1/*
2 *  linux/drivers/net/irda/sa1100_ir.c
3 *
4 *  Copyright (C) 2000-2001 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 *  Infra-red driver for the StrongARM SA1100 embedded microprocessor
11 *
12 *  Note that we don't have to worry about the SA1111's DMA bugs in here,
13 *  so we use the straight forward dma_map_* functions with a null pointer.
14 *
15 *  This driver takes one kernel command line parameter, sa1100ir=, with
16 *  the following options:
17 *	max_rate:baudrate	- set the maximum baud rate
18 *	power_level:level	- set the transmitter power level
19 *	tx_lpm:0|1		- set transmit low power mode
20 */
21#include <linux/module.h>
22#include <linux/moduleparam.h>
23#include <linux/types.h>
24#include <linux/init.h>
25#include <linux/errno.h>
26#include <linux/netdevice.h>
27#include <linux/slab.h>
28#include <linux/rtnetlink.h>
29#include <linux/interrupt.h>
30#include <linux/delay.h>
31#include <linux/platform_device.h>
32#include <linux/dma-mapping.h>
33#include <linux/dmaengine.h>
34#include <linux/sa11x0-dma.h>
35
36#include <net/irda/irda.h>
37#include <net/irda/wrapper.h>
38#include <net/irda/irda_device.h>
39
40#include <mach/hardware.h>
41#include <linux/platform_data/irda-sa11x0.h>
42
43static int power_level = 3;
44static int tx_lpm;
45static int max_rate = 4000000;
46
47struct sa1100_buf {
48	struct device		*dev;
49	struct sk_buff		*skb;
50	struct scatterlist	sg;
51	struct dma_chan		*chan;
52	dma_cookie_t		cookie;
53};
54
55struct sa1100_irda {
56	unsigned char		utcr4;
57	unsigned char		power;
58	unsigned char		open;
59
60	int			speed;
61	int			newspeed;
62
63	struct sa1100_buf	dma_rx;
64	struct sa1100_buf	dma_tx;
65
66	struct device		*dev;
67	struct irda_platform_data *pdata;
68	struct irlap_cb		*irlap;
69	struct qos_info		qos;
70
71	iobuff_t		tx_buff;
72	iobuff_t		rx_buff;
73
74	int (*tx_start)(struct sk_buff *, struct net_device *, struct sa1100_irda *);
75	irqreturn_t (*irq)(struct net_device *, struct sa1100_irda *);
76};
77
78static int sa1100_irda_set_speed(struct sa1100_irda *, int);
79
80#define IS_FIR(si)		((si)->speed >= 4000000)
81
82#define HPSIR_MAX_RXLEN		2047
83
84static struct dma_slave_config sa1100_irda_sir_tx = {
85	.direction	= DMA_TO_DEVICE,
86	.dst_addr	= __PREG(Ser2UTDR),
87	.dst_addr_width	= DMA_SLAVE_BUSWIDTH_1_BYTE,
88	.dst_maxburst	= 4,
89};
90
91static struct dma_slave_config sa1100_irda_fir_rx = {
92	.direction	= DMA_FROM_DEVICE,
93	.src_addr	= __PREG(Ser2HSDR),
94	.src_addr_width	= DMA_SLAVE_BUSWIDTH_1_BYTE,
95	.src_maxburst	= 8,
96};
97
98static struct dma_slave_config sa1100_irda_fir_tx = {
99	.direction	= DMA_TO_DEVICE,
100	.dst_addr	= __PREG(Ser2HSDR),
101	.dst_addr_width	= DMA_SLAVE_BUSWIDTH_1_BYTE,
102	.dst_maxburst	= 8,
103};
104
105static unsigned sa1100_irda_dma_xferred(struct sa1100_buf *buf)
106{
107	struct dma_chan *chan = buf->chan;
108	struct dma_tx_state state;
109	enum dma_status status;
110
111	status = chan->device->device_tx_status(chan, buf->cookie, &state);
112	if (status != DMA_PAUSED)
113		return 0;
114
115	return sg_dma_len(&buf->sg) - state.residue;
116}
117
118static int sa1100_irda_dma_request(struct device *dev, struct sa1100_buf *buf,
119	const char *name, struct dma_slave_config *cfg)
120{
121	dma_cap_mask_t m;
122	int ret;
123
124	dma_cap_zero(m);
125	dma_cap_set(DMA_SLAVE, m);
126
127	buf->chan = dma_request_channel(m, sa11x0_dma_filter_fn, (void *)name);
128	if (!buf->chan) {
129		dev_err(dev, "unable to request DMA channel for %s\n",
130			name);
131		return -ENOENT;
132	}
133
134	ret = dmaengine_slave_config(buf->chan, cfg);
135	if (ret)
136		dev_warn(dev, "DMA slave_config for %s returned %d\n",
137			name, ret);
138
139	buf->dev = buf->chan->device->dev;
140
141	return 0;
142}
143
144static void sa1100_irda_dma_start(struct sa1100_buf *buf,
145	enum dma_transfer_direction dir, dma_async_tx_callback cb, void *cb_p)
146{
147	struct dma_async_tx_descriptor *desc;
148	struct dma_chan *chan = buf->chan;
149
150	desc = dmaengine_prep_slave_sg(chan, &buf->sg, 1, dir,
151			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
152	if (desc) {
153		desc->callback = cb;
154		desc->callback_param = cb_p;
155		buf->cookie = dmaengine_submit(desc);
156		dma_async_issue_pending(chan);
157	}
158}
159
160/*
161 * Allocate and map the receive buffer, unless it is already allocated.
