1 /*
2  * Copyright 2012 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/moduleparam.h>
18 #include <linux/sched.h>
19 #include <linux/kernel.h>      /* printk() */
20 #include <linux/slab.h>        /* kmalloc() */
21 #include <linux/errno.h>       /* error codes */
22 #include <linux/types.h>       /* size_t */
23 #include <linux/interrupt.h>
24 #include <linux/in.h>
25 #include <linux/irq.h>
26 #include <linux/netdevice.h>   /* struct device, and other headers */
27 #include <linux/etherdevice.h> /* eth_type_trans */
28 #include <linux/skbuff.h>
29 #include <linux/ioctl.h>
30 #include <linux/cdev.h>
31 #include <linux/hugetlb.h>
32 #include <linux/in6.h>
33 #include <linux/timer.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <linux/io.h>
37 #include <linux/ctype.h>
38 #include <linux/ip.h>
39 #include <linux/ipv6.h>
40 #include <linux/tcp.h>
41 #include <linux/net_tstamp.h>
42 #include <linux/ptp_clock_kernel.h>
43 
44 #include <asm/checksum.h>
45 #include <asm/homecache.h>
46 #include <gxio/mpipe.h>
47 #include <arch/sim.h>
48 
49 /* Default transmit lockup timeout period, in jiffies. */
50 #define TILE_NET_TIMEOUT (5 * HZ)
51 
52 /* The maximum number of distinct channels (idesc.channel is 5 bits). */
53 #define TILE_NET_CHANNELS 32
54 
55 /* Maximum number of idescs to handle per "poll". */
56 #define TILE_NET_BATCH 128
57 
58 /* Maximum number of packets to handle per "poll". */
59 #define TILE_NET_WEIGHT 64
60 
61 /* Number of entries in each iqueue. */
62 #define IQUEUE_ENTRIES 512
63 
64 /* Number of entries in each equeue. */
65 #define EQUEUE_ENTRIES 2048
66 
67 /* Total header bytes per equeue slot.  Must be big enough for 2 bytes
68  * of NET_IP_ALIGN alignment, plus 14 bytes (?) of L2 header, plus up to
69  * 60 bytes of actual TCP header.  We round up to align to cache lines.
70  */
71 #define HEADER_BYTES 128
72 
73 /* Maximum completions per cpu per device (must be a power of two).
74  * ISSUE: What is the right number here?  If this is too small, then
75  * egress might block waiting for free space in a completions array.
76  * ISSUE: At the least, allocate these only for initialized echannels.
77  */
78 #define TILE_NET_MAX_COMPS 64
79 
80 #define MAX_FRAGS (MAX_SKB_FRAGS + 1)
81 
82 /* The "kinds" of buffer stacks (small/large/jumbo). */
83 #define MAX_KINDS 3
84 
85 /* Size of completions data to allocate.
86  * ISSUE: Probably more than needed since we don't use all the channels.
87  */
88 #define COMPS_SIZE (TILE_NET_CHANNELS * sizeof(struct tile_net_comps))
89 
90 /* Size of NotifRing data to allocate. */
91 #define NOTIF_RING_SIZE (IQUEUE_ENTRIES * sizeof(gxio_mpipe_idesc_t))
92 
93 /* Timeout to wake the per-device TX timer after we stop the queue.
94  * We don't want the timeout too short (adds overhead, and might end
95  * up causing stop/wake/stop/wake cycles) or too long (affects performance).
96  * For the 10 Gb NIC, 30 usec means roughly 30+ 1500-byte packets.
97  */
98 #define TX_TIMER_DELAY_USEC 30
99 
100 /* Timeout to wake the per-cpu egress timer to free completions. */
101 #define EGRESS_TIMER_DELAY_USEC 1000
102 
103 MODULE_AUTHOR("Tilera Corporation");
104 MODULE_LICENSE("GPL");
105 
106 /* A "packet fragment" (a chunk of memory). */
107 struct frag {
108 	void *buf;
109 	size_t length;
110 };
111 
112 /* A single completion. */
113 struct tile_net_comp {
114 	/* The "complete_count" when the completion will be complete. */
115 	s64 when;
116 	/* The buffer to be freed when the completion is complete. */
117 	struct sk_buff *skb;
118 };
119 
120 /* The completions for a given cpu and echannel. */
121 struct tile_net_comps {
122 	/* The completions. */
123 	struct tile_net_comp comp_queue[TILE_NET_MAX_COMPS];
124 	/* The number of completions used. */
125 	unsigned long comp_next;
126 	/* The number of completions freed. */
127 	unsigned long comp_last;
128 };
129 
130 /* The transmit wake timer for a given cpu and echannel. */
131 struct tile_net_tx_wake {
132 	int tx_queue_idx;
133 	struct hrtimer timer;
134 	struct net_device *dev;
135 };
136 
137 /* Info for a specific cpu. */
138 struct tile_net_info {
139 	/* Our cpu. */
140 	int my_cpu;
141 	/* A timer for handling egress completions. */
142 	struct hrtimer egress_timer;
143 	/* True if "egress_timer" is scheduled. */
144 	bool egress_timer_scheduled;
145 	struct info_mpipe {
146 		/* Packet queue. */
147 		gxio_mpipe_iqueue_t iqueue;
148 		/* The NAPI struct. */
149 		struct napi_struct napi;
150 		/* Number of buffers (by kind) which must still be provided. */
151 		unsigned int num_needed_buffers[MAX_KINDS];
152 		/* instance id. */
153 		int instance;
154 		/* True if iqueue is valid. */
155 		bool has_iqueue;
156 		/* NAPI flags. */
157 		bool napi_added;
158 		bool napi_enabled;
159 		/* Comps for each egress channel. */
160 		struct tile_net_comps *comps_for_echannel[TILE_NET_CHANNELS];
161 		/* Transmit wake timer for each egress channel. */
162 		struct tile_net_tx_wake tx_wake[TILE_NET_CHANNELS];
163 	} mpipe[NR_MPIPE_MAX];
164 };
165 
166 /* Info for egress on a particular egress channel. */
167 struct tile_net_egress {
168 	/* The "equeue". */
169 	gxio_mpipe_equeue_t *equeue;
170 	/* The headers for TSO. */
171 	unsigned char *headers;
172 };
173 
174 /* Info for a specific device. */
175 struct tile_net_priv {
176 	/* Our network device. */
177 	struct net_device *dev;
178 	/* The primary link. */
179 	gxio_mpipe_link_t link;
180 	/* The primary channel, if open, else -1. */
181 	int channel;
182 	/* The "loopify" egress link, if needed. */
183 	gxio_mpipe_link_t loopify_link;
184 	/* The "loopify" egress channel, if open, else -1. */
185 	int loopify_channel;
186 	/* The egress channel (channel or loopify_channel). */
187 	int echannel;
188 	/* mPIPE instance, 0 or 1. */
189 	int instance;
190 	/* The timestamp config. */
191 	struct hwtstamp_config stamp_cfg;
192 };
193 
194 static struct mpipe_data {
195 	/* The ingress irq. */
196 	int ingress_irq;
197 
198 	/* The "context" for all devices. */
199 	gxio_mpipe_context_t context;
200 
201 	/* Egress info, indexed by "priv->echannel"
202 	 * (lazily created as needed).
203 	 */
204 	struct tile_net_egress
205 	egress_for_echannel[TILE_NET_CHANNELS];
206 
207 	/* Devices currently associated with each channel.
208 	 * NOTE: The array entry can become NULL after ifconfig down, but
209 	 * we do not free the underlying net_device structures, so it is
210 	 * safe to use a pointer after reading it from this array.
211 	 */
212 	struct net_device
213 	*tile_net_devs_for_channel[TILE_NET_CHANNELS];
214 
215 	/* The actual memory allocated for the buffer stacks. */
216 	void *buffer_stack_vas[MAX_KINDS];
217 
218 	/* The amount of memory allocated for each buffer stack. */
219 	size_t buffer_stack_bytes[MAX_KINDS];
220 
221 	/* The first buffer stack index
222 	 * (small = +0, large = +1, jumbo = +2).
223 	 */
224 	int first_buffer_stack;
225 
226 	/* The buckets. */
227 	int first_bucket;
228 	int num_buckets;
229 
230 	/* PTP-specific data. */
231 	struct ptp_clock *ptp_clock;
232 	struct ptp_clock_info caps;
233 
234 	/* Lock for ptp accessors. */
235 	struct mutex ptp_lock;
236 
237 } mpipe_data[NR_MPIPE_MAX] = {
238 	[0 ... (NR_MPIPE_MAX - 1)] {
239 		.ingress_irq = -1,
240 		.first_buffer_stack = -1,
241 		.first_bucket = -1,
242 		.num_buckets = 1
243 	}
244 };
245 
246 /* A mutex for "tile_net_devs_for_channel". */
247 static DEFINE_MUTEX(tile_net_devs_for_channel_mutex);
248 
249 /* The per-cpu info. */
250 static DEFINE_PER_CPU(struct tile_net_info, per_cpu_info);
251 
252 
253 /* The buffer size enums for each buffer stack.
254  * See arch/tile/include/gxio/mpipe.h for the set of possible values.
255  * We avoid the "10384" size because it can induce "false chaining"
256  * on "cut-through" jumbo packets.
257  */
258 static gxio_mpipe_buffer_size_enum_t buffer_size_enums[MAX_KINDS] = {
259 	GXIO_MPIPE_BUFFER_SIZE_128,
260 	GXIO_MPIPE_BUFFER_SIZE_1664,
261 	GXIO_MPIPE_BUFFER_SIZE_16384
262 };
263 
264 /* Text value of tile_net.cpus if passed as a module parameter. */
265 static char *network_cpus_string;
266 
267 /* The actual cpus in "network_cpus". */
268 static struct cpumask network_cpus_map;
269 
270 /* If "tile_net.loopify=LINK" was specified, this is "LINK". */
271 static char *loopify_link_name;
272 
273 /* If "tile_net.custom" was specified, this is true. */
274 static bool custom_flag;
275 
276 /* If "tile_net.jumbo=NUM" was specified, this is "NUM". */
277 static uint jumbo_num;
278 
279 /* Obtain mpipe instance from struct tile_net_priv given struct net_device. */
mpipe_instance(struct net_device * dev)280 static inline int mpipe_instance(struct net_device *dev)
281 {
282 	struct tile_net_priv *priv = netdev_priv(dev);
283 	return priv->instance;
284 }
285 
286 /* The "tile_net.cpus" argument specifies the cpus that are dedicated
287  * to handle ingress packets.
288  *
289  * The parameter should be in the form "tile_net.cpus=m-n[,x-y]", where
290  * m, n, x, y are integer numbers that represent the cpus that can be
291  * neither a dedicated cpu nor a dataplane cpu.
292  */
network_cpus_init(void)293 static bool network_cpus_init(void)
294 {
295 	int rc;
296 
297 	if (network_cpus_string == NULL)
298 		return false;
299 
300 	rc = cpulist_parse_crop(network_cpus_string, &network_cpus_map);
301 	if (rc != 0) {
302 		pr_warn("tile_net.cpus=%s: malformed cpu list\n",
303 			network_cpus_string);
304 		return false;
305 	}
306 
307 	/* Remove dedicated cpus. */
308 	cpumask_and(&network_cpus_map, &network_cpus_map, cpu_possible_mask);
309 
310 	if (cpumask_empty(&network_cpus_map)) {
311 		pr_warn("Ignoring empty tile_net.cpus='%s'.\n",
312 			network_cpus_string);
313 		return false;
314 	}
315 
316 	pr_info("Linux network CPUs: %*pbl\n",
317 		cpumask_pr_args(&network_cpus_map));
318 	return true;
319 }
320 
321 module_param_named(cpus, network_cpus_string, charp, 0444);
322 MODULE_PARM_DESC(cpus, "cpulist of cores that handle network interrupts");
323 
324 /* The "tile_net.loopify=LINK" argument causes the named device to
325  * actually use "loop0" for ingress, and "loop1" for egress.  This
326  * allows an app to sit between the actual link and linux, passing
327  * (some) packets along to linux, and forwarding (some) packets sent
328  * out by linux.
