1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2010-2012 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9#ifndef _VFDI_H
10#define _VFDI_H
11
12/**
13 * DOC: Virtual Function Driver Interface
14 *
15 * This file contains software structures used to form a two way
16 * communication channel between the VF driver and the PF driver,
17 * named Virtual Function Driver Interface (VFDI).
18 *
19 * For the purposes of VFDI, a page is a memory region with size and
20 * alignment of 4K.  All addresses are DMA addresses to be used within
21 * the domain of the relevant VF.
22 *
23 * The only hardware-defined channels for a VF driver to communicate
24 * with the PF driver are the event mailboxes (%FR_CZ_USR_EV
25 * registers).  Writing to these registers generates an event with
26 * EV_CODE = EV_CODE_USR_EV, USER_QID set to the index of the mailbox
27 * and USER_EV_REG_VALUE set to the value written.  The PF driver may
28 * direct or disable delivery of these events by setting
29 * %FR_CZ_USR_EV_CFG.
30 *
31 * The PF driver can send arbitrary events to arbitrary event queues.
32 * However, for consistency, VFDI events from the PF are defined to
33 * follow the same form and be sent to the first event queue assigned
34 * to the VF while that queue is enabled by the VF driver.
35 *
36 * The general form of the variable bits of VFDI events is:
37 *
38 *       0             16                       24   31
39 *      | DATA        | TYPE                   | SEQ   |
40 *
41 * SEQ is a sequence number which should be incremented by 1 (modulo
42 * 256) for each event.  The sequence numbers used in each direction
43 * are independent.
44 *
45 * The VF submits requests of type &struct vfdi_req by sending the
46 * address of the request (ADDR) in a series of 4 events:
47 *
48 *       0             16                       24   31
49 *      | ADDR[0:15]  | VFDI_EV_TYPE_REQ_WORD0 | SEQ   |
50 *      | ADDR[16:31] | VFDI_EV_TYPE_REQ_WORD1 | SEQ+1 |
51 *      | ADDR[32:47] | VFDI_EV_TYPE_REQ_WORD2 | SEQ+2 |
52 *      | ADDR[48:63] | VFDI_EV_TYPE_REQ_WORD3 | SEQ+3 |
53 *
54 * The address must be page-aligned.  After receiving such a valid
55 * series of events, the PF driver will attempt to read the request
56 * and write a response to the same address.  In case of an invalid
57 * sequence of events or a DMA error, there will be no response.
58 *
59 * The VF driver may request that the PF driver writes status
60 * information into its domain asynchronously.  After writing the
61 * status, the PF driver will send an event of the form:
62 *
63 *       0             16                       24   31
64 *      | reserved    | VFDI_EV_TYPE_STATUS    | SEQ   |
65 *
66 * In case the VF must be reset for any reason, the PF driver will
67 * send an event of the form:
68 *
69 *       0             16                       24   31
70 *      | reserved    | VFDI_EV_TYPE_RESET     | SEQ   |
71 *
72 * It is then the responsibility of the VF driver to request
73 * reinitialisation of its queues.
74 */
75#define VFDI_EV_SEQ_LBN 24
76#define VFDI_EV_SEQ_WIDTH 8
77#define VFDI_EV_TYPE_LBN 16
78#define VFDI_EV_TYPE_WIDTH 8
79#define VFDI_EV_TYPE_REQ_WORD0 0
80#define VFDI_EV_TYPE_REQ_WORD1 1
81#define VFDI_EV_TYPE_REQ_WORD2 2
82#define VFDI_EV_TYPE_REQ_WORD3 3
83#define VFDI_EV_TYPE_STATUS 4
84#define VFDI_EV_TYPE_RESET 5
85#define VFDI_EV_DATA_LBN 0
86#define VFDI_EV_DATA_WIDTH 16
87
88struct vfdi_endpoint {
89	u8 mac_addr[ETH_ALEN];
90	__be16 tci;
91};
92
93/**
94 * enum vfdi_op - VFDI operation enumeration
95 * @VFDI_OP_RESPONSE: Indicates a response to the request.