162 */
163static int sa1100_irda_rx_alloc(struct sa1100_irda *si)
164{
165	if (si->dma_rx.skb)
166		return 0;
167
168	si->dma_rx.skb = alloc_skb(HPSIR_MAX_RXLEN + 1, GFP_ATOMIC);
169	if (!si->dma_rx.skb) {
170		printk(KERN_ERR "sa1100_ir: out of memory for RX SKB\n");
171		return -ENOMEM;
172	}
173
174	/*
175	 * Align any IP headers that may be contained
176	 * within the frame.
177	 */
178	skb_reserve(si->dma_rx.skb, 1);
179
180	sg_set_buf(&si->dma_rx.sg, si->dma_rx.skb->data, HPSIR_MAX_RXLEN);
181	if (dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE) == 0) {
182		dev_kfree_skb_any(si->dma_rx.skb);
183		return -ENOMEM;
184	}
185
186	return 0;
187}
188
189/*
190 * We want to get here as soon as possible, and get the receiver setup.
191 * We use the existing buffer.
192 */
193static void sa1100_irda_rx_dma_start(struct sa1100_irda *si)
194{
195	if (!si->dma_rx.skb) {
196		printk(KERN_ERR "sa1100_ir: rx buffer went missing\n");
197		return;
198	}
199
200	/*
201	 * First empty receive FIFO
202	 */
203	Ser2HSCR0 = HSCR0_HSSP;
204
205	/*
206	 * Enable the DMA, receiver and receive interrupt.
207	 */
208	dmaengine_terminate_all(si->dma_rx.chan);
209	sa1100_irda_dma_start(&si->dma_rx, DMA_DEV_TO_MEM, NULL, NULL);
210
211	Ser2HSCR0 = HSCR0_HSSP | HSCR0_RXE;
212}
213
214static void sa1100_irda_check_speed(struct sa1100_irda *si)
215{
216	if (si->newspeed) {
217		sa1100_irda_set_speed(si, si->newspeed);
218		si->newspeed = 0;
219	}
220}
221
222/*
223 * HP-SIR format support.
224 */
225static void sa1100_irda_sirtxdma_irq(void *id)
226{
227	struct net_device *dev = id;
228	struct sa1100_irda *si = netdev_priv(dev);
229
230	dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE);
231	dev_kfree_skb(si->dma_tx.skb);
232	si->dma_tx.skb = NULL;
233
234	dev->stats.tx_packets++;
235	dev->stats.tx_bytes += sg_dma_len(&si->dma_tx.sg);
236
237	/* We need to ensure that the transmitter has finished. */
238	do
239		rmb();
240	while (Ser2UTSR1 & UTSR1_TBY);
241
242	/*
243	 * Ok, we've finished transmitting.  Now enable the receiver.
244	 * Sometimes we get a receive IRQ immediately after a transmit...
245	 */
246	Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
247	Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
248
249	sa1100_irda_check_speed(si);
250
251	/* I'm hungry! */
252	netif_wake_queue(dev);
253}
254
255static int sa1100_irda_sir_tx_start(struct sk_buff *skb, struct net_device *dev,
256	struct sa1100_irda *si)
257{
258	si->tx_buff.data = si->tx_buff.head;
259	si->tx_buff.len  = async_wrap_skb(skb, si->tx_buff.data,
260					  si->tx_buff.truesize);
261
262	si->dma_tx.skb = skb;
263	sg_set_buf(&si->dma_tx.sg, si->tx_buff.data, si->tx_buff.len);
264	if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
265		si->dma_tx.skb = NULL;
266		netif_wake_queue(dev);
267		dev->stats.tx_dropped++;
268		return NETDEV_TX_OK;
269	}
270
271	sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_sirtxdma_irq, dev);
272
273	/*
274	 * The mean turn-around time is enforced by XBOF padding,
275	 * so we don't have to do anything special here.
