1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/pci.h>
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/crc32.h>
18 #include "net_driver.h"
19 #include "bitfield.h"
20 #include "efx.h"
21 #include "nic.h"
22 #include "farch_regs.h"
23 #include "io.h"
24 #include "workarounds.h"
25 
26 /* Falcon-architecture (SFC4000 and SFC9000-family) support */
27 
28 /**************************************************************************
29  *
30  * Configurable values
31  *
32  **************************************************************************
33  */
34 
35 /* This is set to 16 for a good reason.  In summary, if larger than
36  * 16, the descriptor cache holds more than a default socket
37  * buffer's worth of packets (for UDP we can only have at most one
38  * socket buffer's worth outstanding).  This combined with the fact
39  * that we only get 1 TX event per descriptor cache means the NIC
40  * goes idle.
41  */
42 #define TX_DC_ENTRIES 16
43 #define TX_DC_ENTRIES_ORDER 1
44 
45 #define RX_DC_ENTRIES 64
46 #define RX_DC_ENTRIES_ORDER 3
47 
48 /* If EFX_MAX_INT_ERRORS internal errors occur within
49  * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50  * disable it.
51  */
52 #define EFX_INT_ERROR_EXPIRE 3600
53 #define EFX_MAX_INT_ERRORS 5
54 
55 /* Depth of RX flush request fifo */
56 #define EFX_RX_FLUSH_COUNT 4
57 
58 /* Driver generated events */
59 #define _EFX_CHANNEL_MAGIC_TEST		0x000101
60 #define _EFX_CHANNEL_MAGIC_FILL		0x000102
61 #define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
62 #define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
63 
64 #define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
65 #define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
66 
67 #define EFX_CHANNEL_MAGIC_TEST(_channel)				\
68 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69 #define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
70 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
71 			   efx_rx_queue_index(_rx_queue))
72 #define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
73 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
74 			   efx_rx_queue_index(_rx_queue))
75 #define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
76 	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
77 			   (_tx_queue)->queue)
78 
79 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80 
81 /**************************************************************************
82  *
83  * Hardware access
84  *
85  **************************************************************************/
86 
efx_write_buf_tbl(struct efx_nic * efx,efx_qword_t * value,unsigned int index)87 static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88 				     unsigned int index)
89 {
90 	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91 			value, index);
92 }
93 
efx_masked_compare_oword(const efx_oword_t * a,const efx_oword_t * b,const efx_oword_t * mask)94 static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95 				     const efx_oword_t *mask)
96 {
97 	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98 		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99 }
100 
efx_farch_test_registers(struct efx_nic * efx,const struct efx_farch_register_test * regs,size_t n_regs)101 int efx_farch_test_registers(struct efx_nic *efx,
102 			     const struct efx_farch_register_test *regs,
103 			     size_t n_regs)
104 {
105 	unsigned address = 0, i, j;
106 	efx_oword_t mask, imask, original, reg, buf;
107 
108 	for (i = 0; i < n_regs; ++i) {
109 		address = regs[i].address;
110 		mask = imask = regs[i].mask;
111 		EFX_INVERT_OWORD(imask);
112 
113 		efx_reado(efx, &original, address);
114 
115 		/* bit sweep on and off */
116 		for (j = 0; j < 128; j++) {
117 			if (!EFX_EXTRACT_OWORD32(mask, j, j))
118 				continue;
119 
120 			/* Test this testable bit can be set in isolation */
121 			EFX_AND_OWORD(reg, original, mask);
122 			EFX_SET_OWORD32(reg, j, j, 1);
123 
124 			efx_writeo(efx, &reg, address);
125 			efx_reado(efx, &buf, address);
126 
127 			if (efx_masked_compare_oword(&reg, &buf, &mask))
128 				goto fail;
129 
130 			/* Test this testable bit can be cleared in isolation */
131 			EFX_OR_OWORD(reg, original, mask);
132 			EFX_SET_OWORD32(reg, j, j, 0);
133 
134 			efx_writeo(efx, &reg, address);
135 			efx_reado(efx, &buf, address);
136 
137 			if (efx_masked_compare_oword(&reg, &buf, &mask))
138 				goto fail;
139 		}
140 
141 		efx_writeo(efx, &original, address);
142 	}
143 
144 	return 0;
145 
146 fail:
147 	netif_err(efx, hw, efx->net_dev,
148 		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149 		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150 		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151 	return -EIO;
152 }
153 
154 /**************************************************************************
155  *
156  * Special buffer handling
157  * Special buffers are used for event queues and the TX and RX
158  * descriptor rings.
159  *
160  *************************************************************************/
161 
162 /*
163  * Initialise a special buffer
164  *
165  * This will define a buffer (previously allocated via
166  * efx_alloc_special_buffer()) in the buffer table, allowing
167  * it to be used for event queues, descriptor rings etc.
168  */
169 static void
efx_init_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)170 efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171 {
172 	efx_qword_t buf_desc;
173 	unsigned int index;
174 	dma_addr_t dma_addr;
175 	int i;
176 
177 	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178 
179 	/* Write buffer descriptors to NIC */
180 	for (i = 0; i < buffer->entries; i++) {
181 		index = buffer->index + i;
182 		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183 		netif_dbg(efx, probe, efx->net_dev,
184 			  "mapping special buffer %d at %llx\n",
185 			  index, (unsigned long long)dma_addr);
186 		EFX_POPULATE_QWORD_3(buf_desc,
187 				     FRF_AZ_BUF_ADR_REGION, 0,
188 				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189 				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190 		efx_write_buf_tbl(efx, &buf_desc, index);
191 	}
192 }
193 
194 /* Unmaps a buffer and clears the buffer table entries */
195 static void
efx_fini_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)196 efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197 {
198 	efx_oword_t buf_tbl_upd;
199 	unsigned int start = buffer->index;
200 	unsigned int end = (buffer->index + buffer->entries - 1);
201 
202 	if (!buffer->entries)
203 		return;
204 
205 	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206 		  buffer->index, buffer->index + buffer->entries - 1);
207 
208 	EFX_POPULATE_OWORD_4(buf_tbl_upd,
209 			     FRF_AZ_BUF_UPD_CMD, 0,
210 			     FRF_AZ_BUF_CLR_CMD, 1,
211 			     FRF_AZ_BUF_CLR_END_ID, end,
212 			     FRF_AZ_BUF_CLR_START_ID, start);
213 	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214 }
215 
216 /*
217  * Allocate a new special buffer
218  *
219  * This allocates memory for a new buffer, clears it and allocates a
220  * new buffer ID range.  It does not write into the buffer table.
221  *
222  * This call will allocate 4KB buffers, since 8KB buffers can't be
223  * used for event queues and descriptor rings.
224  */
efx_alloc_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer,unsigned int len)225 static int efx_alloc_special_buffer(struct efx_nic *efx,
226 				    struct efx_special_buffer *buffer,
227 				    unsigned int len)
228 {
229 #ifdef CONFIG_SFC_SRIOV
230 	struct siena_nic_data *nic_data = efx->nic_data;
231 #endif
232 	len = ALIGN(len, EFX_BUF_SIZE);
233 
234 	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235 		return -ENOMEM;
236 	buffer->entries = len / EFX_BUF_SIZE;
237 	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238 
239 	/* Select new buffer ID */
240 	buffer->index = efx->next_buffer_table;
241 	efx->next_buffer_table += buffer->entries;
242 #ifdef CONFIG_SFC_SRIOV
243 	BUG_ON(efx_siena_sriov_enabled(efx) &&
244 	       nic_data->vf_buftbl_base < efx->next_buffer_table);
245 #endif
246 
247 	netif_dbg(efx, probe, efx->net_dev,
248 		  "allocating special buffers %d-%d at %llx+%x "
249 		  "(virt %p phys %llx)\n", buffer->index,
250 		  buffer->index + buffer->entries - 1,
251 		  (u64)buffer->buf.dma_addr, len,
252 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253 
254 	return 0;
255 }
256 
257 static void
efx_free_special_buffer(struct efx_nic * efx,struct efx_special_buffer * buffer)258 efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259 {
260 	if (!buffer->buf.addr)
261 		return;
262 
263 	netif_dbg(efx, hw, efx->net_dev,
264 		  "deallocating special buffers %d-%d at %llx+%x "
265 		  "(virt %p phys %llx)\n", buffer->index,
266 		  buffer->index + buffer->entries - 1,
267 		  (u64)buffer->buf.dma_addr, buffer->buf.len,
268 		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269 
270 	efx_nic_free_buffer(efx, &buffer->buf);
271 	buffer->entries = 0;
272 }
273 
274 /**************************************************************************
275  *
276  * TX path
277  *
278  **************************************************************************/
279 
280 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_farch_notify_tx_desc(struct efx_tx_queue * tx_queue)281 static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282 {
283 	unsigned write_ptr;
284 	efx_dword_t reg;
285 
286 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288 	efx_writed_page(tx_queue->efx, &reg,
289 			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290 }
291 
292 /* Write pointer and first descriptor for TX descriptor ring */
efx_farch_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)293 static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294 					  const efx_qword_t *txd)
295 {
296 	unsigned write_ptr;
297 	efx_oword_t reg;
298 
299 	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300 	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301 
302 	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303 	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304 			     FRF_AZ_TX_DESC_WPTR, write_ptr);
305 	reg.qword[0] = *txd;
306 	efx_writeo_page(tx_queue->efx, &reg,
307 			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308 }
309 
310 
311 /* For each entry inserted into the software descriptor ring, create a
312  * descriptor in the hardware TX descriptor ring (in host memory), and
313  * write a doorbell.