329  */
330 module_param_named(loopify, loopify_link_name, charp, 0444);
331 MODULE_PARM_DESC(loopify, "name the device to use loop0/1 for ingress/egress");
332 
333 /* The "tile_net.custom" argument causes us to ignore the "conventional"
334  * classifier metadata, in particular, the "l2_offset".
335  */
336 module_param_named(custom, custom_flag, bool, 0444);
337 MODULE_PARM_DESC(custom, "indicates a (heavily) customized classifier");
338 
339 /* The "tile_net.jumbo" argument causes us to support "jumbo" packets,
340  * and to allocate the given number of "jumbo" buffers.
341  */
342 module_param_named(jumbo, jumbo_num, uint, 0444);
343 MODULE_PARM_DESC(jumbo, "the number of buffers to support jumbo packets");
344 
345 /* Atomically update a statistics field.
346  * Note that on TILE-Gx, this operation is fire-and-forget on the
347  * issuing core (single-cycle dispatch) and takes only a few cycles
348  * longer than a regular store when the request reaches the home cache.
349  * No expensive bus management overhead is required.
350  */
tile_net_stats_add(unsigned long value,unsigned long * field)351 static void tile_net_stats_add(unsigned long value, unsigned long *field)
352 {
353 	BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(unsigned long));
354 	atomic_long_add(value, (atomic_long_t *)field);
355 }
356 
357 /* Allocate and push a buffer. */
tile_net_provide_buffer(int instance,int kind)358 static bool tile_net_provide_buffer(int instance, int kind)
359 {
360 	struct mpipe_data *md = &mpipe_data[instance];
361 	gxio_mpipe_buffer_size_enum_t bse = buffer_size_enums[kind];
362 	size_t bs = gxio_mpipe_buffer_size_enum_to_buffer_size(bse);
363 	const unsigned long buffer_alignment = 128;
364 	struct sk_buff *skb;
365 	int len;
366 
367 	len = sizeof(struct sk_buff **) + buffer_alignment + bs;
368 	skb = dev_alloc_skb(len);
369 	if (skb == NULL)
370 		return false;
371 
372 	/* Make room for a back-pointer to 'skb' and guarantee alignment. */
373 	skb_reserve(skb, sizeof(struct sk_buff **));
374 	skb_reserve(skb, -(long)skb->data & (buffer_alignment - 1));
375 
376 	/* Save a back-pointer to 'skb'. */
377 	*(struct sk_buff **)(skb->data - sizeof(struct sk_buff **)) = skb;
378 
379 	/* Make sure "skb" and the back-pointer have been flushed. */
380 	wmb();
381 
382 	gxio_mpipe_push_buffer(&md->context, md->first_buffer_stack + kind,
383 			       (void *)va_to_tile_io_addr(skb->data));
384 
385 	return true;
386 }
387 
388 /* Convert a raw mpipe buffer to its matching skb pointer. */
mpipe_buf_to_skb(void * va)389 static struct sk_buff *mpipe_buf_to_skb(void *va)
390 {
391 	/* Acquire the associated "skb". */
392 	struct sk_buff **skb_ptr = va - sizeof(*skb_ptr);
393 	struct sk_buff *skb = *skb_ptr;
394 
395 	/* Paranoia. */
396 	if (skb->data != va) {
397 		/* Panic here since there's a reasonable chance
398 		 * that corrupt buffers means generic memory
399 		 * corruption, with unpredictable system effects.
400 		 */
401 		panic("Corrupt linux buffer! va=%p, skb=%p, skb->data=%p",
402 		      va, skb, skb->data);
403 	}
404 
405 	return skb;
406 }
407 
tile_net_pop_all_buffers(int instance,int stack)408 static void tile_net_pop_all_buffers(int instance, int stack)
409 {
410 	struct mpipe_data *md = &mpipe_data[instance];
411 
412 	for (;;) {
413 		tile_io_addr_t addr =
414 			(tile_io_addr_t)gxio_mpipe_pop_buffer(&md->context,
415 							      stack);
416 		if (addr == 0)
417 			break;
418 		dev_kfree_skb_irq(mpipe_buf_to_skb(tile_io_addr_to_va(addr)));
419 	}
420 }
421 
422 /* Provide linux buffers to mPIPE. */
tile_net_provide_needed_buffers(void)423 static void tile_net_provide_needed_buffers(void)
424 {
425 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
426 	int instance, kind;
427 	for (instance = 0; instance < NR_MPIPE_MAX &&
428 		     info->mpipe[instance].has_iqueue; instance++)	{
429 		for (kind = 0; kind < MAX_KINDS; kind++) {
430 			while (info->mpipe[instance].num_needed_buffers[kind]
431 			       != 0) {
432 				if (!tile_net_provide_buffer(instance, kind)) {
433 					pr_notice("Tile %d still needs"
434 						  " some buffers\n",
435 						  info->my_cpu);
436 					return;
437 				}
438 				info->mpipe[instance].
439 					num_needed_buffers[kind]--;
440 			}
441 		}
442 	}
443 }
444 
445 /* Get RX timestamp, and store it in the skb. */
tile_rx_timestamp(struct tile_net_priv * priv,struct sk_buff * skb,gxio_mpipe_idesc_t * idesc)446 static void tile_rx_timestamp(struct tile_net_priv *priv, struct sk_buff *skb,
447 			      gxio_mpipe_idesc_t *idesc)
448 {
449 	if (unlikely(priv->stamp_cfg.rx_filter != HWTSTAMP_FILTER_NONE)) {
450 		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
451 		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
452 		shhwtstamps->hwtstamp = ktime_set(idesc->time_stamp_sec,
453 						  idesc->time_stamp_ns);
454 	}
455 }
456 
457 /* Get TX timestamp, and store it in the skb. */
tile_tx_timestamp(struct sk_buff * skb,int instance)458 static void tile_tx_timestamp(struct sk_buff *skb, int instance)
459 {
460 	struct skb_shared_info *shtx = skb_shinfo(skb);
461 	if (unlikely((shtx->tx_flags & SKBTX_HW_TSTAMP) != 0)) {
462 		struct mpipe_data *md = &mpipe_data[instance];
463 		struct skb_shared_hwtstamps shhwtstamps;
464 		struct timespec ts;
465 
466 		shtx->tx_flags |= SKBTX_IN_PROGRESS;
467 		gxio_mpipe_get_timestamp(&md->context, &ts);
468 		memset(&shhwtstamps, 0, sizeof(shhwtstamps));
469 		shhwtstamps.hwtstamp = ktime_set(ts.tv_sec, ts.tv_nsec);
470 		skb_tstamp_tx(skb, &shhwtstamps);
471 	}
472 }
473 
474 /* Use ioctl() to enable or disable TX or RX timestamping. */
tile_hwtstamp_set(struct net_device * dev,struct ifreq * rq)475 static int tile_hwtstamp_set(struct net_device *dev, struct ifreq *rq)
476 {
477 	struct hwtstamp_config config;
478 	struct tile_net_priv *priv = netdev_priv(dev);
479 
480 	if (copy_from_user(&config, rq->ifr_data, sizeof(config)))
481 		return -EFAULT;
482 
483 	if (config.flags)  /* reserved for future extensions */
484 		return -EINVAL;
485 
486 	switch (config.tx_type) {
487 	case HWTSTAMP_TX_OFF:
488 	case HWTSTAMP_TX_ON:
489 		break;
490 	default:
491 		return -ERANGE;
492 	}
493 
494 	switch (config.rx_filter) {
495 	case HWTSTAMP_FILTER_NONE:
496 		break;
497 	case HWTSTAMP_FILTER_ALL:
498 	case HWTSTAMP_FILTER_SOME:
499 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
500 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
501 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
502 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
503 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
504 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
505 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
506 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
507 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
508 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
509 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
510 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
511 		config.rx_filter = HWTSTAMP_FILTER_ALL;
512 		break;
513 	default:
514 		return -ERANGE;
515 	}
516 
517 	if (copy_to_user(rq->ifr_data, &config, sizeof(config)))
518 		return -EFAULT;
519 
520 	priv->stamp_cfg = config;
521 	return 0;
522 }
523 
tile_hwtstamp_get(struct net_device * dev,struct ifreq * rq)524 static int tile_hwtstamp_get(struct net_device *dev, struct ifreq *rq)
525 {
526 	struct tile_net_priv *priv = netdev_priv(dev);
527 
528 	if (copy_to_user(rq->ifr_data, &priv->stamp_cfg,
529 			 sizeof(priv->stamp_cfg)))
530 		return -EFAULT;
531 
532 	return 0;
533 }
534 
filter_packet(struct net_device * dev,void * buf)535 static inline bool filter_packet(struct net_device *dev, void *buf)
536 {
537 	/* Filter packets received before we're up. */
538 	if (dev == NULL || !(dev->flags & IFF_UP))
539 		return true;
540 
541 	/* Filter out packets that aren't for us. */
542 	if (!(dev->flags & IFF_PROMISC) &&
543 	    !is_multicast_ether_addr(buf) &&
544 	    !ether_addr_equal(dev->dev_addr, buf))
545 		return true;
546 
547 	return false;
548 }
549 
tile_net_receive_skb(struct net_device * dev,struct sk_buff * skb,gxio_mpipe_idesc_t * idesc,unsigned long len)550 static void tile_net_receive_skb(struct net_device *dev, struct sk_buff *skb,
551 				 gxio_mpipe_idesc_t *idesc, unsigned long len)
552 {
553 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
554 	struct tile_net_priv *priv = netdev_priv(dev);
555 	int instance = priv->instance;
556 
557 	/* Encode the actual packet length. */
558 	skb_put(skb, len);
559 
560 	skb->protocol = eth_type_trans(skb, dev);
561 
562 	/* Acknowledge "good" hardware checksums. */
563 	if (idesc->cs && idesc->csum_seed_val == 0xFFFF)
564 		skb->ip_summed = CHECKSUM_UNNECESSARY;
565 
566 	/* Get RX timestamp from idesc. */
567 	tile_rx_timestamp(priv, skb, idesc);
568 
569 	napi_gro_receive(&info->mpipe[instance].napi, skb);
570 
571 	/* Update stats. */
572 	tile_net_stats_add(1, &dev->stats.rx_packets);
573 	tile_net_stats_add(len, &dev->stats.rx_bytes);
574 
575 	/* Need a new buffer. */
576 	if (idesc->size == buffer_size_enums[0])
577 		info->mpipe[instance].num_needed_buffers[0]++;
578 	else if (idesc->size == buffer_size_enums[1])
579 		info->mpipe[instance].num_needed_buffers[1]++;
580 	else
581 		info->mpipe[instance].num_needed_buffers[2]++;
582 }
583 
584 /* Handle a packet.  Return true if "processed", false if "filtered". */
tile_net_handle_packet(int instance,gxio_mpipe_idesc_t * idesc)585 static bool tile_net_handle_packet(int instance, gxio_mpipe_idesc_t *idesc)
586 {
587 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
588 	struct mpipe_data *md = &mpipe_data[instance];
589 	struct net_device *dev = md->tile_net_devs_for_channel[idesc->channel];
590 	uint8_t l2_offset;
591 	void *va;
592 	void *buf;
593 	unsigned long len;
594 	bool filter;
595 
596 	/* Drop packets for which no buffer was available (which can
597 	 * happen under heavy load), or for which the me/tr/ce flags
598 	 * are set (which can happen for jumbo cut-through packets,
599 	 * or with a customized classifier).