276	 */
277	Ser2UTCR3 = UTCR3_TXE;
278
279	return NETDEV_TX_OK;
280}
281
282static irqreturn_t sa1100_irda_sir_irq(struct net_device *dev, struct sa1100_irda *si)
283{
284	int status;
285
286	status = Ser2UTSR0;
287
288	/*
289	 * Deal with any receive errors first.  The bytes in error may be
290	 * the only bytes in the receive FIFO, so we do this first.
291	 */
292	while (status & UTSR0_EIF) {
293		int stat, data;
294
295		stat = Ser2UTSR1;
296		data = Ser2UTDR;
297
298		if (stat & (UTSR1_FRE | UTSR1_ROR)) {
299			dev->stats.rx_errors++;
300			if (stat & UTSR1_FRE)
301				dev->stats.rx_frame_errors++;
302			if (stat & UTSR1_ROR)
303				dev->stats.rx_fifo_errors++;
304		} else
305			async_unwrap_char(dev, &dev->stats, &si->rx_buff, data);
306
307		status = Ser2UTSR0;
308	}
309
310	/*
311	 * We must clear certain bits.
312	 */
313	Ser2UTSR0 = status & (UTSR0_RID | UTSR0_RBB | UTSR0_REB);
314
315	if (status & UTSR0_RFS) {
316		/*
317		 * There are at least 4 bytes in the FIFO.  Read 3 bytes
318		 * and leave the rest to the block below.
319		 */
320		async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
321		async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
322		async_unwrap_char(dev, &dev->stats, &si->rx_buff, Ser2UTDR);
323	}
324
325	if (status & (UTSR0_RFS | UTSR0_RID)) {
326		/*
327		 * Fifo contains more than 1 character.
328		 */
329		do {
330			async_unwrap_char(dev, &dev->stats, &si->rx_buff,
331					  Ser2UTDR);
332		} while (Ser2UTSR1 & UTSR1_RNE);
333
334	}
335
336	return IRQ_HANDLED;
337}
338
339/*
340 * FIR format support.
341 */
342static void sa1100_irda_firtxdma_irq(void *id)
343{
344	struct net_device *dev = id;
345	struct sa1100_irda *si = netdev_priv(dev);
346	struct sk_buff *skb;
347
348	/*
349	 * Wait for the transmission to complete.  Unfortunately,
350	 * the hardware doesn't give us an interrupt to indicate
351	 * "end of frame".
352	 */
353	do
354		rmb();
355	while (!(Ser2HSSR0 & HSSR0_TUR) || Ser2HSSR1 & HSSR1_TBY);
356
357	/*
358	 * Clear the transmit underrun bit.
359	 */
360	Ser2HSSR0 = HSSR0_TUR;
361
362	/*
363	 * Do we need to change speed?  Note that we're lazy
364	 * here - we don't free the old dma_rx.skb.  We don't need
365	 * to allocate a buffer either.
366	 */
367	sa1100_irda_check_speed(si);
368
369	/*
370	 * Start reception.  This disables the transmitter for
371	 * us.  This will be using the existing RX buffer.
372	 */
373	sa1100_irda_rx_dma_start(si);
374
375	/* Account and free the packet. */
376	skb = si->dma_tx.skb;
377	if (skb) {
378		dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
379			     DMA_TO_DEVICE);
380		dev->stats.tx_packets ++;
381		dev->stats.tx_bytes += skb->len;
382		dev_kfree_skb_irq(skb);
383		si->dma_tx.skb = NULL;
384	}
385
386	/*
387	 * Make sure that the TX queue is available for sending
388	 * (for retries).  TX has priority over RX at all times.
389	 */
390	netif_wake_queue(dev);
391}
392
393static int sa1100_irda_fir_tx_start(struct sk_buff *skb, struct net_device *dev,
394	struct sa1100_irda *si)
395{
396	int mtt = irda_get_mtt(skb);
397
398	si->dma_tx.skb = skb;
399	sg_set_buf(&si->dma_tx.sg, skb->data, skb->len);
400	if (dma_map_sg(si->dma_tx.dev, &si->dma_tx.sg, 1, DMA_TO_DEVICE) == 0) {
401		si->dma_tx.skb = NULL;
402		netif_wake_queue(dev);
403		dev->stats.tx_dropped++;
404		dev_kfree_skb(skb);
405		return NETDEV_TX_OK;
406	}
407
408	sa1100_irda_dma_start(&si->dma_tx, DMA_MEM_TO_DEV, sa1100_irda_firtxdma_irq, dev);
409
410	/*
411	 * If we have a mean turn-around time, impose the specified
412	 * specified delay.  We could shorten this by timing from
413	 * the point we received the packet.
