1/*
2 * File Name:
3 *   defxx.c
4 *
5 * Copyright Information:
6 *   Copyright Digital Equipment Corporation 1996.
7 *
8 *   This software may be used and distributed according to the terms of
9 *   the GNU General Public License, incorporated herein by reference.
10 *
11 * Abstract:
12 *   A Linux device driver supporting the Digital Equipment Corporation
13 *   FDDI TURBOchannel, EISA and PCI controller families.  Supported
14 *   adapters include:
15 *
16 *		DEC FDDIcontroller/TURBOchannel (DEFTA)
17 *		DEC FDDIcontroller/EISA         (DEFEA)
18 *		DEC FDDIcontroller/PCI          (DEFPA)
19 *
20 * The original author:
21 *   LVS	Lawrence V. Stefani <lstefani@yahoo.com>
22 *
23 * Maintainers:
24 *   macro	Maciej W. Rozycki <macro@linux-mips.org>
25 *
26 * Credits:
27 *   I'd like to thank Patricia Cross for helping me get started with
28 *   Linux, David Davies for a lot of help upgrading and configuring
29 *   my development system and for answering many OS and driver
30 *   development questions, and Alan Cox for recommendations and
31 *   integration help on getting FDDI support into Linux.  LVS
32 *
33 * Driver Architecture:
34 *   The driver architecture is largely based on previous driver work
35 *   for other operating systems.  The upper edge interface and
36 *   functions were largely taken from existing Linux device drivers
37 *   such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C
38 *   driver.
39 *
40 *   Adapter Probe -
41 *		The driver scans for supported EISA adapters by reading the
42 *		SLOT ID register for each EISA slot and making a match
43 *		against the expected value.
44 *
45 *   Bus-Specific Initialization -
46 *		This driver currently supports both EISA and PCI controller
47 *		families.  While the custom DMA chip and FDDI logic is similar
48 *		or identical, the bus logic is very different.  After
49 *		initialization, the	only bus-specific differences is in how the
50 *		driver enables and disables interrupts.  Other than that, the
51 *		run-time critical code behaves the same on both families.
52 *		It's important to note that both adapter families are configured
53 *		to I/O map, rather than memory map, the adapter registers.
54 *
55 *   Driver Open/Close -
56 *		In the driver open routine, the driver ISR (interrupt service
57 *		routine) is registered and the adapter is brought to an
58 *		operational state.  In the driver close routine, the opposite
59 *		occurs; the driver ISR is deregistered and the adapter is
60 *		brought to a safe, but closed state.  Users may use consecutive
61 *		commands to bring the adapter up and down as in the following
62 *		example:
63 *					ifconfig fddi0 up
64 *					ifconfig fddi0 down
65 *					ifconfig fddi0 up
66 *
67 *   Driver Shutdown -
68 *		Apparently, there is no shutdown or halt routine support under
69 *		Linux.  This routine would be called during "reboot" or
70 *		"shutdown" to allow the driver to place the adapter in a safe
71 *		state before a warm reboot occurs.  To be really safe, the user
72 *		should close the adapter before shutdown (eg. ifconfig fddi0 down)
73 *		to ensure that the adapter DMA engine is taken off-line.  However,
74 *		the current driver code anticipates this problem and always issues
75 *		a soft reset of the adapter	at the beginning of driver initialization.
76 *		A future driver enhancement in this area may occur in 2.1.X where
77 *		Alan indicated that a shutdown handler may be implemented.
78 *
79 *   Interrupt Service Routine -
80 *		The driver supports shared interrupts, so the ISR is registered for
81 *		each board with the appropriate flag and the pointer to that board's
82 *		device structure.  This provides the context during interrupt
83 *		processing to support shared interrupts and multiple boards.
84 *
85 *		Interrupt enabling/disabling can occur at many levels.  At the host
86 *		end, you can disable system interrupts, or disable interrupts at the
87 *		PIC (on Intel systems).  Across the bus, both EISA and PCI adapters
88 *		have a bus-logic chip interrupt enable/disable as well as a DMA
89 *		controller interrupt enable/disable.
90 *
91 *		The driver currently enables and disables adapter interrupts at the
92 *		bus-logic chip and assumes that Linux will take care of clearing or
93 *		acknowledging any host-based interrupt chips.
94 *
95 *   Control Functions -
96 *		Control functions are those used to support functions such as adding
97 *		or deleting multicast addresses, enabling or disabling packet
98 *		reception filters, or other custom/proprietary commands.  Presently,
99 *		the driver supports the "get statistics", "set multicast list", and
100 *		"set mac address" functions defined by Linux.  A list of possible
101 *		enhancements include:
102 *
103 *				- Custom ioctl interface for executing port interface commands
104 *				- Custom ioctl interface for adding unicast addresses to
105 *				  adapter CAM (to support bridge functions).
106 *				- Custom ioctl interface for supporting firmware upgrades.
107 *
108 *   Hardware (port interface) Support Routines -
109 *		The driver function names that start with "dfx_hw_" represent
110 *		low-level port interface routines that are called frequently.  They
111 *		include issuing a DMA or port control command to the adapter,
112 *		resetting the adapter, or reading the adapter state.  Since the
113 *		driver initialization and run-time code must make calls into the
114 *		port interface, these routines were written to be as generic and
115 *		usable as possible.
116 *
117 *   Receive Path -
118 *		The adapter DMA engine supports a 256 entry receive descriptor block
119 *		of which up to 255 entries can be used at any given time.  The
120 *		architecture is a standard producer, consumer, completion model in
121 *		which the driver "produces" receive buffers to the adapter, the
122 *		adapter "consumes" the receive buffers by DMAing incoming packet data,
123 *		and the driver "completes" the receive buffers by servicing the
124 *		incoming packet, then "produces" a new buffer and starts the cycle
125 *		again.  Receive buffers can be fragmented in up to 16 fragments
126 *		(descriptor	entries).  For simplicity, this driver posts
127 *		single-fragment receive buffers of 4608 bytes, then allocates a
128 *		sk_buff, copies the data, then reposts the buffer.  To reduce CPU
129 *		utilization, a better approach would be to pass up the receive
130 *		buffer (no extra copy) then allocate and post a replacement buffer.
131 *		This is a performance enhancement that should be looked into at
132 *		some point.
133 *
134 *   Transmit Path -
135 *		Like the receive path, the adapter DMA engine supports a 256 entry
136 *		transmit descriptor block of which up to 255 entries can be used at
137 *		any	given time.  Transmit buffers can be fragmented	in up to 255
138 *		fragments (descriptor entries).  This driver always posts one
139 *		fragment per transmit packet request.
140 *
141 *		The fragment contains the entire packet from FC to end of data.
142 *		Before posting the buffer to the adapter, the driver sets a three-byte
143 *		packet request header (PRH) which is required by the Motorola MAC chip
144 *		used on the adapters.  The PRH tells the MAC the type of token to
145 *		receive/send, whether or not to generate and append the CRC, whether
146 *		synchronous or asynchronous framing is used, etc.  Since the PRH
147 *		definition is not necessarily consistent across all FDDI chipsets,
148 *		the driver, rather than the common FDDI packet handler routines,
149 *		sets these bytes.
150 *
151 *		To reduce the amount of descriptor fetches needed per transmit request,
152 *		the driver takes advantage of the fact that there are at least three
153 *		bytes available before the skb->data field on the outgoing transmit
154 *		request.  This is guaranteed by having fddi_setup() in net_init.c set
155 *		dev->hard_header_len to 24 bytes.  21 bytes accounts for the largest
156 *		header in an 802.2 SNAP frame.  The other 3 bytes are the extra "pad"
157 *		bytes which we'll use to store the PRH.
158 *
159 *		There's a subtle advantage to adding these pad bytes to the
160 *		hard_header_len, it ensures that the data portion of the packet for
161 *		an 802.2 SNAP frame is longword aligned.  Other FDDI driver
162 *		implementations may not need the extra padding and can start copying
163 *		or DMAing directly from the FC byte which starts at skb->data.  Should
164 *		another driver implementation need ADDITIONAL padding, the net_init.c
165 *		module should be updated and dev->hard_header_len should be increased.
166 *		NOTE: To maintain the alignment on the data portion of the packet,
167 *		dev->hard_header_len should always be evenly divisible by 4 and at
168 *		least 24 bytes in size.
169 *
170 * Modification History:
171 *		Date		Name	Description
172 *		16-Aug-96	LVS		Created.
173 *		20-Aug-96	LVS		Updated dfx_probe so that version information
174 *							string is only displayed if 1 or more cards are
175 *							found.  Changed dfx_rcv_queue_process to copy
176 *							3 NULL bytes before FC to ensure that data is
177 *							longword aligned in receive buffer.
178 *		09-Sep-96	LVS		Updated dfx_ctl_set_multicast_list to enable
179 *							LLC group promiscuous mode if multicast list
180 *							is too large.  LLC individual/group promiscuous
181 *							mode is now disabled if IFF_PROMISC flag not set.
182 *							dfx_xmt_queue_pkt no longer checks for NULL skb
183 *							on Alan Cox recommendation.  Added node address
184 *							override support.
185 *		12-Sep-96	LVS		Reset current address to factory address during
186 *							device open.  Updated transmit path to post a
187 *							single fragment which includes PRH->end of data.
188 *		Mar 2000	AC		Did various cleanups for 2.3.x
189 *		Jun 2000	jgarzik		PCI and resource alloc cleanups
190 *		Jul 2000	tjeerd		Much cleanup and some bug fixes
191 *		Sep 2000	tjeerd		Fix leak on unload, cosmetic code cleanup
192 *		Feb 2001			Skb allocation fixes
193 *		Feb 2001	davej		PCI enable cleanups.
194 *		04 Aug 2003	macro		Converted to the DMA API.
195 *		14 Aug 2004	macro		Fix device names reported.
196 *		14 Jun 2005	macro		Use irqreturn_t.
197 *		23 Oct 2006	macro		Big-endian host support.
198 *		14 Dec 2006	macro		TURBOchannel support.
199 *		01 Jul 2014	macro		Fixes for DMA on 64-bit hosts.
200 */
201
202/* Include files */
203#include <linux/bitops.h>
204#include <linux/compiler.h>
205#include <linux/delay.h>
206#include <linux/dma-mapping.h>
207#include <linux/eisa.h>
208#include <linux/errno.h>
209#include <linux/fddidevice.h>
210#include <linux/interrupt.h>
211#include <linux/ioport.h>
212#include <linux/kernel.h>
213#include <linux/module.h>
214#include <linux/netdevice.h>
215#include <linux/pci.h>
216#include <linux/skbuff.h>
217#include <linux/slab.h>
218#include <linux/string.h>
219#include <linux/tc.h>
220
221#include <asm/byteorder.h>
222#include <asm/io.h>
223
224#include "defxx.h"
225
226/* Version information string should be updated prior to each new release!  */
227#define DRV_NAME "defxx"
228#define DRV_VERSION "v1.11"
229#define DRV_RELDATE "2014/07/01"
230
231static char version[] =
232	DRV_NAME ": " DRV_VERSION " " DRV_RELDATE
233	"  Lawrence V. Stefani and others\n";
234
235#define DYNAMIC_BUFFERS 1
236
237#define SKBUFF_RX_COPYBREAK 200
238/*
239 * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte
240 * alignment for compatibility with old EISA boards.
241 */
242#define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128)
243
244#ifdef CONFIG_EISA
245#define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type)
246#else
247#define DFX_BUS_EISA(dev) 0
248#endif
249
250#ifdef CONFIG_TC
251#define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type)
252#else
253#define DFX_BUS_TC(dev) 0
254#endif
255
256#ifdef CONFIG_DEFXX_MMIO
257#define DFX_MMIO 1
258#else
259#define DFX_MMIO 0
260#endif
261
262/* Define module-wide (static) routines */
263
264static void		dfx_bus_init(struct net_device *dev);
265static void		dfx_bus_uninit(struct net_device *dev);
266static void		dfx_bus_config_check(DFX_board_t *bp);
267
268static int		dfx_driver_init(struct net_device *dev,
269					const char *print_name,
270					resource_size_t bar_start);
271static int		dfx_adap_init(DFX_board_t *bp, int get_buffers);
272
273static int		dfx_open(struct net_device *dev);
274static int		dfx_close(struct net_device *dev);
275
276static void		dfx_int_pr_halt_id(DFX_board_t *bp);
277static void		dfx_int_type_0_process(DFX_board_t *bp);
278static void		dfx_int_common(struct net_device *dev);
279static irqreturn_t	dfx_interrupt(int irq, void *dev_id);
280
281static struct		net_device_stats *dfx_ctl_get_stats(struct net_device *dev);
282static void		dfx_ctl_set_multicast_list(struct net_device *dev);
283static int		dfx_ctl_set_mac_address(struct net_device *dev, void *addr);
284static int		dfx_ctl_update_cam(DFX_board_t *bp);
285static int		dfx_ctl_update_filters(DFX_board_t *bp);
286
287static int		dfx_hw_dma_cmd_req(DFX_board_t *bp);
288static int		dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32	command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data);
289static void		dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type);
290static int		dfx_hw_adap_state_rd(DFX_board_t *bp);
291static int		dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type);
292
293static int		dfx_rcv_init(DFX_board_t *bp, int get_buffers);
294static void		dfx_rcv_queue_process(DFX_board_t *bp);
295#ifdef DYNAMIC_BUFFERS
296static void		dfx_rcv_flush(DFX_board_t *bp);
297#else
298static inline void	dfx_rcv_flush(DFX_board_t *bp) {}
299#endif
300
301static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
302				     struct net_device *dev);
303static int		dfx_xmt_done(DFX_board_t *bp);
304static void		dfx_xmt_flush(DFX_board_t *bp);
305
306/* Define module-wide (static) variables */
307
308static struct pci_driver dfx_pci_driver;
309static struct eisa_driver dfx_eisa_driver;
310static struct tc_driver dfx_tc_driver;
311
312
313/*
314 * =======================
315 * = dfx_port_write_long =
316 * = dfx_port_read_long  =
317 * =======================
318 *
319 * Overview:
320 *   Routines for reading and writing values from/to adapter
321 *
322 * Returns:
323 *   None
324 *
325 * Arguments:
326 *   bp		- pointer to board information
327 *   offset	- register offset from base I/O address
328 *   data	- for dfx_port_write_long, this is a value to write;
329 *		  for dfx_port_read_long, this is a pointer to store
330 *		  the read value
331 *
332 * Functional Description:
333 *   These routines perform the correct operation to read or write
334 *   the adapter register.
335 *
336 *   EISA port block base addresses are based on the slot number in which the
337 *   controller is installed.  For example, if the EISA controller is installed
338 *   in slot 4, the port block base address is 0x4000.  If the controller is
339 *   installed in slot 2, the port block base address is 0x2000, and so on.
340 *   This port block can be used to access PDQ, ESIC, and DEFEA on-board
341 *   registers using the register offsets defined in DEFXX.H.
342 *
343 *   PCI port block base addresses are assigned by the PCI BIOS or system
344 *   firmware.  There is one 128 byte port block which can be accessed.  It
345 *   allows for I/O mapping of both PDQ and PFI registers using the register
346 *   offsets defined in DEFXX.H.
347 *
348 * Return Codes:
349 *   None
350 *
351 * Assumptions:
352 *   bp->base is a valid base I/O address for this adapter.
353 *   offset is a valid register offset for this adapter.
354 *
355 * Side Effects:
356 *   Rather than produce macros for these functions, these routines
357 *   are defined using "inline" to ensure that the compiler will
358 *   generate inline code and not waste a procedure call and return.
359 *   This provides all the benefits of macros, but with the
360 *   advantage of strict data type checking.
361 */
362
363static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data)
364{
365	writel(data, bp->base.mem + offset);
366	mb();
367}
368
369static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data)
370{
371	outl(data, bp->base.port + offset);
372}
373
374static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data)
375{
376	struct device __maybe_unused *bdev = bp->bus_dev;
377	int dfx_bus_tc = DFX_BUS_TC(bdev);
378	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
379
380	if (dfx_use_mmio)
381		dfx_writel(bp, offset, data);
382	else
383		dfx_outl(bp, offset, data);
384}
385
386
387static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data)
388{
389	mb();
390	*data = readl(bp->base.mem + offset);
391}
392
393static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data)
394{
395	*data = inl(bp->base.port + offset);
396}
397
398static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data)
399{
400	struct device __maybe_unused *bdev = bp->bus_dev;
401	int dfx_bus_tc = DFX_BUS_TC(bdev);
402	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
403
404	if (dfx_use_mmio)
405		dfx_readl(bp, offset, data);
406	else
407		dfx_inl(bp, offset, data);
408}
409
410
411/*
412 * ================
413 * = dfx_get_bars =
414 * ================
415 *
416 * Overview:
417 *   Retrieves the address ranges used to access control and status
418 *   registers.