314  */
efx_farch_tx_write(struct efx_tx_queue * tx_queue)315 void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316 {
317 	struct efx_tx_buffer *buffer;
318 	efx_qword_t *txd;
319 	unsigned write_ptr;
320 	unsigned old_write_count = tx_queue->write_count;
321 
322 	tx_queue->xmit_more_available = false;
323 	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
324 		return;
325 
326 	do {
327 		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
328 		buffer = &tx_queue->buffer[write_ptr];
329 		txd = efx_tx_desc(tx_queue, write_ptr);
330 		++tx_queue->write_count;
331 
332 		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
333 
334 		/* Create TX descriptor ring entry */
335 		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
336 		EFX_POPULATE_QWORD_4(*txd,
337 				     FSF_AZ_TX_KER_CONT,
338 				     buffer->flags & EFX_TX_BUF_CONT,
339 				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
340 				     FSF_AZ_TX_KER_BUF_REGION, 0,
341 				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
342 	} while (tx_queue->write_count != tx_queue->insert_count);
343 
344 	wmb(); /* Ensure descriptors are written before they are fetched */
345 
346 	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
347 		txd = efx_tx_desc(tx_queue,
348 				  old_write_count & tx_queue->ptr_mask);
349 		efx_farch_push_tx_desc(tx_queue, txd);
350 		++tx_queue->pushes;
351 	} else {
352 		efx_farch_notify_tx_desc(tx_queue);
353 	}
354 }
355 
356 /* Allocate hardware resources for a TX queue */
efx_farch_tx_probe(struct efx_tx_queue * tx_queue)357 int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
358 {
359 	struct efx_nic *efx = tx_queue->efx;
360 	unsigned entries;
361 
362 	entries = tx_queue->ptr_mask + 1;
363 	return efx_alloc_special_buffer(efx, &tx_queue->txd,
364 					entries * sizeof(efx_qword_t));
365 }
366 
efx_farch_tx_init(struct efx_tx_queue * tx_queue)367 void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
368 {
369 	struct efx_nic *efx = tx_queue->efx;
370 	efx_oword_t reg;
371 
372 	/* Pin TX descriptor ring */
373 	efx_init_special_buffer(efx, &tx_queue->txd);
374 
375 	/* Push TX descriptor ring to card */
376 	EFX_POPULATE_OWORD_10(reg,
377 			      FRF_AZ_TX_DESCQ_EN, 1,
378 			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
379 			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
380 			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
381 			      FRF_AZ_TX_DESCQ_EVQ_ID,
382 			      tx_queue->channel->channel,
383 			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
384 			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
385 			      FRF_AZ_TX_DESCQ_SIZE,
386 			      __ffs(tx_queue->txd.entries),
387 			      FRF_AZ_TX_DESCQ_TYPE, 0,
388 			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
389 
390 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
391 		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
392 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
393 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
394 				    !csum);
395 	}
396 
397 	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
398 			 tx_queue->queue);
399 
400 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
401 		/* Only 128 bits in this register */
402 		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
403 
404 		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
405 		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
406 			__clear_bit_le(tx_queue->queue, &reg);
407 		else
408 			__set_bit_le(tx_queue->queue, &reg);
409 		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
410 	}
411 
412 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
413 		EFX_POPULATE_OWORD_1(reg,
414 				     FRF_BZ_TX_PACE,
415 				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
416 				     FFE_BZ_TX_PACE_OFF :
417 				     FFE_BZ_TX_PACE_RESERVED);
418 		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
419 				 tx_queue->queue);
420 	}
421 }
422 
efx_farch_flush_tx_queue(struct efx_tx_queue * tx_queue)423 static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
424 {
425 	struct efx_nic *efx = tx_queue->efx;
426 	efx_oword_t tx_flush_descq;
427 
428 	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
429 	atomic_set(&tx_queue->flush_outstanding, 1);
430 
431 	EFX_POPULATE_OWORD_2(tx_flush_descq,
432 			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
433 			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
434 	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
435 }
436 
efx_farch_tx_fini(struct efx_tx_queue * tx_queue)437 void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
438 {
439 	struct efx_nic *efx = tx_queue->efx;
440 	efx_oword_t tx_desc_ptr;
441 
442 	/* Remove TX descriptor ring from card */
443 	EFX_ZERO_OWORD(tx_desc_ptr);
444 	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
445 			 tx_queue->queue);
446 
447 	/* Unpin TX descriptor ring */
448 	efx_fini_special_buffer(efx, &tx_queue->txd);
449 }
450 
451 /* Free buffers backing TX queue */
efx_farch_tx_remove(struct efx_tx_queue * tx_queue)452 void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
453 {
454 	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
455 }
456 
457 /**************************************************************************
458  *
459  * RX path
460  *
461  **************************************************************************/
462 
463 /* This creates an entry in the RX descriptor queue */
464 static inline void
efx_farch_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned index)465 efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
466 {
467 	struct efx_rx_buffer *rx_buf;
468 	efx_qword_t *rxd;
469 
470 	rxd = efx_rx_desc(rx_queue, index);
471 	rx_buf = efx_rx_buffer(rx_queue, index);
472 	EFX_POPULATE_QWORD_3(*rxd,
473 			     FSF_AZ_RX_KER_BUF_SIZE,
474 			     rx_buf->len -
475 			     rx_queue->efx->type->rx_buffer_padding,
476 			     FSF_AZ_RX_KER_BUF_REGION, 0,
477 			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
478 }
479 
480 /* This writes to the RX_DESC_WPTR register for the specified receive
481  * descriptor ring.
482  */
efx_farch_rx_write(struct efx_rx_queue * rx_queue)483 void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
484 {
485 	struct efx_nic *efx = rx_queue->efx;
486 	efx_dword_t reg;
487 	unsigned write_ptr;
488 
489 	while (rx_queue->notified_count != rx_queue->added_count) {
490 		efx_farch_build_rx_desc(
491 			rx_queue,
492 			rx_queue->notified_count & rx_queue->ptr_mask);
493 		++rx_queue->notified_count;
494 	}
495 
496 	wmb();
497 	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
498 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
499 	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
500 			efx_rx_queue_index(rx_queue));
501 }
502 
efx_farch_rx_probe(struct efx_rx_queue * rx_queue)503 int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
504 {
505 	struct efx_nic *efx = rx_queue->efx;
506 	unsigned entries;
507 
508 	entries = rx_queue->ptr_mask + 1;
509 	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
510 					entries * sizeof(efx_qword_t));
511 }
512 
efx_farch_rx_init(struct efx_rx_queue * rx_queue)513 void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
514 {
515 	efx_oword_t rx_desc_ptr;
516 	struct efx_nic *efx = rx_queue->efx;
517 	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
518 	bool iscsi_digest_en = is_b0;
519 	bool jumbo_en;
520 
521 	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
522 	 * DMA to continue after a PCIe page boundary (and scattering
523 	 * is not possible).  In Falcon B0 and Siena, it enables
524 	 * scatter.
525 	 */
526 	jumbo_en = !is_b0 || efx->rx_scatter;
527 
528 	netif_dbg(efx, hw, efx->net_dev,
529 		  "RX queue %d ring in special buffers %d-%d\n",
530 		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
531 		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
532 
533 	rx_queue->scatter_n = 0;
534 
535 	/* Pin RX descriptor ring */
536 	efx_init_special_buffer(efx, &rx_queue->rxd);
537 
538 	/* Push RX descriptor ring to card */
539 	EFX_POPULATE_OWORD_10(rx_desc_ptr,
540 			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
541 			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
542 			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
543 			      FRF_AZ_RX_DESCQ_EVQ_ID,
544 			      efx_rx_queue_channel(rx_queue)->channel,
545 			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
546 			      FRF_AZ_RX_DESCQ_LABEL,
547 			      efx_rx_queue_index(rx_queue),
548 			      FRF_AZ_RX_DESCQ_SIZE,
549 			      __ffs(rx_queue->rxd.entries),
550 			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
551 			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
552 			      FRF_AZ_RX_DESCQ_EN, 1);
553 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
554 			 efx_rx_queue_index(rx_queue));
555 }
556 
efx_farch_flush_rx_queue(struct efx_rx_queue * rx_queue)557 static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
558 {
559 	struct efx_nic *efx = rx_queue->efx;
560 	efx_oword_t rx_flush_descq;
561 
562 	EFX_POPULATE_OWORD_2(rx_flush_descq,
563 			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
564 			     FRF_AZ_RX_FLUSH_DESCQ,
565 			     efx_rx_queue_index(rx_queue));
566 	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
567 }
568 
efx_farch_rx_fini(struct efx_rx_queue * rx_queue)569 void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
570 {
571 	efx_oword_t rx_desc_ptr;
572 	struct efx_nic *efx = rx_queue->efx;
573 
574 	/* Remove RX descriptor ring from card */
575 	EFX_ZERO_OWORD(rx_desc_ptr);
576 	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
577 			 efx_rx_queue_index(rx_queue));
578 
579 	/* Unpin RX descriptor ring */
580 	efx_fini_special_buffer(efx, &rx_queue->rxd);
581 }
582 
583 /* Free buffers backing RX queue */
efx_farch_rx_remove(struct efx_rx_queue * rx_queue)584 void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
585 {
586 	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
587 }
588 
589 /**************************************************************************
590  *
591  * Flush handling
592  *
593  **************************************************************************/
594 
595 /* efx_farch_flush_queues() must be woken up when all flushes are completed,
596  * or more RX flushes can be kicked off.