414	 */
415	if (mtt)
416		udelay(mtt);
417
418	Ser2HSCR0 = HSCR0_HSSP | HSCR0_TXE;
419
420	return NETDEV_TX_OK;
421}
422
423static void sa1100_irda_fir_error(struct sa1100_irda *si, struct net_device *dev)
424{
425	struct sk_buff *skb = si->dma_rx.skb;
426	unsigned int len, stat, data;
427
428	if (!skb) {
429		printk(KERN_ERR "sa1100_ir: SKB is NULL!\n");
430		return;
431	}
432
433	/*
434	 * Get the current data position.
435	 */
436	len = sa1100_irda_dma_xferred(&si->dma_rx);
437	if (len > HPSIR_MAX_RXLEN)
438		len = HPSIR_MAX_RXLEN;
439	dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
440
441	do {
442		/*
443		 * Read Status, and then Data.
444		 */
445		stat = Ser2HSSR1;
446		rmb();
447		data = Ser2HSDR;
448
449		if (stat & (HSSR1_CRE | HSSR1_ROR)) {
450			dev->stats.rx_errors++;
451			if (stat & HSSR1_CRE)
452				dev->stats.rx_crc_errors++;
453			if (stat & HSSR1_ROR)
454				dev->stats.rx_frame_errors++;
455		} else
456			skb->data[len++] = data;
457
458		/*
459		 * If we hit the end of frame, there's
460		 * no point in continuing.
461		 */
462		if (stat & HSSR1_EOF)
463			break;
464	} while (Ser2HSSR0 & HSSR0_EIF);
465
466	if (stat & HSSR1_EOF) {
467		si->dma_rx.skb = NULL;
468
469		skb_put(skb, len);
470		skb->dev = dev;
471		skb_reset_mac_header(skb);
472		skb->protocol = htons(ETH_P_IRDA);
473		dev->stats.rx_packets++;
474		dev->stats.rx_bytes += len;
475
476		/*
477		 * Before we pass the buffer up, allocate a new one.
478		 */
479		sa1100_irda_rx_alloc(si);
480
481		netif_rx(skb);
482	} else {
483		/*
484		 * Remap the buffer - it was previously mapped, and we
485		 * hope that this succeeds.
486		 */
487		dma_map_sg(si->dma_rx.dev, &si->dma_rx.sg, 1, DMA_FROM_DEVICE);
488	}
489}
490
491/*
492 * We only have to handle RX events here; transmit events go via the TX
493 * DMA handler. We disable RX, process, and the restart RX.
494 */
495static irqreturn_t sa1100_irda_fir_irq(struct net_device *dev, struct sa1100_irda *si)
496{
497	/*
498	 * Stop RX DMA
499	 */
500	dmaengine_pause(si->dma_rx.chan);
501
502	/*
503	 * Framing error - we throw away the packet completely.
504	 * Clearing RXE flushes the error conditions and data
505	 * from the fifo.
506	 */
507	if (Ser2HSSR0 & (HSSR0_FRE | HSSR0_RAB)) {
508		dev->stats.rx_errors++;
509
510		if (Ser2HSSR0 & HSSR0_FRE)
511			dev->stats.rx_frame_errors++;
512
513		/*
514		 * Clear out the DMA...
515		 */
516		Ser2HSCR0 = HSCR0_HSSP;
517
518		/*
519		 * Clear selected status bits now, so we
520		 * don't miss them next time around.
521		 */
522		Ser2HSSR0 = HSSR0_FRE | HSSR0_RAB;
523	}
524
525	/*
526	 * Deal with any receive errors.  The any of the lowest
527	 * 8 bytes in the FIFO may contain an error.  We must read
528	 * them one by one.  The "error" could even be the end of
529	 * packet!
530	 */
531	if (Ser2HSSR0 & HSSR0_EIF)
532		sa1100_irda_fir_error(si, dev);
533
534	/*
535	 * No matter what happens, we must restart reception.
536	 */
537	sa1100_irda_rx_dma_start(si);
538
539	return IRQ_HANDLED;
540}
541
542/*
543 * Set the IrDA communications speed.