419 *
420 * Returns:
421 *   None
422 *
423 * Arguments:
424 *   bdev	- pointer to device information
425 *   bar_start	- pointer to store the start addresses
426 *   bar_len	- pointer to store the lengths of the areas
427 *
428 * Assumptions:
429 *   I am sure there are some.
430 *
431 * Side Effects:
432 *   None
433 */
434static void dfx_get_bars(struct device *bdev,
435			 resource_size_t *bar_start, resource_size_t *bar_len)
436{
437	int dfx_bus_pci = dev_is_pci(bdev);
438	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
439	int dfx_bus_tc = DFX_BUS_TC(bdev);
440	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
441
442	if (dfx_bus_pci) {
443		int num = dfx_use_mmio ? 0 : 1;
444
445		bar_start[0] = pci_resource_start(to_pci_dev(bdev), num);
446		bar_len[0] = pci_resource_len(to_pci_dev(bdev), num);
447		bar_start[2] = bar_start[1] = 0;
448		bar_len[2] = bar_len[1] = 0;
449	}
450	if (dfx_bus_eisa) {
451		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
452		resource_size_t bar_lo;
453		resource_size_t bar_hi;
454
455		if (dfx_use_mmio) {
456			bar_lo = inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_2);
457			bar_lo <<= 8;
458			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_1);
459			bar_lo <<= 8;
460			bar_lo |= inb(base_addr + PI_ESIC_K_MEM_ADD_LO_CMP_0);
461			bar_lo <<= 8;
462			bar_start[0] = bar_lo;
463			bar_hi = inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_2);
464			bar_hi <<= 8;
465			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_1);
466			bar_hi <<= 8;
467			bar_hi |= inb(base_addr + PI_ESIC_K_MEM_ADD_HI_CMP_0);
468			bar_hi <<= 8;
469			bar_len[0] = ((bar_hi - bar_lo) | PI_MEM_ADD_MASK_M) +
470				     1;
471		} else {
472			bar_start[0] = base_addr;
473			bar_len[0] = PI_ESIC_K_CSR_IO_LEN;
474		}
475		bar_start[1] = base_addr + PI_DEFEA_K_BURST_HOLDOFF;
476		bar_len[1] = PI_ESIC_K_BURST_HOLDOFF_LEN;
477		bar_start[2] = base_addr + PI_ESIC_K_ESIC_CSR;
478		bar_len[2] = PI_ESIC_K_ESIC_CSR_LEN;
479	}
480	if (dfx_bus_tc) {
481		bar_start[0] = to_tc_dev(bdev)->resource.start +
482			       PI_TC_K_CSR_OFFSET;
483		bar_len[0] = PI_TC_K_CSR_LEN;
484		bar_start[2] = bar_start[1] = 0;
485		bar_len[2] = bar_len[1] = 0;
486	}
487}
488
489static const struct net_device_ops dfx_netdev_ops = {
490	.ndo_open		= dfx_open,
491	.ndo_stop		= dfx_close,
492	.ndo_start_xmit		= dfx_xmt_queue_pkt,
493	.ndo_get_stats		= dfx_ctl_get_stats,
494	.ndo_set_rx_mode	= dfx_ctl_set_multicast_list,
495	.ndo_set_mac_address	= dfx_ctl_set_mac_address,
496};
497
498/*
499 * ================
500 * = dfx_register =
501 * ================
502 *
503 * Overview:
504 *   Initializes a supported FDDI controller
505 *
506 * Returns:
507 *   Condition code
508 *
509 * Arguments:
510 *   bdev - pointer to device information
511 *
512 * Functional Description:
513 *
514 * Return Codes:
515 *   0		 - This device (fddi0, fddi1, etc) configured successfully
516 *   -EBUSY      - Failed to get resources, or dfx_driver_init failed.
517 *
518 * Assumptions:
519 *   It compiles so it should work :-( (PCI cards do :-)
520 *
521 * Side Effects:
522 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
523 *   initialized and the board resources are read and stored in
524 *   the device structure.
525 */
526static int dfx_register(struct device *bdev)
527{
528	static int version_disp;
529	int dfx_bus_pci = dev_is_pci(bdev);
530	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
531	int dfx_bus_tc = DFX_BUS_TC(bdev);
532	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
533	const char *print_name = dev_name(bdev);
534	struct net_device *dev;
535	DFX_board_t	  *bp;			/* board pointer */
536	resource_size_t bar_start[3];		/* pointers to ports */
537	resource_size_t bar_len[3];		/* resource length */
538	int alloc_size;				/* total buffer size used */
539	struct resource *region;
540	int err = 0;
541
542	if (!version_disp) {	/* display version info if adapter is found */
543		version_disp = 1;	/* set display flag to TRUE so that */
544		printk(version);	/* we only display this string ONCE */
545	}
546
547	dev = alloc_fddidev(sizeof(*bp));
548	if (!dev) {
549		printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n",
550		       print_name);
551		return -ENOMEM;
552	}
553
554	/* Enable PCI device. */
555	if (dfx_bus_pci) {
556		err = pci_enable_device(to_pci_dev(bdev));
557		if (err) {
558			pr_err("%s: Cannot enable PCI device, aborting\n",
559			       print_name);
560			goto err_out;
561		}
562	}
563
564	SET_NETDEV_DEV(dev, bdev);
565
566	bp = netdev_priv(dev);
567	bp->bus_dev = bdev;
568	dev_set_drvdata(bdev, dev);
569
570	dfx_get_bars(bdev, bar_start, bar_len);
571	if (dfx_bus_eisa && dfx_use_mmio && bar_start[0] == 0) {
572		pr_err("%s: Cannot use MMIO, no address set, aborting\n",
573		       print_name);
574		pr_err("%s: Run ECU and set adapter's MMIO location\n",
575		       print_name);
576		pr_err("%s: Or recompile driver with \"CONFIG_DEFXX_MMIO=n\""
577		       "\n", print_name);
578		err = -ENXIO;
579		goto err_out;
580	}
581
582	if (dfx_use_mmio)
583		region = request_mem_region(bar_start[0], bar_len[0],
584					    print_name);
585	else
586		region = request_region(bar_start[0], bar_len[0], print_name);
587	if (!region) {
588		pr_err("%s: Cannot reserve %s resource 0x%lx @ 0x%lx, "
589		       "aborting\n", dfx_use_mmio ? "MMIO" : "I/O", print_name,
590		       (long)bar_len[0], (long)bar_start[0]);
591		err = -EBUSY;
592		goto err_out_disable;
593	}
594	if (bar_start[1] != 0) {
595		region = request_region(bar_start[1], bar_len[1], print_name);
596		if (!region) {
597			pr_err("%s: Cannot reserve I/O resource "
598			       "0x%lx @ 0x%lx, aborting\n", print_name,
599			       (long)bar_len[1], (long)bar_start[1]);
600			err = -EBUSY;
601			goto err_out_csr_region;
602		}
603	}
604	if (bar_start[2] != 0) {
605		region = request_region(bar_start[2], bar_len[2], print_name);
606		if (!region) {
607			pr_err("%s: Cannot reserve I/O resource "
608			       "0x%lx @ 0x%lx, aborting\n", print_name,
609			       (long)bar_len[2], (long)bar_start[2]);
610			err = -EBUSY;
611			goto err_out_bh_region;
612		}
613	}
614
615	/* Set up I/O base address. */
616	if (dfx_use_mmio) {
617		bp->base.mem = ioremap_nocache(bar_start[0], bar_len[0]);
618		if (!bp->base.mem) {
619			printk(KERN_ERR "%s: Cannot map MMIO\n", print_name);
620			err = -ENOMEM;
621			goto err_out_esic_region;
622		}
623	} else {
624		bp->base.port = bar_start[0];
625		dev->base_addr = bar_start[0];
626	}
627
628	/* Initialize new device structure */
629	dev->netdev_ops			= &dfx_netdev_ops;
630
631	if (dfx_bus_pci)
632		pci_set_master(to_pci_dev(bdev));
633
634	if (dfx_driver_init(dev, print_name, bar_start[0]) != DFX_K_SUCCESS) {
635		err = -ENODEV;
636		goto err_out_unmap;
637	}
638
639	err = register_netdev(dev);
640	if (err)
641		goto err_out_kfree;
642
643	printk("%s: registered as %s\n", print_name, dev->name);
644	return 0;
645
646err_out_kfree:
647	alloc_size = sizeof(PI_DESCR_BLOCK) +
648		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
649#ifndef DYNAMIC_BUFFERS
650		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
651#endif
652		     sizeof(PI_CONSUMER_BLOCK) +
653		     (PI_ALIGN_K_DESC_BLK - 1);
654	if (bp->kmalloced)
655		dma_free_coherent(bdev, alloc_size,
656				  bp->kmalloced, bp->kmalloced_dma);
657
658err_out_unmap:
659	if (dfx_use_mmio)
660		iounmap(bp->base.mem);
661
662err_out_esic_region:
663	if (bar_start[2] != 0)
664		release_region(bar_start[2], bar_len[2]);
665
666err_out_bh_region:
667	if (bar_start[1] != 0)
668		release_region(bar_start[1], bar_len[1]);
669
670err_out_csr_region:
671	if (dfx_use_mmio)
672		release_mem_region(bar_start[0], bar_len[0]);
673	else
674		release_region(bar_start[0], bar_len[0]);
675
676err_out_disable:
677	if (dfx_bus_pci)
678		pci_disable_device(to_pci_dev(bdev));
679
680err_out:
681	free_netdev(dev);
682	return err;
683}
684
685
686/*
687 * ================
688 * = dfx_bus_init =
689 * ================
690 *
691 * Overview:
692 *   Initializes the bus-specific controller logic.
693 *
694 * Returns:
695 *   None
696 *
697 * Arguments:
698 *   dev - pointer to device information
699 *
700 * Functional Description:
701 *   Determine and save adapter IRQ in device table,
702 *   then perform bus-specific logic initialization.
703 *
704 * Return Codes:
705 *   None
706 *
707 * Assumptions:
708 *   bp->base has already been set with the proper
709 *	 base I/O address for this device.
710 *
711 * Side Effects:
712 *   Interrupts are enabled at the adapter bus-specific logic.
713 *   Note:  Interrupts at the DMA engine (PDQ chip) are not
714 *   enabled yet.
715 */
716
717static void dfx_bus_init(struct net_device *dev)
718{
719	DFX_board_t *bp = netdev_priv(dev);
720	struct device *bdev = bp->bus_dev;
721	int dfx_bus_pci = dev_is_pci(bdev);
722	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
723	int dfx_bus_tc = DFX_BUS_TC(bdev);
724	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
725	u8 val;
726
727	DBG_printk("In dfx_bus_init...\n");
728
729	/* Initialize a pointer back to the net_device struct */
730	bp->dev = dev;
731
732	/* Initialize adapter based on bus type */
733
734	if (dfx_bus_tc)
735		dev->irq = to_tc_dev(bdev)->interrupt;
736	if (dfx_bus_eisa) {
737		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
738
739		/* Disable the board before fiddling with the decoders.  */
740		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
741
742		/* Get the interrupt level from the ESIC chip.  */
743		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
744		val &= PI_CONFIG_STAT_0_M_IRQ;
745		val >>= PI_CONFIG_STAT_0_V_IRQ;
746
747		switch (val) {
748		case PI_CONFIG_STAT_0_IRQ_K_9:
749			dev->irq = 9;
750			break;
751
752		case PI_CONFIG_STAT_0_IRQ_K_10:
753			dev->irq = 10;
754			break;
755
756		case PI_CONFIG_STAT_0_IRQ_K_11:
757			dev->irq = 11;
758			break;
759
760		case PI_CONFIG_STAT_0_IRQ_K_15:
761			dev->irq = 15;
762			break;
763		}
764
765		/*
766		 * Enable memory decoding (MEMCS1) and/or port decoding
767		 * (IOCS1/IOCS0) as appropriate in Function Control
768		 * Register.  MEMCS1 or IOCS0 is used for PDQ registers,
769		 * taking 16 32-bit words, while IOCS1 is used for the
770		 * Burst Holdoff register, taking a single 32-bit word
771		 * only.  We use the slot-specific I/O range as per the
772		 * ESIC spec, that is set bits 15:12 in the mask registers
773		 * to mask them out.
774		 */
775
776		/* Set the decode range of the board.  */
777		val = 0;
778		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_1);
779		val = PI_DEFEA_K_CSR_IO;
780		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_0_0);
781
782		val = PI_IO_CMP_M_SLOT;
783		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_1);
784		val = (PI_ESIC_K_CSR_IO_LEN - 1) & ~3;
785		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_0_0);
786
787		val = 0;
788		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_1);
789		val = PI_DEFEA_K_BURST_HOLDOFF;
790		outb(val, base_addr + PI_ESIC_K_IO_ADD_CMP_1_0);
791
792		val = PI_IO_CMP_M_SLOT;
793		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_1);
794		val = (PI_ESIC_K_BURST_HOLDOFF_LEN - 1) & ~3;
795		outb(val, base_addr + PI_ESIC_K_IO_ADD_MASK_1_0);
796
797		/* Enable the decoders.  */
798		val = PI_FUNCTION_CNTRL_M_IOCS1;
799		if (dfx_use_mmio)
800			val |= PI_FUNCTION_CNTRL_M_MEMCS1;
801		else
802			val |= PI_FUNCTION_CNTRL_M_IOCS0;
803		outb(val, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
804
805		/*
806		 * Enable access to the rest of the module
807		 * (including PDQ and packet memory).
808		 */
809		val = PI_SLOT_CNTRL_M_ENB;
810		outb(val, base_addr + PI_ESIC_K_SLOT_CNTRL);
811
812		/*
813		 * Map PDQ registers into memory or port space.  This is
814		 * done with a bit in the Burst Holdoff register.
815		 */
816		val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF);
817		if (dfx_use_mmio)
818			val |= PI_BURST_HOLDOFF_M_MEM_MAP;
819		else
820			val &= ~PI_BURST_HOLDOFF_M_MEM_MAP;
821		outb(val, base_addr + PI_DEFEA_K_BURST_HOLDOFF);
822
823		/* Enable interrupts at EISA bus interface chip (ESIC) */
824		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
825		val |= PI_CONFIG_STAT_0_M_INT_ENB;
826		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
827	}
828	if (dfx_bus_pci) {
829		struct pci_dev *pdev = to_pci_dev(bdev);
830
831		/* Get the interrupt level from the PCI Configuration Table */
832
833		dev->irq = pdev->irq;
834
835		/* Check Latency Timer and set if less than minimal */
836
837		pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val);
838		if (val < PFI_K_LAT_TIMER_MIN) {
839			val = PFI_K_LAT_TIMER_DEF;
840			pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val);
841		}
842
843		/* Enable interrupts at PCI bus interface chip (PFI) */
844		val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB;
845		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val);
846	}
847}
848
849/*
850 * ==================
851 * = dfx_bus_uninit =
852 * ==================
853 *
854 * Overview:
855 *   Uninitializes the bus-specific controller logic.
856 *
857 * Returns:
858 *   None
859 *
860 * Arguments:
861 *   dev - pointer to device information
862 *
863 * Functional Description:
864 *   Perform bus-specific logic uninitialization.
865 *
866 * Return Codes:
867 *   None
868 *
869 * Assumptions:
870 *   bp->base has already been set with the proper
871 *	 base I/O address for this device.
872 *
873 * Side Effects:
874 *   Interrupts are disabled at the adapter bus-specific logic.
875 */
876
877static void dfx_bus_uninit(struct net_device *dev)
878{
879	DFX_board_t *bp = netdev_priv(dev);
880	struct device *bdev = bp->bus_dev;
881	int dfx_bus_pci = dev_is_pci(bdev);
882	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
883	u8 val;
884
885	DBG_printk("In dfx_bus_uninit...\n");
886
887	/* Uninitialize adapter based on bus type */
888
889	if (dfx_bus_eisa) {
890		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
891
892		/* Disable interrupts at EISA bus interface chip (ESIC) */
893		val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
894		val &= ~PI_CONFIG_STAT_0_M_INT_ENB;
895		outb(val, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
896
897		/* Disable the board.  */
898		outb(0, base_addr + PI_ESIC_K_SLOT_CNTRL);
899
900		/* Disable memory and port decoders.  */
901		outb(0, base_addr + PI_ESIC_K_FUNCTION_CNTRL);
902	}
903	if (dfx_bus_pci) {
904		/* Disable interrupts at PCI bus interface chip (PFI) */
905		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0);
906	}
907}
908
909
910/*
911 * ========================
912 * = dfx_bus_config_check =
913 * ========================
914 *
915 * Overview:
916 *   Checks the configuration (burst size, full-duplex, etc.)  If any parameters
917 *   are illegal, then this routine will set new defaults.
