct channel *pch)
2933 {
2934 struct ppp *ppp;
2935 int err = -EINVAL;
2936
2937 write_lock_bh(&pch->upl);
2938 ppp = pch->ppp;
2939 pch->ppp = NULL;
2940 write_unlock_bh(&pch->upl);
2941 if (ppp) {
2942 /* remove it from the ppp unit's list */
2943 ppp_lock(ppp);
2944 list_del(&pch->clist);
2945 if (--ppp->n_channels == 0)
2946 wake_up_interruptible(&ppp->file.rwait);
2947 ppp_unlock(ppp);
2948 if (atomic_dec_and_test(&ppp->file.refcnt))
2949 ppp_destroy_interface(ppp);
2950 err = 0;
2951 }
2952 return err;
2953 }
2954
2955 /*
2956 * Free up the resources used by a ppp channel.
2957 */
ppp_destroy_channel(struct channel * pch)2958 static void ppp_destroy_channel(struct channel *pch)
2959 {
2960 atomic_dec(&channel_count);
2961
2962 if (!pch->file.dead) {
2963 /* "can't happen" */
2964 pr_err("ppp: destroying undead channel %p !\n", pch);
2965 return;
2966 }
2967 skb_queue_purge(&pch->file.xq);
2968 skb_queue_purge(&pch->file.rq);
2969 kfree(pch);
2970 }
2971
ppp_cleanup(void)2972 static void __exit ppp_cleanup(void)
2973 {
2974 /* should never happen */
2975 if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2976 pr_err("PPP: removing module but units remain!\n");
2977 unregister_chrdev(PPP_MAJOR, "ppp");
2978 device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2979 class_destroy(ppp_class);
2980 unregister_pernet_device(&ppp_net_ops);
2981 }
2982
2983 /*
2984 * Units handling. Caller must protect concurrent access
2985 * by holding all_ppp_mutex
2986 */
2987
2988 /* associate pointer with specified number */
unit_set(struct idr * p,void * ptr,int n)2989 static int unit_set(struct idr *p, void *ptr, int n)
2990 {
2991 int unit;
2992
2993 unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
2994 if (unit == -ENOSPC)
2995 unit = -EINVAL;
2996 return unit;
2997 }
2998
2999 /* get new free unit number and associate pointer with it */
unit_get(struct idr * p,void * ptr)3000 static int unit_get(struct idr *p, void *ptr)
3001 {
3002 return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3003 }
3004
3005 /* put unit number back to a pool */
unit_put(struct idr * p,int n)3006 static void unit_put(struct idr *p, int n)
3007 {
3008 idr_remove(p, n);
3009 }
3010
3011 /* get pointer associated with the number */
unit_find(struct idr * p,int n)3012 static void *unit_find(struct idr *p, int n)
3013 {
3014 return idr_find(p, n);
3015 }
3016
3017 /* Module/initialization stuff */
3018
3019 module_init(ppp_init);
3020 module_exit(ppp_cleanup);
3021
3022 EXPORT_SYMBOL(ppp_register_net_channel);
3023 EXPORT_SYMBOL(ppp_register_channel);
3024 EXPORT_SYMBOL(ppp_unregister_channel);
3025 EXPORT_SYMBOL(ppp_channel_index);
3026 EXPORT_SYMBOL(ppp_unit_number);
3027 EXPORT_SYMBOL(ppp_dev_name);
3028 EXPORT_SYMBOL(ppp_input);
3029 EXPORT_SYMBOL(ppp_input_error);
3030 EXPORT_SYMBOL(ppp_output_wakeup);
3031 EXPORT_SYMBOL(ppp_register_compressor);
3032 EXPORT_SYMBOL(ppp_unregister_compressor);
3033 MODULE_LICENSE("GPL");
3034 MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3035 MODULE_ALIAS("devname:ppp");
3036