544 */
545static int sa1100_irda_set_speed(struct sa1100_irda *si, int speed)
546{
547	unsigned long flags;
548	int brd, ret = -EINVAL;
549
550	switch (speed) {
551	case 9600:	case 19200:	case 38400:
552	case 57600:	case 115200:
553		brd = 3686400 / (16 * speed) - 1;
554
555		/* Stop the receive DMA, and configure transmit. */
556		if (IS_FIR(si)) {
557			dmaengine_terminate_all(si->dma_rx.chan);
558			dmaengine_slave_config(si->dma_tx.chan,
559						&sa1100_irda_sir_tx);
560		}
561
562		local_irq_save(flags);
563
564		Ser2UTCR3 = 0;
565		Ser2HSCR0 = HSCR0_UART;
566
567		Ser2UTCR1 = brd >> 8;
568		Ser2UTCR2 = brd;
569
570		/*
571		 * Clear status register
572		 */
573		Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
574		Ser2UTCR3 = UTCR3_RIE | UTCR3_RXE | UTCR3_TXE;
575
576		if (si->pdata->set_speed)
577			si->pdata->set_speed(si->dev, speed);
578
579		si->speed = speed;
580		si->tx_start = sa1100_irda_sir_tx_start;
581		si->irq = sa1100_irda_sir_irq;
582
583		local_irq_restore(flags);
584		ret = 0;
585		break;
586
587	case 4000000:
588		if (!IS_FIR(si))
589			dmaengine_slave_config(si->dma_tx.chan,
590						&sa1100_irda_fir_tx);
591
592		local_irq_save(flags);
593
594		Ser2HSSR0 = 0xff;
595		Ser2HSCR0 = HSCR0_HSSP;
596		Ser2UTCR3 = 0;
597
598		si->speed = speed;
599		si->tx_start = sa1100_irda_fir_tx_start;
600		si->irq = sa1100_irda_fir_irq;
601
602		if (si->pdata->set_speed)
603			si->pdata->set_speed(si->dev, speed);
604
605		sa1100_irda_rx_alloc(si);
606		sa1100_irda_rx_dma_start(si);
607
608		local_irq_restore(flags);
609
610		break;
611
612	default:
613		break;
614	}
615
616	return ret;
617}
618
619/*
620 * Control the power state of the IrDA transmitter.
621 * State:
622 *  0 - off
623 *  1 - short range, lowest power
624 *  2 - medium range, medium power
625 *  3 - maximum range, high power
626 *
627 * Currently, only assabet is known to support this.
628 */
629static int
630__sa1100_irda_set_power(struct sa1100_irda *si, unsigned int state)
631{
632	int ret = 0;
633	if (si->pdata->set_power)
634		ret = si->pdata->set_power(si->dev, state);
635	return ret;
636}
637
638static inline int
639sa1100_set_power(struct sa1100_irda *si, unsigned int state)
640{
641	int ret;
642
643	ret = __sa1100_irda_set_power(si, state);
644	if (ret == 0)
645		si->power = state;
646
647	return ret;
648}
649
650static irqreturn_t sa1100_irda_irq(int irq, void *dev_id)
651{
652	struct net_device *dev = dev_id;
653	struct sa1100_irda *si = netdev_priv(dev);
654
655	return si->irq(dev, si);
656}
657
658static int sa1100_irda_hard_xmit(struct sk_buff *skb, struct net_device *dev)
659{
660	struct sa1100_irda *si = netdev_priv(dev);
661	int speed = irda_get_next_speed(skb);
662
663	/*
664	 * Does this packet contain a request to change the interface
665	 * speed?  If so, remember it until we complete the transmission
666	 * of this frame.
667	 */
668	if (speed != si->speed && speed != -1)
669		si->newspeed = speed;
670
671	/* If this is an empty frame, we can bypass a lot. */
672	if (skb->len == 0) {
673		sa1100_irda_check_speed(si);
674		dev_kfree_skb(skb);
675		return NETDEV_TX_OK;
676	}
677
678	netif_stop_queue(dev);
679
680	/* We must not already have a skb to transmit... */
681	BUG_ON(si->dma_tx.skb);
682
683	return si->tx_start(skb, dev, si);
684}
685
686static int
687sa1100_irda_ioctl(struct net_device *dev, struct ifreq *ifreq, int cmd)
688{
689	struct if_irda_req *rq = (struct if_irda_req *)ifreq;
690	struct sa1100_irda *si = netdev_priv(dev);
691	int ret = -EOPNOTSUPP;
692
693	switch (cmd) {
694	case SIOCSBANDWIDTH:
695		if (capable(CAP_NET_ADMIN)) {
696			/*
697			 * We are unable to set the speed if the
698			 * device is not running.
699			 */
700			if (si->open) {
701				ret = sa1100_irda_set_speed(si,
702						rq->ifr_baudrate);
703			} else {
704				printk("sa1100_irda_ioctl: SIOCSBANDWIDTH: !netif_running\n");
705				ret = 0;
706			}
707		}
708		break;
709
710	case SIOCSMEDIABUSY:
711		ret = -EPERM;
712		if (capable(CAP_NET_ADMIN)) {
713			irda_device_set_media_busy(dev, TRUE);
714			ret = 0;
715		}
716		break;
717
718	case SIOCGRECEIVING:
719		rq->ifr_receiving = IS_FIR(si) ? 0
720					: si->rx_buff.state != OUTSIDE_FRAME;
721		break;
722
723	default:
724		break;
725	}
726
727	return ret;
728}
729
730static int sa1100_irda_startup(struct sa1100_irda *si)
731{
732	int ret;
733
734	/*
735	 * Ensure that the ports for this device are setup correctly.