96 * @VFDI_OP_INIT_EVQ: Initialize SRAM entries and initialize an EVQ.
97 * @VFDI_OP_INIT_RXQ: Initialize SRAM entries and initialize an RXQ.
98 * @VFDI_OP_INIT_TXQ: Initialize SRAM entries and initialize a TXQ.
99 * @VFDI_OP_FINI_ALL_QUEUES: Flush all queues, finalize all queues, then
100 *	finalize the SRAM entries.
101 * @VFDI_OP_INSERT_FILTER: Insert a MAC filter targeting the given RXQ.
102 * @VFDI_OP_REMOVE_ALL_FILTERS: Remove all filters.
103 * @VFDI_OP_SET_STATUS_PAGE: Set the DMA page(s) used for status updates
104 *	from PF and write the initial status.
105 * @VFDI_OP_CLEAR_STATUS_PAGE: Clear the DMA page(s) used for status
106 *	updates from PF.
107 */
108enum vfdi_op {
109	VFDI_OP_RESPONSE = 0,
110	VFDI_OP_INIT_EVQ = 1,
111	VFDI_OP_INIT_RXQ = 2,
112	VFDI_OP_INIT_TXQ = 3,
113	VFDI_OP_FINI_ALL_QUEUES = 4,
114	VFDI_OP_INSERT_FILTER = 5,
115	VFDI_OP_REMOVE_ALL_FILTERS = 6,
116	VFDI_OP_SET_STATUS_PAGE = 7,
117	VFDI_OP_CLEAR_STATUS_PAGE = 8,
118	VFDI_OP_LIMIT,
119};
120
121/* Response codes for VFDI operations. Other values may be used in future. */
122#define VFDI_RC_SUCCESS		0
123#define VFDI_RC_ENOMEM		(-12)
124#define VFDI_RC_EINVAL		(-22)
125#define VFDI_RC_EOPNOTSUPP	(-95)
126#define VFDI_RC_ETIMEDOUT	(-110)
127
128/**
129 * struct vfdi_req - Request from VF driver to PF driver
130 * @op: Operation code or response indicator, taken from &enum vfdi_op.
131 * @rc: Response code.  Set to 0 on success or a negative error code on failure.
132 * @u.init_evq.index: Index of event queue to create.
133 * @u.init_evq.buf_count: Number of 4k buffers backing event queue.
134 * @u.init_evq.addr: Array of length %u.init_evq.buf_count containing DMA
135 *	address of each page backing the event queue.
136 * @u.init_rxq.index: Index of receive queue to create.
137 * @u.init_rxq.buf_count: Number of 4k buffers backing receive queue.
138 * @u.init_rxq.evq: Instance of event queue to target receive events at.
139 * @u.init_rxq.label: Label used in receive events.
140 * @u.init_rxq.flags: Unused.
141 * @u.init_rxq.addr: Array of length %u.init_rxq.buf_count containing DMA
142 *	address of each page backing the receive queue.
143 * @u.init_txq.index: Index of transmit queue to create.
144 * @u.init_txq.buf_count: Number of 4k buffers backing transmit queue.
145 * @u.init_txq.evq: Instance of event queue to target transmit completion
146 *	events at.
147 * @u.init_txq.label: Label used in transmit completion events.
148 * @u.init_txq.flags: Checksum offload flags.
149 * @u.init_txq.addr: Array of length %u.init_txq.buf_count containing DMA
150 *	address of each page backing the transmit queue.
151 * @u.mac_filter.rxq: Insert MAC filter at VF local address/VLAN targeting
152 *	all traffic at this receive queue.
153 * @u.mac_filter.flags: MAC filter flags.