918 *
919 * Returns:
920 *   None
921 *
922 * Arguments:
923 *   bp - pointer to board information
924 *
925 * Functional Description:
926 *   For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later
927 *   PDQ, and all FDDI PCI controllers, all values are legal.
928 *
929 * Return Codes:
930 *   None
931 *
932 * Assumptions:
933 *   dfx_adap_init has NOT been called yet so burst size and other items have
934 *   not been set.
935 *
936 * Side Effects:
937 *   None
938 */
939
940static void dfx_bus_config_check(DFX_board_t *bp)
941{
942	struct device __maybe_unused *bdev = bp->bus_dev;
943	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
944	int	status;				/* return code from adapter port control call */
945	u32	host_data;			/* LW data returned from port control call */
946
947	DBG_printk("In dfx_bus_config_check...\n");
948
949	/* Configuration check only valid for EISA adapter */
950
951	if (dfx_bus_eisa) {
952		/*
953		 * First check if revision 2 EISA controller.  Rev. 1 cards used
954		 * PDQ revision B, so no workaround needed in this case.  Rev. 3
955		 * cards used PDQ revision E, so no workaround needed in this
956		 * case, either.  Only Rev. 2 cards used either Rev. D or E
957		 * chips, so we must verify the chip revision on Rev. 2 cards.
958		 */
959		if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) {
960			/*
961			 * Revision 2 FDDI EISA controller found,
962			 * so let's check PDQ revision of adapter.
963			 */
964			status = dfx_hw_port_ctrl_req(bp,
965											PI_PCTRL_M_SUB_CMD,
966											PI_SUB_CMD_K_PDQ_REV_GET,
967											0,
968											&host_data);
969			if ((status != DFX_K_SUCCESS) || (host_data == 2))
970				{
971				/*
972				 * Either we couldn't determine the PDQ revision, or
973				 * we determined that it is at revision D.  In either case,
974				 * we need to implement the workaround.
975				 */
976
977				/* Ensure that the burst size is set to 8 longwords or less */
978
979				switch (bp->burst_size)
980					{
981					case PI_PDATA_B_DMA_BURST_SIZE_32:
982					case PI_PDATA_B_DMA_BURST_SIZE_16:
983						bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8;
984						break;
985
986					default:
987						break;
988					}
989
990				/* Ensure that full-duplex mode is not enabled */
991
992				bp->full_duplex_enb = PI_SNMP_K_FALSE;
993				}
994			}
995		}
996	}
997
998
999/*
1000 * ===================
1001 * = dfx_driver_init =
1002 * ===================
1003 *
1004 * Overview:
1005 *   Initializes remaining adapter board structure information
1006 *   and makes sure adapter is in a safe state prior to dfx_open().
1007 *
1008 * Returns:
1009 *   Condition code
1010 *
1011 * Arguments:
1012 *   dev - pointer to device information
1013 *   print_name - printable device name
1014 *
1015 * Functional Description:
1016 *   This function allocates additional resources such as the host memory
1017 *   blocks needed by the adapter (eg. descriptor and consumer blocks).
1018 *	 Remaining bus initialization steps are also completed.  The adapter
1019 *   is also reset so that it is in the DMA_UNAVAILABLE state.  The OS
1020 *   must call dfx_open() to open the adapter and bring it on-line.
1021 *
1022 * Return Codes:
1023 *   DFX_K_SUCCESS	- initialization succeeded
1024 *   DFX_K_FAILURE	- initialization failed - could not allocate memory
1025 *						or read adapter MAC address
1026 *
1027 * Assumptions:
1028 *   Memory allocated from pci_alloc_consistent() call is physically
1029 *   contiguous, locked memory.
1030 *
1031 * Side Effects:
1032 *   Adapter is reset and should be in DMA_UNAVAILABLE state before
1033 *   returning from this routine.
1034 */
1035
1036static int dfx_driver_init(struct net_device *dev, const char *print_name,
1037			   resource_size_t bar_start)
1038{
1039	DFX_board_t *bp = netdev_priv(dev);
1040	struct device *bdev = bp->bus_dev;
1041	int dfx_bus_pci = dev_is_pci(bdev);
1042	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1043	int dfx_bus_tc = DFX_BUS_TC(bdev);
1044	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
1045	int alloc_size;			/* total buffer size needed */
1046	char *top_v, *curr_v;		/* virtual addrs into memory block */
1047	dma_addr_t top_p, curr_p;	/* physical addrs into memory block */
1048	u32 data;			/* host data register value */
1049	__le32 le32;
1050	char *board_name = NULL;
1051
1052	DBG_printk("In dfx_driver_init...\n");
1053
1054	/* Initialize bus-specific hardware registers */
1055
1056	dfx_bus_init(dev);
1057
1058	/*
1059	 * Initialize default values for configurable parameters
1060	 *
1061	 * Note: All of these parameters are ones that a user may
1062	 *       want to customize.  It'd be nice to break these
1063	 *		 out into Space.c or someplace else that's more
1064	 *		 accessible/understandable than this file.
1065	 */
1066
1067	bp->full_duplex_enb		= PI_SNMP_K_FALSE;
1068	bp->req_ttrt			= 8 * 12500;		/* 8ms in 80 nanosec units */
1069	bp->burst_size			= PI_PDATA_B_DMA_BURST_SIZE_DEF;
1070	bp->rcv_bufs_to_post	= RCV_BUFS_DEF;
1071
1072	/*
1073	 * Ensure that HW configuration is OK
1074	 *
1075	 * Note: Depending on the hardware revision, we may need to modify
1076	 *       some of the configurable parameters to workaround hardware
1077	 *       limitations.  We'll perform this configuration check AFTER
1078	 *       setting the parameters to their default values.
1079	 */
1080
1081	dfx_bus_config_check(bp);
1082
1083	/* Disable PDQ interrupts first */
1084
1085	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1086
1087	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1088
1089	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1090
1091	/*  Read the factory MAC address from the adapter then save it */
1092
1093	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0,
1094				 &data) != DFX_K_SUCCESS) {
1095		printk("%s: Could not read adapter factory MAC address!\n",
1096		       print_name);
1097		return DFX_K_FAILURE;
1098	}
1099	le32 = cpu_to_le32(data);
1100	memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32));
1101
1102	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0,
1103				 &data) != DFX_K_SUCCESS) {
1104		printk("%s: Could not read adapter factory MAC address!\n",
1105		       print_name);
1106		return DFX_K_FAILURE;
1107	}
1108	le32 = cpu_to_le32(data);
1109	memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16));
1110
1111	/*
1112	 * Set current address to factory address
1113	 *
1114	 * Note: Node address override support is handled through
1115	 *       dfx_ctl_set_mac_address.
1116	 */
1117
1118	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1119	if (dfx_bus_tc)
1120		board_name = "DEFTA";
1121	if (dfx_bus_eisa)
1122		board_name = "DEFEA";
1123	if (dfx_bus_pci)
1124		board_name = "DEFPA";
1125	pr_info("%s: %s at %s addr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n",
1126		print_name, board_name, dfx_use_mmio ? "MMIO" : "I/O",
1127		(long long)bar_start, dev->irq, dev->dev_addr);
1128
1129	/*
1130	 * Get memory for descriptor block, consumer block, and other buffers
1131	 * that need to be DMA read or written to by the adapter.
1132	 */
1133
1134	alloc_size = sizeof(PI_DESCR_BLOCK) +
1135					PI_CMD_REQ_K_SIZE_MAX +
1136					PI_CMD_RSP_K_SIZE_MAX +
1137#ifndef DYNAMIC_BUFFERS
1138					(bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
1139#endif
1140					sizeof(PI_CONSUMER_BLOCK) +
1141					(PI_ALIGN_K_DESC_BLK - 1);
1142	bp->kmalloced = top_v = dma_zalloc_coherent(bp->bus_dev, alloc_size,
1143						    &bp->kmalloced_dma,
1144						    GFP_ATOMIC);
1145	if (top_v == NULL)
1146		return DFX_K_FAILURE;
1147
1148	top_p = bp->kmalloced_dma;	/* get physical address of buffer */
1149
1150	/*
1151	 *  To guarantee the 8K alignment required for the descriptor block, 8K - 1
1152	 *  plus the amount of memory needed was allocated.  The physical address
1153	 *	is now 8K aligned.  By carving up the memory in a specific order,
1154	 *  we'll guarantee the alignment requirements for all other structures.
1155	 *
1156	 *  Note: If the assumptions change regarding the non-paged, non-cached,
1157	 *		  physically contiguous nature of the memory block or the address
1158	 *		  alignments, then we'll need to implement a different algorithm
1159	 *		  for allocating the needed memory.
1160	 */
1161
1162	curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK);
1163	curr_v = top_v + (curr_p - top_p);
1164
1165	/* Reserve space for descriptor block */
1166
1167	bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v;
1168	bp->descr_block_phys = curr_p;
1169	curr_v += sizeof(PI_DESCR_BLOCK);
1170	curr_p += sizeof(PI_DESCR_BLOCK);
1171
1172	/* Reserve space for command request buffer */
1173
1174	bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v;
1175	bp->cmd_req_phys = curr_p;
1176	curr_v += PI_CMD_REQ_K_SIZE_MAX;
1177	curr_p += PI_CMD_REQ_K_SIZE_MAX;
1178
1179	/* Reserve space for command response buffer */
1180
1181	bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v;
1182	bp->cmd_rsp_phys = curr_p;
1183	curr_v += PI_CMD_RSP_K_SIZE_MAX;
1184	curr_p += PI_CMD_RSP_K_SIZE_MAX;
1185
1186	/* Reserve space for the LLC host receive queue buffers */
1187
1188	bp->rcv_block_virt = curr_v;
1189	bp->rcv_block_phys = curr_p;
1190
1191#ifndef DYNAMIC_BUFFERS
1192	curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1193	curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX);
1194#endif
1195
1196	/* Reserve space for the consumer block */
1197
1198	bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v;
1199	bp->cons_block_phys = curr_p;
1200
1201	/* Display virtual and physical addresses if debug driver */
1202
1203	DBG_printk("%s: Descriptor block virt = %p, phys = %pad\n",
1204		   print_name, bp->descr_block_virt, &bp->descr_block_phys);
1205	DBG_printk("%s: Command Request buffer virt = %p, phys = %pad\n",
1206		   print_name, bp->cmd_req_virt, &bp->cmd_req_phys);
1207	DBG_printk("%s: Command Response buffer virt = %p, phys = %pad\n",
1208		   print_name, bp->cmd_rsp_virt, &bp->cmd_rsp_phys);
1209	DBG_printk("%s: Receive buffer block virt = %p, phys = %pad\n",
1210		   print_name, bp->rcv_block_virt, &bp->rcv_block_phys);
1211	DBG_printk("%s: Consumer block virt = %p, phys = %pad\n",
1212		   print_name, bp->cons_block_virt, &bp->cons_block_phys);
1213
1214	return DFX_K_SUCCESS;
1215}
1216
1217
1218/*
1219 * =================
1220 * = dfx_adap_init =
1221 * =================
1222 *
1223 * Overview:
1224 *   Brings the adapter to the link avail/link unavailable state.
1225 *
1226 * Returns:
1227 *   Condition code
1228 *
1229 * Arguments:
1230 *   bp - pointer to board information
1231 *   get_buffers - non-zero if buffers to be allocated
1232 *
1233 * Functional Description:
1234 *   Issues the low-level firmware/hardware calls necessary to bring
1235 *   the adapter up, or to properly reset and restore adapter during
1236 *   run-time.
1237 *
1238 * Return Codes:
1239 *   DFX_K_SUCCESS - Adapter brought up successfully
1240 *   DFX_K_FAILURE - Adapter initialization failed
1241 *
1242 * Assumptions:
1243 *   bp->reset_type should be set to a valid reset type value before
1244 *   calling this routine.
1245 *
1246 * Side Effects:
1247 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1248 *   upon a successful return of this routine.
1249 */
1250
1251static int dfx_adap_init(DFX_board_t *bp, int get_buffers)
1252	{
1253	DBG_printk("In dfx_adap_init...\n");
1254
1255	/* Disable PDQ interrupts first */
1256
1257	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1258
1259	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1260
1261	if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS)
1262		{
1263		printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name);
1264		return DFX_K_FAILURE;
1265		}
1266
1267	/*
1268	 * When the PDQ is reset, some false Type 0 interrupts may be pending,
1269	 * so we'll acknowledge all Type 0 interrupts now before continuing.
1270	 */
1271
1272	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0);
1273
1274	/*
1275	 * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state
1276	 *
1277	 * Note: We only need to clear host copies of these registers.  The PDQ reset
1278	 *       takes care of the on-board register values.
1279	 */
1280
1281	bp->cmd_req_reg.lword	= 0;
1282	bp->cmd_rsp_reg.lword	= 0;
1283	bp->rcv_xmt_reg.lword	= 0;
1284
1285	/* Clear consumer block before going to DMA_AVAILABLE state */
1286
1287	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1288
1289	/* Initialize the DMA Burst Size */
1290
1291	if (dfx_hw_port_ctrl_req(bp,
1292							PI_PCTRL_M_SUB_CMD,
1293							PI_SUB_CMD_K_BURST_SIZE_SET,
1294							bp->burst_size,
1295							NULL) != DFX_K_SUCCESS)
1296		{
1297		printk("%s: Could not set adapter burst size!\n", bp->dev->name);
1298		return DFX_K_FAILURE;
1299		}
1300
1301	/*
1302	 * Set base address of Consumer Block
1303	 *
1304	 * Assumption: 32-bit physical address of consumer block is 64 byte
1305	 *			   aligned.  That is, bits 0-5 of the address must be zero.
1306	 */
1307
1308	if (dfx_hw_port_ctrl_req(bp,
1309							PI_PCTRL_M_CONS_BLOCK,
1310							bp->cons_block_phys,
1311							0,
1312							NULL) != DFX_K_SUCCESS)
1313		{
1314		printk("%s: Could not set consumer block address!\n", bp->dev->name);
1315		return DFX_K_FAILURE;
1316		}
1317
1318	/*
1319	 * Set the base address of Descriptor Block and bring adapter
1320	 * to DMA_AVAILABLE state.
1321	 *
1322	 * Note: We also set the literal and data swapping requirements
1323	 *       in this command.
1324	 *
1325	 * Assumption: 32-bit physical address of descriptor block
1326	 *       is 8Kbyte aligned.
1327	 */
1328	if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT,
1329				 (u32)(bp->descr_block_phys |
1330				       PI_PDATA_A_INIT_M_BSWAP_INIT),
1331				 0, NULL) != DFX_K_SUCCESS) {
1332		printk("%s: Could not set descriptor block address!\n",
1333		       bp->dev->name);
1334		return DFX_K_FAILURE;
1335	}
1336
1337	/* Set transmit flush timeout value */
1338
1339	bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET;
1340	bp->cmd_req_virt->char_set.item[0].item_code	= PI_ITEM_K_FLUSH_TIME;
1341	bp->cmd_req_virt->char_set.item[0].value		= 3;	/* 3 seconds */
1342	bp->cmd_req_virt->char_set.item[0].item_index	= 0;
1343	bp->cmd_req_virt->char_set.item[1].item_code	= PI_ITEM_K_EOL;
1344	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1345		{
1346		printk("%s: DMA command request failed!\n", bp->dev->name);
1347		return DFX_K_FAILURE;
1348		}
1349
1350	/* Set the initial values for eFDXEnable and MACTReq MIB objects */
1351
1352	bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET;
1353	bp->cmd_req_virt->snmp_set.item[0].item_code	= PI_ITEM_K_FDX_ENB_DIS;
1354	bp->cmd_req_virt->snmp_set.item[0].value		= bp->full_duplex_enb;
1355	bp->cmd_req_virt->snmp_set.item[0].item_index	= 0;
1356	bp->cmd_req_virt->snmp_set.item[1].item_code	= PI_ITEM_K_MAC_T_REQ;
1357	bp->cmd_req_virt->snmp_set.item[1].value		= bp->req_ttrt;
1358	bp->cmd_req_virt->snmp_set.item[1].item_index	= 0;
1359	bp->cmd_req_virt->snmp_set.item[2].item_code	= PI_ITEM_K_EOL;
1360	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1361		{
1362		printk("%s: DMA command request failed!\n", bp->dev->name);
1363		return DFX_K_FAILURE;
1364		}
1365
1366	/* Initialize adapter CAM */
1367
1368	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
1369		{
1370		printk("%s: Adapter CAM update failed!\n", bp->dev->name);
1371		return DFX_K_FAILURE;
1372		}
1373
1374	/* Initialize adapter filters */
1375
1376	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
1377		{
1378		printk("%s: Adapter filters update failed!\n", bp->dev->name);
1379		return DFX_K_FAILURE;
1380		}
1381
1382	/*
1383	 * Remove any existing dynamic buffers (i.e. if the adapter is being
1384	 * reinitialized)
1385	 */
1386
1387	if (get_buffers)
1388		dfx_rcv_flush(bp);
1389
1390	/* Initialize receive descriptor block and produce buffers */
1391
1392	if (dfx_rcv_init(bp, get_buffers))
1393	        {
1394		printk("%s: Receive buffer allocation failed\n", bp->dev->name);
1395		if (get_buffers)
1396			dfx_rcv_flush(bp);
1397		return DFX_K_FAILURE;
1398		}
1399
1400	/* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */
1401
1402	bp->cmd_req_virt->cmd_type = PI_CMD_K_START;
1403	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
1404		{
1405		printk("%s: Start command failed\n", bp->dev->name);
1406		if (get_buffers)
1407			dfx_rcv_flush(bp);
1408		return DFX_K_FAILURE;
1409		}
1410
1411	/* Initialization succeeded, reenable PDQ interrupts */
1412
1413	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS);
1414	return DFX_K_SUCCESS;
1415	}
1416
1417
1418/*
1419 * ============
1420 * = dfx_open =
1421 * ============
1422 *
1423 * Overview:
1424 *   Opens the adapter
1425 *
1426 * Returns:
1427 *   Condition code
1428 *
1429 * Arguments:
1430 *   dev - pointer to device information
1431 *
1432 * Functional Description:
1433 *   This function brings the adapter to an operational state.