736	 */
737	if (si->pdata->startup)	{
738		ret = si->pdata->startup(si->dev);
739		if (ret)
740			return ret;
741	}
742
743	/*
744	 * Configure PPC for IRDA - we want to drive TXD2 low.
745	 * We also want to drive this pin low during sleep.
746	 */
747	PPSR &= ~PPC_TXD2;
748	PSDR &= ~PPC_TXD2;
749	PPDR |= PPC_TXD2;
750
751	/*
752	 * Enable HP-SIR modulation, and ensure that the port is disabled.
753	 */
754	Ser2UTCR3 = 0;
755	Ser2HSCR0 = HSCR0_UART;
756	Ser2UTCR4 = si->utcr4;
757	Ser2UTCR0 = UTCR0_8BitData;
758	Ser2HSCR2 = HSCR2_TrDataH | HSCR2_RcDataL;
759
760	/*
761	 * Clear status register
762	 */
763	Ser2UTSR0 = UTSR0_REB | UTSR0_RBB | UTSR0_RID;
764
765	ret = sa1100_irda_set_speed(si, si->speed = 9600);
766	if (ret) {
767		Ser2UTCR3 = 0;
768		Ser2HSCR0 = 0;
769
770		if (si->pdata->shutdown)
771			si->pdata->shutdown(si->dev);
772	}
773
774	return ret;
775}
776
777static void sa1100_irda_shutdown(struct sa1100_irda *si)
778{
779	/*
780	 * Stop all DMA activity.
781	 */
782	dmaengine_terminate_all(si->dma_rx.chan);
783	dmaengine_terminate_all(si->dma_tx.chan);
784
785	/* Disable the port. */
786	Ser2UTCR3 = 0;
787	Ser2HSCR0 = 0;
788
789	if (si->pdata->shutdown)
790		si->pdata->shutdown(si->dev);
791}
792
793static int sa1100_irda_start(struct net_device *dev)
794{
795	struct sa1100_irda *si = netdev_priv(dev);
796	int err;
797
798	si->speed = 9600;
799
800	err = sa1100_irda_dma_request(si->dev, &si->dma_rx, "Ser2ICPRc",
801				&sa1100_irda_fir_rx);
802	if (err)
803		goto err_rx_dma;
804
805	err = sa1100_irda_dma_request(si->dev, &si->dma_tx, "Ser2ICPTr",
806				&sa1100_irda_sir_tx);
807	if (err)
808		goto err_tx_dma;
809
810	/*
811	 * Setup the serial port for the specified speed.
812	 */
813	err = sa1100_irda_startup(si);
814	if (err)
815		goto err_startup;
816
817	/*
818	 * Open a new IrLAP layer instance.
819	 */
820	si->irlap = irlap_open(dev, &si->qos, "sa1100");
821	err = -ENOMEM;
822	if (!si->irlap)
823		goto err_irlap;
824
825	err = request_irq(dev->irq, sa1100_irda_irq, 0, dev->name, dev);
826	if (err)
827		goto err_irq;
828
829	/*
830	 * Now enable the interrupt and start the queue
831	 */
832	si->open = 1;
833	sa1100_set_power(si, power_level); /* low power mode */
834
835	netif_start_queue(dev);
836	return 0;
837
838err_irq:
839	irlap_close(si->irlap);
840err_irlap:
841	si->open = 0;
842	sa1100_irda_shutdown(si);
843err_startup:
844	dma_release_channel(si->dma_tx.chan);
845err_tx_dma:
846	dma_release_channel(si->dma_rx.chan);
847err_rx_dma:
848	return err;
849}
850
851static int sa1100_irda_stop(struct net_device *dev)
852{
853	struct sa1100_irda *si = netdev_priv(dev);
854	struct sk_buff *skb;
855
856	netif_stop_queue(dev);
857
858	si->open = 0;
859	sa1100_irda_shutdown(si);
860
861	/*
862	 * If we have been doing any DMA activity, make sure we
863	 * tidy that up cleanly.