600 	 */
601 	if (idesc->be || idesc->me || idesc->tr || idesc->ce) {
602 		if (dev)
603 			tile_net_stats_add(1, &dev->stats.rx_errors);
604 		goto drop;
605 	}
606 
607 	/* Get the "l2_offset", if allowed. */
608 	l2_offset = custom_flag ? 0 : gxio_mpipe_idesc_get_l2_offset(idesc);
609 
610 	/* Get the VA (including NET_IP_ALIGN bytes of "headroom"). */
611 	va = tile_io_addr_to_va((unsigned long)idesc->va);
612 
613 	/* Get the actual packet start/length. */
614 	buf = va + l2_offset;
615 	len = idesc->l2_size - l2_offset;
616 
617 	/* Point "va" at the raw buffer. */
618 	va -= NET_IP_ALIGN;
619 
620 	filter = filter_packet(dev, buf);
621 	if (filter) {
622 		if (dev)
623 			tile_net_stats_add(1, &dev->stats.rx_dropped);
624 drop:
625 		gxio_mpipe_iqueue_drop(&info->mpipe[instance].iqueue, idesc);
626 	} else {
627 		struct sk_buff *skb = mpipe_buf_to_skb(va);
628 
629 		/* Skip headroom, and any custom header. */
630 		skb_reserve(skb, NET_IP_ALIGN + l2_offset);
631 
632 		tile_net_receive_skb(dev, skb, idesc, len);
633 	}
634 
635 	gxio_mpipe_iqueue_consume(&info->mpipe[instance].iqueue, idesc);
636 	return !filter;
637 }
638 
639 /* Handle some packets for the current CPU.
640  *
641  * This function handles up to TILE_NET_BATCH idescs per call.
642  *
643  * ISSUE: Since we do not provide new buffers until this function is
644  * complete, we must initially provide enough buffers for each network
645  * cpu to fill its iqueue and also its batched idescs.
646  *
647  * ISSUE: The "rotting packet" race condition occurs if a packet
648  * arrives after the queue appears to be empty, and before the
649  * hypervisor interrupt is re-enabled.
650  */
tile_net_poll(struct napi_struct * napi,int budget)651 static int tile_net_poll(struct napi_struct *napi, int budget)
652 {
653 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
654 	unsigned int work = 0;
655 	gxio_mpipe_idesc_t *idesc;
656 	int instance, i, n;
657 	struct mpipe_data *md;
658 	struct info_mpipe *info_mpipe =
659 		container_of(napi, struct info_mpipe, napi);
660 
661 	if (budget <= 0)
662 		goto done;
663 
664 	instance = info_mpipe->instance;
665 	while ((n = gxio_mpipe_iqueue_try_peek(
666 			&info_mpipe->iqueue,
667 			&idesc)) > 0) {
668 		for (i = 0; i < n; i++) {
669 			if (i == TILE_NET_BATCH)
670 				goto done;
671 			if (tile_net_handle_packet(instance,
672 						   idesc + i)) {
673 				if (++work >= budget)
674 					goto done;
675 			}
676 		}
677 	}
678 
679 	/* There are no packets left. */
680 	napi_complete(&info_mpipe->napi);
681 
682 	md = &mpipe_data[instance];
683 	/* Re-enable hypervisor interrupts. */
684 	gxio_mpipe_enable_notif_ring_interrupt(
685 		&md->context, info->mpipe[instance].iqueue.ring);
686 
687 	/* HACK: Avoid the "rotting packet" problem. */
688 	if (gxio_mpipe_iqueue_try_peek(&info_mpipe->iqueue, &idesc) > 0)
689 		napi_schedule(&info_mpipe->napi);
690 
691 	/* ISSUE: Handle completions? */
692 
693 done:
694 	tile_net_provide_needed_buffers();
695 
696 	return work;
697 }
698 
699 /* Handle an ingress interrupt from an instance on the current cpu. */
tile_net_handle_ingress_irq(int irq,void * id)700 static irqreturn_t tile_net_handle_ingress_irq(int irq, void *id)
701 {
702 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
703 	napi_schedule(&info->mpipe[(uint64_t)id].napi);
704 	return IRQ_HANDLED;
705 }
706 
707 /* Free some completions.  This must be called with interrupts blocked. */
tile_net_free_comps(gxio_mpipe_equeue_t * equeue,struct tile_net_comps * comps,int limit,bool force_update)708 static int tile_net_free_comps(gxio_mpipe_equeue_t *equeue,
709 				struct tile_net_comps *comps,
710 				int limit, bool force_update)
711 {
712 	int n = 0;
713 	while (comps->comp_last < comps->comp_next) {
714 		unsigned int cid = comps->comp_last % TILE_NET_MAX_COMPS;
715 		struct tile_net_comp *comp = &comps->comp_queue[cid];
716 		if (!gxio_mpipe_equeue_is_complete(equeue, comp->when,
717 						   force_update || n == 0))
718 			break;
719 		dev_kfree_skb_irq(comp->skb);
720 		comps->comp_last++;
721 		if (++n == limit)
722 			break;
723 	}
724 	return n;
725 }
726 
727 /* Add a completion.  This must be called with interrupts blocked.
728  * tile_net_equeue_try_reserve() will have ensured a free completion entry.
729  */
add_comp(gxio_mpipe_equeue_t * equeue,struct tile_net_comps * comps,uint64_t when,struct sk_buff * skb)730 static void add_comp(gxio_mpipe_equeue_t *equeue,
731 		     struct tile_net_comps *comps,
732 		     uint64_t when, struct sk_buff *skb)
733 {
734 	int cid = comps->comp_next % TILE_NET_MAX_COMPS;
735 	comps->comp_queue[cid].when = when;
736 	comps->comp_queue[cid].skb = skb;
737 	comps->comp_next++;
738 }
739 
tile_net_schedule_tx_wake_timer(struct net_device * dev,int tx_queue_idx)740 static void tile_net_schedule_tx_wake_timer(struct net_device *dev,
741                                             int tx_queue_idx)
742 {
743 	struct tile_net_info *info = &per_cpu(per_cpu_info, tx_queue_idx);
744 	struct tile_net_priv *priv = netdev_priv(dev);
745 	int instance = priv->instance;
746 	struct tile_net_tx_wake *tx_wake =
747 		&info->mpipe[instance].tx_wake[priv->echannel];
748 
749 	hrtimer_start(&tx_wake->timer,
750 		      ktime_set(0, TX_TIMER_DELAY_USEC * 1000UL),
751 		      HRTIMER_MODE_REL_PINNED);
752 }
753 
tile_net_handle_tx_wake_timer(struct hrtimer * t)754 static enum hrtimer_restart tile_net_handle_tx_wake_timer(struct hrtimer *t)
755 {
756 	struct tile_net_tx_wake *tx_wake =
757 		container_of(t, struct tile_net_tx_wake, timer);
758 	netif_wake_subqueue(tx_wake->dev, tx_wake->tx_queue_idx);
759 	return HRTIMER_NORESTART;
760 }
761 
762 /* Make sure the egress timer is scheduled. */
tile_net_schedule_egress_timer(void)763 static void tile_net_schedule_egress_timer(void)
764 {
765 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
766 
767 	if (!info->egress_timer_scheduled) {
768 		hrtimer_start(&info->egress_timer,
769 			      ktime_set(0, EGRESS_TIMER_DELAY_USEC * 1000UL),
770 			      HRTIMER_MODE_REL_PINNED);
771 		info->egress_timer_scheduled = true;
772 	}
773 }
774 
775 /* The "function" for "info->egress_timer".
776  *
777  * This timer will reschedule itself as long as there are any pending
778  * completions expected for this tile.
779  */
tile_net_handle_egress_timer(struct hrtimer * t)780 static enum hrtimer_restart tile_net_handle_egress_timer(struct hrtimer *t)
781 {
782 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
783 	unsigned long irqflags;
784 	bool pending = false;
785 	int i, instance;
786 
787 	local_irq_save(irqflags);
788 
789 	/* The timer is no longer scheduled. */
790 	info->egress_timer_scheduled = false;
791 
792 	/* Free all possible comps for this tile. */
793 	for (instance = 0; instance < NR_MPIPE_MAX &&
794 		     info->mpipe[instance].has_iqueue; instance++) {
795 		for (i = 0; i < TILE_NET_CHANNELS; i++) {
796 			struct tile_net_egress *egress =
797 				&mpipe_data[instance].egress_for_echannel[i];
798 			struct tile_net_comps *comps =
799 				info->mpipe[instance].comps_for_echannel[i];
800 			if (!egress || comps->comp_last >= comps->comp_next)
801 				continue;
802 			tile_net_free_comps(egress->equeue, comps, -1, true);
803 			pending = pending ||
804 				(comps->comp_last < comps->comp_next);
805 		}
806 	}
807 
808 	/* Reschedule timer if needed. */
809 	if (pending)
810 		tile_net_schedule_egress_timer();
811 
812 	local_irq_restore(irqflags);
813 
814 	return HRTIMER_NORESTART;
815 }
816 
817 /* PTP clock operations. */
818 
ptp_mpipe_adjfreq(struct ptp_clock_info * ptp,s32 ppb)819 static int ptp_mpipe_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
820 {
821 	int ret = 0;
822 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
823 	mutex_lock(&md->ptp_lock);
824 	if (gxio_mpipe_adjust_timestamp_freq(&md->context, ppb))
825 		ret = -EINVAL;
826 	mutex_unlock(&md->ptp_lock);
827 	return ret;
828 }
829 
ptp_mpipe_adjtime(struct ptp_clock_info * ptp,s64 delta)830 static int ptp_mpipe_adjtime(struct ptp_clock_info *ptp, s64 delta)
831 {
832 	int ret = 0;
833 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
834 	mutex_lock(&md->ptp_lock);
835 	if (gxio_mpipe_adjust_timestamp(&md->context, delta))
836 		ret = -EBUSY;
837 	mutex_unlock(&md->ptp_lock);
838 	return ret;
839 }
840 
ptp_mpipe_gettime(struct ptp_clock_info * ptp,struct timespec64 * ts)841 static int ptp_mpipe_gettime(struct ptp_clock_info *ptp,
842 			     struct timespec64 *ts)
843 {
844 	int ret = 0;
845 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
846 	mutex_lock(&md->ptp_lock);
847 	if (gxio_mpipe_get_timestamp(&md->context, ts))
848 		ret = -EBUSY;
849 	mutex_unlock(&md->ptp_lock);
850 	return ret;
851 }
852 
ptp_mpipe_settime(struct ptp_clock_info * ptp,const struct timespec64 * ts)853 static int ptp_mpipe_settime(struct ptp_clock_info *ptp,
854 			     const struct timespec64 *ts)
855 {
856 	int ret = 0;
857 	struct mpipe_data *md = container_of(ptp, struct mpipe_data, caps);
858 	mutex_lock(&md->ptp_lock);
859 	if (gxio_mpipe_set_timestamp(&md->context, ts))
860 		ret = -EBUSY;
861 	mutex_unlock(&md->ptp_lock);
862 	return ret;
863 }
864 
ptp_mpipe_enable(struct ptp_clock_info * ptp,struct ptp_clock_request * request,int on)865 static int ptp_mpipe_enable(struct ptp_clock_info *ptp,
866 			    struct ptp_clock_request *request, int on)
867 {
868 	return -EOPNOTSUPP;
869 }
870 
871 static struct ptp_clock_info ptp_mpipe_caps = {
872 	.owner		= THIS_MODULE,
873 	.name		= "mPIPE clock",
874 	.max_adj	= 999999999,
875 	.n_ext_ts	= 0,
876 	.n_pins		= 0,
877 	.pps		= 0,
878 	.adjfreq	= ptp_mpipe_adjfreq,
879 	.adjtime	= ptp_mpipe_adjtime,
880 	.gettime64	= ptp_mpipe_gettime,
881 	.settime64	= ptp_mpipe_settime,
882 	.enable		= ptp_mpipe_enable,
883 };
884 
885 /* Sync mPIPE's timestamp up with Linux system time and register PTP clock. */
register_ptp_clock(struct net_device * dev,struct mpipe_data * md)886 static void register_ptp_clock(struct net_device *dev, struct mpipe_data *md)
887 {
888 	struct timespec ts;
889 
890 	getnstimeofday(&ts);
891 	gxio_mpipe_set_timestamp(&md->context, &ts);
892 
893 	mutex_init(&md->ptp_lock);
894 	md->caps = ptp_mpipe_caps;
895 	md->ptp_clock = ptp_clock_register(&md->caps, NULL);
896 	if (IS_ERR(md->ptp_clock))
897 		netdev_err(dev, "ptp_clock_register failed %ld\n",
898 			   PTR_ERR(md->ptp_clock));
899 }
900 
901 /* Initialize PTP fields in a new device. */
init_ptp_dev(struct tile_net_priv * priv)902 static void init_ptp_dev(struct tile_net_priv *priv)
903 {
904 	priv->stamp_cfg.rx_filter = HWTSTAMP_FILTER_NONE;
905 	priv->stamp_cfg.tx_type = HWTSTAMP_TX_OFF;
906 }
907 
908 /* Helper functions for "tile_net_update()". */
enable_ingress_irq(void * irq)909 static void enable_ingress_irq(void *irq)
910 {
911 	enable_percpu_irq((long)irq, 0);
912 }
913 
disable_ingress_irq(void * irq)914 static void disable_ingress_irq(void *irq)
915 {
916 	disable_percpu_irq((long)irq);
917 }
918 
919 /* Helper function for tile_net_open() and tile_net_stop().