597  */
efx_farch_flush_wake(struct efx_nic * efx)598 static bool efx_farch_flush_wake(struct efx_nic *efx)
599 {
600 	/* Ensure that all updates are visible to efx_farch_flush_queues() */
601 	smp_mb();
602 
603 	return (atomic_read(&efx->active_queues) == 0 ||
604 		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
605 		 && atomic_read(&efx->rxq_flush_pending) > 0));
606 }
607 
efx_check_tx_flush_complete(struct efx_nic * efx)608 static bool efx_check_tx_flush_complete(struct efx_nic *efx)
609 {
610 	bool i = true;
611 	efx_oword_t txd_ptr_tbl;
612 	struct efx_channel *channel;
613 	struct efx_tx_queue *tx_queue;
614 
615 	efx_for_each_channel(channel, efx) {
616 		efx_for_each_channel_tx_queue(tx_queue, channel) {
617 			efx_reado_table(efx, &txd_ptr_tbl,
618 					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
619 			if (EFX_OWORD_FIELD(txd_ptr_tbl,
620 					    FRF_AZ_TX_DESCQ_FLUSH) ||
621 			    EFX_OWORD_FIELD(txd_ptr_tbl,
622 					    FRF_AZ_TX_DESCQ_EN)) {
623 				netif_dbg(efx, hw, efx->net_dev,
624 					  "flush did not complete on TXQ %d\n",
625 					  tx_queue->queue);
626 				i = false;
627 			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
628 						  1, 0)) {
629 				/* The flush is complete, but we didn't
630 				 * receive a flush completion event
631 				 */
632 				netif_dbg(efx, hw, efx->net_dev,
633 					  "flush complete on TXQ %d, so drain "
634 					  "the queue\n", tx_queue->queue);
635 				/* Don't need to increment active_queues as it
636 				 * has already been incremented for the queues
637 				 * which did not drain
638 				 */
639 				efx_farch_magic_event(channel,
640 						      EFX_CHANNEL_MAGIC_TX_DRAIN(
641 							      tx_queue));
642 			}
643 		}
644 	}
645 
646 	return i;
647 }
648 
649 /* Flush all the transmit queues, and continue flushing receive queues until
650  * they're all flushed. Wait for the DRAIN events to be received so that there
651  * are no more RX and TX events left on any channel. */
efx_farch_do_flush(struct efx_nic * efx)652 static int efx_farch_do_flush(struct efx_nic *efx)
653 {
654 	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
655 	struct efx_channel *channel;
656 	struct efx_rx_queue *rx_queue;
657 	struct efx_tx_queue *tx_queue;
658 	int rc = 0;
659 
660 	efx_for_each_channel(channel, efx) {
661 		efx_for_each_channel_tx_queue(tx_queue, channel) {
662 			efx_farch_flush_tx_queue(tx_queue);
663 		}
664 		efx_for_each_channel_rx_queue(rx_queue, channel) {
665 			rx_queue->flush_pending = true;
666 			atomic_inc(&efx->rxq_flush_pending);
667 		}
668 	}
669 
670 	while (timeout && atomic_read(&efx->active_queues) > 0) {
671 		/* If SRIOV is enabled, then offload receive queue flushing to
672 		 * the firmware (though we will still have to poll for
673 		 * completion). If that fails, fall back to the old scheme.
674 		 */
675 		if (efx_siena_sriov_enabled(efx)) {
676 			rc = efx_mcdi_flush_rxqs(efx);
677 			if (!rc)
678 				goto wait;
679 		}
680 
681 		/* The hardware supports four concurrent rx flushes, each of
682 		 * which may need to be retried if there is an outstanding
683 		 * descriptor fetch
684 		 */
685 		efx_for_each_channel(channel, efx) {
686 			efx_for_each_channel_rx_queue(rx_queue, channel) {
687 				if (atomic_read(&efx->rxq_flush_outstanding) >=
688 				    EFX_RX_FLUSH_COUNT)
689 					break;
690 
691 				if (rx_queue->flush_pending) {
692 					rx_queue->flush_pending = false;
693 					atomic_dec(&efx->rxq_flush_pending);
694 					atomic_inc(&efx->rxq_flush_outstanding);
695 					efx_farch_flush_rx_queue(rx_queue);
696 				}
697 			}
698 		}
699 
700 	wait:
701 		timeout = wait_event_timeout(efx->flush_wq,
702 					     efx_farch_flush_wake(efx),
703 					     timeout);
704 	}
705 
706 	if (atomic_read(&efx->active_queues) &&
707 	    !efx_check_tx_flush_complete(efx)) {
708 		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
709 			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
710 			  atomic_read(&efx->rxq_flush_outstanding),
711 			  atomic_read(&efx->rxq_flush_pending));
712 		rc = -ETIMEDOUT;
713 
714 		atomic_set(&efx->active_queues, 0);
715 		atomic_set(&efx->rxq_flush_pending, 0);
716 		atomic_set(&efx->rxq_flush_outstanding, 0);
717 	}
718 
719 	return rc;
720 }
721 
efx_farch_fini_dmaq(struct efx_nic * efx)722 int efx_farch_fini_dmaq(struct efx_nic *efx)
723 {
724 	struct efx_channel *channel;
725 	struct efx_tx_queue *tx_queue;
726 	struct efx_rx_queue *rx_queue;
727 	int rc = 0;
728 
729 	/* Do not attempt to write to the NIC during EEH recovery */
730 	if (efx->state != STATE_RECOVERY) {
731 		/* Only perform flush if DMA is enabled */
732 		if (efx->pci_dev->is_busmaster) {
733 			efx->type->prepare_flush(efx);
734 			rc = efx_farch_do_flush(efx);
735 			efx->type->finish_flush(efx);
736 		}
737 
738 		efx_for_each_channel(channel, efx) {
739 			efx_for_each_channel_rx_queue(rx_queue, channel)
740 				efx_farch_rx_fini(rx_queue);
741 			efx_for_each_channel_tx_queue(tx_queue, channel)
742 				efx_farch_tx_fini(tx_queue);
743 		}
744 	}
745 
746 	return rc;
747 }
748 
749 /* Reset queue and flush accounting after FLR
750  *
751  * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
752  * mastering was disabled), in which case we don't receive (RXQ) flush
753  * completion events.  This means that efx->rxq_flush_outstanding remained at 4
754  * after the FLR; also, efx->active_queues was non-zero (as no flush completion
755  * events were received, and we didn't go through efx_check_tx_flush_complete())
756  * If we don't fix this up, on the next call to efx_realloc_channels() we won't
757  * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
758  * for batched flush requests; and the efx->active_queues gets messed up because
759  * we keep incrementing for the newly initialised queues, but it never went to
760  * zero previously.  Then we get a timeout every time we try to restart the
761  * queues, as it doesn't go back to zero when we should be flushing the queues.
762  */
efx_farch_finish_flr(struct efx_nic * efx)763 void efx_farch_finish_flr(struct efx_nic *efx)
764 {
765 	atomic_set(&efx->rxq_flush_pending, 0);
766 	atomic_set(&efx->rxq_flush_outstanding, 0);
767 	atomic_set(&efx->active_queues, 0);
768 }
769 
770 
771 /**************************************************************************
772  *
773  * Event queue processing
774  * Event queues are processed by per-channel tasklets.
775  *
776  **************************************************************************/
777 
778 /* Update a channel's event queue's read pointer (RPTR) register
779  *
780  * This writes the EVQ_RPTR_REG register for the specified channel's
781  * event queue.
782  */
efx_farch_ev_read_ack(struct efx_channel * channel)783 void efx_farch_ev_read_ack(struct efx_channel *channel)
784 {
785 	efx_dword_t reg;
786 	struct efx_nic *efx = channel->efx;
787 
788 	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
789 			     channel->eventq_read_ptr & channel->eventq_mask);
790 
791 	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
792 	 * of 4 bytes, but it is really 16 bytes just like later revisions.
793 	 */
794 	efx_writed(efx, &reg,
795 		   efx->type->evq_rptr_tbl_base +
796 		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
797 }
798 
799 /* Use HW to insert a SW defined event */
efx_farch_generate_event(struct efx_nic * efx,unsigned int evq,efx_qword_t * event)800 void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
801 			      efx_qword_t *event)
802 {
803 	efx_oword_t drv_ev_reg;
804 
805 	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
806 		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
807 	drv_ev_reg.u32[0] = event->u32[0];
808 	drv_ev_reg.u32[1] = event->u32[1];
809 	drv_ev_reg.u32[2] = 0;
810 	drv_ev_reg.u32[3] = 0;
811 	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
812 	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
813 }
814 
efx_farch_magic_event(struct efx_channel * channel,u32 magic)815 static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
816 {
817 	efx_qword_t event;
818 
819 	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
820 			     FSE_AZ_EV_CODE_DRV_GEN_EV,
821 			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
822 	efx_farch_generate_event(channel->efx, channel->channel, &event);
823 }
824 
825 /* Handle a transmit completion event
826  *
827  * The NIC batches TX completion events; the message we receive is of
828  * the form "complete all TX events up to this index".
829  */
830 static int
efx_farch_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)831 efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
832 {
833 	unsigned int tx_ev_desc_ptr;
834 	unsigned int tx_ev_q_label;
835 	struct efx_tx_queue *tx_queue;
836 	struct efx_nic *efx = channel->efx;
837 	int tx_packets = 0;
838 
839 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
840 		return 0;
841 
842 	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
843 		/* Transmit completion */
844 		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
845 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
846 		tx_queue = efx_channel_get_tx_queue(
847 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
848 		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
849 			      tx_queue->ptr_mask);
850 		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
851 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
852 		/* Rewrite the FIFO write pointer */
853 		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
854 		tx_queue = efx_channel_get_tx_queue(
855 			channel, tx_ev_q_label % EFX_TXQ_TYPES);
856 
857 		netif_tx_lock(efx->net_dev);
858 		efx_farch_notify_tx_desc(tx_queue);
859 		netif_tx_unlock(efx->net_dev);
860 	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
861 		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
862 	} else {
863 		netif_err(efx, tx_err, efx->net_dev,
864 			  "channel %d unexpected TX event "
865 			  EFX_QWORD_FMT"\n", channel->channel,
866 			  EFX_QWORD_VAL(*event));
867 	}
868 
869 	return tx_packets;
870 }
871 
872 /* Detect errors included in the rx_evt_pkt_ok bit. */
efx_farch_handle_rx_not_ok(struct efx_rx_queue * rx_queue,const efx_qword_t * event)873 static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
874 				      const efx_qword_t *event)
875 {
876 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
877 	struct efx_nic *efx = rx_queue->efx;
878 	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
879 	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
880 	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
881 	bool rx_ev_other_err, rx_ev_pause_frm;
882 	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
883 	unsigned rx_ev_pkt_type;
884 
885 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
886 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
887 	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
888 	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
889 	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
890 						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
891 	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
892 						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
893 	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
894 						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
895 	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
896 	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
897 	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
898 			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
899 	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
900 
901 	/* Every error apart from tobe_disc and pause_frm */
902 	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
903 			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
904 			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
905 
906 	/* Count errors that are not in MAC stats.  Ignore expected
907 	 * checksum errors during self-test. */
908 	if (rx_ev_frm_trunc)
909 		++channel->n_rx_frm_trunc;
910 	else if (rx_ev_tobe_disc)
911 		++channel->n_rx_tobe_disc;
912 	else if (!efx->loopback_selftest) {
913 		if (rx_ev_ip_hdr_chksum_err)
914 			++channel->n_rx_ip_hdr_chksum_err;
915 		else if (rx_ev_tcp_udp_chksum_err)
916 			++channel->n_rx_tcp_udp_chksum_err;
917 	}
918 
919 	/* TOBE_DISC is expected on unicast mismatches; don't print out an
920 	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
921 	 * to a FIFO overflow.