1434 *
1435 * Return Codes:
1436 *   0		 - Adapter was successfully opened
1437 *   -EAGAIN - Could not register IRQ or adapter initialization failed
1438 *
1439 * Assumptions:
1440 *   This routine should only be called for a device that was
1441 *   initialized successfully.
1442 *
1443 * Side Effects:
1444 *   Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state
1445 *   if the open is successful.
1446 */
1447
1448static int dfx_open(struct net_device *dev)
1449{
1450	DFX_board_t *bp = netdev_priv(dev);
1451	int ret;
1452
1453	DBG_printk("In dfx_open...\n");
1454
1455	/* Register IRQ - support shared interrupts by passing device ptr */
1456
1457	ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name,
1458			  dev);
1459	if (ret) {
1460		printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq);
1461		return ret;
1462	}
1463
1464	/*
1465	 * Set current address to factory MAC address
1466	 *
1467	 * Note: We've already done this step in dfx_driver_init.
1468	 *       However, it's possible that a user has set a node
1469	 *		 address override, then closed and reopened the
1470	 *		 adapter.  Unless we reset the device address field
1471	 *		 now, we'll continue to use the existing modified
1472	 *		 address.
1473	 */
1474
1475	memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN);
1476
1477	/* Clear local unicast/multicast address tables and counts */
1478
1479	memset(bp->uc_table, 0, sizeof(bp->uc_table));
1480	memset(bp->mc_table, 0, sizeof(bp->mc_table));
1481	bp->uc_count = 0;
1482	bp->mc_count = 0;
1483
1484	/* Disable promiscuous filter settings */
1485
1486	bp->ind_group_prom	= PI_FSTATE_K_BLOCK;
1487	bp->group_prom		= PI_FSTATE_K_BLOCK;
1488
1489	spin_lock_init(&bp->lock);
1490
1491	/* Reset and initialize adapter */
1492
1493	bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST;	/* skip self-test */
1494	if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS)
1495	{
1496		printk(KERN_ERR "%s: Adapter open failed!\n", dev->name);
1497		free_irq(dev->irq, dev);
1498		return -EAGAIN;
1499	}
1500
1501	/* Set device structure info */
1502	netif_start_queue(dev);
1503	return 0;
1504}
1505
1506
1507/*
1508 * =============
1509 * = dfx_close =
1510 * =============
1511 *
1512 * Overview:
1513 *   Closes the device/module.
1514 *
1515 * Returns:
1516 *   Condition code
1517 *
1518 * Arguments:
1519 *   dev - pointer to device information
1520 *
1521 * Functional Description:
1522 *   This routine closes the adapter and brings it to a safe state.
1523 *   The interrupt service routine is deregistered with the OS.
1524 *   The adapter can be opened again with another call to dfx_open().
1525 *
1526 * Return Codes:
1527 *   Always return 0.
1528 *
1529 * Assumptions:
1530 *   No further requests for this adapter are made after this routine is
1531 *   called.  dfx_open() can be called to reset and reinitialize the
1532 *   adapter.
1533 *
1534 * Side Effects:
1535 *   Adapter should be in DMA_UNAVAILABLE state upon completion of this
1536 *   routine.
1537 */
1538
1539static int dfx_close(struct net_device *dev)
1540{
1541	DFX_board_t *bp = netdev_priv(dev);
1542
1543	DBG_printk("In dfx_close...\n");
1544
1545	/* Disable PDQ interrupts first */
1546
1547	dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1548
1549	/* Place adapter in DMA_UNAVAILABLE state by resetting adapter */
1550
1551	(void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST);
1552
1553	/*
1554	 * Flush any pending transmit buffers
1555	 *
1556	 * Note: It's important that we flush the transmit buffers
1557	 *		 BEFORE we clear our copy of the Type 2 register.
1558	 *		 Otherwise, we'll have no idea how many buffers
1559	 *		 we need to free.
1560	 */
1561
1562	dfx_xmt_flush(bp);
1563
1564	/*
1565	 * Clear Type 1 and Type 2 registers after adapter reset
1566	 *
1567	 * Note: Even though we're closing the adapter, it's
1568	 *       possible that an interrupt will occur after
1569	 *		 dfx_close is called.  Without some assurance to
1570	 *		 the contrary we want to make sure that we don't
1571	 *		 process receive and transmit LLC frames and update
1572	 *		 the Type 2 register with bad information.
1573	 */
1574
1575	bp->cmd_req_reg.lword	= 0;
1576	bp->cmd_rsp_reg.lword	= 0;
1577	bp->rcv_xmt_reg.lword	= 0;
1578
1579	/* Clear consumer block for the same reason given above */
1580
1581	memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK));
1582
1583	/* Release all dynamically allocate skb in the receive ring. */
1584
1585	dfx_rcv_flush(bp);
1586
1587	/* Clear device structure flags */
1588
1589	netif_stop_queue(dev);
1590
1591	/* Deregister (free) IRQ */
1592
1593	free_irq(dev->irq, dev);
1594
1595	return 0;
1596}
1597
1598
1599/*
1600 * ======================
1601 * = dfx_int_pr_halt_id =
1602 * ======================
1603 *
1604 * Overview:
1605 *   Displays halt id's in string form.
1606 *
1607 * Returns:
1608 *   None
1609 *
1610 * Arguments:
1611 *   bp - pointer to board information
1612 *
1613 * Functional Description:
1614 *   Determine current halt id and display appropriate string.
1615 *
1616 * Return Codes:
1617 *   None
1618 *
1619 * Assumptions:
1620 *   None
1621 *
1622 * Side Effects:
1623 *   None
1624 */
1625
1626static void dfx_int_pr_halt_id(DFX_board_t	*bp)
1627	{
1628	PI_UINT32	port_status;			/* PDQ port status register value */
1629	PI_UINT32	halt_id;				/* PDQ port status halt ID */
1630
1631	/* Read the latest port status */
1632
1633	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1634
1635	/* Display halt state transition information */
1636
1637	halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID;
1638	switch (halt_id)
1639		{
1640		case PI_HALT_ID_K_SELFTEST_TIMEOUT:
1641			printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name);
1642			break;
1643
1644		case PI_HALT_ID_K_PARITY_ERROR:
1645			printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name);
1646			break;
1647
1648		case PI_HALT_ID_K_HOST_DIR_HALT:
1649			printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name);
1650			break;
1651
1652		case PI_HALT_ID_K_SW_FAULT:
1653			printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name);
1654			break;
1655
1656		case PI_HALT_ID_K_HW_FAULT:
1657			printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name);
1658			break;
1659
1660		case PI_HALT_ID_K_PC_TRACE:
1661			printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name);
1662			break;
1663
1664		case PI_HALT_ID_K_DMA_ERROR:
1665			printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name);
1666			break;
1667
1668		case PI_HALT_ID_K_IMAGE_CRC_ERROR:
1669			printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name);
1670			break;
1671
1672		case PI_HALT_ID_K_BUS_EXCEPTION:
1673			printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name);
1674			break;
1675
1676		default:
1677			printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id);
1678			break;
1679		}
1680	}
1681
1682
1683/*
1684 * ==========================
1685 * = dfx_int_type_0_process =
1686 * ==========================
1687 *
1688 * Overview:
1689 *   Processes Type 0 interrupts.
1690 *
1691 * Returns:
1692 *   None
1693 *
1694 * Arguments:
1695 *   bp - pointer to board information
1696 *
1697 * Functional Description:
1698 *   Processes all enabled Type 0 interrupts.  If the reason for the interrupt
1699 *   is a serious fault on the adapter, then an error message is displayed
1700 *   and the adapter is reset.
1701 *
1702 *   One tricky potential timing window is the rapid succession of "link avail"
1703 *   "link unavail" state change interrupts.  The acknowledgement of the Type 0
1704 *   interrupt must be done before reading the state from the Port Status
1705 *   register.  This is true because a state change could occur after reading
1706 *   the data, but before acknowledging the interrupt.  If this state change
1707 *   does happen, it would be lost because the driver is using the old state,
1708 *   and it will never know about the new state because it subsequently
1709 *   acknowledges the state change interrupt.
1710 *
1711 *          INCORRECT                                      CORRECT
1712 *      read type 0 int reasons                   read type 0 int reasons
1713 *      read adapter state                        ack type 0 interrupts
1714 *      ack type 0 interrupts                     read adapter state
1715 *      ... process interrupt ...                 ... process interrupt ...
1716 *
1717 * Return Codes:
1718 *   None
1719 *
1720 * Assumptions:
1721 *   None
1722 *
1723 * Side Effects:
1724 *   An adapter reset may occur if the adapter has any Type 0 error interrupts
1725 *   or if the port status indicates that the adapter is halted.  The driver
1726 *   is responsible for reinitializing the adapter with the current CAM
1727 *   contents and adapter filter settings.
1728 */
1729
1730static void dfx_int_type_0_process(DFX_board_t	*bp)
1731
1732	{
1733	PI_UINT32	type_0_status;		/* Host Interrupt Type 0 register */
1734	PI_UINT32	state;				/* current adap state (from port status) */
1735
1736	/*
1737	 * Read host interrupt Type 0 register to determine which Type 0
1738	 * interrupts are pending.  Immediately write it back out to clear
1739	 * those interrupts.
1740	 */
1741
1742	dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status);
1743	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status);
1744
1745	/* Check for Type 0 error interrupts */
1746
1747	if (type_0_status & (PI_TYPE_0_STAT_M_NXM |
1748							PI_TYPE_0_STAT_M_PM_PAR_ERR |
1749							PI_TYPE_0_STAT_M_BUS_PAR_ERR))
1750		{
1751		/* Check for Non-Existent Memory error */
1752
1753		if (type_0_status & PI_TYPE_0_STAT_M_NXM)
1754			printk("%s: Non-Existent Memory Access Error\n", bp->dev->name);
1755
1756		/* Check for Packet Memory Parity error */
1757
1758		if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR)
1759			printk("%s: Packet Memory Parity Error\n", bp->dev->name);
1760
1761		/* Check for Host Bus Parity error */
1762
1763		if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR)
1764			printk("%s: Host Bus Parity Error\n", bp->dev->name);
1765
1766		/* Reset adapter and bring it back on-line */
1767
1768		bp->link_available = PI_K_FALSE;	/* link is no longer available */
1769		bp->reset_type = 0;					/* rerun on-board diagnostics */
1770		printk("%s: Resetting adapter...\n", bp->dev->name);
1771		if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1772			{
1773			printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1774			dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1775			return;
1776			}
1777		printk("%s: Adapter reset successful!\n", bp->dev->name);
1778		return;
1779		}
1780
1781	/* Check for transmit flush interrupt */
1782
1783	if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH)
1784		{
1785		/* Flush any pending xmt's and acknowledge the flush interrupt */
1786
1787		bp->link_available = PI_K_FALSE;		/* link is no longer available */
1788		dfx_xmt_flush(bp);						/* flush any outstanding packets */
1789		(void) dfx_hw_port_ctrl_req(bp,
1790									PI_PCTRL_M_XMT_DATA_FLUSH_DONE,
1791									0,
1792									0,
1793									NULL);
1794		}
1795
1796	/* Check for adapter state change */
1797
1798	if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE)
1799		{
1800		/* Get latest adapter state */
1801
1802		state = dfx_hw_adap_state_rd(bp);	/* get adapter state */
1803		if (state == PI_STATE_K_HALTED)
1804			{
1805			/*
1806			 * Adapter has transitioned to HALTED state, try to reset
1807			 * adapter to bring it back on-line.  If reset fails,
1808			 * leave the adapter in the broken state.
1809			 */
1810
1811			printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name);
1812			dfx_int_pr_halt_id(bp);			/* display halt id as string */
1813
1814			/* Reset adapter and bring it back on-line */
1815
1816			bp->link_available = PI_K_FALSE;	/* link is no longer available */
1817			bp->reset_type = 0;					/* rerun on-board diagnostics */
1818			printk("%s: Resetting adapter...\n", bp->dev->name);
1819			if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS)
1820				{
1821				printk("%s: Adapter reset failed!  Disabling adapter interrupts.\n", bp->dev->name);
1822				dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS);
1823				return;
1824				}
1825			printk("%s: Adapter reset successful!\n", bp->dev->name);
1826			}
1827		else if (state == PI_STATE_K_LINK_AVAIL)
1828			{
1829			bp->link_available = PI_K_TRUE;		/* set link available flag */
1830			}
1831		}
1832	}
1833
1834
1835/*
1836 * ==================
1837 * = dfx_int_common =
1838 * ==================
1839 *
1840 * Overview:
1841 *   Interrupt service routine (ISR)
1842 *
1843 * Returns:
1844 *   None
1845 *
1846 * Arguments:
1847 *   bp - pointer to board information
1848 *
1849 * Functional Description:
1850 *   This is the ISR which processes incoming adapter interrupts.
1851 *
1852 * Return Codes:
1853 *   None
1854 *
1855 * Assumptions:
1856 *   This routine assumes PDQ interrupts have not been disabled.
1857 *   When interrupts are disabled at the PDQ, the Port Status register
1858 *   is automatically cleared.  This routine uses the Port Status
1859 *   register value to determine whether a Type 0 interrupt occurred,
1860 *   so it's important that adapter interrupts are not normally
1861 *   enabled/disabled at the PDQ.
1862 *
1863 *   It's vital that this routine is NOT reentered for the
1864 *   same board and that the OS is not in another section of
1865 *   code (eg. dfx_xmt_queue_pkt) for the same board on a
1866 *   different thread.
1867 *
1868 * Side Effects:
1869 *   Pending interrupts are serviced.  Depending on the type of
1870 *   interrupt, acknowledging and clearing the interrupt at the
1871 *   PDQ involves writing a register to clear the interrupt bit
1872 *   or updating completion indices.
1873 */
1874
1875static void dfx_int_common(struct net_device *dev)
1876{
1877	DFX_board_t *bp = netdev_priv(dev);
1878	PI_UINT32	port_status;		/* Port Status register */
1879
1880	/* Process xmt interrupts - frequent case, so always call this routine */
1881
1882	if(dfx_xmt_done(bp))				/* free consumed xmt packets */
1883		netif_wake_queue(dev);
1884
1885	/* Process rcv interrupts - frequent case, so always call this routine */
1886
1887	dfx_rcv_queue_process(bp);		/* service received LLC frames */
1888
1889	/*
1890	 * Transmit and receive producer and completion indices are updated on the
1891	 * adapter by writing to the Type 2 Producer register.  Since the frequent
1892	 * case is that we'll be processing either LLC transmit or receive buffers,
1893	 * we'll optimize I/O writes by doing a single register write here.
1894	 */
1895
1896	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
1897
1898	/* Read PDQ Port Status register to find out which interrupts need processing */
1899
1900	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
1901
1902	/* Process Type 0 interrupts (if any) - infrequent, so only call when needed */
1903
1904	if (port_status & PI_PSTATUS_M_TYPE_0_PENDING)
1905		dfx_int_type_0_process(bp);	/* process Type 0 interrupts */
1906	}
1907
1908
1909/*
1910 * =================
1911 * = dfx_interrupt =
1912 * =================
1913 *
1914 * Overview:
1915 *   Interrupt processing routine
1916 *
1917 * Returns:
1918 *   Whether a valid interrupt was seen.