154 * @u.set_status_page.dma_addr: Base address for the &struct vfdi_status.
155 *	This address must be page-aligned and the PF may write up to a
156 *	whole page (allowing for extension of the structure).
157 * @u.set_status_page.peer_page_count: Number of additional pages the VF
158 *	has provided into which peer addresses may be DMAd.
159 * @u.set_status_page.peer_page_addr: Array of DMA addresses of pages.
160 *	If the number of peers exceeds 256, then the VF must provide
161 *	additional pages in this array. The PF will then DMA up to
162 *	512 vfdi_endpoint structures into each page.  These addresses
163 *	must be page-aligned.
164 */
165struct vfdi_req {
166	u32 op;
167	u32 reserved1;
168	s32 rc;
169	u32 reserved2;
170	union {
171		struct {
172			u32 index;
173			u32 buf_count;
174			u64 addr[];
175		} init_evq;
176		struct {
177			u32 index;
178			u32 buf_count;
179			u32 evq;
180			u32 label;
181			u32 flags;
182#define VFDI_RXQ_FLAG_SCATTER_EN 1
183			u32 reserved;
184			u64 addr[];
185		} init_rxq;
186		struct {
187			u32 index;
188			u32 buf_count;
189			u32 evq;
190			u32 label;
191			u32 flags;
192#define VFDI_TXQ_FLAG_IP_CSUM_DIS 1
193#define VFDI_TXQ_FLAG_TCPUDP_CSUM_DIS 2
194			u32 reserved;
195			u64 addr[];
196		} init_txq;
197		struct {
198			u32 rxq;
199			u32 flags;
200#define VFDI_MAC_FILTER_FLAG_RSS 1
201#define VFDI_MAC_FILTER_FLAG_SCATTER 2
202		} mac_filter;
203		struct {
204			u64 dma_addr;
205			u64 peer_page_count;
206			u64 peer_page_addr[];
207		} set_status_page;
208	} u;
209};
210
211/**
212 * struct vfdi_status - Status provided by PF driver to VF driver
213 * @generation_start: A generation count DMA'd to VF *before* the
214 *	rest of the structure.
215 * @generation_end: A generation count DMA'd to VF *after* the
216 *	rest of the structure.
217 * @version: Version of this structure; currently set to 1.  Later
218 *	versions must either be layout-compatible or only be sent to VFs
219 *	that specifically request them.
220 * @length: Total length of this structure including embedded tables
221 * @vi_scale: log2 the number of VIs available on this VF. This quantity
222 *	is used by the hardware for register decoding.
223 * @max_tx_channels: The maximum number of transmit queues the VF can use.
224 * @rss_rxq_count: The number of receive queues present in the shared RSS
225 *	indirection table.
226 * @peer_count: Total number of peers in the complete peer list. If larger
227 *	than ARRAY_SIZE(%peers), then the VF must provide sufficient
228 *	additional pages each of which is filled with vfdi_endpoint structures.
229 * @local: The MAC address and outer VLAN tag of *this* VF
230 * @peers: Table of peer addresses.  The @tci fields in these structures
231 *	are currently unused and must be ignored.  Additional peers are
232 *	written into any additional pages provided by the VF.
233 * @timer_quantum_ns: Timer quantum (nominal period between timer ticks)
234 *	for interrupt moderation timers, in nanoseconds. This member is only
235 *	present if @length is sufficiently large.
236 */
237struct vfdi_status {
238	u32 generation_start;
239	u32 generation_end;
240	u32 version;
241	u32 length;
242	u8 vi_scale;
243	u8 max_tx_channels;
244	u8 rss_rxq_count;
245	u8 reserved1;
246	u16 peer_count;
247	u16 reserved2;
248	struct vfdi_endpoint local;
249	struct vfdi_endpoint peers[256];
250
251	/* Members below here extend version 1 of this structure */
252	u32 timer_quantum_ns;
253};
254
255#endif
256