922 	 */
923 #ifdef DEBUG
924 	if (rx_ev_other_err && net_ratelimit()) {
925 		netif_dbg(efx, rx_err, efx->net_dev,
926 			  " RX queue %d unexpected RX event "
927 			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
928 			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
929 			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
930 			  rx_ev_ip_hdr_chksum_err ?
931 			  " [IP_HDR_CHKSUM_ERR]" : "",
932 			  rx_ev_tcp_udp_chksum_err ?
933 			  " [TCP_UDP_CHKSUM_ERR]" : "",
934 			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
935 			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
936 			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
937 			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
938 			  rx_ev_pause_frm ? " [PAUSE]" : "");
939 	}
940 #endif
941 
942 	/* The frame must be discarded if any of these are true. */
943 	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
944 		rx_ev_tobe_disc | rx_ev_pause_frm) ?
945 		EFX_RX_PKT_DISCARD : 0;
946 }
947 
948 /* Handle receive events that are not in-order. Return true if this
949  * can be handled as a partial packet discard, false if it's more
950  * serious.
951  */
952 static bool
efx_farch_handle_rx_bad_index(struct efx_rx_queue * rx_queue,unsigned index)953 efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
954 {
955 	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
956 	struct efx_nic *efx = rx_queue->efx;
957 	unsigned expected, dropped;
958 
959 	if (rx_queue->scatter_n &&
960 	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
961 		      rx_queue->ptr_mask)) {
962 		++channel->n_rx_nodesc_trunc;
963 		return true;
964 	}
965 
966 	expected = rx_queue->removed_count & rx_queue->ptr_mask;
967 	dropped = (index - expected) & rx_queue->ptr_mask;
968 	netif_info(efx, rx_err, efx->net_dev,
969 		   "dropped %d events (index=%d expected=%d)\n",
970 		   dropped, index, expected);
971 
972 	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
973 			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
974 	return false;
975 }
976 
977 /* Handle a packet received event
978  *
979  * The NIC gives a "discard" flag if it's a unicast packet with the
980  * wrong destination address
981  * Also "is multicast" and "matches multicast filter" flags can be used to
982  * discard non-matching multicast packets.
983  */
984 static void
efx_farch_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)985 efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
986 {
987 	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
988 	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
989 	unsigned expected_ptr;
990 	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
991 	u16 flags;
992 	struct efx_rx_queue *rx_queue;
993 	struct efx_nic *efx = channel->efx;
994 
995 	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
996 		return;
997 
998 	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
999 	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1000 	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1001 		channel->channel);
1002 
1003 	rx_queue = efx_channel_get_rx_queue(channel);
1004 
1005 	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1006 	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1007 			rx_queue->ptr_mask);
1008 
1009 	/* Check for partial drops and other errors */
1010 	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1011 	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1012 		if (rx_ev_desc_ptr != expected_ptr &&
1013 		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1014 			return;
1015 
1016 		/* Discard all pending fragments */
1017 		if (rx_queue->scatter_n) {
1018 			efx_rx_packet(
1019 				rx_queue,
1020 				rx_queue->removed_count & rx_queue->ptr_mask,
1021 				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1022 			rx_queue->removed_count += rx_queue->scatter_n;
1023 			rx_queue->scatter_n = 0;
1024 		}
1025 
1026 		/* Return if there is no new fragment */
1027 		if (rx_ev_desc_ptr != expected_ptr)
1028 			return;
1029 
1030 		/* Discard new fragment if not SOP */
1031 		if (!rx_ev_sop) {
1032 			efx_rx_packet(
1033 				rx_queue,
1034 				rx_queue->removed_count & rx_queue->ptr_mask,
1035 				1, 0, EFX_RX_PKT_DISCARD);
1036 			++rx_queue->removed_count;
1037 			return;
1038 		}
1039 	}
1040 
1041 	++rx_queue->scatter_n;
1042 	if (rx_ev_cont)
1043 		return;
1044 
1045 	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1046 	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1047 	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1048 
1049 	if (likely(rx_ev_pkt_ok)) {
1050 		/* If packet is marked as OK then we can rely on the
1051 		 * hardware checksum and classification.
1052 		 */
1053 		flags = 0;
1054 		switch (rx_ev_hdr_type) {
1055 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1056 			flags |= EFX_RX_PKT_TCP;
1057 			/* fall through */
1058 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1059 			flags |= EFX_RX_PKT_CSUMMED;
1060 			/* fall through */
1061 		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1062 		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1063 			break;
1064 		}
1065 	} else {
1066 		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1067 	}
1068 
1069 	/* Detect multicast packets that didn't match the filter */
1070 	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1071 	if (rx_ev_mcast_pkt) {
1072 		unsigned int rx_ev_mcast_hash_match =
1073 			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1074 
1075 		if (unlikely(!rx_ev_mcast_hash_match)) {
1076 			++channel->n_rx_mcast_mismatch;
1077 			flags |= EFX_RX_PKT_DISCARD;
1078 		}
1079 	}
1080 
1081 	channel->irq_mod_score += 2;
1082 
1083 	/* Handle received packet */
1084 	efx_rx_packet(rx_queue,
1085 		      rx_queue->removed_count & rx_queue->ptr_mask,
1086 		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1087 	rx_queue->removed_count += rx_queue->scatter_n;
1088 	rx_queue->scatter_n = 0;
1089 }
1090 
1091 /* If this flush done event corresponds to a &struct efx_tx_queue, then
1092  * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1093  * of all transmit completions.
1094  */
1095 static void
efx_farch_handle_tx_flush_done(struct efx_nic * efx,efx_qword_t * event)1096 efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1097 {
1098 	struct efx_tx_queue *tx_queue;
1099 	int qid;
1100 
1101 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1102 	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1103 		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1104 					    qid % EFX_TXQ_TYPES);
1105 		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1106 			efx_farch_magic_event(tx_queue->channel,
1107 					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1108 		}
1109 	}
1110 }
1111 
1112 /* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1113  * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1114  * the RX queue back to the mask of RX queues in need of flushing.
1115  */
1116 static void
efx_farch_handle_rx_flush_done(struct efx_nic * efx,efx_qword_t * event)1117 efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1118 {
1119 	struct efx_channel *channel;
1120 	struct efx_rx_queue *rx_queue;
1121 	int qid;
1122 	bool failed;
1123 
1124 	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1125 	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1126 	if (qid >= efx->n_channels)
1127 		return;
1128 	channel = efx_get_channel(efx, qid);
1129 	if (!efx_channel_has_rx_queue(channel))
1130 		return;
1131 	rx_queue = efx_channel_get_rx_queue(channel);
1132 
1133 	if (failed) {
1134 		netif_info(efx, hw, efx->net_dev,
1135 			   "RXQ %d flush retry\n", qid);
1136 		rx_queue->flush_pending = true;
1137 		atomic_inc(&efx->rxq_flush_pending);
1138 	} else {
1139 		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1140 				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1141 	}
1142 	atomic_dec(&efx->rxq_flush_outstanding);
1143 	if (efx_farch_flush_wake(efx))
1144 		wake_up(&efx->flush_wq);
1145 }
1146 
1147 static void
efx_farch_handle_drain_event(struct efx_channel * channel)1148 efx_farch_handle_drain_event(struct efx_channel *channel)
1149 {
1150 	struct efx_nic *efx = channel->efx;
1151 
1152 	WARN_ON(atomic_read(&efx->active_queues) == 0);
1153 	atomic_dec(&efx->active_queues);
1154 	if (efx_farch_flush_wake(efx))
1155 		wake_up(&efx->flush_wq);
1156 }
1157 
efx_farch_handle_generated_event(struct efx_channel * channel,efx_qword_t * event)1158 static void efx_farch_handle_generated_event(struct efx_channel *channel,
1159 					     efx_qword_t *event)
1160 {
1161 	struct efx_nic *efx = channel->efx;
1162 	struct efx_rx_queue *rx_queue =
1163 		efx_channel_has_rx_queue(channel) ?