1919 *
1920 * Arguments:
1921 *   irq	- interrupt vector
1922 *   dev_id	- pointer to device information
1923 *
1924 * Functional Description:
1925 *   This routine calls the interrupt processing routine for this adapter.  It
1926 *   disables and reenables adapter interrupts, as appropriate.  We can support
1927 *   shared interrupts since the incoming dev_id pointer provides our device
1928 *   structure context.
1929 *
1930 * Return Codes:
1931 *   IRQ_HANDLED - an IRQ was handled.
1932 *   IRQ_NONE    - no IRQ was handled.
1933 *
1934 * Assumptions:
1935 *   The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
1936 *   on Intel-based systems) is done by the operating system outside this
1937 *   routine.
1938 *
1939 *	 System interrupts are enabled through this call.
1940 *
1941 * Side Effects:
1942 *   Interrupts are disabled, then reenabled at the adapter.
1943 */
1944
1945static irqreturn_t dfx_interrupt(int irq, void *dev_id)
1946{
1947	struct net_device *dev = dev_id;
1948	DFX_board_t *bp = netdev_priv(dev);
1949	struct device *bdev = bp->bus_dev;
1950	int dfx_bus_pci = dev_is_pci(bdev);
1951	int dfx_bus_eisa = DFX_BUS_EISA(bdev);
1952	int dfx_bus_tc = DFX_BUS_TC(bdev);
1953
1954	/* Service adapter interrupts */
1955
1956	if (dfx_bus_pci) {
1957		u32 status;
1958
1959		dfx_port_read_long(bp, PFI_K_REG_STATUS, &status);
1960		if (!(status & PFI_STATUS_M_PDQ_INT))
1961			return IRQ_NONE;
1962
1963		spin_lock(&bp->lock);
1964
1965		/* Disable PDQ-PFI interrupts at PFI */
1966		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1967				    PFI_MODE_M_DMA_ENB);
1968
1969		/* Call interrupt service routine for this adapter */
1970		dfx_int_common(dev);
1971
1972		/* Clear PDQ interrupt status bit and reenable interrupts */
1973		dfx_port_write_long(bp, PFI_K_REG_STATUS,
1974				    PFI_STATUS_M_PDQ_INT);
1975		dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL,
1976				    (PFI_MODE_M_PDQ_INT_ENB |
1977				     PFI_MODE_M_DMA_ENB));
1978
1979		spin_unlock(&bp->lock);
1980	}
1981	if (dfx_bus_eisa) {
1982		unsigned long base_addr = to_eisa_device(bdev)->base_addr;
1983		u8 status;
1984
1985		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1986		if (!(status & PI_CONFIG_STAT_0_M_PEND))
1987			return IRQ_NONE;
1988
1989		spin_lock(&bp->lock);
1990
1991		/* Disable interrupts at the ESIC */
1992		status &= ~PI_CONFIG_STAT_0_M_INT_ENB;
1993		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
1994
1995		/* Call interrupt service routine for this adapter */
1996		dfx_int_common(dev);
1997
1998		/* Reenable interrupts at the ESIC */
1999		status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2000		status |= PI_CONFIG_STAT_0_M_INT_ENB;
2001		outb(status, base_addr + PI_ESIC_K_IO_CONFIG_STAT_0);
2002
2003		spin_unlock(&bp->lock);
2004	}
2005	if (dfx_bus_tc) {
2006		u32 status;
2007
2008		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status);
2009		if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING |
2010				PI_PSTATUS_M_XMT_DATA_PENDING |
2011				PI_PSTATUS_M_SMT_HOST_PENDING |
2012				PI_PSTATUS_M_UNSOL_PENDING |
2013				PI_PSTATUS_M_CMD_RSP_PENDING |
2014				PI_PSTATUS_M_CMD_REQ_PENDING |
2015				PI_PSTATUS_M_TYPE_0_PENDING)))
2016			return IRQ_NONE;
2017
2018		spin_lock(&bp->lock);
2019
2020		/* Call interrupt service routine for this adapter */
2021		dfx_int_common(dev);
2022
2023		spin_unlock(&bp->lock);
2024	}
2025
2026	return IRQ_HANDLED;
2027}
2028
2029
2030/*
2031 * =====================
2032 * = dfx_ctl_get_stats =
2033 * =====================
2034 *
2035 * Overview:
2036 *   Get statistics for FDDI adapter
2037 *
2038 * Returns:
2039 *   Pointer to FDDI statistics structure
2040 *
2041 * Arguments:
2042 *   dev - pointer to device information
2043 *
2044 * Functional Description:
2045 *   Gets current MIB objects from adapter, then
2046 *   returns FDDI statistics structure as defined
2047 *   in if_fddi.h.
2048 *
2049 *   Note: Since the FDDI statistics structure is
2050 *   still new and the device structure doesn't
2051 *   have an FDDI-specific get statistics handler,
2052 *   we'll return the FDDI statistics structure as
2053 *   a pointer to an Ethernet statistics structure.
2054 *   That way, at least the first part of the statistics
2055 *   structure can be decoded properly, and it allows
2056 *   "smart" applications to perform a second cast to
2057 *   decode the FDDI-specific statistics.
2058 *
2059 *   We'll have to pay attention to this routine as the
2060 *   device structure becomes more mature and LAN media
2061 *   independent.
2062 *
2063 * Return Codes:
2064 *   None
2065 *
2066 * Assumptions:
2067 *   None
2068 *
2069 * Side Effects:
2070 *   None
2071 */
2072
2073static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev)
2074	{
2075	DFX_board_t *bp = netdev_priv(dev);
2076
2077	/* Fill the bp->stats structure with driver-maintained counters */
2078
2079	bp->stats.gen.rx_packets = bp->rcv_total_frames;
2080	bp->stats.gen.tx_packets = bp->xmt_total_frames;
2081	bp->stats.gen.rx_bytes   = bp->rcv_total_bytes;
2082	bp->stats.gen.tx_bytes   = bp->xmt_total_bytes;
2083	bp->stats.gen.rx_errors  = bp->rcv_crc_errors +
2084				   bp->rcv_frame_status_errors +
2085				   bp->rcv_length_errors;
2086	bp->stats.gen.tx_errors  = bp->xmt_length_errors;
2087	bp->stats.gen.rx_dropped = bp->rcv_discards;
2088	bp->stats.gen.tx_dropped = bp->xmt_discards;
2089	bp->stats.gen.multicast  = bp->rcv_multicast_frames;
2090	bp->stats.gen.collisions = 0;		/* always zero (0) for FDDI */
2091
2092	/* Get FDDI SMT MIB objects */
2093
2094	bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET;
2095	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2096		return (struct net_device_stats *)&bp->stats;
2097
2098	/* Fill the bp->stats structure with the SMT MIB object values */
2099
2100	memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
2101	bp->stats.smt_op_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
2102	bp->stats.smt_hi_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
2103	bp->stats.smt_lo_version_id					= bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
2104	memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
2105	bp->stats.smt_mib_version_id				= bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
2106	bp->stats.smt_mac_cts						= bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
2107	bp->stats.smt_non_master_cts				= bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
2108	bp->stats.smt_master_cts					= bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
2109	bp->stats.smt_available_paths				= bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
2110	bp->stats.smt_config_capabilities			= bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
2111	bp->stats.smt_config_policy					= bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
2112	bp->stats.smt_connection_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
2113	bp->stats.smt_t_notify						= bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
2114	bp->stats.smt_stat_rpt_policy				= bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
2115	bp->stats.smt_trace_max_expiration			= bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
2116	bp->stats.smt_bypass_present				= bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
2117	bp->stats.smt_ecm_state						= bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
2118	bp->stats.smt_cf_state						= bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
2119	bp->stats.smt_remote_disconnect_flag		= bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
2120	bp->stats.smt_station_status				= bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
2121	bp->stats.smt_peer_wrap_flag				= bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
2122	bp->stats.smt_time_stamp					= bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
2123	bp->stats.smt_transition_time_stamp			= bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
2124	bp->stats.mac_frame_status_functions		= bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
2125	bp->stats.mac_t_max_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
2126	bp->stats.mac_tvx_capability				= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
2127	bp->stats.mac_available_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
2128	bp->stats.mac_current_path					= bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
2129	memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
2130	memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
2131	memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
2132	memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
2133	bp->stats.mac_dup_address_test				= bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
2134	bp->stats.mac_requested_paths				= bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
2135	bp->stats.mac_downstream_port_type			= bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
2136	memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
2137	bp->stats.mac_t_req							= bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
2138	bp->stats.mac_t_neg							= bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
2139	bp->stats.mac_t_max							= bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
2140	bp->stats.mac_tvx_value						= bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
2141	bp->stats.mac_frame_error_threshold			= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
2142	bp->stats.mac_frame_error_ratio				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
2143	bp->stats.mac_rmt_state						= bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
2144	bp->stats.mac_da_flag						= bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
2145	bp->stats.mac_una_da_flag					= bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
2146	bp->stats.mac_frame_error_flag				= bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
2147	bp->stats.mac_ma_unitdata_available			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
2148	bp->stats.mac_hardware_present				= bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
2149	bp->stats.mac_ma_unitdata_enable			= bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
2150	bp->stats.path_tvx_lower_bound				= bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
2151	bp->stats.path_t_max_lower_bound			= bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
2152	bp->stats.path_max_t_req					= bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
2153	memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
2154	bp->stats.port_my_type[0]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
2155	bp->stats.port_my_type[1]					= bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
2156	bp->stats.port_neighbor_type[0]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
2157	bp->stats.port_neighbor_type[1]				= bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
2158	bp->stats.port_connection_policies[0]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
2159	bp->stats.port_connection_policies[1]		= bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
2160	bp->stats.port_mac_indicated[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
2161	bp->stats.port_mac_indicated[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
2162	bp->stats.port_current_path[0]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
2163	bp->stats.port_current_path[1]				= bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
2164	memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
2165	memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
2166	bp->stats.port_mac_placement[0]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
2167	bp->stats.port_mac_placement[1]				= bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
2168	bp->stats.port_available_paths[0]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
2169	bp->stats.port_available_paths[1]			= bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
2170	bp->stats.port_pmd_class[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
2171	bp->stats.port_pmd_class[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
2172	bp->stats.port_connection_capabilities[0]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
2173	bp->stats.port_connection_capabilities[1]	= bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
2174	bp->stats.port_bs_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
2175	bp->stats.port_bs_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
2176	bp->stats.port_ler_estimate[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
2177	bp->stats.port_ler_estimate[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
2178	bp->stats.port_ler_cutoff[0]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
2179	bp->stats.port_ler_cutoff[1]				= bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
2180	bp->stats.port_ler_alarm[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
2181	bp->stats.port_ler_alarm[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
2182	bp->stats.port_connect_state[0]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
2183	bp->stats.port_connect_state[1]				= bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
2184	bp->stats.port_pcm_state[0]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
2185	bp->stats.port_pcm_state[1]					= bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
2186	bp->stats.port_pc_withhold[0]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
2187	bp->stats.port_pc_withhold[1]				= bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
2188	bp->stats.port_ler_flag[0]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
2189	bp->stats.port_ler_flag[1]					= bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
2190	bp->stats.port_hardware_present[0]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
2191	bp->stats.port_hardware_present[1]			= bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
2192
2193	/* Get FDDI counters */
2194
2195	bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET;
2196	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2197		return (struct net_device_stats *)&bp->stats;
2198
2199	/* Fill the bp->stats structure with the FDDI counter values */
2200
2201	bp->stats.mac_frame_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
2202	bp->stats.mac_copied_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
2203	bp->stats.mac_transmit_cts			= bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
2204	bp->stats.mac_error_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
2205	bp->stats.mac_lost_cts				= bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
2206	bp->stats.port_lct_fail_cts[0]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
2207	bp->stats.port_lct_fail_cts[1]		= bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
2208	bp->stats.port_lem_reject_cts[0]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
2209	bp->stats.port_lem_reject_cts[1]	= bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
2210	bp->stats.port_lem_cts[0]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
2211	bp->stats.port_lem_cts[1]			= bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
2212
2213	return (struct net_device_stats *)&bp->stats;
2214	}
2215
2216
2217/*
2218 * ==============================
2219 * = dfx_ctl_set_multicast_list =
2220 * ==============================
2221 *
2222 * Overview:
2223 *   Enable/Disable LLC frame promiscuous mode reception
2224 *   on the adapter and/or update multicast address table.
2225 *
2226 * Returns:
2227 *   None
2228 *
2229 * Arguments:
2230 *   dev - pointer to device information
2231 *
2232 * Functional Description:
2233 *   This routine follows a fairly simple algorithm for setting the
2234 *   adapter filters and CAM:
2235 *
2236 *		if IFF_PROMISC flag is set
2237 *			enable LLC individual/group promiscuous mode
2238 *		else
2239 *			disable LLC individual/group promiscuous mode
2240 *			if number of incoming multicast addresses >
2241 *					(CAM max size - number of unicast addresses in CAM)
2242 *				enable LLC group promiscuous mode
2243 *				set driver-maintained multicast address count to zero
2244 *			else
2245 *				disable LLC group promiscuous mode
2246 *				set driver-maintained multicast address count to incoming count
2247 *			update adapter CAM
2248 *		update adapter filters
2249 *
2250 * Return Codes:
2251 *   None
2252 *
2253 * Assumptions:
2254 *   Multicast addresses are presented in canonical (LSB) format.
2255 *
2256 * Side Effects:
2257 *   On-board adapter CAM and filters are updated.
2258 */
2259
2260static void dfx_ctl_set_multicast_list(struct net_device *dev)
2261{
2262	DFX_board_t *bp = netdev_priv(dev);
2263	int					i;			/* used as index in for loop */
2264	struct netdev_hw_addr *ha;
2265
2266	/* Enable LLC frame promiscuous mode, if necessary */
2267
2268	if (dev->flags & IFF_PROMISC)
2269		bp->ind_group_prom = PI_FSTATE_K_PASS;		/* Enable LLC ind/group prom mode */
2270
2271	/* Else, update multicast address table */
2272
2273	else
2274		{
2275		bp->ind_group_prom = PI_FSTATE_K_BLOCK;		/* Disable LLC ind/group prom mode */
2276		/*
2277		 * Check whether incoming multicast address count exceeds table size
2278		 *
2279		 * Note: The adapters utilize an on-board 64 entry CAM for
2280		 *       supporting perfect filtering of multicast packets
2281		 *		 and bridge functions when adding unicast addresses.
2282		 *		 There is no hash function available.  To support
2283		 *		 additional multicast addresses, the all multicast
2284		 *		 filter (LLC group promiscuous mode) must be enabled.
2285		 *
2286		 *		 The firmware reserves two CAM entries for SMT-related
2287		 *		 multicast addresses, which leaves 62 entries available.
2288		 *		 The following code ensures that we're not being asked
2289		 *		 to add more than 62 addresses to the CAM.  If we are,
2290		 *		 the driver will enable the all multicast filter.
2291		 *		 Should the number of multicast addresses drop below
2292		 *		 the high water mark, the filter will be disabled and
2293		 *		 perfect filtering will be used.
2294		 */
2295
2296		if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count))
2297			{
2298			bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2299			bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2300			}
2301		else
2302			{
2303			bp->group_prom	= PI_FSTATE_K_BLOCK;	/* Disable LLC group prom mode */
2304			bp->mc_count	= netdev_mc_count(dev);		/* Add mc addrs to CAM */
2305			}
2306
2307		/* Copy addresses to multicast address table, then update adapter CAM */
2308
2309		i = 0;
2310		netdev_for_each_mc_addr(ha, dev)
2311			memcpy(&bp->mc_table[i++ * FDDI_K_ALEN],
2312			       ha->addr, FDDI_K_ALEN);
2313
2314		if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2315			{
2316			DBG_printk("%s: Could not update multicast address table!\n", dev->name);
2317			}
2318		else
2319			{
2320			DBG_printk("%s: Multicast address table updated!  Added %d addresses.\n", dev->name, bp->mc_count);
2321			}
2322		}
2323
2324	/* Update adapter filters */
2325
2326	if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2327		{
2328		DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2329		}
2330	else
2331		{
2332		DBG_printk("%s: Adapter filters updated!\n", dev->name);
2333		}
2334	}
2335
2336
2337/*
2338 * ===========================
2339 * = dfx_ctl_set_mac_address =
2340 * ===========================
2341 *
2342 * Overview:
2343 *   Add node address override (unicast address) to adapter
2344 *   CAM and update dev_addr field in device table.