920  * Always called under tile_net_devs_for_channel_mutex.
921  */
tile_net_update(struct net_device * dev)922 static int tile_net_update(struct net_device *dev)
923 {
924 	static gxio_mpipe_rules_t rules;  /* too big to fit on the stack */
925 	bool saw_channel = false;
926 	int instance = mpipe_instance(dev);
927 	struct mpipe_data *md = &mpipe_data[instance];
928 	int channel;
929 	int rc;
930 	int cpu;
931 
932 	saw_channel = false;
933 	gxio_mpipe_rules_init(&rules, &md->context);
934 
935 	for (channel = 0; channel < TILE_NET_CHANNELS; channel++) {
936 		if (md->tile_net_devs_for_channel[channel] == NULL)
937 			continue;
938 		if (!saw_channel) {
939 			saw_channel = true;
940 			gxio_mpipe_rules_begin(&rules, md->first_bucket,
941 					       md->num_buckets, NULL);
942 			gxio_mpipe_rules_set_headroom(&rules, NET_IP_ALIGN);
943 		}
944 		gxio_mpipe_rules_add_channel(&rules, channel);
945 	}
946 
947 	/* NOTE: This can fail if there is no classifier.
948 	 * ISSUE: Can anything else cause it to fail?
949 	 */
950 	rc = gxio_mpipe_rules_commit(&rules);
951 	if (rc != 0) {
952 		netdev_warn(dev, "gxio_mpipe_rules_commit: mpipe[%d] %d\n",
953 			    instance, rc);
954 		return -EIO;
955 	}
956 
957 	/* Update all cpus, sequentially (to protect "netif_napi_add()").
958 	 * We use on_each_cpu to handle the IPI mask or unmask.
959 	 */
960 	if (!saw_channel)
961 		on_each_cpu(disable_ingress_irq,
962 			    (void *)(long)(md->ingress_irq), 1);
963 	for_each_online_cpu(cpu) {
964 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
965 
966 		if (!info->mpipe[instance].has_iqueue)
967 			continue;
968 		if (saw_channel) {
969 			if (!info->mpipe[instance].napi_added) {
970 				netif_napi_add(dev, &info->mpipe[instance].napi,
971 					       tile_net_poll, TILE_NET_WEIGHT);
972 				info->mpipe[instance].napi_added = true;
973 			}
974 			if (!info->mpipe[instance].napi_enabled) {
975 				napi_enable(&info->mpipe[instance].napi);
976 				info->mpipe[instance].napi_enabled = true;
977 			}
978 		} else {
979 			if (info->mpipe[instance].napi_enabled) {
980 				napi_disable(&info->mpipe[instance].napi);
981 				info->mpipe[instance].napi_enabled = false;
982 			}
983 			/* FIXME: Drain the iqueue. */
984 		}
985 	}
986 	if (saw_channel)
987 		on_each_cpu(enable_ingress_irq,
988 			    (void *)(long)(md->ingress_irq), 1);
989 
990 	/* HACK: Allow packets to flow in the simulator. */
991 	if (saw_channel)
992 		sim_enable_mpipe_links(instance, -1);
993 
994 	return 0;
995 }
996 
997 /* Initialize a buffer stack. */
create_buffer_stack(struct net_device * dev,int kind,size_t num_buffers)998 static int create_buffer_stack(struct net_device *dev,
999 			       int kind, size_t num_buffers)
1000 {
1001 	pte_t hash_pte = pte_set_home((pte_t) { 0 }, PAGE_HOME_HASH);
1002 	int instance = mpipe_instance(dev);
1003 	struct mpipe_data *md = &mpipe_data[instance];
1004 	size_t needed = gxio_mpipe_calc_buffer_stack_bytes(num_buffers);
1005 	int stack_idx = md->first_buffer_stack + kind;
1006 	void *va;
1007 	int i, rc;
1008 
1009 	/* Round up to 64KB and then use alloc_pages() so we get the
1010 	 * required 64KB alignment.
1011 	 */
1012 	md->buffer_stack_bytes[kind] =
1013 		ALIGN(needed, 64 * 1024);
1014 
1015 	va = alloc_pages_exact(md->buffer_stack_bytes[kind], GFP_KERNEL);
1016 	if (va == NULL) {
1017 		netdev_err(dev,
1018 			   "Could not alloc %zd bytes for buffer stack %d\n",
1019 			   md->buffer_stack_bytes[kind], kind);
1020 		return -ENOMEM;
1021 	}
1022 
1023 	/* Initialize the buffer stack. */
1024 	rc = gxio_mpipe_init_buffer_stack(&md->context, stack_idx,
1025 					  buffer_size_enums[kind],  va,
1026 					  md->buffer_stack_bytes[kind], 0);
1027 	if (rc != 0) {
1028 		netdev_err(dev, "gxio_mpipe_init_buffer_stack: mpipe[%d] %d\n",
1029 			   instance, rc);
1030 		free_pages_exact(va, md->buffer_stack_bytes[kind]);
1031 		return rc;
1032 	}
1033 
1034 	md->buffer_stack_vas[kind] = va;
1035 
1036 	rc = gxio_mpipe_register_client_memory(&md->context, stack_idx,
1037 					       hash_pte, 0);
1038 	if (rc != 0) {
1039 		netdev_err(dev,
1040 			   "gxio_mpipe_register_client_memory: mpipe[%d] %d\n",
1041 			   instance, rc);
1042 		return rc;
1043 	}
1044 
1045 	/* Provide initial buffers. */
1046 	for (i = 0; i < num_buffers; i++) {
1047 		if (!tile_net_provide_buffer(instance, kind)) {
1048 			netdev_err(dev, "Cannot allocate initial sk_bufs!\n");
1049 			return -ENOMEM;
1050 		}
1051 	}
1052 
1053 	return 0;
1054 }
1055 
1056 /* Allocate and initialize mpipe buffer stacks, and register them in
1057  * the mPIPE TLBs, for small, large, and (possibly) jumbo packet sizes.
1058  * This routine supports tile_net_init_mpipe(), below.
1059  */
init_buffer_stacks(struct net_device * dev,int network_cpus_count)1060 static int init_buffer_stacks(struct net_device *dev,
1061 			      int network_cpus_count)
1062 {
1063 	int num_kinds = MAX_KINDS - (jumbo_num == 0);
1064 	size_t num_buffers;
1065 	int rc;
1066 	int instance = mpipe_instance(dev);
1067 	struct mpipe_data *md = &mpipe_data[instance];
1068 
1069 	/* Allocate the buffer stacks. */
1070 	rc = gxio_mpipe_alloc_buffer_stacks(&md->context, num_kinds, 0, 0);
1071 	if (rc < 0) {
1072 		netdev_err(dev,
1073 			   "gxio_mpipe_alloc_buffer_stacks: mpipe[%d] %d\n",
1074 			   instance, rc);
1075 		return rc;
1076 	}
1077 	md->first_buffer_stack = rc;
1078 
1079 	/* Enough small/large buffers to (normally) avoid buffer errors. */
1080 	num_buffers =
1081 		network_cpus_count * (IQUEUE_ENTRIES + TILE_NET_BATCH);
1082 
1083 	/* Allocate the small memory stack. */
1084 	if (rc >= 0)
1085 		rc = create_buffer_stack(dev, 0, num_buffers);
1086 
1087 	/* Allocate the large buffer stack. */
1088 	if (rc >= 0)
1089 		rc = create_buffer_stack(dev, 1, num_buffers);
1090 
1091 	/* Allocate the jumbo buffer stack if needed. */
1092 	if (rc >= 0 && jumbo_num != 0)
1093 		rc = create_buffer_stack(dev, 2, jumbo_num);
1094 
1095 	return rc;
1096 }
1097 
1098 /* Allocate per-cpu resources (memory for completions and idescs).
1099  * This routine supports tile_net_init_mpipe(), below.
1100  */
alloc_percpu_mpipe_resources(struct net_device * dev,int cpu,int ring)1101 static int alloc_percpu_mpipe_resources(struct net_device *dev,
1102 					int cpu, int ring)
1103 {
1104 	struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1105 	int order, i, rc;
1106 	int instance = mpipe_instance(dev);
1107 	struct mpipe_data *md = &mpipe_data[instance];
1108 	struct page *page;
1109 	void *addr;
1110 
1111 	/* Allocate the "comps". */
1112 	order = get_order(COMPS_SIZE);
1113 	page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1114 	if (page == NULL) {
1115 		netdev_err(dev, "Failed to alloc %zd bytes comps memory\n",
1116 			   COMPS_SIZE);
1117 		return -ENOMEM;
1118 	}
1119 	addr = pfn_to_kaddr(page_to_pfn(page));
1120 	memset(addr, 0, COMPS_SIZE);
1121 	for (i = 0; i < TILE_NET_CHANNELS; i++)
1122 		info->mpipe[instance].comps_for_echannel[i] =
1123 			addr + i * sizeof(struct tile_net_comps);
1124 
1125 	/* If this is a network cpu, create an iqueue. */
1126 	if (cpumask_test_cpu(cpu, &network_cpus_map)) {
1127 		order = get_order(NOTIF_RING_SIZE);
1128 		page = homecache_alloc_pages(GFP_KERNEL, order, cpu);
1129 		if (page == NULL) {
1130 			netdev_err(dev,
1131 				   "Failed to alloc %zd bytes iqueue memory\n",
1132 				   NOTIF_RING_SIZE);
1133 			return -ENOMEM;
1134 		}
1135 		addr = pfn_to_kaddr(page_to_pfn(page));
1136 		rc = gxio_mpipe_iqueue_init(&info->mpipe[instance].iqueue,
1137 					    &md->context, ring++, addr,
1138 					    NOTIF_RING_SIZE, 0);
1139 		if (rc < 0) {
1140 			netdev_err(dev,
1141 				   "gxio_mpipe_iqueue_init failed: %d\n", rc);
1142 			return rc;
1143 		}
1144 		info->mpipe[instance].has_iqueue = true;
1145 	}
1146 
1147 	return ring;
1148 }
1149 
1150 /* Initialize NotifGroup and buckets.
1151  * This routine supports tile_net_init_mpipe(), below.