864	 */
865	skb = si->dma_rx.skb;
866	if (skb) {
867		dma_unmap_sg(si->dma_rx.dev, &si->dma_rx.sg, 1,
868			     DMA_FROM_DEVICE);
869		dev_kfree_skb(skb);
870		si->dma_rx.skb = NULL;
871	}
872
873	skb = si->dma_tx.skb;
874	if (skb) {
875		dma_unmap_sg(si->dma_tx.dev, &si->dma_tx.sg, 1,
876			     DMA_TO_DEVICE);
877		dev_kfree_skb(skb);
878		si->dma_tx.skb = NULL;
879	}
880
881	/* Stop IrLAP */
882	if (si->irlap) {
883		irlap_close(si->irlap);
884		si->irlap = NULL;
885	}
886
887	/*
888	 * Free resources
889	 */
890	dma_release_channel(si->dma_tx.chan);
891	dma_release_channel(si->dma_rx.chan);
892	free_irq(dev->irq, dev);
893
894	sa1100_set_power(si, 0);
895
896	return 0;
897}
898
899static int sa1100_irda_init_iobuf(iobuff_t *io, int size)
900{
901	io->head = kmalloc(size, GFP_KERNEL | GFP_DMA);
902	if (io->head != NULL) {
903		io->truesize = size;
904		io->in_frame = FALSE;
905		io->state    = OUTSIDE_FRAME;
906		io->data     = io->head;
907	}
908	return io->head ? 0 : -ENOMEM;
909}
910
911static const struct net_device_ops sa1100_irda_netdev_ops = {
912	.ndo_open		= sa1100_irda_start,
913	.ndo_stop		= sa1100_irda_stop,
914	.ndo_start_xmit		= sa1100_irda_hard_xmit,
915	.ndo_do_ioctl		= sa1100_irda_ioctl,
916};
917
918static int sa1100_irda_probe(struct platform_device *pdev)
919{
920	struct net_device *dev;
921	struct sa1100_irda *si;
922	unsigned int baudrate_mask;
923	int err, irq;
924
925	if (!pdev->dev.platform_data)
926		return -EINVAL;
927
928	irq = platform_get_irq(pdev, 0);
929	if (irq <= 0)
930		return irq < 0 ? irq : -ENXIO;
931
932	err = request_mem_region(__PREG(Ser2UTCR0), 0x24, "IrDA") ? 0 : -EBUSY;
933	if (err)
934		goto err_mem_1;
935	err = request_mem_region(__PREG(Ser2HSCR0), 0x1c, "IrDA") ? 0 : -EBUSY;
936	if (err)
937		goto err_mem_2;
938	err = request_mem_region(__PREG(Ser2HSCR2), 0x04, "IrDA") ? 0 : -EBUSY;
939	if (err)
940		goto err_mem_3;
941
942	dev = alloc_irdadev(sizeof(struct sa1100_irda));
943	if (!dev) {
944		err = -ENOMEM;
945		goto err_mem_4;
946	}
947
948	SET_NETDEV_DEV(dev, &pdev->dev);
949
950	si = netdev_priv(dev);
951	si->dev = &pdev->dev;
952	si->pdata = pdev->dev.platform_data;
953
954	sg_init_table(&si->dma_rx.sg, 1);
955	sg_init_table(&si->dma_tx.sg, 1);
956
957	/*
958	 * Initialise the HP-SIR buffers
959	 */
960	err = sa1100_irda_init_iobuf(&si->rx_buff, 14384);
961	if (err)
962		goto err_mem_5;
963	err = sa1100_irda_init_iobuf(&si->tx_buff, IRDA_SIR_MAX_FRAME);
964	if (err)
965		goto err_mem_5;
966
967	dev->netdev_ops	= &sa1100_irda_netdev_ops;
968	dev->irq	= irq;
969
970	irda_init_max_qos_capabilies(&si->qos);
971
972	/*
973	 * We support original IRDA up to 115k2. (we don't currently
974	 * support 4Mbps).  Min Turn Time set to 1ms or greater.
975	 */
976	baudrate_mask = IR_9600;
977
978	switch (max_rate) {
979	case 4000000:		baudrate_mask |= IR_4000000 << 8;
980	case 115200:		baudrate_mask |= IR_115200;
981	case 57600:		baudrate_mask |= IR_57600;
982	case 38400:		baudrate_mask |= IR_38400;
983	case 19200:		baudrate_mask |= IR_19200;
984	}
985
986	si->qos.baud_rate.bits &= baudrate_mask;
987	si->qos.min_turn_time.bits = 7;
988
989	irda_qos_bits_to_value(&si->qos);
990
991	si->utcr4 = UTCR4_HPSIR;
992	if (tx_lpm)
993		si->utcr4 |= UTCR4_Z1_6us;
994
995	/*
996	 * Initially enable HP-SIR modulation, and ensure that the port
997	 * is disabled.