1164 		efx_channel_get_rx_queue(channel) : NULL;
1165 	unsigned magic, code;
1166 
1167 	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1168 	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1169 
1170 	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1171 		channel->event_test_cpu = raw_smp_processor_id();
1172 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1173 		/* The queue must be empty, so we won't receive any rx
1174 		 * events, so efx_process_channel() won't refill the
1175 		 * queue. Refill it here */
1176 		efx_fast_push_rx_descriptors(rx_queue, true);
1177 	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1178 		efx_farch_handle_drain_event(channel);
1179 	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1180 		efx_farch_handle_drain_event(channel);
1181 	} else {
1182 		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1183 			  "generated event "EFX_QWORD_FMT"\n",
1184 			  channel->channel, EFX_QWORD_VAL(*event));
1185 	}
1186 }
1187 
1188 static void
efx_farch_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1189 efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1190 {
1191 	struct efx_nic *efx = channel->efx;
1192 	unsigned int ev_sub_code;
1193 	unsigned int ev_sub_data;
1194 
1195 	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1196 	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1197 
1198 	switch (ev_sub_code) {
1199 	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1200 		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1201 			   channel->channel, ev_sub_data);
1202 		efx_farch_handle_tx_flush_done(efx, event);
1203 		efx_siena_sriov_tx_flush_done(efx, event);
1204 		break;
1205 	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1206 		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1207 			   channel->channel, ev_sub_data);
1208 		efx_farch_handle_rx_flush_done(efx, event);
1209 		efx_siena_sriov_rx_flush_done(efx, event);
1210 		break;
1211 	case FSE_AZ_EVQ_INIT_DONE_EV:
1212 		netif_dbg(efx, hw, efx->net_dev,
1213 			  "channel %d EVQ %d initialised\n",
1214 			  channel->channel, ev_sub_data);
1215 		break;
1216 	case FSE_AZ_SRM_UPD_DONE_EV:
1217 		netif_vdbg(efx, hw, efx->net_dev,
1218 			   "channel %d SRAM update done\n", channel->channel);
1219 		break;
1220 	case FSE_AZ_WAKE_UP_EV:
1221 		netif_vdbg(efx, hw, efx->net_dev,
1222 			   "channel %d RXQ %d wakeup event\n",
1223 			   channel->channel, ev_sub_data);
1224 		break;
1225 	case FSE_AZ_TIMER_EV:
1226 		netif_vdbg(efx, hw, efx->net_dev,
1227 			   "channel %d RX queue %d timer expired\n",
1228 			   channel->channel, ev_sub_data);
1229 		break;
1230 	case FSE_AA_RX_RECOVER_EV:
1231 		netif_err(efx, rx_err, efx->net_dev,
1232 			  "channel %d seen DRIVER RX_RESET event. "
1233 			"Resetting.\n", channel->channel);
1234 		atomic_inc(&efx->rx_reset);
1235 		efx_schedule_reset(efx,
1236 				   EFX_WORKAROUND_6555(efx) ?
1237 				   RESET_TYPE_RX_RECOVERY :
1238 				   RESET_TYPE_DISABLE);
1239 		break;
1240 	case FSE_BZ_RX_DSC_ERROR_EV:
1241 		if (ev_sub_data < EFX_VI_BASE) {
1242 			netif_err(efx, rx_err, efx->net_dev,
1243 				  "RX DMA Q %d reports descriptor fetch error."
1244 				  " RX Q %d is disabled.\n", ev_sub_data,
1245 				  ev_sub_data);
1246 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247 		} else
1248 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1249 		break;
1250 	case FSE_BZ_TX_DSC_ERROR_EV:
1251 		if (ev_sub_data < EFX_VI_BASE) {
1252 			netif_err(efx, tx_err, efx->net_dev,
1253 				  "TX DMA Q %d reports descriptor fetch error."
1254 				  " TX Q %d is disabled.\n", ev_sub_data,
1255 				  ev_sub_data);
1256 			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1257 		} else
1258 			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1259 		break;
1260 	default:
1261 		netif_vdbg(efx, hw, efx->net_dev,
1262 			   "channel %d unknown driver event code %d "
1263 			   "data %04x\n", channel->channel, ev_sub_code,
1264 			   ev_sub_data);
1265 		break;
1266 	}
1267 }
1268 
efx_farch_ev_process(struct efx_channel * channel,int budget)1269 int efx_farch_ev_process(struct efx_channel *channel, int budget)
1270 {
1271 	struct efx_nic *efx = channel->efx;
1272 	unsigned int read_ptr;
1273 	efx_qword_t event, *p_event;
1274 	int ev_code;
1275 	int tx_packets = 0;
1276 	int spent = 0;
1277 
1278 	if (budget <= 0)
1279 		return spent;
1280 
1281 	read_ptr = channel->eventq_read_ptr;
1282 
1283 	for (;;) {
1284 		p_event = efx_event(channel, read_ptr);
1285 		event = *p_event;
1286 
1287 		if (!efx_event_present(&event))
1288 			/* End of events */
1289 			break;
1290 
1291 		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1292 			   "channel %d event is "EFX_QWORD_FMT"\n",
1293 			   channel->channel, EFX_QWORD_VAL(event));
1294 
1295 		/* Clear this event by marking it all ones */
1296 		EFX_SET_QWORD(*p_event);
1297 
1298 		++read_ptr;
1299 
1300 		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1301 
1302 		switch (ev_code) {
1303 		case FSE_AZ_EV_CODE_RX_EV:
1304 			efx_farch_handle_rx_event(channel, &event);
1305 			if (++spent == budget)
1306 				goto out;
1307 			break;
1308 		case FSE_AZ_EV_CODE_TX_EV:
1309 			tx_packets += efx_farch_handle_tx_event(channel,
1310 								&event);
1311 			if (tx_packets > efx->txq_entries) {
1312 				spent = budget;
1313 				goto out;
1314 			}
1315 			break;
1316 		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1317 			efx_farch_handle_generated_event(channel, &event);
1318 			break;
1319 		case FSE_AZ_EV_CODE_DRIVER_EV:
1320 			efx_farch_handle_driver_event(channel, &event);
1321 			break;
1322 		case FSE_CZ_EV_CODE_USER_EV:
1323 			efx_siena_sriov_event(channel, &event);
1324 			break;
1325 		case FSE_CZ_EV_CODE_MCDI_EV:
1326 			efx_mcdi_process_event(channel, &event);
1327 			break;
1328 		case FSE_AZ_EV_CODE_GLOBAL_EV:
1329 			if (efx->type->handle_global_event &&
1330 			    efx->type->handle_global_event(channel, &event))
1331 				break;
1332 			/* else fall through */
1333 		default:
1334 			netif_err(channel->efx, hw, channel->efx->net_dev,
1335 				  "channel %d unknown event type %d (data "
1336 				  EFX_QWORD_FMT ")\n", channel->channel,
1337 				  ev_code, EFX_QWORD_VAL(event));
1338 		}
1339 	}
1340 
1341 out:
1342 	channel->eventq_read_ptr = read_ptr;
1343 	return spent;
1344 }
1345 
1346 /* Allocate buffer table entries for event queue */
efx_farch_ev_probe(struct efx_channel * channel)1347 int efx_farch_ev_probe(struct efx_channel *channel)
1348 {
1349 	struct efx_nic *efx = channel->efx;
1350 	unsigned entries;
1351 
1352 	entries = channel->eventq_mask + 1;
1353 	return efx_alloc_special_buffer(efx, &channel->eventq,
1354 					entries * sizeof(efx_qword_t));
1355 }
1356 
efx_farch_ev_init(struct efx_channel * channel)1357 int efx_farch_ev_init(struct efx_channel *channel)
1358 {
1359 	efx_oword_t reg;
1360 	struct efx_nic *efx = channel->efx;
1361 
1362 	netif_dbg(efx, hw, efx->net_dev,
1363 		  "channel %d event queue in special buffers %d-%d\n",
1364 		  channel->channel, channel->eventq.index,
1365 		  channel->eventq.index + channel->eventq.entries - 1);
1366 
1367 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1368 		EFX_POPULATE_OWORD_3(reg,
1369 				     FRF_CZ_TIMER_Q_EN, 1,
1370 				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1371 				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1372 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1373 	}
1374 
1375 	/* Pin event queue buffer */
1376 	efx_init_special_buffer(efx, &channel->eventq);
1377 
1378 	/* Fill event queue with all ones (i.e. empty events) */
1379 	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1380 
1381 	/* Push event queue to card */
1382 	EFX_POPULATE_OWORD_3(reg,
1383 			     FRF_AZ_EVQ_EN, 1,
1384 			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1385 			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1386 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1387 			 channel->channel);
1388 
1389 	return 0;
1390 }
1391 
efx_farch_ev_fini(struct efx_channel * channel)1392 void efx_farch_ev_fini(struct efx_channel *channel)
1393 {
1394 	efx_oword_t reg;
1395 	struct efx_nic *efx = channel->efx;
1396 
1397 	/* Remove event queue from card */
1398 	EFX_ZERO_OWORD(reg);
1399 	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1400 			 channel->channel);
1401 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1402 		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1403 
1404 	/* Unpin event queue */
1405 	efx_fini_special_buffer(efx, &channel->eventq);
1406 }
1407 
1408 /* Free buffers backing event queue */
efx_farch_ev_remove(struct efx_channel * channel)1409 void efx_farch_ev_remove(struct efx_channel *channel)
1410 {
1411 	efx_free_special_buffer(channel->efx, &channel->eventq);
1412 }
1413 
1414 
efx_farch_ev_test_generate(struct efx_channel * channel)1415 void efx_farch_ev_test_generate(struct efx_channel *channel)
1416 {
1417 	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1418 }
1419 
efx_farch_rx_defer_refill(struct efx_rx_queue * rx_queue)1420 void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1421 {
1422 	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1423 			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1424 }
1425 
1426 /**************************************************************************
1427  *
1428  * Hardware interrupts
1429  * The hardware interrupt handler does very little work; all the event
1430  * queue processing is carried out by per-channel tasklets.
1431  *
1432  **************************************************************************/
1433 
1434 /* Enable/disable/generate interrupts */
efx_farch_interrupts(struct efx_nic * efx,bool enabled,bool force)1435 static inline void efx_farch_interrupts(struct efx_nic *efx,
1436 				      bool enabled, bool force)
1437 {
1438 	efx_oword_t int_en_reg_ker;
1439 
1440 	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1441 			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1442 			     FRF_AZ_KER_INT_KER, force,
1443 			     FRF_AZ_DRV_INT_EN_KER, enabled);
1444 	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1445 }
1446 
efx_farch_irq_enable_master(struct efx_nic * efx)1447 void efx_farch_irq_enable_master(struct efx_nic *efx)
1448 {
1449 	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1450 	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1451 
1452 	efx_farch_interrupts(efx, true, false);
1453 }
1454 
efx_farch_irq_disable_master(struct efx_nic * efx)1455 void efx_farch_irq_disable_master(struct efx_nic *efx)
1456 {
1457 	/* Disable interrupts */
1458 	efx_farch_interrupts(efx, false, false);
1459 }
1460 
1461 /* Generate a test interrupt
1462  * Interrupt must already have been enabled, otherwise nasty things
1463  * may happen.