1152  */
init_notif_group_and_buckets(struct net_device * dev,int ring,int network_cpus_count)1153 static int init_notif_group_and_buckets(struct net_device *dev,
1154 					int ring, int network_cpus_count)
1155 {
1156 	int group, rc;
1157 	int instance = mpipe_instance(dev);
1158 	struct mpipe_data *md = &mpipe_data[instance];
1159 
1160 	/* Allocate one NotifGroup. */
1161 	rc = gxio_mpipe_alloc_notif_groups(&md->context, 1, 0, 0);
1162 	if (rc < 0) {
1163 		netdev_err(dev, "gxio_mpipe_alloc_notif_groups: mpipe[%d] %d\n",
1164 			   instance, rc);
1165 		return rc;
1166 	}
1167 	group = rc;
1168 
1169 	/* Initialize global num_buckets value. */
1170 	if (network_cpus_count > 4)
1171 		md->num_buckets = 256;
1172 	else if (network_cpus_count > 1)
1173 		md->num_buckets = 16;
1174 
1175 	/* Allocate some buckets, and set global first_bucket value. */
1176 	rc = gxio_mpipe_alloc_buckets(&md->context, md->num_buckets, 0, 0);
1177 	if (rc < 0) {
1178 		netdev_err(dev, "gxio_mpipe_alloc_buckets: mpipe[%d] %d\n",
1179 			   instance, rc);
1180 		return rc;
1181 	}
1182 	md->first_bucket = rc;
1183 
1184 	/* Init group and buckets. */
1185 	rc = gxio_mpipe_init_notif_group_and_buckets(
1186 		&md->context, group, ring, network_cpus_count,
1187 		md->first_bucket, md->num_buckets,
1188 		GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY);
1189 	if (rc != 0) {
1190 		netdev_err(dev,	"gxio_mpipe_init_notif_group_and_buckets: "
1191 			   "mpipe[%d] %d\n", instance, rc);
1192 		return rc;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 /* Create an irq and register it, then activate the irq and request
1199  * interrupts on all cores.  Note that "ingress_irq" being initialized
1200  * is how we know not to call tile_net_init_mpipe() again.
1201  * This routine supports tile_net_init_mpipe(), below.
1202  */
tile_net_setup_interrupts(struct net_device * dev)1203 static int tile_net_setup_interrupts(struct net_device *dev)
1204 {
1205 	int cpu, rc, irq;
1206 	int instance = mpipe_instance(dev);
1207 	struct mpipe_data *md = &mpipe_data[instance];
1208 
1209 	irq = md->ingress_irq;
1210 	if (irq < 0) {
1211 		irq = irq_alloc_hwirq(-1);
1212 		if (!irq) {
1213 			netdev_err(dev,
1214 				   "create_irq failed: mpipe[%d] %d\n",
1215 				   instance, irq);
1216 			return irq;
1217 		}
1218 		tile_irq_activate(irq, TILE_IRQ_PERCPU);
1219 
1220 		rc = request_irq(irq, tile_net_handle_ingress_irq,
1221 				 0, "tile_net", (void *)((uint64_t)instance));
1222 
1223 		if (rc != 0) {
1224 			netdev_err(dev, "request_irq failed: mpipe[%d] %d\n",
1225 				   instance, rc);
1226 			irq_free_hwirq(irq);
1227 			return rc;
1228 		}
1229 		md->ingress_irq = irq;
1230 	}
1231 
1232 	for_each_online_cpu(cpu) {
1233 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1234 		if (info->mpipe[instance].has_iqueue) {
1235 			gxio_mpipe_request_notif_ring_interrupt(&md->context,
1236 				cpu_x(cpu), cpu_y(cpu), KERNEL_PL, irq,
1237 				info->mpipe[instance].iqueue.ring);
1238 		}
1239 	}
1240 
1241 	return 0;
1242 }
1243 
1244 /* Undo any state set up partially by a failed call to tile_net_init_mpipe. */
tile_net_init_mpipe_fail(int instance)1245 static void tile_net_init_mpipe_fail(int instance)
1246 {
1247 	int kind, cpu;
1248 	struct mpipe_data *md = &mpipe_data[instance];
1249 
1250 	/* Do cleanups that require the mpipe context first. */
1251 	for (kind = 0; kind < MAX_KINDS; kind++) {
1252 		if (md->buffer_stack_vas[kind] != NULL) {
1253 			tile_net_pop_all_buffers(instance,
1254 						 md->first_buffer_stack +
1255 						 kind);
1256 		}
1257 	}
1258 
1259 	/* Destroy mpipe context so the hardware no longer owns any memory. */
1260 	gxio_mpipe_destroy(&md->context);
1261 
1262 	for_each_online_cpu(cpu) {
1263 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1264 		free_pages(
1265 			(unsigned long)(
1266 				info->mpipe[instance].comps_for_echannel[0]),
1267 			get_order(COMPS_SIZE));
1268 		info->mpipe[instance].comps_for_echannel[0] = NULL;
1269 		free_pages((unsigned long)(info->mpipe[instance].iqueue.idescs),
1270 			   get_order(NOTIF_RING_SIZE));
1271 		info->mpipe[instance].iqueue.idescs = NULL;
1272 	}
1273 
1274 	for (kind = 0; kind < MAX_KINDS; kind++) {
1275 		if (md->buffer_stack_vas[kind] != NULL) {
1276 			free_pages_exact(md->buffer_stack_vas[kind],
1277 					 md->buffer_stack_bytes[kind]);
1278 			md->buffer_stack_vas[kind] = NULL;
1279 		}
1280 	}
1281 
1282 	md->first_buffer_stack = -1;
1283 	md->first_bucket = -1;
1284 }
1285 
1286 /* The first time any tilegx network device is opened, we initialize
1287  * the global mpipe state.  If this step fails, we fail to open the
1288  * device, but if it succeeds, we never need to do it again, and since
1289  * tile_net can't be unloaded, we never undo it.
1290  *
1291  * Note that some resources in this path (buffer stack indices,
1292  * bindings from init_buffer_stack, etc.) are hypervisor resources
1293  * that are freed implicitly by gxio_mpipe_destroy().
1294  */
tile_net_init_mpipe(struct net_device * dev)1295 static int tile_net_init_mpipe(struct net_device *dev)
1296 {
1297 	int rc;
1298 	int cpu;
1299 	int first_ring, ring;
1300 	int instance = mpipe_instance(dev);
1301 	struct mpipe_data *md = &mpipe_data[instance];
1302 	int network_cpus_count = cpumask_weight(&network_cpus_map);
1303 
1304 	if (!hash_default) {
1305 		netdev_err(dev, "Networking requires hash_default!\n");
1306 		return -EIO;
1307 	}
1308 
1309 	rc = gxio_mpipe_init(&md->context, instance);
1310 	if (rc != 0) {
1311 		netdev_err(dev, "gxio_mpipe_init: mpipe[%d] %d\n",
1312 			   instance, rc);
1313 		return -EIO;
1314 	}
1315 
1316 	/* Set up the buffer stacks. */
1317 	rc = init_buffer_stacks(dev, network_cpus_count);
1318 	if (rc != 0)
1319 		goto fail;
1320 
1321 	/* Allocate one NotifRing for each network cpu. */
1322 	rc = gxio_mpipe_alloc_notif_rings(&md->context,
1323 					  network_cpus_count, 0, 0);
1324 	if (rc < 0) {
1325 		netdev_err(dev, "gxio_mpipe_alloc_notif_rings failed %d\n",
1326 			   rc);
1327 		goto fail;
1328 	}
1329 
1330 	/* Init NotifRings per-cpu. */
1331 	first_ring = rc;
1332 	ring = first_ring;
1333 	for_each_online_cpu(cpu) {
1334 		rc = alloc_percpu_mpipe_resources(dev, cpu, ring);
1335 		if (rc < 0)
1336 			goto fail;
1337 		ring = rc;
1338 	}
1339 
1340 	/* Initialize NotifGroup and buckets. */
1341 	rc = init_notif_group_and_buckets(dev, first_ring, network_cpus_count);
1342 	if (rc != 0)
1343 		goto fail;
1344 
1345 	/* Create and enable interrupts. */
1346 	rc = tile_net_setup_interrupts(dev);
1347 	if (rc != 0)
1348 		goto fail;
1349 
1350 	/* Register PTP clock and set mPIPE timestamp, if configured. */
1351 	register_ptp_clock(dev, md);
1352 
1353 	return 0;
1354 
1355 fail:
1356 	tile_net_init_mpipe_fail(instance);
1357 	return rc;
1358 }
1359 
1360 /* Create persistent egress info for a given egress channel.
1361  * Note that this may be shared between, say, "gbe0" and "xgbe0".
1362  * ISSUE: Defer header allocation until TSO is actually needed?
1363  */
tile_net_init_egress(struct net_device * dev,int echannel)1364 static int tile_net_init_egress(struct net_device *dev, int echannel)
1365 {
1366 	static int ering = -1;
1367 	struct page *headers_page, *edescs_page, *equeue_page;
1368 	gxio_mpipe_edesc_t *edescs;
1369 	gxio_mpipe_equeue_t *equeue;
1370 	unsigned char *headers;
1371 	int headers_order, edescs_order, equeue_order;
1372 	size_t edescs_size;
1373 	int rc = -ENOMEM;
1374 	int instance = mpipe_instance(dev);
1375 	struct mpipe_data *md = &mpipe_data[instance];
1376 
1377 	/* Only initialize once. */
1378 	if (md->egress_for_echannel[echannel].equeue != NULL)
1379 		return 0;
1380 
1381 	/* Allocate memory for the "headers". */
1382 	headers_order = get_order(EQUEUE_ENTRIES * HEADER_BYTES);
1383 	headers_page = alloc_pages(GFP_KERNEL, headers_order);
1384 	if (headers_page == NULL) {
1385 		netdev_warn(dev,
1386 			    "Could not alloc %zd bytes for TSO headers.\n",
1387 			    PAGE_SIZE << headers_order);
1388 		goto fail;
1389 	}
1390 	headers = pfn_to_kaddr(page_to_pfn(headers_page));
1391 
1392 	/* Allocate memory for the "edescs". */
1393 	edescs_size = EQUEUE_ENTRIES * sizeof(*edescs);
1394 	edescs_order = get_order(edescs_size);
1395 	edescs_page = alloc_pages(GFP_KERNEL, edescs_order);
1396 	if (edescs_page == NULL) {
1397 		netdev_warn(dev,
1398 			    "Could not alloc %zd bytes for eDMA ring.\n",
1399 			    edescs_size);
1400 		goto fail_headers;
1401 	}
1402 	edescs = pfn_to_kaddr(page_to_pfn(edescs_page));
1403 
1404 	/* Allocate memory for the "equeue". */
1405 	equeue_order = get_order(sizeof(*equeue));
1406 	equeue_page = alloc_pages(GFP_KERNEL, equeue_order);
1407 	if (equeue_page == NULL) {
1408 		netdev_warn(dev,
1409 			    "Could not alloc %zd bytes for equeue info.\n",
1410 			    PAGE_SIZE << equeue_order);
1411 		goto fail_edescs;
1412 	}
1413 	equeue = pfn_to_kaddr(page_to_pfn(equeue_page));
1414 
1415 	/* Allocate an edma ring (using a one entry "free list"). */
1416 	if (ering < 0) {
1417 		rc = gxio_mpipe_alloc_edma_rings(&md->context, 1, 0, 0);
1418 		if (rc < 0) {
1419 			netdev_warn(dev, "gxio_mpipe_alloc_edma_rings: "
1420 				    "mpipe[%d] %d\n", instance, rc);
1421 			goto fail_equeue;
1422 		}
1423 		ering = rc;
1424 	}
1425 
1426 	/* Initialize the equeue. */
1427 	rc = gxio_mpipe_equeue_init(equeue, &md->context, ering, echannel,
1428 				    edescs, edescs_size, 0);
1429 	if (rc != 0) {
1430 		netdev_err(dev, "gxio_mpipe_equeue_init: mpipe[%d] %d\n",
1431 			   instance, rc);
1432 		goto fail_equeue;
1433 	}
1434 
1435 	/* Don't reuse the ering later. */
1436 	ering = -1;
1437 
1438 	if (jumbo_num != 0) {
1439 		/* Make sure "jumbo" packets can be egressed safely. */
1440 		if (gxio_mpipe_equeue_set_snf_size(equeue, 10368) < 0) {
1441 			/* ISSUE: There is no "gxio_mpipe_equeue_destroy()". */
1442 			netdev_warn(dev, "Jumbo packets may not be egressed"
1443 				    " properly on channel %d\n", echannel);
1444 		}
1445 	}
1446 
1447 	/* Done. */
1448 	md->egress_for_echannel[echannel].equeue = equeue;
1449 	md->egress_for_echannel[echannel].headers = headers;
1450 	return 0;
1451 
1452 fail_equeue:
1453 	__free_pages(equeue_page, equeue_order);
1454 
1455 fail_edescs:
1456 	__free_pages(edescs_page, edescs_order);
1457 
1458 fail_headers:
1459 	__free_pages(headers_page, headers_order);
1460 
1461 fail:
1462 	return rc;
1463 }
1464 
1465 /* Return channel number for a newly-opened link. */
tile_net_link_open(struct net_device * dev,gxio_mpipe_link_t * link,const char * link_name)1466 static int tile_net_link_open(struct net_device *dev, gxio_mpipe_link_t *link,
1467 			      const char *link_name)
1468 {
1469 	int instance = mpipe_instance(dev);
1470 	struct mpipe_data *md = &mpipe_data[instance];
1471 	int rc = gxio_mpipe_link_open(link, &md->context, link_name, 0);
1472 	if (rc < 0) {
1473 		netdev_err(dev, "Failed to open '%s', mpipe[%d], %d\n",
1474 			   link_name, instance, rc);
1475 		return rc;
1476 	}
1477 	if (jumbo_num != 0) {
1478 		u32 attr = GXIO_MPIPE_LINK_RECEIVE_JUMBO;
1479 		rc = gxio_mpipe_link_set_attr(link, attr, 1);
1480 		if (rc != 0) {
1481 			netdev_err(dev,
1482 				   "Cannot receive jumbo packets on '%s'\n",
1483 				   link_name);
1484 			gxio_mpipe_link_close(link);
1485 			return rc;
1486 		}
1487 	}
1488 	rc = gxio_mpipe_link_channel(link);
1489 	if (rc < 0 || rc >= TILE_NET_CHANNELS) {
1490 		netdev_err(dev, "gxio_mpipe_link_channel bad value: %d\n", rc);
1491 		gxio_mpipe_link_close(link);
1492 		return -EINVAL;
1493 	}
1494 	return rc;
1495 }
1496 
1497 /* Help the kernel activate the given network interface. */
tile_net_open(struct net_device * dev)1498 static int tile_net_open(struct net_device *dev)
1499 {
1500 	struct tile_net_priv *priv = netdev_priv(dev);
1501 	int cpu, rc, instance;
1502 
1503 	mutex_lock(&tile_net_devs_for_channel_mutex);
1504 
1505 	/* Get the instance info. */
1506 	rc = gxio_mpipe_link_instance(dev->name);
1507 	if (rc < 0 || rc >= NR_MPIPE_MAX) {
1508 		mutex_unlock(&tile_net_devs_for_channel_mutex);
1509 		return -EIO;
1510 	}
1511 
1512 	priv->instance = rc;
1513 	instance = rc;
1514 	if (!mpipe_data[rc].context.mmio_fast_base) {
1515 		/* Do one-time initialization per instance the first time
1516 		 * any device is opened.