998	 */
999	Ser2UTCR3 = 0;
1000	Ser2UTCR4 = si->utcr4;
1001	Ser2HSCR0 = HSCR0_UART;
1002
1003	err = register_netdev(dev);
1004	if (err == 0)
1005		platform_set_drvdata(pdev, dev);
1006
1007	if (err) {
1008 err_mem_5:
1009		kfree(si->tx_buff.head);
1010		kfree(si->rx_buff.head);
1011		free_netdev(dev);
1012 err_mem_4:
1013		release_mem_region(__PREG(Ser2HSCR2), 0x04);
1014 err_mem_3:
1015		release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1016 err_mem_2:
1017		release_mem_region(__PREG(Ser2UTCR0), 0x24);
1018	}
1019 err_mem_1:
1020	return err;
1021}
1022
1023static int sa1100_irda_remove(struct platform_device *pdev)
1024{
1025	struct net_device *dev = platform_get_drvdata(pdev);
1026
1027	if (dev) {
1028		struct sa1100_irda *si = netdev_priv(dev);
1029		unregister_netdev(dev);
1030		kfree(si->tx_buff.head);
1031		kfree(si->rx_buff.head);
1032		free_netdev(dev);
1033	}
1034
1035	release_mem_region(__PREG(Ser2HSCR2), 0x04);
1036	release_mem_region(__PREG(Ser2HSCR0), 0x1c);
1037	release_mem_region(__PREG(Ser2UTCR0), 0x24);
1038
1039	return 0;
1040}
1041
1042#ifdef CONFIG_PM
1043/*
1044 * Suspend the IrDA interface.
1045 */
1046static int sa1100_irda_suspend(struct platform_device *pdev, pm_message_t state)
1047{
1048	struct net_device *dev = platform_get_drvdata(pdev);
1049	struct sa1100_irda *si;
1050
1051	if (!dev)
1052		return 0;
1053
1054	si = netdev_priv(dev);
1055	if (si->open) {
1056		/*
1057		 * Stop the transmit queue
1058		 */
1059		netif_device_detach(dev);
1060		disable_irq(dev->irq);
1061		sa1100_irda_shutdown(si);
1062		__sa1100_irda_set_power(si, 0);
1063	}
1064
1065	return 0;
1066}
1067
1068/*
1069 * Resume the IrDA interface.
1070 */
1071static int sa1100_irda_resume(struct platform_device *pdev)
1072{
1073	struct net_device *dev = platform_get_drvdata(pdev);
1074	struct sa1100_irda *si;
1075
1076	if (!dev)
1077		return 0;
1078
1079	si = netdev_priv(dev);
1080	if (si->open) {
1081		/*
1082		 * If we missed a speed change, initialise at the new speed
1083		 * directly.  It is debatable whether this is actually
1084		 * required, but in the interests of continuing from where
1085		 * we left off it is desirable.  The converse argument is
1086		 * that we should re-negotiate at 9600 baud again.
1087		 */
1088		if (si->newspeed) {
1089			si->speed = si->newspeed;
1090			si->newspeed = 0;
1091		}
1092
1093		sa1100_irda_startup(si);
1094		__sa1100_irda_set_power(si, si->power);
1095		enable_irq(dev->irq);
1096
1097		/*
1098		 * This automatically wakes up the queue
1099		 */
1100		netif_device_attach(dev);
1101	}
1102
1103	return 0;
1104}
1105#else
1106#define sa1100_irda_suspend	NULL
1107#define sa1100_irda_resume	NULL
1108#endif
1109
1110static struct platform_driver sa1100ir_driver = {
1111	.probe		= sa1100_irda_probe,
1112	.remove		= sa1100_irda_remove,
1113	.suspend	= sa1100_irda_suspend,
1114	.resume		= sa1100_irda_resume,
1115	.driver		= {
1116		.name	= "sa11x0-ir",
1117	},
1118};
1119
1120static int __init sa1100_irda_init(void)
1121{
1122	/*
1123	 * Limit power level a sensible range.
1124	 */
1125	if (power_level < 1)
1126		power_level = 1;
1127	if (power_level > 3)
1128		power_level = 3;
1129
1130	return platform_driver_register(&sa1100ir_driver);
1131}
1132
1133static void __exit sa1100_irda_exit(void)
1134{
1135	platform_driver_unregister(&sa1100ir_driver);
1136}
1137
1138module_init(sa1100_irda_init);
1139module_exit(sa1100_irda_exit);
1140module_param(power_level, int, 0);
1141module_param(tx_lpm, int, 0);
1142module_param(max_rate, int, 0);
1143
1144MODULE_AUTHOR("Russell King <rmk@arm.linux.org.uk>");
1145MODULE_DESCRIPTION("StrongARM SA1100 IrDA driver");
1146MODULE_LICENSE("GPL");
1147MODULE_PARM_DESC(power_level, "IrDA power level, 1 (low) to 3 (high)");
1148MODULE_PARM_DESC(tx_lpm, "Enable transmitter low power (1.6us) mode");
1149MODULE_PARM_DESC(max_rate, "Maximum baud rate (4000000, 115200, 57600, 38400, 19200, 9600)");
1150MODULE_ALIAS("platform:sa11x0-ir");
1151