2345 *
2346 * Returns:
2347 *   None
2348 *
2349 * Arguments:
2350 *   dev  - pointer to device information
2351 *   addr - pointer to sockaddr structure containing unicast address to add
2352 *
2353 * Functional Description:
2354 *   The adapter supports node address overrides by adding one or more
2355 *   unicast addresses to the adapter CAM.  This is similar to adding
2356 *   multicast addresses.  In this routine we'll update the driver and
2357 *   device structures with the new address, then update the adapter CAM
2358 *   to ensure that the adapter will copy and strip frames destined and
2359 *   sourced by that address.
2360 *
2361 * Return Codes:
2362 *   Always returns zero.
2363 *
2364 * Assumptions:
2365 *   The address pointed to by addr->sa_data is a valid unicast
2366 *   address and is presented in canonical (LSB) format.
2367 *
2368 * Side Effects:
2369 *   On-board adapter CAM is updated.  On-board adapter filters
2370 *   may be updated.
2371 */
2372
2373static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr)
2374	{
2375	struct sockaddr	*p_sockaddr = (struct sockaddr *)addr;
2376	DFX_board_t *bp = netdev_priv(dev);
2377
2378	/* Copy unicast address to driver-maintained structs and update count */
2379
2380	memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);	/* update device struct */
2381	memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN);	/* update driver struct */
2382	bp->uc_count = 1;
2383
2384	/*
2385	 * Verify we're not exceeding the CAM size by adding unicast address
2386	 *
2387	 * Note: It's possible that before entering this routine we've
2388	 *       already filled the CAM with 62 multicast addresses.
2389	 *		 Since we need to place the node address override into
2390	 *		 the CAM, we have to check to see that we're not
2391	 *		 exceeding the CAM size.  If we are, we have to enable
2392	 *		 the LLC group (multicast) promiscuous mode filter as
2393	 *		 in dfx_ctl_set_multicast_list.
2394	 */
2395
2396	if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE)
2397		{
2398		bp->group_prom	= PI_FSTATE_K_PASS;		/* Enable LLC group prom mode */
2399		bp->mc_count	= 0;					/* Don't add mc addrs to CAM */
2400
2401		/* Update adapter filters */
2402
2403		if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS)
2404			{
2405			DBG_printk("%s: Could not update adapter filters!\n", dev->name);
2406			}
2407		else
2408			{
2409			DBG_printk("%s: Adapter filters updated!\n", dev->name);
2410			}
2411		}
2412
2413	/* Update adapter CAM with new unicast address */
2414
2415	if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS)
2416		{
2417		DBG_printk("%s: Could not set new MAC address!\n", dev->name);
2418		}
2419	else
2420		{
2421		DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name);
2422		}
2423	return 0;			/* always return zero */
2424	}
2425
2426
2427/*
2428 * ======================
2429 * = dfx_ctl_update_cam =
2430 * ======================
2431 *
2432 * Overview:
2433 *   Procedure to update adapter CAM (Content Addressable Memory)
2434 *   with desired unicast and multicast address entries.
2435 *
2436 * Returns:
2437 *   Condition code
2438 *
2439 * Arguments:
2440 *   bp - pointer to board information
2441 *
2442 * Functional Description:
2443 *   Updates adapter CAM with current contents of board structure
2444 *   unicast and multicast address tables.  Since there are only 62
2445 *   free entries in CAM, this routine ensures that the command
2446 *   request buffer is not overrun.
2447 *
2448 * Return Codes:
2449 *   DFX_K_SUCCESS - Request succeeded
2450 *   DFX_K_FAILURE - Request failed
2451 *
2452 * Assumptions:
2453 *   All addresses being added (unicast and multicast) are in canonical
2454 *   order.
2455 *
2456 * Side Effects:
2457 *   On-board adapter CAM is updated.
2458 */
2459
2460static int dfx_ctl_update_cam(DFX_board_t *bp)
2461	{
2462	int			i;				/* used as index */
2463	PI_LAN_ADDR	*p_addr;		/* pointer to CAM entry */
2464
2465	/*
2466	 * Fill in command request information
2467	 *
2468	 * Note: Even though both the unicast and multicast address
2469	 *       table entries are stored as contiguous 6 byte entries,
2470	 *		 the firmware address filter set command expects each
2471	 *		 entry to be two longwords (8 bytes total).  We must be
2472	 *		 careful to only copy the six bytes of each unicast and
2473	 *		 multicast table entry into each command entry.  This
2474	 *		 is also why we must first clear the entire command
2475	 *		 request buffer.
2476	 */
2477
2478	memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX);	/* first clear buffer */
2479	bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET;
2480	p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0];
2481
2482	/* Now add unicast addresses to command request buffer, if any */
2483
2484	for (i=0; i < (int)bp->uc_count; i++)
2485		{
2486		if (i < PI_CMD_ADDR_FILTER_K_SIZE)
2487			{
2488			memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2489			p_addr++;			/* point to next command entry */
2490			}
2491		}
2492
2493	/* Now add multicast addresses to command request buffer, if any */
2494
2495	for (i=0; i < (int)bp->mc_count; i++)
2496		{
2497		if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE)
2498			{
2499			memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN);
2500			p_addr++;			/* point to next command entry */
2501			}
2502		}
2503
2504	/* Issue command to update adapter CAM, then return */
2505
2506	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2507		return DFX_K_FAILURE;
2508	return DFX_K_SUCCESS;
2509	}
2510
2511
2512/*
2513 * ==========================
2514 * = dfx_ctl_update_filters =
2515 * ==========================
2516 *
2517 * Overview:
2518 *   Procedure to update adapter filters with desired
2519 *   filter settings.
2520 *
2521 * Returns:
2522 *   Condition code
2523 *
2524 * Arguments:
2525 *   bp - pointer to board information
2526 *
2527 * Functional Description:
2528 *   Enables or disables filter using current filter settings.
2529 *
2530 * Return Codes:
2531 *   DFX_K_SUCCESS - Request succeeded.
2532 *   DFX_K_FAILURE - Request failed.
2533 *
2534 * Assumptions:
2535 *   We must always pass up packets destined to the broadcast
2536 *   address (FF-FF-FF-FF-FF-FF), so we'll always keep the
2537 *   broadcast filter enabled.
2538 *
2539 * Side Effects:
2540 *   On-board adapter filters are updated.
2541 */
2542
2543static int dfx_ctl_update_filters(DFX_board_t *bp)
2544	{
2545	int	i = 0;					/* used as index */
2546
2547	/* Fill in command request information */
2548
2549	bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET;
2550
2551	/* Initialize Broadcast filter - * ALWAYS ENABLED * */
2552
2553	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_BROADCAST;
2554	bp->cmd_req_virt->filter_set.item[i++].value	= PI_FSTATE_K_PASS;
2555
2556	/* Initialize LLC Individual/Group Promiscuous filter */
2557
2558	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_IND_GROUP_PROM;
2559	bp->cmd_req_virt->filter_set.item[i++].value	= bp->ind_group_prom;
2560
2561	/* Initialize LLC Group Promiscuous filter */
2562
2563	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_GROUP_PROM;
2564	bp->cmd_req_virt->filter_set.item[i++].value	= bp->group_prom;
2565
2566	/* Terminate the item code list */
2567
2568	bp->cmd_req_virt->filter_set.item[i].item_code	= PI_ITEM_K_EOL;
2569
2570	/* Issue command to update adapter filters, then return */
2571
2572	if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS)
2573		return DFX_K_FAILURE;
2574	return DFX_K_SUCCESS;
2575	}
2576
2577
2578/*
2579 * ======================
2580 * = dfx_hw_dma_cmd_req =
2581 * ======================
2582 *
2583 * Overview:
2584 *   Sends PDQ DMA command to adapter firmware
2585 *
2586 * Returns:
2587 *   Condition code
2588 *
2589 * Arguments:
2590 *   bp - pointer to board information
2591 *
2592 * Functional Description:
2593 *   The command request and response buffers are posted to the adapter in the manner
2594 *   described in the PDQ Port Specification:
2595 *
2596 *		1. Command Response Buffer is posted to adapter.
2597 *		2. Command Request Buffer is posted to adapter.
2598 *		3. Command Request consumer index is polled until it indicates that request
2599 *         buffer has been DMA'd to adapter.
2600 *		4. Command Response consumer index is polled until it indicates that response
2601 *         buffer has been DMA'd from adapter.
2602 *
2603 *   This ordering ensures that a response buffer is already available for the firmware
2604 *   to use once it's done processing the request buffer.
2605 *
2606 * Return Codes:
2607 *   DFX_K_SUCCESS	  - DMA command succeeded
2608 * 	 DFX_K_OUTSTATE   - Adapter is NOT in proper state
2609 *   DFX_K_HW_TIMEOUT - DMA command timed out
2610 *
2611 * Assumptions:
2612 *   Command request buffer has already been filled with desired DMA command.
2613 *
2614 * Side Effects:
2615 *   None
2616 */
2617
2618static int dfx_hw_dma_cmd_req(DFX_board_t *bp)
2619	{
2620	int status;			/* adapter status */
2621	int timeout_cnt;	/* used in for loops */
2622
2623	/* Make sure the adapter is in a state that we can issue the DMA command in */
2624
2625	status = dfx_hw_adap_state_rd(bp);
2626	if ((status == PI_STATE_K_RESET)		||
2627		(status == PI_STATE_K_HALTED)		||
2628		(status == PI_STATE_K_DMA_UNAVAIL)	||
2629		(status == PI_STATE_K_UPGRADE))
2630		return DFX_K_OUTSTATE;
2631
2632	/* Put response buffer on the command response queue */
2633
2634	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
2635			((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
2636	bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys;
2637
2638	/* Bump (and wrap) the producer index and write out to register */
2639
2640	bp->cmd_rsp_reg.index.prod += 1;
2641	bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2642	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2643
2644	/* Put request buffer on the command request queue */
2645
2646	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP |
2647			PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN));
2648	bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys;
2649
2650	/* Bump (and wrap) the producer index and write out to register */
2651
2652	bp->cmd_req_reg.index.prod += 1;
2653	bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2654	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2655
2656	/*
2657	 * Here we wait for the command request consumer index to be equal
2658	 * to the producer, indicating that the adapter has DMAed the request.
2659	 */
2660
2661	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2662		{
2663		if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req))
2664			break;
2665		udelay(100);			/* wait for 100 microseconds */
2666		}
2667	if (timeout_cnt == 0)
2668		return DFX_K_HW_TIMEOUT;
2669
2670	/* Bump (and wrap) the completion index and write out to register */
2671
2672	bp->cmd_req_reg.index.comp += 1;
2673	bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1;
2674	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword);
2675
2676	/*
2677	 * Here we wait for the command response consumer index to be equal
2678	 * to the producer, indicating that the adapter has DMAed the response.
2679	 */
2680
2681	for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--)
2682		{
2683		if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp))
2684			break;
2685		udelay(100);			/* wait for 100 microseconds */
2686		}
2687	if (timeout_cnt == 0)
2688		return DFX_K_HW_TIMEOUT;
2689
2690	/* Bump (and wrap) the completion index and write out to register */
2691
2692	bp->cmd_rsp_reg.index.comp += 1;
2693	bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1;
2694	dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword);
2695	return DFX_K_SUCCESS;
2696	}
2697
2698
2699/*
2700 * ========================
2701 * = dfx_hw_port_ctrl_req =
2702 * ========================
2703 *
2704 * Overview:
2705 *   Sends PDQ port control command to adapter firmware
2706 *
2707 * Returns:
2708 *   Host data register value in host_data if ptr is not NULL
2709 *
2710 * Arguments:
2711 *   bp			- pointer to board information
2712 *	 command	- port control command
2713 *	 data_a		- port data A register value
2714 *	 data_b		- port data B register value
2715 *	 host_data	- ptr to host data register value
2716 *
2717 * Functional Description:
2718 *   Send generic port control command to adapter by writing
2719 *   to various PDQ port registers, then polling for completion.
2720 *
2721 * Return Codes:
2722 *   DFX_K_SUCCESS	  - port control command succeeded
2723 *   DFX_K_HW_TIMEOUT - port control command timed out
2724 *
2725 * Assumptions:
2726 *   None
2727 *
2728 * Side Effects:
2729 *   None
2730 */
2731
2732static int dfx_hw_port_ctrl_req(
2733	DFX_board_t	*bp,
2734	PI_UINT32	command,
2735	PI_UINT32	data_a,
2736	PI_UINT32	data_b,
2737	PI_UINT32	*host_data
2738	)
2739
2740	{
2741	PI_UINT32	port_cmd;		/* Port Control command register value */
2742	int			timeout_cnt;	/* used in for loops */
2743
2744	/* Set Command Error bit in command longword */
2745
2746	port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR);
2747
2748	/* Issue port command to the adapter */
2749
2750	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a);
2751	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b);
2752	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd);
2753
2754	/* Now wait for command to complete */
2755
2756	if (command == PI_PCTRL_M_BLAST_FLASH)
2757		timeout_cnt = 600000;	/* set command timeout count to 60 seconds */
2758	else
2759		timeout_cnt = 20000;	/* set command timeout count to 2 seconds */
2760
2761	for (; timeout_cnt > 0; timeout_cnt--)
2762		{
2763		dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd);
2764		if (!(port_cmd & PI_PCTRL_M_CMD_ERROR))
2765			break;
2766		udelay(100);			/* wait for 100 microseconds */
2767		}
2768	if (timeout_cnt == 0)
2769		return DFX_K_HW_TIMEOUT;
2770
2771	/*
2772	 * If the address of host_data is non-zero, assume caller has supplied a
2773	 * non NULL pointer, and return the contents of the HOST_DATA register in
2774	 * it.
2775	 */
2776
2777	if (host_data != NULL)
2778		dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data);
2779	return DFX_K_SUCCESS;
2780	}
2781
2782
2783/*
2784 * =====================
2785 * = dfx_hw_adap_reset =
2786 * =====================
2787 *
2788 * Overview:
2789 *   Resets adapter
2790 *
2791 * Returns:
2792 *   None
2793 *
2794 * Arguments:
2795 *   bp   - pointer to board information
2796 *   type - type of reset to perform
2797 *
2798 * Functional Description:
2799 *   Issue soft reset to adapter by writing to PDQ Port Reset
2800 *   register.  Use incoming reset type to tell adapter what
2801 *   kind of reset operation to perform.
2802 *
2803 * Return Codes:
2804 *   None
2805 *
2806 * Assumptions:
2807 *   This routine merely issues a soft reset to the adapter.
2808 *   It is expected that after this routine returns, the caller
2809 *   will appropriately poll the Port Status register for the
2810 *   adapter to enter the proper state.
2811 *
2812 * Side Effects:
2813 *   Internal adapter registers are cleared.
2814 */
2815
2816static void dfx_hw_adap_reset(
2817	DFX_board_t	*bp,
2818	PI_UINT32	type
2819	)
2820
2821	{
2822	/* Set Reset type and assert reset */
2823
2824	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type);	/* tell adapter type of reset */
2825	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET);
2826
2827	/* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */
2828
2829	udelay(20);
2830
2831	/* Deassert reset */
2832
2833	dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0);
2834	}
2835
2836
2837/*
2838 * ========================
2839 * = dfx_hw_adap_state_rd =
2840 * ========================
2841 *
2842 * Overview:
2843 *   Returns current adapter state
2844 *
2845 * Returns:
2846 *   Adapter state per PDQ Port Specification
2847 *
2848 * Arguments:
2849 *   bp - pointer to board information
2850 *
2851 * Functional Description:
2852 *   Reads PDQ Port Status register and returns adapter state.
2853 *
2854 * Return Codes:
2855 *   None
2856 *
2857 * Assumptions:
2858 *   None
2859 *
2860 * Side Effects:
2861 *   None
2862 */
2863
2864static int dfx_hw_adap_state_rd(DFX_board_t *bp)
2865	{
2866	PI_UINT32 port_status;		/* Port Status register value */
2867
2868	dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status);
2869	return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE;
2870	}
2871
2872
2873/*
2874 * =====================
2875 * = dfx_hw_dma_uninit =
2876 * =====================
2877 *
2878 * Overview:
2879 *   Brings adapter to DMA_UNAVAILABLE state
2880 *
2881 * Returns:
2882 *   Condition code
2883 *
2884 * Arguments:
2885 *   bp   - pointer to board information
2886 *   type - type of reset to perform
2887 *
2888 * Functional Description:
2889 *   Bring adapter to DMA_UNAVAILABLE state by performing the following:
2890 *		1. Set reset type bit in Port Data A Register then reset adapter.
2891 *		2. Check that adapter is in DMA_UNAVAILABLE state.