1517 		 */
1518 		rc = tile_net_init_mpipe(dev);
1519 		if (rc != 0)
1520 			goto fail;
1521 	}
1522 
1523 	/* Determine if this is the "loopify" device. */
1524 	if (unlikely((loopify_link_name != NULL) &&
1525 		     !strcmp(dev->name, loopify_link_name))) {
1526 		rc = tile_net_link_open(dev, &priv->link, "loop0");
1527 		if (rc < 0)
1528 			goto fail;
1529 		priv->channel = rc;
1530 		rc = tile_net_link_open(dev, &priv->loopify_link, "loop1");
1531 		if (rc < 0)
1532 			goto fail;
1533 		priv->loopify_channel = rc;
1534 		priv->echannel = rc;
1535 	} else {
1536 		rc = tile_net_link_open(dev, &priv->link, dev->name);
1537 		if (rc < 0)
1538 			goto fail;
1539 		priv->channel = rc;
1540 		priv->echannel = rc;
1541 	}
1542 
1543 	/* Initialize egress info (if needed).  Once ever, per echannel. */
1544 	rc = tile_net_init_egress(dev, priv->echannel);
1545 	if (rc != 0)
1546 		goto fail;
1547 
1548 	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] = dev;
1549 
1550 	rc = tile_net_update(dev);
1551 	if (rc != 0)
1552 		goto fail;
1553 
1554 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1555 
1556 	/* Initialize the transmit wake timer for this device for each cpu. */
1557 	for_each_online_cpu(cpu) {
1558 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1559 		struct tile_net_tx_wake *tx_wake =
1560 			&info->mpipe[instance].tx_wake[priv->echannel];
1561 
1562 		hrtimer_init(&tx_wake->timer, CLOCK_MONOTONIC,
1563 			     HRTIMER_MODE_REL);
1564 		tx_wake->tx_queue_idx = cpu;
1565 		tx_wake->timer.function = tile_net_handle_tx_wake_timer;
1566 		tx_wake->dev = dev;
1567 	}
1568 
1569 	for_each_online_cpu(cpu)
1570 		netif_start_subqueue(dev, cpu);
1571 	netif_carrier_on(dev);
1572 	return 0;
1573 
1574 fail:
1575 	if (priv->loopify_channel >= 0) {
1576 		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1577 			netdev_warn(dev, "Failed to close loopify link!\n");
1578 		priv->loopify_channel = -1;
1579 	}
1580 	if (priv->channel >= 0) {
1581 		if (gxio_mpipe_link_close(&priv->link) != 0)
1582 			netdev_warn(dev, "Failed to close link!\n");
1583 		priv->channel = -1;
1584 	}
1585 	priv->echannel = -1;
1586 	mpipe_data[instance].tile_net_devs_for_channel[priv->channel] =	NULL;
1587 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1588 
1589 	/* Don't return raw gxio error codes to generic Linux. */
1590 	return (rc > -512) ? rc : -EIO;
1591 }
1592 
1593 /* Help the kernel deactivate the given network interface. */
tile_net_stop(struct net_device * dev)1594 static int tile_net_stop(struct net_device *dev)
1595 {
1596 	struct tile_net_priv *priv = netdev_priv(dev);
1597 	int cpu;
1598 	int instance = priv->instance;
1599 	struct mpipe_data *md = &mpipe_data[instance];
1600 
1601 	for_each_online_cpu(cpu) {
1602 		struct tile_net_info *info = &per_cpu(per_cpu_info, cpu);
1603 		struct tile_net_tx_wake *tx_wake =
1604 			&info->mpipe[instance].tx_wake[priv->echannel];
1605 
1606 		hrtimer_cancel(&tx_wake->timer);
1607 		netif_stop_subqueue(dev, cpu);
1608 	}
1609 
1610 	mutex_lock(&tile_net_devs_for_channel_mutex);
1611 	md->tile_net_devs_for_channel[priv->channel] = NULL;
1612 	(void)tile_net_update(dev);
1613 	if (priv->loopify_channel >= 0) {
1614 		if (gxio_mpipe_link_close(&priv->loopify_link) != 0)
1615 			netdev_warn(dev, "Failed to close loopify link!\n");
1616 		priv->loopify_channel = -1;
1617 	}
1618 	if (priv->channel >= 0) {
1619 		if (gxio_mpipe_link_close(&priv->link) != 0)
1620 			netdev_warn(dev, "Failed to close link!\n");
1621 		priv->channel = -1;
1622 	}
1623 	priv->echannel = -1;
1624 	mutex_unlock(&tile_net_devs_for_channel_mutex);
1625 
1626 	return 0;
1627 }
1628 
1629 /* Determine the VA for a fragment. */
tile_net_frag_buf(skb_frag_t * f)1630 static inline void *tile_net_frag_buf(skb_frag_t *f)
1631 {
1632 	unsigned long pfn = page_to_pfn(skb_frag_page(f));
1633 	return pfn_to_kaddr(pfn) + f->page_offset;
1634 }
1635 
1636 /* Acquire a completion entry and an egress slot, or if we can't,
1637  * stop the queue and schedule the tx_wake timer.
1638  */
tile_net_equeue_try_reserve(struct net_device * dev,int tx_queue_idx,struct tile_net_comps * comps,gxio_mpipe_equeue_t * equeue,int num_edescs)1639 static s64 tile_net_equeue_try_reserve(struct net_device *dev,
1640 				       int tx_queue_idx,
1641 				       struct tile_net_comps *comps,
1642 				       gxio_mpipe_equeue_t *equeue,
1643 				       int num_edescs)
1644 {
1645 	/* Try to acquire a completion entry. */
1646 	if (comps->comp_next - comps->comp_last < TILE_NET_MAX_COMPS - 1 ||
1647 	    tile_net_free_comps(equeue, comps, 32, false) != 0) {
1648 
1649 		/* Try to acquire an egress slot. */
1650 		s64 slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1651 		if (slot >= 0)
1652 			return slot;
1653 
1654 		/* Freeing some completions gives the equeue time to drain. */
1655 		tile_net_free_comps(equeue, comps, TILE_NET_MAX_COMPS, false);
1656 
1657 		slot = gxio_mpipe_equeue_try_reserve(equeue, num_edescs);
1658 		if (slot >= 0)
1659 			return slot;
1660 	}
1661 
1662 	/* Still nothing; give up and stop the queue for a short while. */
1663 	netif_stop_subqueue(dev, tx_queue_idx);
1664 	tile_net_schedule_tx_wake_timer(dev, tx_queue_idx);
1665 	return -1;
1666 }
1667 
1668 /* Determine how many edesc's are needed for TSO.
1669  *
1670  * Sometimes, if "sendfile()" requires copying, we will be called with
1671  * "data" containing the header and payload, with "frags" being empty.
1672  * Sometimes, for example when using NFS over TCP, a single segment can
1673  * span 3 fragments.  This requires special care.