1464  */
efx_farch_irq_test_generate(struct efx_nic * efx)1465 void efx_farch_irq_test_generate(struct efx_nic *efx)
1466 {
1467 	efx_farch_interrupts(efx, true, true);
1468 }
1469 
1470 /* Process a fatal interrupt
1471  * Disable bus mastering ASAP and schedule a reset
1472  */
efx_farch_fatal_interrupt(struct efx_nic * efx)1473 irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1474 {
1475 	struct falcon_nic_data *nic_data = efx->nic_data;
1476 	efx_oword_t *int_ker = efx->irq_status.addr;
1477 	efx_oword_t fatal_intr;
1478 	int error, mem_perr;
1479 
1480 	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1481 	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1482 
1483 	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1484 		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1485 		  EFX_OWORD_VAL(fatal_intr),
1486 		  error ? "disabling bus mastering" : "no recognised error");
1487 
1488 	/* If this is a memory parity error dump which blocks are offending */
1489 	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1490 		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1491 	if (mem_perr) {
1492 		efx_oword_t reg;
1493 		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1494 		netif_err(efx, hw, efx->net_dev,
1495 			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1496 			  EFX_OWORD_VAL(reg));
1497 	}
1498 
1499 	/* Disable both devices */
1500 	pci_clear_master(efx->pci_dev);
1501 	if (efx_nic_is_dual_func(efx))
1502 		pci_clear_master(nic_data->pci_dev2);
1503 	efx_farch_irq_disable_master(efx);
1504 
1505 	/* Count errors and reset or disable the NIC accordingly */
1506 	if (efx->int_error_count == 0 ||
1507 	    time_after(jiffies, efx->int_error_expire)) {
1508 		efx->int_error_count = 0;
1509 		efx->int_error_expire =
1510 			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1511 	}
1512 	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1513 		netif_err(efx, hw, efx->net_dev,
1514 			  "SYSTEM ERROR - reset scheduled\n");
1515 		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1516 	} else {
1517 		netif_err(efx, hw, efx->net_dev,
1518 			  "SYSTEM ERROR - max number of errors seen."
1519 			  "NIC will be disabled\n");
1520 		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1521 	}
1522 
1523 	return IRQ_HANDLED;
1524 }
1525 
1526 /* Handle a legacy interrupt
1527  * Acknowledges the interrupt and schedule event queue processing.
1528  */
efx_farch_legacy_interrupt(int irq,void * dev_id)1529 irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1530 {
1531 	struct efx_nic *efx = dev_id;
1532 	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1533 	efx_oword_t *int_ker = efx->irq_status.addr;
1534 	irqreturn_t result = IRQ_NONE;
1535 	struct efx_channel *channel;
1536 	efx_dword_t reg;
1537 	u32 queues;
1538 	int syserr;
1539 
1540 	/* Read the ISR which also ACKs the interrupts */
1541 	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1542 	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1543 
1544 	/* Legacy interrupts are disabled too late by the EEH kernel
1545 	 * code. Disable them earlier.
1546 	 * If an EEH error occurred, the read will have returned all ones.
1547 	 */
1548 	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1549 	    !efx->eeh_disabled_legacy_irq) {
1550 		disable_irq_nosync(efx->legacy_irq);
1551 		efx->eeh_disabled_legacy_irq = true;
1552 	}
1553 
1554 	/* Handle non-event-queue sources */
1555 	if (queues & (1U << efx->irq_level) && soft_enabled) {
1556 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1557 		if (unlikely(syserr))
1558 			return efx_farch_fatal_interrupt(efx);
1559 		efx->last_irq_cpu = raw_smp_processor_id();
1560 	}
1561 
1562 	if (queues != 0) {
1563 		efx->irq_zero_count = 0;
1564 
1565 		/* Schedule processing of any interrupting queues */
1566 		if (likely(soft_enabled)) {
1567 			efx_for_each_channel(channel, efx) {
1568 				if (queues & 1)
1569 					efx_schedule_channel_irq(channel);
1570 				queues >>= 1;
1571 			}
1572 		}
1573 		result = IRQ_HANDLED;
1574 
1575 	} else {
1576 		efx_qword_t *event;
1577 
1578 		/* Legacy ISR read can return zero once (SF bug 15783) */
1579 
1580 		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1581 		 * because this might be a shared interrupt. */
1582 		if (efx->irq_zero_count++ == 0)
1583 			result = IRQ_HANDLED;
1584 
1585 		/* Ensure we schedule or rearm all event queues */
1586 		if (likely(soft_enabled)) {
1587 			efx_for_each_channel(channel, efx) {
1588 				event = efx_event(channel,
1589 						  channel->eventq_read_ptr);
1590 				if (efx_event_present(event))
1591 					efx_schedule_channel_irq(channel);
1592 				else
1593 					efx_farch_ev_read_ack(channel);
1594 			}
1595 		}
1596 	}
1597 
1598 	if (result == IRQ_HANDLED)
1599 		netif_vdbg(efx, intr, efx->net_dev,
1600 			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1601 			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1602 
1603 	return result;
1604 }
1605 
1606 /* Handle an MSI interrupt
1607  *
1608  * Handle an MSI hardware interrupt.  This routine schedules event
1609  * queue processing.  No interrupt acknowledgement cycle is necessary.
1610  * Also, we never need to check that the interrupt is for us, since
1611  * MSI interrupts cannot be shared.
1612  */
efx_farch_msi_interrupt(int irq,void * dev_id)1613 irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1614 {
1615 	struct efx_msi_context *context = dev_id;
1616 	struct efx_nic *efx = context->efx;
1617 	efx_oword_t *int_ker = efx->irq_status.addr;
1618 	int syserr;
1619 
1620 	netif_vdbg(efx, intr, efx->net_dev,
1621 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1622 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1623 
1624 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1625 		return IRQ_HANDLED;
1626 
1627 	/* Handle non-event-queue sources */
1628 	if (context->index == efx->irq_level) {
1629 		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1630 		if (unlikely(syserr))
1631 			return efx_farch_fatal_interrupt(efx);
1632 		efx->last_irq_cpu = raw_smp_processor_id();
1633 	}
1634 
1635 	/* Schedule processing of the channel */
1636 	efx_schedule_channel_irq(efx->channel[context->index]);
1637 
1638 	return IRQ_HANDLED;
1639 }
1640 
1641 /* Setup RSS indirection table.
1642  * This maps from the hash value of the packet to RXQ
1643  */
efx_farch_rx_push_indir_table(struct efx_nic * efx)1644 void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1645 {
1646 	size_t i = 0;
1647 	efx_dword_t dword;
1648 
1649 	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1650 
1651 	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1652 		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1653 
1654 	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1655 		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1656 				     efx->rx_indir_table[i]);
1657 		efx_writed(efx, &dword,
1658 			   FR_BZ_RX_INDIRECTION_TBL +
1659 			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1660 	}
1661 }
1662 
1663 /* Looks at available SRAM resources and works out how many queues we
1664  * can support, and where things like descriptor caches should live.
1665  *
1666  * SRAM is split up as follows:
1667  * 0                          buftbl entries for channels
1668  * efx->vf_buftbl_base        buftbl entries for SR-IOV
1669  * efx->rx_dc_base            RX descriptor caches
1670  * efx->tx_dc_base            TX descriptor caches
1671  */
efx_farch_dimension_resources(struct efx_nic * efx,unsigned sram_lim_qw)1672 void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1673 {
1674 	unsigned vi_count, buftbl_min;
1675 
1676 #ifdef CONFIG_SFC_SRIOV
1677 	struct siena_nic_data *nic_data = efx->nic_data;
1678 #endif
1679 
1680 	/* Account for the buffer table entries backing the datapath channels
1681 	 * and the descriptor caches for those channels.
1682 	 */
1683 	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1684 		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1685 		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1686 		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1687 	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1688 
1689 #ifdef CONFIG_SFC_SRIOV
1690 	if (efx->type->sriov_wanted(efx)) {
1691 		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1692 
1693 		nic_data->vf_buftbl_base = buftbl_min;
1694 
1695 		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1696 		vi_count = max(vi_count, EFX_VI_BASE);
1697 		buftbl_free = (sram_lim_qw - buftbl_min -
1698 			       vi_count * vi_dc_entries);
1699 
1700 		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1701 				  efx_vf_size(efx));
1702 		vf_limit = min(buftbl_free / entries_per_vf,
1703 			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1704 
1705 		if (efx->vf_count > vf_limit) {
1706 			netif_err(efx, probe, efx->net_dev,
1707 				  "Reducing VF count from from %d to %d\n",
1708 				  efx->vf_count, vf_limit);
1709 			efx->vf_count = vf_limit;
1710 		}
1711 		vi_count += efx->vf_count * efx_vf_size(efx);
1712 	}
1713 #endif
1714 
1715 	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716 	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717 }
1718 
efx_farch_fpga_ver(struct efx_nic * efx)1719 u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720 {
1721 	efx_oword_t altera_build;
1722 	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723 	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724 }
1725 
efx_farch_init_common(struct efx_nic * efx)1726 void efx_farch_init_common(struct efx_nic *efx)
1727 {
1728 	efx_oword_t temp;
1729 
1730 	/* Set positions of descriptor caches in SRAM. */
1731 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732 	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734 	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735 
1736 	/* Set TX descriptor cache size. */
1737 	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739 	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740 
1741 	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1742 	 * this allows most efficient prefetching.
1743 	 */
1744 	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746 	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747 	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748 	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749 
1750 	/* Program INT_KER address */
1751 	EFX_POPULATE_OWORD_2(temp,
1752 			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1753 			     EFX_INT_MODE_USE_MSI(efx),
1754 			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755 	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756 
1757 	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758 		/* Use an interrupt level unused by event queues */
1759 		efx->irq_level = 0x1f;
1760 	else
1761 		/* Use a valid MSI-X vector */
1762 		efx->irq_level = 0;
1763 
1764 	/* Enable all the genuinely fatal interrupts.  (They are still
1765 	 * masked by the overall interrupt mask, controlled by
1766 	 * falcon_interrupts()).