2892 *
2893 * Return Codes:
2894 *   DFX_K_SUCCESS	  - adapter is in DMA_UNAVAILABLE state
2895 *   DFX_K_HW_TIMEOUT - adapter did not reset properly
2896 *
2897 * Assumptions:
2898 *   None
2899 *
2900 * Side Effects:
2901 *   Internal adapter registers are cleared.
2902 */
2903
2904static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type)
2905	{
2906	int timeout_cnt;	/* used in for loops */
2907
2908	/* Set reset type bit and reset adapter */
2909
2910	dfx_hw_adap_reset(bp, type);
2911
2912	/* Now wait for adapter to enter DMA_UNAVAILABLE state */
2913
2914	for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--)
2915		{
2916		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL)
2917			break;
2918		udelay(100);					/* wait for 100 microseconds */
2919		}
2920	if (timeout_cnt == 0)
2921		return DFX_K_HW_TIMEOUT;
2922	return DFX_K_SUCCESS;
2923	}
2924
2925/*
2926 *	Align an sk_buff to a boundary power of 2
2927 *
2928 */
2929#ifdef DYNAMIC_BUFFERS
2930static void my_skb_align(struct sk_buff *skb, int n)
2931{
2932	unsigned long x = (unsigned long)skb->data;
2933	unsigned long v;
2934
2935	v = ALIGN(x, n);	/* Where we want to be */
2936
2937	skb_reserve(skb, v - x);
2938}
2939#endif
2940
2941/*
2942 * ================
2943 * = dfx_rcv_init =
2944 * ================
2945 *
2946 * Overview:
2947 *   Produces buffers to adapter LLC Host receive descriptor block
2948 *
2949 * Returns:
2950 *   None
2951 *
2952 * Arguments:
2953 *   bp - pointer to board information
2954 *   get_buffers - non-zero if buffers to be allocated
2955 *
2956 * Functional Description:
2957 *   This routine can be called during dfx_adap_init() or during an adapter
2958 *	 reset.  It initializes the descriptor block and produces all allocated
2959 *   LLC Host queue receive buffers.
2960 *
2961 * Return Codes:
2962 *   Return 0 on success or -ENOMEM if buffer allocation failed (when using
2963 *   dynamic buffer allocation). If the buffer allocation failed, the
2964 *   already allocated buffers will not be released and the caller should do
2965 *   this.
2966 *
2967 * Assumptions:
2968 *   The PDQ has been reset and the adapter and driver maintained Type 2
2969 *   register indices are cleared.
2970 *
2971 * Side Effects:
2972 *   Receive buffers are posted to the adapter LLC queue and the adapter
2973 *   is notified.
2974 */
2975
2976static int dfx_rcv_init(DFX_board_t *bp, int get_buffers)
2977	{
2978	int	i, j;					/* used in for loop */
2979
2980	/*
2981	 *  Since each receive buffer is a single fragment of same length, initialize
2982	 *  first longword in each receive descriptor for entire LLC Host descriptor
2983	 *  block.  Also initialize second longword in each receive descriptor with
2984	 *  physical address of receive buffer.  We'll always allocate receive
2985	 *  buffers in powers of 2 so that we can easily fill the 256 entry descriptor
2986	 *  block and produce new receive buffers by simply updating the receive
2987	 *  producer index.
2988	 *
2989	 * 	Assumptions:
2990	 *		To support all shipping versions of PDQ, the receive buffer size
2991	 *		must be mod 128 in length and the physical address must be 128 byte
2992	 *		aligned.  In other words, bits 0-6 of the length and address must
2993	 *		be zero for the following descriptor field entries to be correct on
2994	 *		all PDQ-based boards.  We guaranteed both requirements during
2995	 *		driver initialization when we allocated memory for the receive buffers.
2996	 */
2997
2998	if (get_buffers) {
2999#ifdef DYNAMIC_BUFFERS
3000	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3001		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3002		{
3003			struct sk_buff *newskb;
3004			dma_addr_t dma_addr;
3005
3006			newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE,
3007						    GFP_NOIO);
3008			if (!newskb)
3009				return -ENOMEM;
3010			/*
3011			 * align to 128 bytes for compatibility with
3012			 * the old EISA boards.
3013			 */
3014
3015			my_skb_align(newskb, 128);
3016			dma_addr = dma_map_single(bp->bus_dev,
3017						  newskb->data,
3018						  PI_RCV_DATA_K_SIZE_MAX,
3019						  DMA_FROM_DEVICE);
3020			if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3021				dev_kfree_skb(newskb);
3022				return -ENOMEM;
3023			}
3024			bp->descr_block_virt->rcv_data[i + j].long_0 =
3025				(u32)(PI_RCV_DESCR_M_SOP |
3026				      ((PI_RCV_DATA_K_SIZE_MAX /
3027					PI_ALIGN_K_RCV_DATA_BUFF) <<
3028				       PI_RCV_DESCR_V_SEG_LEN));
3029			bp->descr_block_virt->rcv_data[i + j].long_1 =
3030				(u32)dma_addr;
3031
3032			/*
3033			 * p_rcv_buff_va is only used inside the
3034			 * kernel so we put the skb pointer here.
3035			 */
3036			bp->p_rcv_buff_va[i+j] = (char *) newskb;
3037		}
3038#else
3039	for (i=0; i < (int)(bp->rcv_bufs_to_post); i++)
3040		for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3041			{
3042			bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP |
3043				((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN));
3044			bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX));
3045			bp->p_rcv_buff_va[i+j] = (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX));
3046			}
3047#endif
3048	}
3049
3050	/* Update receive producer and Type 2 register */
3051
3052	bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post;
3053	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3054	return 0;
3055	}
3056
3057
3058/*
3059 * =========================
3060 * = dfx_rcv_queue_process =
3061 * =========================
3062 *
3063 * Overview:
3064 *   Process received LLC frames.
3065 *
3066 * Returns:
3067 *   None
3068 *
3069 * Arguments:
3070 *   bp - pointer to board information
3071 *
3072 * Functional Description:
3073 *   Received LLC frames are processed until there are no more consumed frames.
3074 *   Once all frames are processed, the receive buffers are returned to the
3075 *   adapter.  Note that this algorithm fixes the length of time that can be spent
3076 *   in this routine, because there are a fixed number of receive buffers to
3077 *   process and buffers are not produced until this routine exits and returns
3078 *   to the ISR.
3079 *
3080 * Return Codes:
3081 *   None
3082 *
3083 * Assumptions:
3084 *   None
3085 *
3086 * Side Effects:
3087 *   None
3088 */
3089
3090static void dfx_rcv_queue_process(
3091	DFX_board_t *bp
3092	)
3093
3094	{
3095	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3096	char				*p_buff;			/* ptr to start of packet receive buffer (FMC descriptor) */
3097	u32					descr, pkt_len;		/* FMC descriptor field and packet length */
3098	struct sk_buff		*skb = NULL;			/* pointer to a sk_buff to hold incoming packet data */
3099
3100	/* Service all consumed LLC receive frames */
3101
3102	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3103	while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons)
3104		{
3105		/* Process any errors */
3106		dma_addr_t dma_addr;
3107		int entry;
3108
3109		entry = bp->rcv_xmt_reg.index.rcv_comp;
3110#ifdef DYNAMIC_BUFFERS
3111		p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data);
3112#else
3113		p_buff = bp->p_rcv_buff_va[entry];
3114#endif
3115		dma_addr = bp->descr_block_virt->rcv_data[entry].long_1;
3116		dma_sync_single_for_cpu(bp->bus_dev,
3117					dma_addr + RCV_BUFF_K_DESCR,
3118					sizeof(u32),
3119					DMA_FROM_DEVICE);
3120		memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32));
3121
3122		if (descr & PI_FMC_DESCR_M_RCC_FLUSH)
3123			{
3124			if (descr & PI_FMC_DESCR_M_RCC_CRC)
3125				bp->rcv_crc_errors++;
3126			else
3127				bp->rcv_frame_status_errors++;
3128			}
3129		else
3130		{
3131			int rx_in_place = 0;
3132
3133			/* The frame was received without errors - verify packet length */
3134
3135			pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN);
3136			pkt_len -= 4;				/* subtract 4 byte CRC */
3137			if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3138				bp->rcv_length_errors++;
3139			else{
3140#ifdef DYNAMIC_BUFFERS
3141				struct sk_buff *newskb = NULL;
3142
3143				if (pkt_len > SKBUFF_RX_COPYBREAK) {
3144					dma_addr_t new_dma_addr;
3145
3146					newskb = netdev_alloc_skb(bp->dev,
3147								  NEW_SKB_SIZE);
3148					if (newskb){
3149						my_skb_align(newskb, 128);
3150						new_dma_addr = dma_map_single(
3151								bp->bus_dev,
3152								newskb->data,
3153								PI_RCV_DATA_K_SIZE_MAX,
3154								DMA_FROM_DEVICE);
3155						if (dma_mapping_error(
3156								bp->bus_dev,
3157								new_dma_addr)) {
3158							dev_kfree_skb(newskb);
3159							newskb = NULL;
3160						}
3161					}
3162					if (newskb) {
3163						rx_in_place = 1;
3164
3165						skb = (struct sk_buff *)bp->p_rcv_buff_va[entry];
3166						dma_unmap_single(bp->bus_dev,
3167							dma_addr,
3168							PI_RCV_DATA_K_SIZE_MAX,
3169							DMA_FROM_DEVICE);
3170						skb_reserve(skb, RCV_BUFF_K_PADDING);
3171						bp->p_rcv_buff_va[entry] = (char *)newskb;
3172						bp->descr_block_virt->rcv_data[entry].long_1 = (u32)new_dma_addr;
3173					}
3174				}
3175				if (!newskb)
3176#endif
3177					/* Alloc new buffer to pass up,
3178					 * add room for PRH. */
3179					skb = netdev_alloc_skb(bp->dev,
3180							       pkt_len + 3);
3181				if (skb == NULL)
3182					{
3183					printk("%s: Could not allocate receive buffer.  Dropping packet.\n", bp->dev->name);
3184					bp->rcv_discards++;
3185					break;
3186					}
3187				else {
3188					if (!rx_in_place) {
3189						/* Receive buffer allocated, pass receive packet up */
3190						dma_sync_single_for_cpu(
3191							bp->bus_dev,
3192							dma_addr +
3193							RCV_BUFF_K_PADDING,
3194							pkt_len + 3,
3195							DMA_FROM_DEVICE);
3196
3197						skb_copy_to_linear_data(skb,
3198							       p_buff + RCV_BUFF_K_PADDING,
3199							       pkt_len + 3);
3200					}
3201
3202					skb_reserve(skb,3);		/* adjust data field so that it points to FC byte */
3203					skb_put(skb, pkt_len);		/* pass up packet length, NOT including CRC */
3204					skb->protocol = fddi_type_trans(skb, bp->dev);
3205					bp->rcv_total_bytes += skb->len;
3206					netif_rx(skb);
3207
3208					/* Update the rcv counters */
3209					bp->rcv_total_frames++;
3210					if (*(p_buff + RCV_BUFF_K_DA) & 0x01)
3211						bp->rcv_multicast_frames++;
3212				}
3213			}
3214			}
3215
3216		/*
3217		 * Advance the producer (for recycling) and advance the completion
3218		 * (for servicing received frames).  Note that it is okay to
3219		 * advance the producer without checking that it passes the
3220		 * completion index because they are both advanced at the same
3221		 * rate.
3222		 */
3223
3224		bp->rcv_xmt_reg.index.rcv_prod += 1;
3225		bp->rcv_xmt_reg.index.rcv_comp += 1;
3226		}
3227	}
3228
3229
3230/*
3231 * =====================
3232 * = dfx_xmt_queue_pkt =
3233 * =====================
3234 *
3235 * Overview:
3236 *   Queues packets for transmission
3237 *
3238 * Returns:
3239 *   Condition code
3240 *
3241 * Arguments:
3242 *   skb - pointer to sk_buff to queue for transmission
3243 *   dev - pointer to device information
3244 *
3245 * Functional Description:
3246 *   Here we assume that an incoming skb transmit request
3247 *   is contained in a single physically contiguous buffer
3248 *   in which the virtual address of the start of packet
3249 *   (skb->data) can be converted to a physical address
3250 *   by using pci_map_single().
3251 *
3252 *   Since the adapter architecture requires a three byte
3253 *   packet request header to prepend the start of packet,
3254 *   we'll write the three byte field immediately prior to
3255 *   the FC byte.  This assumption is valid because we've
3256 *   ensured that dev->hard_header_len includes three pad
3257 *   bytes.  By posting a single fragment to the adapter,
3258 *   we'll reduce the number of descriptor fetches and
3259 *   bus traffic needed to send the request.
3260 *
3261 *   Also, we can't free the skb until after it's been DMA'd
3262 *   out by the adapter, so we'll queue it in the driver and
3263 *   return it in dfx_xmt_done.
3264 *
3265 * Return Codes:
3266 *   0 - driver queued packet, link is unavailable, or skbuff was bad
3267 *	 1 - caller should requeue the sk_buff for later transmission
3268 *
3269 * Assumptions:
3270 *	 First and foremost, we assume the incoming skb pointer
3271 *   is NOT NULL and is pointing to a valid sk_buff structure.
3272 *
3273 *   The outgoing packet is complete, starting with the
3274 *   frame control byte including the last byte of data,
3275 *   but NOT including the 4 byte CRC.  We'll let the
3276 *   adapter hardware generate and append the CRC.
3277 *
3278 *   The entire packet is stored in one physically
3279 *   contiguous buffer which is not cached and whose
3280 *   32-bit physical address can be determined.
3281 *
3282 *   It's vital that this routine is NOT reentered for the
3283 *   same board and that the OS is not in another section of
3284 *   code (eg. dfx_int_common) for the same board on a
3285 *   different thread.
3286 *
3287 * Side Effects:
3288 *   None
3289 */
3290
3291static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb,
3292				     struct net_device *dev)
3293	{
3294	DFX_board_t		*bp = netdev_priv(dev);
3295	u8			prod;				/* local transmit producer index */
3296	PI_XMT_DESCR		*p_xmt_descr;		/* ptr to transmit descriptor block entry */
3297	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3298	dma_addr_t		dma_addr;
3299	unsigned long		flags;
3300
3301	netif_stop_queue(dev);
3302
3303	/*
3304	 * Verify that incoming transmit request is OK
3305	 *
3306	 * Note: The packet size check is consistent with other
3307	 *		 Linux device drivers, although the correct packet
3308	 *		 size should be verified before calling the
3309	 *		 transmit routine.
3310	 */
3311
3312	if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN))
3313	{
3314		printk("%s: Invalid packet length - %u bytes\n",
3315			dev->name, skb->len);
3316		bp->xmt_length_errors++;		/* bump error counter */
3317		netif_wake_queue(dev);
3318		dev_kfree_skb(skb);
3319		return NETDEV_TX_OK;			/* return "success" */
3320	}
3321	/*
3322	 * See if adapter link is available, if not, free buffer
3323	 *
3324	 * Note: If the link isn't available, free buffer and return 0
3325	 *		 rather than tell the upper layer to requeue the packet.
3326	 *		 The methodology here is that by the time the link
3327	 *		 becomes available, the packet to be sent will be
3328	 *		 fairly stale.  By simply dropping the packet, the
3329	 *		 higher layer protocols will eventually time out
3330	 *		 waiting for response packets which it won't receive.
3331	 */
3332
3333	if (bp->link_available == PI_K_FALSE)
3334		{
3335		if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL)	/* is link really available? */
3336			bp->link_available = PI_K_TRUE;		/* if so, set flag and continue */
3337		else
3338			{
3339			bp->xmt_discards++;					/* bump error counter */
3340			dev_kfree_skb(skb);		/* free sk_buff now */
3341			netif_wake_queue(dev);
3342			return NETDEV_TX_OK;		/* return "success" */
3343			}
3344		}
3345
3346	/* Write the three PRH bytes immediately before the FC byte */
3347
3348	skb_push(skb, 3);
3349	skb->data[0] = DFX_PRH0_BYTE;	/* these byte values are defined */
3350	skb->data[1] = DFX_PRH1_BYTE;	/* in the Motorola FDDI MAC chip */
3351	skb->data[2] = DFX_PRH2_BYTE;	/* specification */
3352
3353	dma_addr = dma_map_single(bp->bus_dev, skb->data, skb->len,
3354				  DMA_TO_DEVICE);
3355	if (dma_mapping_error(bp->bus_dev, dma_addr)) {
3356		skb_pull(skb, 3);
3357		return NETDEV_TX_BUSY;
3358	}
3359
3360	spin_lock_irqsave(&bp->lock, flags);
3361
3362	/* Get the current producer and the next free xmt data descriptor */
3363
3364	prod		= bp->rcv_xmt_reg.index.xmt_prod;
3365	p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]);
3366
3367	/*
3368	 * Get pointer to auxiliary queue entry to contain information
3369	 * for this packet.