1674  */
tso_count_edescs(struct sk_buff * skb)1675 static int tso_count_edescs(struct sk_buff *skb)
1676 {
1677 	struct skb_shared_info *sh = skb_shinfo(skb);
1678 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1679 	unsigned int data_len = skb->len - sh_len;
1680 	unsigned int p_len = sh->gso_size;
1681 	long f_id = -1;    /* id of the current fragment */
1682 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1683 	long f_used = 0;  /* bytes used from the current fragment */
1684 	long n;            /* size of the current piece of payload */
1685 	int num_edescs = 0;
1686 	int segment;
1687 
1688 	for (segment = 0; segment < sh->gso_segs; segment++) {
1689 
1690 		unsigned int p_used = 0;
1691 
1692 		/* One edesc for header and for each piece of the payload. */
1693 		for (num_edescs++; p_used < p_len; num_edescs++) {
1694 
1695 			/* Advance as needed. */
1696 			while (f_used >= f_size) {
1697 				f_id++;
1698 				f_size = skb_frag_size(&sh->frags[f_id]);
1699 				f_used = 0;
1700 			}
1701 
1702 			/* Use bytes from the current fragment. */
1703 			n = p_len - p_used;
1704 			if (n > f_size - f_used)
1705 				n = f_size - f_used;
1706 			f_used += n;
1707 			p_used += n;
1708 		}
1709 
1710 		/* The last segment may be less than gso_size. */
1711 		data_len -= p_len;
1712 		if (data_len < p_len)
1713 			p_len = data_len;
1714 	}
1715 
1716 	return num_edescs;
1717 }
1718 
1719 /* Prepare modified copies of the skbuff headers. */
tso_headers_prepare(struct sk_buff * skb,unsigned char * headers,s64 slot)1720 static void tso_headers_prepare(struct sk_buff *skb, unsigned char *headers,
1721 				s64 slot)
1722 {
1723 	struct skb_shared_info *sh = skb_shinfo(skb);
1724 	struct iphdr *ih;
1725 	struct ipv6hdr *ih6;
1726 	struct tcphdr *th;
1727 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1728 	unsigned int data_len = skb->len - sh_len;
1729 	unsigned char *data = skb->data;
1730 	unsigned int ih_off, th_off, p_len;
1731 	unsigned int isum_seed, tsum_seed, seq;
1732 	unsigned int uninitialized_var(id);
1733 	int is_ipv6;
1734 	long f_id = -1;    /* id of the current fragment */
1735 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1736 	long f_used = 0;  /* bytes used from the current fragment */
1737 	long n;            /* size of the current piece of payload */
1738 	int segment;
1739 
1740 	/* Locate original headers and compute various lengths. */
1741 	is_ipv6 = skb_is_gso_v6(skb);
1742 	if (is_ipv6) {
1743 		ih6 = ipv6_hdr(skb);
1744 		ih_off = skb_network_offset(skb);
1745 	} else {
1746 		ih = ip_hdr(skb);
1747 		ih_off = skb_network_offset(skb);
1748 		isum_seed = ((0xFFFF - ih->check) +
1749 			     (0xFFFF - ih->tot_len) +
1750 			     (0xFFFF - ih->id));
1751 		id = ntohs(ih->id);
1752 	}
1753 
1754 	th = tcp_hdr(skb);
1755 	th_off = skb_transport_offset(skb);
1756 	p_len = sh->gso_size;
1757 
1758 	tsum_seed = th->check + (0xFFFF ^ htons(skb->len));
1759 	seq = ntohl(th->seq);
1760 
1761 	/* Prepare all the headers. */
1762 	for (segment = 0; segment < sh->gso_segs; segment++) {
1763 		unsigned char *buf;
1764 		unsigned int p_used = 0;
1765 
1766 		/* Copy to the header memory for this segment. */
1767 		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1768 			NET_IP_ALIGN;
1769 		memcpy(buf, data, sh_len);
1770 
1771 		/* Update copied ip header. */
1772 		if (is_ipv6) {
1773 			ih6 = (struct ipv6hdr *)(buf + ih_off);
1774 			ih6->payload_len = htons(sh_len + p_len - ih_off -
1775 						 sizeof(*ih6));
1776 		} else {
1777 			ih = (struct iphdr *)(buf + ih_off);
1778 			ih->tot_len = htons(sh_len + p_len - ih_off);
1779 			ih->id = htons(id++);
1780 			ih->check = csum_long(isum_seed + ih->tot_len +
1781 					      ih->id) ^ 0xffff;
1782 		}
1783 
1784 		/* Update copied tcp header. */
1785 		th = (struct tcphdr *)(buf + th_off);
1786 		th->seq = htonl(seq);
1787 		th->check = csum_long(tsum_seed + htons(sh_len + p_len));
1788 		if (segment != sh->gso_segs - 1) {
1789 			th->fin = 0;
1790 			th->psh = 0;
1791 		}
1792 
1793 		/* Skip past the header. */
1794 		slot++;
1795 
1796 		/* Skip past the payload. */
1797 		while (p_used < p_len) {
1798 
1799 			/* Advance as needed. */
1800 			while (f_used >= f_size) {
1801 				f_id++;
1802 				f_size = skb_frag_size(&sh->frags[f_id]);
1803 				f_used = 0;
1804 			}
1805 
1806 			/* Use bytes from the current fragment. */
1807 			n = p_len - p_used;
1808 			if (n > f_size - f_used)
1809 				n = f_size - f_used;
1810 			f_used += n;
1811 			p_used += n;
1812 
1813 			slot++;
1814 		}
1815 
1816 		seq += p_len;
1817 
1818 		/* The last segment may be less than gso_size. */
1819 		data_len -= p_len;
1820 		if (data_len < p_len)
1821 			p_len = data_len;
1822 	}
1823 
1824 	/* Flush the headers so they are ready for hardware DMA. */
1825 	wmb();
1826 }
1827 
1828 /* Pass all the data to mpipe for egress. */
tso_egress(struct net_device * dev,gxio_mpipe_equeue_t * equeue,struct sk_buff * skb,unsigned char * headers,s64 slot)1829 static void tso_egress(struct net_device *dev, gxio_mpipe_equeue_t *equeue,
1830 		       struct sk_buff *skb, unsigned char *headers, s64 slot)
1831 {
1832 	struct skb_shared_info *sh = skb_shinfo(skb);
1833 	int instance = mpipe_instance(dev);
1834 	struct mpipe_data *md = &mpipe_data[instance];
1835 	unsigned int sh_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
1836 	unsigned int data_len = skb->len - sh_len;
1837 	unsigned int p_len = sh->gso_size;
1838 	gxio_mpipe_edesc_t edesc_head = { { 0 } };
1839 	gxio_mpipe_edesc_t edesc_body = { { 0 } };
1840 	long f_id = -1;    /* id of the current fragment */
1841 	long f_size = skb_headlen(skb) - sh_len;  /* current fragment size */
1842 	long f_used = 0;  /* bytes used from the current fragment */
1843 	void *f_data = skb->data + sh_len;
1844 	long n;            /* size of the current piece of payload */
1845 	unsigned long tx_packets = 0, tx_bytes = 0;
1846 	unsigned int csum_start;
1847 	int segment;
1848 
1849 	/* Prepare to egress the headers: set up header edesc. */
1850 	csum_start = skb_checksum_start_offset(skb);
1851 	edesc_head.csum = 1;
1852 	edesc_head.csum_start = csum_start;
1853 	edesc_head.csum_dest = csum_start + skb->csum_offset;
1854 	edesc_head.xfer_size = sh_len;
1855 
1856 	/* This is only used to specify the TLB. */
1857 	edesc_head.stack_idx = md->first_buffer_stack;
1858 	edesc_body.stack_idx = md->first_buffer_stack;
1859 
1860 	/* Egress all the edescs. */
1861 	for (segment = 0; segment < sh->gso_segs; segment++) {
1862 		unsigned char *buf;
1863 		unsigned int p_used = 0;
1864 
1865 		/* Egress the header. */
1866 		buf = headers + (slot % EQUEUE_ENTRIES) * HEADER_BYTES +
1867 			NET_IP_ALIGN;
1868 		edesc_head.va = va_to_tile_io_addr(buf);
1869 		gxio_mpipe_equeue_put_at(equeue, edesc_head, slot);
1870 		slot++;
1871 
1872 		/* Egress the payload. */
1873 		while (p_used < p_len) {
1874 			void *va;
1875 
1876 			/* Advance as needed. */
1877 			while (f_used >= f_size) {
1878 				f_id++;
1879 				f_size = skb_frag_size(&sh->frags[f_id]);
1880 				f_data = tile_net_frag_buf(&sh->frags[f_id]);
1881 				f_used = 0;
1882 			}
1883 
1884 			va = f_data + f_used;
1885 
1886 			/* Use bytes from the current fragment. */
1887 			n = p_len - p_used;
1888 			if (n > f_size - f_used)
1889 				n = f_size - f_used;
1890 			f_used += n;
1891 			p_used += n;
1892 
1893 			/* Egress a piece of the payload. */
1894 			edesc_body.va = va_to_tile_io_addr(va);
1895 			edesc_body.xfer_size = n;
1896 			edesc_body.bound = !(p_used < p_len);
1897 			gxio_mpipe_equeue_put_at(equeue, edesc_body, slot);
1898 			slot++;
1899 		}
1900 
1901 		tx_packets++;
1902 		tx_bytes += sh_len + p_len;
1903 
1904 		/* The last segment may be less than gso_size. */
1905 		data_len -= p_len;
1906 		if (data_len < p_len)
1907 			p_len = data_len;
1908 	}
1909 
1910 	/* Update stats. */
1911 	tile_net_stats_add(tx_packets, &dev->stats.tx_packets);
1912 	tile_net_stats_add(tx_bytes, &dev->stats.tx_bytes);
1913 }
1914 
1915 /* Do "TSO" handling for egress.
1916  *
1917  * Normally drivers set NETIF_F_TSO only to support hardware TSO;
1918  * otherwise the stack uses scatter-gather to implement GSO in software.
1919  * On our testing, enabling GSO support (via NETIF_F_SG) drops network
1920  * performance down to around 7.5 Gbps on the 10G interfaces, although
1921  * also dropping cpu utilization way down, to under 8%.  But
1922  * implementing "TSO" in the driver brings performance back up to line
1923  * rate, while dropping cpu usage even further, to less than 4%.  In
1924  * practice, profiling of GSO shows that skb_segment() is what causes
1925  * the performance overheads; we benefit in the driver from using
1926  * preallocated memory to duplicate the TCP/IP headers.