1767 	 *
1768 	 * Note: All other fatal interrupts are enabled
1769 	 */
1770 	EFX_POPULATE_OWORD_3(temp,
1771 			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772 			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773 			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1775 		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1776 	EFX_INVERT_OWORD(temp);
1777 	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1778 
1779 	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780 	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1781 	 */
1782 	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1783 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1784 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1785 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1786 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1787 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1788 	/* Enable SW_EV to inherit in char driver - assume harmless here */
1789 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1790 	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1792 	/* Disable hardware watchdog which can misfire */
1793 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1794 	/* Squash TX of packets of 16 bytes or less */
1795 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1796 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1797 	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1798 
1799 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1800 		EFX_POPULATE_OWORD_4(temp,
1801 				     /* Default values */
1802 				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803 				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1804 				     FRF_BZ_TX_PACE_FB_BASE, 0,
1805 				     /* Allow large pace values in the
1806 				      * fast bin. */
1807 				     FRF_BZ_TX_PACE_BIN_TH,
1808 				     FFE_BZ_TX_PACE_RESERVED);
1809 		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1810 	}
1811 }
1812 
1813 /**************************************************************************
1814  *
1815  * Filter tables
1816  *
1817  **************************************************************************
1818  */
1819 
1820 /* "Fudge factors" - difference between programmed value and actual depth.
1821  * Due to pipelined implementation we need to program H/W with a value that
1822  * is larger than the hop limit we want.
1823  */
1824 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1825 #define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1826 
1827 /* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1828  * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829  * table is full.
1830  */
1831 #define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1832 
1833 /* Don't try very hard to find space for performance hints, as this is
1834  * counter-productive. */
1835 #define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1836 
1837 enum efx_farch_filter_type {
1838 	EFX_FARCH_FILTER_TCP_FULL = 0,
1839 	EFX_FARCH_FILTER_TCP_WILD,
1840 	EFX_FARCH_FILTER_UDP_FULL,
1841 	EFX_FARCH_FILTER_UDP_WILD,
1842 	EFX_FARCH_FILTER_MAC_FULL = 4,
1843 	EFX_FARCH_FILTER_MAC_WILD,
1844 	EFX_FARCH_FILTER_UC_DEF = 8,
1845 	EFX_FARCH_FILTER_MC_DEF,
1846 	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1847 };
1848 
1849 enum efx_farch_filter_table_id {
1850 	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1851 	EFX_FARCH_FILTER_TABLE_RX_MAC,
1852 	EFX_FARCH_FILTER_TABLE_RX_DEF,
1853 	EFX_FARCH_FILTER_TABLE_TX_MAC,
1854 	EFX_FARCH_FILTER_TABLE_COUNT,
1855 };
1856 
1857 enum efx_farch_filter_index {
1858 	EFX_FARCH_FILTER_INDEX_UC_DEF,
1859 	EFX_FARCH_FILTER_INDEX_MC_DEF,
1860 	EFX_FARCH_FILTER_SIZE_RX_DEF,
1861 };
1862 
1863 struct efx_farch_filter_spec {
1864 	u8	type:4;
1865 	u8	priority:4;
1866 	u8	flags;
1867 	u16	dmaq_id;
1868 	u32	data[3];
1869 };
1870 
1871 struct efx_farch_filter_table {
1872 	enum efx_farch_filter_table_id id;
1873 	u32		offset;		/* address of table relative to BAR */
1874 	unsigned	size;		/* number of entries */
1875 	unsigned	step;		/* step between entries */
1876 	unsigned	used;		/* number currently used */
1877 	unsigned long	*used_bitmap;
1878 	struct efx_farch_filter_spec *spec;
1879 	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1880 };
1881 
1882 struct efx_farch_filter_state {
1883 	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1884 };
1885 
1886 static void
1887 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1888 				   struct efx_farch_filter_table *table,
1889 				   unsigned int filter_idx);
1890 
1891 /* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1892  * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
efx_farch_filter_hash(u32 key)1893 static u16 efx_farch_filter_hash(u32 key)
1894 {
1895 	u16 tmp;
1896 
1897 	/* First 16 rounds */
1898 	tmp = 0x1fff ^ key >> 16;
1899 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900 	tmp = tmp ^ tmp >> 9;
1901 	/* Last 16 rounds */
1902 	tmp = tmp ^ tmp << 13 ^ key;
1903 	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1904 	return tmp ^ tmp >> 9;
1905 }
1906 
1907 /* To allow for hash collisions, filter search continues at these
1908  * increments from the first possible entry selected by the hash. */
efx_farch_filter_increment(u32 key)1909 static u16 efx_farch_filter_increment(u32 key)
1910 {
1911 	return key * 2 - 1;
1912 }
1913 
1914 static enum efx_farch_filter_table_id
efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec * spec)1915 efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1916 {
1917 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918 		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1919 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920 		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1921 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922 		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1923 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1924 		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1925 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1926 		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1927 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1928 		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1929 	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1930 		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1931 	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1932 }
1933 
efx_farch_filter_push_rx_config(struct efx_nic * efx)1934 static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1935 {
1936 	struct efx_farch_filter_state *state = efx->filter_state;
1937 	struct efx_farch_filter_table *table;
1938 	efx_oword_t filter_ctl;
1939 
1940 	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1941 
1942 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1943 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1944 			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1945 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1946 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1947 			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1948 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1949 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1950 			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1951 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1952 	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1953 			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1954 			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1955 
1956 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1957 	if (table->size) {
1958 		EFX_SET_OWORD_FIELD(
1959 			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1960 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1961 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1962 		EFX_SET_OWORD_FIELD(
1963 			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1964 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1965 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1966 	}
1967 
1968 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1969 	if (table->size) {
1970 		EFX_SET_OWORD_FIELD(
1971 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1972 			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1973 		EFX_SET_OWORD_FIELD(
1974 			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1975 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1976 			   EFX_FILTER_FLAG_RX_RSS));
1977 		EFX_SET_OWORD_FIELD(
1978 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1979 			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1980 		EFX_SET_OWORD_FIELD(
1981 			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1982 			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1983 			   EFX_FILTER_FLAG_RX_RSS));
1984 
1985 		/* There is a single bit to enable RX scatter for all
1986 		 * unmatched packets.  Only set it if scatter is
1987 		 * enabled in both filter specs.
1988 		 */
1989 		EFX_SET_OWORD_FIELD(
1990 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1991 			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1992 			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1993 			   EFX_FILTER_FLAG_RX_SCATTER));
1994 	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1995 		/* We don't expose 'default' filters because unmatched
1996 		 * packets always go to the queue number found in the
1997 		 * RSS table.  But we still need to set the RX scatter
1998 		 * bit here.
1999 		 */
2000 		EFX_SET_OWORD_FIELD(
2001 			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2002 			efx->rx_scatter);
2003 	}
2004 
2005 	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2006 }
2007 
efx_farch_filter_push_tx_limits(struct efx_nic * efx)2008 static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2009 {
2010 	struct efx_farch_filter_state *state = efx->filter_state;
2011 	struct efx_farch_filter_table *table;
2012 	efx_oword_t tx_cfg;
2013 
2014 	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2015 
2016 	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2017 	if (table->size) {
2018 		EFX_SET_OWORD_FIELD(
2019 			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2020 			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2021 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2022 		EFX_SET_OWORD_FIELD(
2023 			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2024 			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2025 			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2026 	}
2027 
2028 	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2029 }
2030 
2031 static int
efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec * spec,const struct efx_filter_spec * gen_spec)2032 efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2033 			       const struct efx_filter_spec *gen_spec)
2034 {
2035 	bool is_full = false;
2036 
2037 	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2038 	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2039 		return -EINVAL;
2040 
2041 	spec->priority = gen_spec->priority;
2042 	spec->flags = gen_spec->flags;
2043 	spec->dmaq_id = gen_spec->dmaq_id;
2044 
2045 	switch (gen_spec->match_flags) {
2046 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2048 	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2049 		is_full = true;
2050 		/* fall through */
2051 	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2052 	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2053 		__be32 rhost, host1, host2;
2054 		__be16 rport, port1, port2;
2055 
2056 		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2057 
2058 		if (gen_spec->ether_type != htons(ETH_P_IP))
2059 			return -EPROTONOSUPPORT;
2060 		if (gen_spec->loc_port == 0 ||
2061 		    (is_full && gen_spec->rem_port == 0))
2062 			return -EADDRNOTAVAIL;
2063 		switch (gen_spec->ip_proto) {
2064 		case IPPROTO_TCP:
2065 			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2066 				      EFX_FARCH_FILTER_TCP_WILD);
2067 			break;
2068 		case IPPROTO_UDP:
2069 			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2070 				      EFX_FARCH_FILTER_UDP_WILD);
2071 			break;
2072 		default:
2073 			return -EPROTONOSUPPORT;
2074 		}
2075 
2076 		/* Filter is constructed in terms of source and destination,
2077 		 * with the odd wrinkle that the ports are swapped in a UDP
2078 		 * wildcard filter.  We need to convert from local and remote
2079 		 * (= zero for wildcard) addresses.
2080 		 */
2081 		rhost = is_full ? gen_spec->rem_host[0] : 0;
2082 		rport = is_full ? gen_spec->rem_port : 0;
2083 		host1 = rhost;
2084 		host2 = gen_spec->loc_host[0];
2085 		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2086 			port1 = gen_spec->loc_port;
2087 			port2 = rport;
2088 		} else {
2089 			port1 = rport;
2090 			port2 = gen_spec->loc_port;
2091 		}
2092 		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2093 		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2094 		spec->data[2] = ntohl(host2);
2095 
2096 		break;
2097 	}
2098 
2099 	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2100 		is_full = true;
2101 		/* fall through */
2102 	case EFX_FILTER_MATCH_LOC_MAC:
2103 		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2104 			      EFX_FARCH_FILTER_MAC_WILD);
2105 		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2106 		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2107 				 gen_spec->loc_mac[3] << 16 |
2108 				 gen_spec->loc_mac[4] << 8 |
2109 				 gen_spec->loc_mac[5]);
2110 		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2111 				 gen_spec->loc_mac[1]);
2112 		break;
2113 
2114 	case EFX_FILTER_MATCH_LOC_MAC_IG:
2115 		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2116 			      EFX_FARCH_FILTER_MC_DEF :
2117 			      EFX_FARCH_FILTER_UC_DEF);
2118 		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2119 		break;
2120 
2121 	default:
2122 		return -EPROTONOSUPPORT;
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static void
efx_farch_filter_to_gen_spec(struct efx_filter_spec * gen_spec,const struct efx_farch_filter_spec * spec)2129 efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2130 			     const struct efx_farch_filter_spec *spec)
2131 {
2132 	bool is_full = false;
2133 
2134 	/* *gen_spec should be completely initialised, to be consistent
2135 	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2136 	 * it back to userland.