3370	 *
3371	 * Note: The current xmt producer index will become the
3372	 *	 current xmt completion index when we complete this
3373	 *	 packet later on.  So, we'll get the pointer to the
3374	 *	 next auxiliary queue entry now before we bump the
3375	 *	 producer index.
3376	 */
3377
3378	p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]);	/* also bump producer index */
3379
3380	/*
3381	 * Write the descriptor with buffer info and bump producer
3382	 *
3383	 * Note: Since we need to start DMA from the packet request
3384	 *		 header, we'll add 3 bytes to the DMA buffer length,
3385	 *		 and we'll determine the physical address of the
3386	 *		 buffer from the PRH, not skb->data.
3387	 *
3388	 * Assumptions:
3389	 *		 1. Packet starts with the frame control (FC) byte
3390	 *		    at skb->data.
3391	 *		 2. The 4-byte CRC is not appended to the buffer or
3392	 *			included in the length.
3393	 *		 3. Packet length (skb->len) is from FC to end of
3394	 *			data, inclusive.
3395	 *		 4. The packet length does not exceed the maximum
3396	 *			FDDI LLC frame length of 4491 bytes.
3397	 *		 5. The entire packet is contained in a physically
3398	 *			contiguous, non-cached, locked memory space
3399	 *			comprised of a single buffer pointed to by
3400	 *			skb->data.
3401	 *		 6. The physical address of the start of packet
3402	 *			can be determined from the virtual address
3403	 *			by using pci_map_single() and is only 32-bits
3404	 *			wide.
3405	 */
3406
3407	p_xmt_descr->long_0	= (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN));
3408	p_xmt_descr->long_1 = (u32)dma_addr;
3409
3410	/*
3411	 * Verify that descriptor is actually available
3412	 *
3413	 * Note: If descriptor isn't available, return 1 which tells
3414	 *	 the upper layer to requeue the packet for later
3415	 *	 transmission.
3416	 *
3417	 *       We need to ensure that the producer never reaches the
3418	 *	 completion, except to indicate that the queue is empty.
3419	 */
3420
3421	if (prod == bp->rcv_xmt_reg.index.xmt_comp)
3422	{
3423		skb_pull(skb,3);
3424		spin_unlock_irqrestore(&bp->lock, flags);
3425		return NETDEV_TX_BUSY;	/* requeue packet for later */
3426	}
3427
3428	/*
3429	 * Save info for this packet for xmt done indication routine
3430	 *
3431	 * Normally, we'd save the producer index in the p_xmt_drv_descr
3432	 * structure so that we'd have it handy when we complete this
3433	 * packet later (in dfx_xmt_done).  However, since the current
3434	 * transmit architecture guarantees a single fragment for the
3435	 * entire packet, we can simply bump the completion index by
3436	 * one (1) for each completed packet.
3437	 *
3438	 * Note: If this assumption changes and we're presented with
3439	 *	 an inconsistent number of transmit fragments for packet
3440	 *	 data, we'll need to modify this code to save the current
3441	 *	 transmit producer index.
3442	 */
3443
3444	p_xmt_drv_descr->p_skb = skb;
3445
3446	/* Update Type 2 register */
3447
3448	bp->rcv_xmt_reg.index.xmt_prod = prod;
3449	dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword);
3450	spin_unlock_irqrestore(&bp->lock, flags);
3451	netif_wake_queue(dev);
3452	return NETDEV_TX_OK;	/* packet queued to adapter */
3453	}
3454
3455
3456/*
3457 * ================
3458 * = dfx_xmt_done =
3459 * ================
3460 *
3461 * Overview:
3462 *   Processes all frames that have been transmitted.
3463 *
3464 * Returns:
3465 *   None
3466 *
3467 * Arguments:
3468 *   bp - pointer to board information
3469 *
3470 * Functional Description:
3471 *   For all consumed transmit descriptors that have not
3472 *   yet been completed, we'll free the skb we were holding
3473 *   onto using dev_kfree_skb and bump the appropriate
3474 *   counters.
3475 *
3476 * Return Codes:
3477 *   None
3478 *
3479 * Assumptions:
3480 *   The Type 2 register is not updated in this routine.  It is
3481 *   assumed that it will be updated in the ISR when dfx_xmt_done
3482 *   returns.
3483 *
3484 * Side Effects:
3485 *   None
3486 */
3487
3488static int dfx_xmt_done(DFX_board_t *bp)
3489	{
3490	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3491	PI_TYPE_2_CONSUMER	*p_type_2_cons;		/* ptr to rcv/xmt consumer block register */
3492	u8			comp;			/* local transmit completion index */
3493	int 			freed = 0;		/* buffers freed */
3494
3495	/* Service all consumed transmit frames */
3496
3497	p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data);
3498	while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons)
3499		{
3500		/* Get pointer to the transmit driver descriptor block information */
3501
3502		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3503
3504		/* Increment transmit counters */
3505
3506		bp->xmt_total_frames++;
3507		bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len;
3508
3509		/* Return skb to operating system */
3510		comp = bp->rcv_xmt_reg.index.xmt_comp;
3511		dma_unmap_single(bp->bus_dev,
3512				 bp->descr_block_virt->xmt_data[comp].long_1,
3513				 p_xmt_drv_descr->p_skb->len,
3514				 DMA_TO_DEVICE);
3515		dev_kfree_skb_irq(p_xmt_drv_descr->p_skb);
3516
3517		/*
3518		 * Move to start of next packet by updating completion index
3519		 *
3520		 * Here we assume that a transmit packet request is always
3521		 * serviced by posting one fragment.  We can therefore
3522		 * simplify the completion code by incrementing the
3523		 * completion index by one.  This code will need to be
3524		 * modified if this assumption changes.  See comments
3525		 * in dfx_xmt_queue_pkt for more details.
3526		 */
3527
3528		bp->rcv_xmt_reg.index.xmt_comp += 1;
3529		freed++;
3530		}
3531	return freed;
3532	}
3533
3534
3535/*
3536 * =================
3537 * = dfx_rcv_flush =
3538 * =================
3539 *
3540 * Overview:
3541 *   Remove all skb's in the receive ring.
3542 *
3543 * Returns:
3544 *   None
3545 *
3546 * Arguments:
3547 *   bp - pointer to board information
3548 *
3549 * Functional Description:
3550 *   Free's all the dynamically allocated skb's that are
3551 *   currently attached to the device receive ring. This
3552 *   function is typically only used when the device is
3553 *   initialized or reinitialized.
3554 *
3555 * Return Codes:
3556 *   None
3557 *
3558 * Side Effects:
3559 *   None
3560 */
3561#ifdef DYNAMIC_BUFFERS
3562static void dfx_rcv_flush( DFX_board_t *bp )
3563	{
3564	int i, j;
3565
3566	for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++)
3567		for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post)
3568		{
3569			struct sk_buff *skb;
3570			skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j];
3571			if (skb) {
3572				dma_unmap_single(bp->bus_dev,
3573						 bp->descr_block_virt->rcv_data[i+j].long_1,
3574						 PI_RCV_DATA_K_SIZE_MAX,
3575						 DMA_FROM_DEVICE);
3576				dev_kfree_skb(skb);
3577			}
3578			bp->p_rcv_buff_va[i+j] = NULL;
3579		}
3580
3581	}
3582#endif /* DYNAMIC_BUFFERS */
3583
3584/*
3585 * =================
3586 * = dfx_xmt_flush =
3587 * =================
3588 *
3589 * Overview:
3590 *   Processes all frames whether they've been transmitted
3591 *   or not.
3592 *
3593 * Returns:
3594 *   None
3595 *
3596 * Arguments:
3597 *   bp - pointer to board information
3598 *
3599 * Functional Description:
3600 *   For all produced transmit descriptors that have not
3601 *   yet been completed, we'll free the skb we were holding
3602 *   onto using dev_kfree_skb and bump the appropriate
3603 *   counters.  Of course, it's possible that some of
3604 *   these transmit requests actually did go out, but we
3605 *   won't make that distinction here.  Finally, we'll
3606 *   update the consumer index to match the producer.
3607 *
3608 * Return Codes:
3609 *   None
3610 *
3611 * Assumptions:
3612 *   This routine does NOT update the Type 2 register.  It
3613 *   is assumed that this routine is being called during a
3614 *   transmit flush interrupt, or a shutdown or close routine.
3615 *
3616 * Side Effects:
3617 *   None
3618 */
3619
3620static void dfx_xmt_flush( DFX_board_t *bp )
3621	{
3622	u32			prod_cons;		/* rcv/xmt consumer block longword */
3623	XMT_DRIVER_DESCR	*p_xmt_drv_descr;	/* ptr to transmit driver descriptor */
3624	u8			comp;			/* local transmit completion index */
3625
3626	/* Flush all outstanding transmit frames */
3627
3628	while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod)
3629		{
3630		/* Get pointer to the transmit driver descriptor block information */
3631
3632		p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]);
3633
3634		/* Return skb to operating system */
3635		comp = bp->rcv_xmt_reg.index.xmt_comp;
3636		dma_unmap_single(bp->bus_dev,
3637				 bp->descr_block_virt->xmt_data[comp].long_1,
3638				 p_xmt_drv_descr->p_skb->len,
3639				 DMA_TO_DEVICE);
3640		dev_kfree_skb(p_xmt_drv_descr->p_skb);
3641
3642		/* Increment transmit error counter */
3643
3644		bp->xmt_discards++;
3645
3646		/*
3647		 * Move to start of next packet by updating completion index
3648		 *
3649		 * Here we assume that a transmit packet request is always
3650		 * serviced by posting one fragment.  We can therefore
3651		 * simplify the completion code by incrementing the
3652		 * completion index by one.  This code will need to be
3653		 * modified if this assumption changes.  See comments
3654		 * in dfx_xmt_queue_pkt for more details.
3655		 */
3656
3657		bp->rcv_xmt_reg.index.xmt_comp += 1;
3658		}
3659
3660	/* Update the transmit consumer index in the consumer block */
3661
3662	prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX);
3663	prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX);
3664	bp->cons_block_virt->xmt_rcv_data = prod_cons;
3665	}
3666
3667/*
3668 * ==================
3669 * = dfx_unregister =
3670 * ==================
3671 *
3672 * Overview:
3673 *   Shuts down an FDDI controller
3674 *
3675 * Returns:
3676 *   Condition code
3677 *
3678 * Arguments:
3679 *   bdev - pointer to device information
3680 *
3681 * Functional Description:
3682 *
3683 * Return Codes:
3684 *   None
3685 *
3686 * Assumptions:
3687 *   It compiles so it should work :-( (PCI cards do :-)
3688 *
3689 * Side Effects:
3690 *   Device structures for FDDI adapters (fddi0, fddi1, etc) are
3691 *   freed.
3692 */
3693static void dfx_unregister(struct device *bdev)
3694{
3695	struct net_device *dev = dev_get_drvdata(bdev);
3696	DFX_board_t *bp = netdev_priv(dev);
3697	int dfx_bus_pci = dev_is_pci(bdev);
3698	int dfx_bus_tc = DFX_BUS_TC(bdev);
3699	int dfx_use_mmio = DFX_MMIO || dfx_bus_tc;
3700	resource_size_t bar_start[3];		/* pointers to ports */
3701	resource_size_t bar_len[3];		/* resource lengths */
3702	int		alloc_size;		/* total buffer size used */
3703
3704	unregister_netdev(dev);
3705
3706	alloc_size = sizeof(PI_DESCR_BLOCK) +
3707		     PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX +
3708#ifndef DYNAMIC_BUFFERS
3709		     (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) +
3710#endif
3711		     sizeof(PI_CONSUMER_BLOCK) +
3712		     (PI_ALIGN_K_DESC_BLK - 1);
3713	if (bp->kmalloced)
3714		dma_free_coherent(bdev, alloc_size,
3715				  bp->kmalloced, bp->kmalloced_dma);
3716
3717	dfx_bus_uninit(dev);
3718
3719	dfx_get_bars(bdev, bar_start, bar_len);
3720	if (bar_start[2] != 0)
3721		release_region(bar_start[2], bar_len[2]);
3722	if (bar_start[1] != 0)
3723		release_region(bar_start[1], bar_len[1]);
3724	if (dfx_use_mmio) {
3725		iounmap(bp->base.mem);
3726		release_mem_region(bar_start[0], bar_len[0]);
3727	} else
3728		release_region(bar_start[0], bar_len[0]);
3729
3730	if (dfx_bus_pci)
3731		pci_disable_device(to_pci_dev(bdev));
3732
3733	free_netdev(dev);
3734}
3735
3736
3737static int __maybe_unused dfx_dev_register(struct device *);
3738static int __maybe_unused dfx_dev_unregister(struct device *);
3739
3740#ifdef CONFIG_PCI
3741static int dfx_pci_register(struct pci_dev *, const struct pci_device_id *);
3742static void dfx_pci_unregister(struct pci_dev *);
3743
3744static const struct pci_device_id dfx_pci_table[] = {
3745	{ PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) },
3746	{ }
3747};
3748MODULE_DEVICE_TABLE(pci, dfx_pci_table);
3749
3750static struct pci_driver dfx_pci_driver = {
3751	.name		= "defxx",
3752	.id_table	= dfx_pci_table,
3753	.probe		= dfx_pci_register,
3754	.remove		= dfx_pci_unregister,
3755};
3756
3757static int dfx_pci_register(struct pci_dev *pdev,
3758			    const struct pci_device_id *ent)
3759{
3760	return dfx_register(&pdev->dev);
3761}
3762
3763static void dfx_pci_unregister(struct pci_dev *pdev)
3764{
3765	dfx_unregister(&pdev->dev);
3766}
3767#endif /* CONFIG_PCI */
3768
3769#ifdef CONFIG_EISA
3770static struct eisa_device_id dfx_eisa_table[] = {
3771        { "DEC3001", DEFEA_PROD_ID_1 },
3772        { "DEC3002", DEFEA_PROD_ID_2 },
3773        { "DEC3003", DEFEA_PROD_ID_3 },
3774        { "DEC3004", DEFEA_PROD_ID_4 },
3775        { }
3776};
3777MODULE_DEVICE_TABLE(eisa, dfx_eisa_table);
3778
3779static struct eisa_driver dfx_eisa_driver = {
3780	.id_table	= dfx_eisa_table,
3781	.driver		= {
3782		.name	= "defxx",
3783		.bus	= &eisa_bus_type,
3784		.probe	= dfx_dev_register,
3785		.remove	= dfx_dev_unregister,
3786	},
3787};
3788#endif /* CONFIG_EISA */
3789
3790#ifdef CONFIG_TC
3791static struct tc_device_id const dfx_tc_table[] = {
3792	{ "DEC     ", "PMAF-FA " },
3793	{ "DEC     ", "PMAF-FD " },
3794	{ "DEC     ", "PMAF-FS " },
3795	{ "DEC     ", "PMAF-FU " },
3796	{ }
3797};
3798MODULE_DEVICE_TABLE(tc, dfx_tc_table);
3799
3800static struct tc_driver dfx_tc_driver = {
3801	.id_table	= dfx_tc_table,
3802	.driver		= {
3803		.name	= "defxx",
3804		.bus	= &tc_bus_type,
3805		.probe	= dfx_dev_register,
3806		.remove	= dfx_dev_unregister,
3807	},
3808};
3809#endif /* CONFIG_TC */
3810
3811static int __maybe_unused dfx_dev_register(struct device *dev)
3812{
3813	int status;
3814
3815	status = dfx_register(dev);
3816	if (!status)
3817		get_device(dev);
3818	return status;
3819}
3820
3821static int __maybe_unused dfx_dev_unregister(struct device *dev)
3822{
3823	put_device(dev);
3824	dfx_unregister(dev);
3825	return 0;
3826}
3827
3828
3829static int dfx_init(void)
3830{
3831	int status;
3832
3833	status = pci_register_driver(&dfx_pci_driver);
3834	if (!status)
3835		status = eisa_driver_register(&dfx_eisa_driver);
3836	if (!status)
3837		status = tc_register_driver(&dfx_tc_driver);
3838	return status;
3839}
3840
3841static void dfx_cleanup(void)
3842{
3843	tc_unregister_driver(&dfx_tc_driver);
3844	eisa_driver_unregister(&dfx_eisa_driver);
3845	pci_unregister_driver(&dfx_pci_driver);
3846}
3847
3848module_init(dfx_init);
3849module_exit(dfx_cleanup);
3850MODULE_AUTHOR("Lawrence V. Stefani");
3851MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver "
3852		   DRV_VERSION " " DRV_RELDATE);
3853MODULE_LICENSE("GPL");
3854