1927  */
tile_net_tx_tso(struct sk_buff * skb,struct net_device * dev)1928 static int tile_net_tx_tso(struct sk_buff *skb, struct net_device *dev)
1929 {
1930 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
1931 	struct tile_net_priv *priv = netdev_priv(dev);
1932 	int channel = priv->echannel;
1933 	int instance = priv->instance;
1934 	struct mpipe_data *md = &mpipe_data[instance];
1935 	struct tile_net_egress *egress = &md->egress_for_echannel[channel];
1936 	struct tile_net_comps *comps =
1937 		info->mpipe[instance].comps_for_echannel[channel];
1938 	gxio_mpipe_equeue_t *equeue = egress->equeue;
1939 	unsigned long irqflags;
1940 	int num_edescs;
1941 	s64 slot;
1942 
1943 	/* Determine how many mpipe edesc's are needed. */
1944 	num_edescs = tso_count_edescs(skb);
1945 
1946 	local_irq_save(irqflags);
1947 
1948 	/* Try to acquire a completion entry and an egress slot. */
1949 	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
1950 					   equeue, num_edescs);
1951 	if (slot < 0) {
1952 		local_irq_restore(irqflags);
1953 		return NETDEV_TX_BUSY;
1954 	}
1955 
1956 	/* Set up copies of header data properly. */
1957 	tso_headers_prepare(skb, egress->headers, slot);
1958 
1959 	/* Actually pass the data to the network hardware. */
1960 	tso_egress(dev, equeue, skb, egress->headers, slot);
1961 
1962 	/* Add a completion record. */
1963 	add_comp(equeue, comps, slot + num_edescs - 1, skb);
1964 
1965 	local_irq_restore(irqflags);
1966 
1967 	/* Make sure the egress timer is scheduled. */
1968 	tile_net_schedule_egress_timer();
1969 
1970 	return NETDEV_TX_OK;
1971 }
1972 
1973 /* Analyze the body and frags for a transmit request. */
tile_net_tx_frags(struct frag * frags,struct sk_buff * skb,void * b_data,unsigned int b_len)1974 static unsigned int tile_net_tx_frags(struct frag *frags,
1975 				       struct sk_buff *skb,
1976 				       void *b_data, unsigned int b_len)
1977 {
1978 	unsigned int i, n = 0;
1979 
1980 	struct skb_shared_info *sh = skb_shinfo(skb);
1981 
1982 	if (b_len != 0) {
1983 		frags[n].buf = b_data;
1984 		frags[n++].length = b_len;
1985 	}
1986 
1987 	for (i = 0; i < sh->nr_frags; i++) {
1988 		skb_frag_t *f = &sh->frags[i];
1989 		frags[n].buf = tile_net_frag_buf(f);
1990 		frags[n++].length = skb_frag_size(f);
1991 	}
1992 
1993 	return n;
1994 }
1995 
1996 /* Help the kernel transmit a packet. */
tile_net_tx(struct sk_buff * skb,struct net_device * dev)1997 static int tile_net_tx(struct sk_buff *skb, struct net_device *dev)
1998 {
1999 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2000 	struct tile_net_priv *priv = netdev_priv(dev);
2001 	int instance = priv->instance;
2002 	struct mpipe_data *md = &mpipe_data[instance];
2003 	struct tile_net_egress *egress =
2004 		&md->egress_for_echannel[priv->echannel];
2005 	gxio_mpipe_equeue_t *equeue = egress->equeue;
2006 	struct tile_net_comps *comps =
2007 		info->mpipe[instance].comps_for_echannel[priv->echannel];
2008 	unsigned int len = skb->len;
2009 	unsigned char *data = skb->data;
2010 	unsigned int num_edescs;
2011 	struct frag frags[MAX_FRAGS];
2012 	gxio_mpipe_edesc_t edescs[MAX_FRAGS];
2013 	unsigned long irqflags;
2014 	gxio_mpipe_edesc_t edesc = { { 0 } };
2015 	unsigned int i;
2016 	s64 slot;
2017 
2018 	if (skb_is_gso(skb))
2019 		return tile_net_tx_tso(skb, dev);
2020 
2021 	num_edescs = tile_net_tx_frags(frags, skb, data, skb_headlen(skb));
2022 
2023 	/* This is only used to specify the TLB. */
2024 	edesc.stack_idx = md->first_buffer_stack;
2025 
2026 	/* Prepare the edescs. */
2027 	for (i = 0; i < num_edescs; i++) {
2028 		edesc.xfer_size = frags[i].length;
2029 		edesc.va = va_to_tile_io_addr(frags[i].buf);
2030 		edescs[i] = edesc;
2031 	}
2032 
2033 	/* Mark the final edesc. */
2034 	edescs[num_edescs - 1].bound = 1;
2035 
2036 	/* Add checksum info to the initial edesc, if needed. */
2037 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2038 		unsigned int csum_start = skb_checksum_start_offset(skb);
2039 		edescs[0].csum = 1;
2040 		edescs[0].csum_start = csum_start;
2041 		edescs[0].csum_dest = csum_start + skb->csum_offset;
2042 	}
2043 
2044 	local_irq_save(irqflags);
2045 
2046 	/* Try to acquire a completion entry and an egress slot. */
2047 	slot = tile_net_equeue_try_reserve(dev, skb->queue_mapping, comps,
2048 					   equeue, num_edescs);
2049 	if (slot < 0) {
2050 		local_irq_restore(irqflags);
2051 		return NETDEV_TX_BUSY;
2052 	}
2053 
2054 	for (i = 0; i < num_edescs; i++)
2055 		gxio_mpipe_equeue_put_at(equeue, edescs[i], slot++);
2056 
2057 	/* Store TX timestamp if needed. */
2058 	tile_tx_timestamp(skb, instance);
2059 
2060 	/* Add a completion record. */
2061 	add_comp(equeue, comps, slot - 1, skb);
2062 
2063 	/* NOTE: Use ETH_ZLEN for short packets (e.g. 42 < 60). */
2064 	tile_net_stats_add(1, &dev->stats.tx_packets);
2065 	tile_net_stats_add(max_t(unsigned int, len, ETH_ZLEN),
2066 			   &dev->stats.tx_bytes);
2067 
2068 	local_irq_restore(irqflags);
2069 
2070 	/* Make sure the egress timer is scheduled. */
2071 	tile_net_schedule_egress_timer();
2072 
2073 	return NETDEV_TX_OK;
2074 }
2075 
2076 /* Return subqueue id on this core (one per core). */
tile_net_select_queue(struct net_device * dev,struct sk_buff * skb,void * accel_priv,select_queue_fallback_t fallback)2077 static u16 tile_net_select_queue(struct net_device *dev, struct sk_buff *skb,
2078 				 void *accel_priv, select_queue_fallback_t fallback)
2079 {
2080 	return smp_processor_id();
2081 }
2082 
2083 /* Deal with a transmit timeout. */
tile_net_tx_timeout(struct net_device * dev)2084 static void tile_net_tx_timeout(struct net_device *dev)
2085 {
2086 	int cpu;
2087 
2088 	for_each_online_cpu(cpu)
2089 		netif_wake_subqueue(dev, cpu);
2090 }
2091 
2092 /* Ioctl commands. */
tile_net_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2093 static int tile_net_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2094 {
2095 	if (cmd == SIOCSHWTSTAMP)
2096 		return tile_hwtstamp_set(dev, rq);
2097 	if (cmd == SIOCGHWTSTAMP)
2098 		return tile_hwtstamp_get(dev, rq);
2099 
2100 	return -EOPNOTSUPP;
2101 }
2102 
2103 /* Change the MTU. */
tile_net_change_mtu(struct net_device * dev,int new_mtu)2104 static int tile_net_change_mtu(struct net_device *dev, int new_mtu)
2105 {
2106 	if (new_mtu < 68)
2107 		return -EINVAL;
2108 	if (new_mtu > ((jumbo_num != 0) ? 9000 : 1500))
2109 		return -EINVAL;
2110 	dev->mtu = new_mtu;
2111 	return 0;
2112 }
2113 
2114 /* Change the Ethernet address of the NIC.
2115  *
2116  * The hypervisor driver does not support changing MAC address.  However,
2117  * the hardware does not do anything with the MAC address, so the address
2118  * which gets used on outgoing packets, and which is accepted on incoming
2119  * packets, is completely up to us.
2120  *
2121  * Returns 0 on success, negative on failure.
2122  */
tile_net_set_mac_address(struct net_device * dev,void * p)2123 static int tile_net_set_mac_address(struct net_device *dev, void *p)
2124 {
2125 	struct sockaddr *addr = p;
2126 
2127 	if (!is_valid_ether_addr(addr->sa_data))
2128 		return -EINVAL;
2129 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
2130 	return 0;
2131 }
2132 
2133 #ifdef CONFIG_NET_POLL_CONTROLLER
2134 /* Polling 'interrupt' - used by things like netconsole to send skbs
2135  * without having to re-enable interrupts. It's not called while
2136  * the interrupt routine is executing.
2137  */
tile_net_netpoll(struct net_device * dev)2138 static void tile_net_netpoll(struct net_device *dev)
2139 {
2140 	int instance = mpipe_instance(dev);
2141 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2142 	struct mpipe_data *md = &mpipe_data[instance];
2143 
2144 	disable_percpu_irq(md->ingress_irq);
2145 	napi_schedule(&info->mpipe[instance].napi);
2146 	enable_percpu_irq(md->ingress_irq, 0);
2147 }
2148 #endif
2149 
2150 static const struct net_device_ops tile_net_ops = {
2151 	.ndo_open = tile_net_open,
2152 	.ndo_stop = tile_net_stop,
2153 	.ndo_start_xmit = tile_net_tx,
2154 	.ndo_select_queue = tile_net_select_queue,
2155 	.ndo_do_ioctl = tile_net_ioctl,
2156 	.ndo_change_mtu = tile_net_change_mtu,
2157 	.ndo_tx_timeout = tile_net_tx_timeout,
2158 	.ndo_set_mac_address = tile_net_set_mac_address,
2159 #ifdef CONFIG_NET_POLL_CONTROLLER
2160 	.ndo_poll_controller = tile_net_netpoll,
2161 #endif
2162 };
2163 
2164 /* The setup function.
2165  *
2166  * This uses ether_setup() to assign various fields in dev, including
2167  * setting IFF_BROADCAST and IFF_MULTICAST, then sets some extra fields.
2168  */
tile_net_setup(struct net_device * dev)2169 static void tile_net_setup(struct net_device *dev)
2170 {
2171 	netdev_features_t features = 0;
2172 
2173 	ether_setup(dev);
2174 	dev->netdev_ops = &tile_net_ops;
2175 	dev->watchdog_timeo = TILE_NET_TIMEOUT;
2176 	dev->mtu = 1500;
2177 
2178 	features |= NETIF_F_HW_CSUM;
2179 	features |= NETIF_F_SG;
2180 	features |= NETIF_F_TSO;
2181 	features |= NETIF_F_TSO6;
2182 
2183 	dev->hw_features   |= features;
2184 	dev->vlan_features |= features;
2185 	dev->features      |= features;
2186 }
2187 
2188 /* Allocate the device structure, register the device, and obtain the
2189  * MAC address from the hypervisor.
2190  */
tile_net_dev_init(const char * name,const uint8_t * mac)2191 static void tile_net_dev_init(const char *name, const uint8_t *mac)
2192 {
2193 	int ret;
2194 	struct net_device *dev;
2195 	struct tile_net_priv *priv;
2196 
2197 	/* HACK: Ignore "loop" links. */
2198 	if (strncmp(name, "loop", 4) == 0)
2199 		return;
2200 
2201 	/* Allocate the device structure.  Normally, "name" is a
2202 	 * template, instantiated by register_netdev(), but not for us.
2203 	 */
2204 	dev = alloc_netdev_mqs(sizeof(*priv), name, NET_NAME_UNKNOWN,
2205 			       tile_net_setup, NR_CPUS, 1);
2206 	if (!dev) {
2207 		pr_err("alloc_netdev_mqs(%s) failed\n", name);
2208 		return;
2209 	}
2210 
2211 	/* Initialize "priv". */
2212 	priv = netdev_priv(dev);
2213 	priv->dev = dev;
2214 	priv->channel = -1;
2215 	priv->loopify_channel = -1;
2216 	priv->echannel = -1;
2217 	init_ptp_dev(priv);
2218 
2219 	/* Get the MAC address and set it in the device struct; this must
2220 	 * be done before the device is opened.  If the MAC is all zeroes,
2221 	 * we use a random address, since we're probably on the simulator.
2222 	 */
2223 	if (!is_zero_ether_addr(mac))
2224 		ether_addr_copy(dev->dev_addr, mac);
2225 	else
2226 		eth_hw_addr_random(dev);
2227 
2228 	/* Register the network device. */
2229 	ret = register_netdev(dev);
2230 	if (ret) {
2231 		netdev_err(dev, "register_netdev failed %d\n", ret);
2232 		free_netdev(dev);
2233 		return;
2234 	}
2235 }
2236 
2237 /* Per-cpu module initialization. */
tile_net_init_module_percpu(void * unused)2238 static void tile_net_init_module_percpu(void *unused)
2239 {
2240 	struct tile_net_info *info = this_cpu_ptr(&per_cpu_info);
2241 	int my_cpu = smp_processor_id();
2242 	int instance;
2243 
2244 	for (instance = 0; instance < NR_MPIPE_MAX; instance++) {
2245 		info->mpipe[instance].has_iqueue = false;
2246 		info->mpipe[instance].instance = instance;
2247 	}
2248 	info->my_cpu = my_cpu;
2249 
2250 	/* Initialize the egress timer. */
2251 	hrtimer_init(&info->egress_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2252 	info->egress_timer.function = tile_net_handle_egress_timer;
2253 }
2254 
2255 /* Module initialization. */
tile_net_init_module(void)2256 static int __init tile_net_init_module(void)
2257 {
2258 	int i;
2259 	char name[GXIO_MPIPE_LINK_NAME_LEN];
2260 	uint8_t mac[6];
2261 
2262 	pr_info("Tilera Network Driver\n");
2263 
2264 	BUILD_BUG_ON(NR_MPIPE_MAX != 2);
2265 
2266 	mutex_init(&tile_net_devs_for_channel_mutex);
2267 
2268 	/* Initialize each CPU. */
2269 	on_each_cpu(tile_net_init_module_percpu, NULL, 1);
2270 
2271 	/* Find out what devices we have, and initialize them. */
2272 	for (i = 0; gxio_mpipe_link_enumerate_mac(i, name, mac) >= 0; i++)
2273 		tile_net_dev_init(name, mac);
2274 
2275 	if (!network_cpus_init())
2276 		network_cpus_map = *cpu_online_mask;
2277 
2278 	return 0;
2279 }
2280 
2281 module_init(tile_net_init_module);
2282