2137 	 */
2138 	memset(gen_spec, 0, sizeof(*gen_spec));
2139 
2140 	gen_spec->priority = spec->priority;
2141 	gen_spec->flags = spec->flags;
2142 	gen_spec->dmaq_id = spec->dmaq_id;
2143 
2144 	switch (spec->type) {
2145 	case EFX_FARCH_FILTER_TCP_FULL:
2146 	case EFX_FARCH_FILTER_UDP_FULL:
2147 		is_full = true;
2148 		/* fall through */
2149 	case EFX_FARCH_FILTER_TCP_WILD:
2150 	case EFX_FARCH_FILTER_UDP_WILD: {
2151 		__be32 host1, host2;
2152 		__be16 port1, port2;
2153 
2154 		gen_spec->match_flags =
2155 			EFX_FILTER_MATCH_ETHER_TYPE |
2156 			EFX_FILTER_MATCH_IP_PROTO |
2157 			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2158 		if (is_full)
2159 			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2160 						  EFX_FILTER_MATCH_REM_PORT);
2161 		gen_spec->ether_type = htons(ETH_P_IP);
2162 		gen_spec->ip_proto =
2163 			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2164 			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2165 			IPPROTO_TCP : IPPROTO_UDP;
2166 
2167 		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2168 		port1 = htons(spec->data[0]);
2169 		host2 = htonl(spec->data[2]);
2170 		port2 = htons(spec->data[1] >> 16);
2171 		if (spec->flags & EFX_FILTER_FLAG_TX) {
2172 			gen_spec->loc_host[0] = host1;
2173 			gen_spec->rem_host[0] = host2;
2174 		} else {
2175 			gen_spec->loc_host[0] = host2;
2176 			gen_spec->rem_host[0] = host1;
2177 		}
2178 		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2179 		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2180 			gen_spec->loc_port = port1;
2181 			gen_spec->rem_port = port2;
2182 		} else {
2183 			gen_spec->loc_port = port2;
2184 			gen_spec->rem_port = port1;
2185 		}
2186 
2187 		break;
2188 	}
2189 
2190 	case EFX_FARCH_FILTER_MAC_FULL:
2191 		is_full = true;
2192 		/* fall through */
2193 	case EFX_FARCH_FILTER_MAC_WILD:
2194 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2195 		if (is_full)
2196 			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2197 		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2198 		gen_spec->loc_mac[1] = spec->data[2];
2199 		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2200 		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2201 		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2202 		gen_spec->loc_mac[5] = spec->data[1];
2203 		gen_spec->outer_vid = htons(spec->data[0]);
2204 		break;
2205 
2206 	case EFX_FARCH_FILTER_UC_DEF:
2207 	case EFX_FARCH_FILTER_MC_DEF:
2208 		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2209 		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2210 		break;
2211 
2212 	default:
2213 		WARN_ON(1);
2214 		break;
2215 	}
2216 }
2217 
2218 static void
efx_farch_filter_init_rx_auto(struct efx_nic * efx,struct efx_farch_filter_spec * spec)2219 efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2220 			      struct efx_farch_filter_spec *spec)
2221 {
2222 	/* If there's only one channel then disable RSS for non VF
2223 	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2224 	 */
2225 	spec->priority = EFX_FILTER_PRI_AUTO;
2226 	spec->flags = (EFX_FILTER_FLAG_RX |
2227 		       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2228 		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2229 	spec->dmaq_id = 0;
2230 }
2231 
2232 /* Build a filter entry and return its n-tuple key. */
efx_farch_filter_build(efx_oword_t * filter,struct efx_farch_filter_spec * spec)2233 static u32 efx_farch_filter_build(efx_oword_t *filter,
2234 				  struct efx_farch_filter_spec *spec)
2235 {
2236 	u32 data3;
2237 
2238 	switch (efx_farch_filter_spec_table_id(spec)) {
2239 	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2240 		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2241 			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2242 		EFX_POPULATE_OWORD_7(
2243 			*filter,
2244 			FRF_BZ_RSS_EN,
2245 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2246 			FRF_BZ_SCATTER_EN,
2247 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2248 			FRF_BZ_TCP_UDP, is_udp,
2249 			FRF_BZ_RXQ_ID, spec->dmaq_id,
2250 			EFX_DWORD_2, spec->data[2],
2251 			EFX_DWORD_1, spec->data[1],
2252 			EFX_DWORD_0, spec->data[0]);
2253 		data3 = is_udp;
2254 		break;
2255 	}
2256 
2257 	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2258 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2259 		EFX_POPULATE_OWORD_7(
2260 			*filter,
2261 			FRF_CZ_RMFT_RSS_EN,
2262 			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2263 			FRF_CZ_RMFT_SCATTER_EN,
2264 			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2265 			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2266 			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2267 			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2268 			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2269 			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2270 		data3 = is_wild;
2271 		break;
2272 	}
2273 
2274 	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2275 		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2276 		EFX_POPULATE_OWORD_5(*filter,
2277 				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2278 				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2279 				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2280 				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2281 				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2282 		data3 = is_wild | spec->dmaq_id << 1;
2283 		break;
2284 	}
2285 
2286 	default:
2287 		BUG();
2288 	}
2289 
2290 	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2291 }
2292 
efx_farch_filter_equal(const struct efx_farch_filter_spec * left,const struct efx_farch_filter_spec * right)2293 static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2294 				   const struct efx_farch_filter_spec *right)
2295 {
2296 	if (left->type != right->type ||
2297 	    memcmp(left->data, right->data, sizeof(left->data)))
2298 		return false;
2299 
2300 	if (left->flags & EFX_FILTER_FLAG_TX &&
2301 	    left->dmaq_id != right->dmaq_id)
2302 		return false;
2303 
2304 	return true;
2305 }
2306 
2307 /*
2308  * Construct/deconstruct external filter IDs.  At least the RX filter
2309  * IDs must be ordered by matching priority, for RX NFC semantics.
2310  *
2311  * Deconstruction needs to be robust against invalid IDs so that
2312  * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2313  * accept user-provided IDs.
2314  */
2315 
2316 #define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2317 
2318 static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2319 	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2320 	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2321 	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2322 	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2323 	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2324 	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2325 	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2326 	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2327 };
2328 
2329 static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2330 	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2331 	EFX_FARCH_FILTER_TABLE_RX_IP,
2332 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2333 	EFX_FARCH_FILTER_TABLE_RX_MAC,
2334 	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2335 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2336 	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2337 };
2338 
2339 #define EFX_FARCH_FILTER_INDEX_WIDTH 13
2340 #define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341 
2342 static inline u32
efx_farch_filter_make_id(const struct efx_farch_filter_spec * spec,unsigned int index)2343 efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2344 			 unsigned int index)
2345 {
2346 	unsigned int range;
2347 
2348 	range = efx_farch_filter_type_match_pri[spec->type];
2349 	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2350 		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2351 
2352 	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2353 }
2354 
2355 static inline enum efx_farch_filter_table_id
efx_farch_filter_id_table_id(u32 id)2356 efx_farch_filter_id_table_id(u32 id)
2357 {
2358 	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2359 
2360 	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2361 		return efx_farch_filter_range_table[range];
2362 	else
2363 		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2364 }
2365 
efx_farch_filter_id_index(u32 id)2366 static inline unsigned int efx_farch_filter_id_index(u32 id)
2367 {
2368 	return id & EFX_FARCH_FILTER_INDEX_MASK;
2369 }
2370 
efx_farch_filter_get_rx_id_limit(struct efx_nic * efx)2371 u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2372 {
2373 	struct efx_farch_filter_state *state = efx->filter_state;
2374 	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2375 	enum efx_farch_filter_table_id table_id;
2376 
2377 	do {
2378 		table_id = efx_farch_filter_range_table[range];
2379 		if (state->table[table_id].size != 0)
2380 			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2381 				state->table[table_id].size;
2382 	} while (range--);
2383 
2384 	return 0;
2385 }
2386 
efx_farch_filter_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec,bool replace_equal)2387 s32 efx_farch_filter_insert(struct efx_nic *efx,
2388 			    struct efx_filter_spec *gen_spec,
2389 			    bool replace_equal)
2390 {
2391 	struct efx_farch_filter_state *state = efx->filter_state;
2392 	struct efx_farch_filter_table *table;
2393 	struct efx_farch_filter_spec spec;
2394 	efx_oword_t filter;
2395 	int rep_index, ins_index;
2396 	unsigned int depth = 0;
2397 	int rc;
2398 
2399 	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2400 	if (rc)
2401 		return rc;
2402 
2403 	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404 	if (table->size == 0)
2405 		return -EINVAL;
2406 
2407 	netif_vdbg(efx, hw, efx->net_dev,
2408 		   "%s: type %d search_limit=%d", __func__, spec.type,
2409 		   table->search_limit[spec.type]);
2410 
2411 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2412 		/* One filter spec per type */
2413 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2414 		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2415 			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2416 		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2417 		ins_index = rep_index;
2418 
2419 		spin_lock_bh(&efx->filter_lock);
2420 	} else {
2421 		/* Search concurrently for
2422 		 * (1) a filter to be replaced (rep_index): any filter
2423 		 *     with the same match values, up to the current
2424 		 *     search depth for this type, and
2425 		 * (2) the insertion point (ins_index): (1) or any
2426 		 *     free slot before it or up to the maximum search
2427 		 *     depth for this priority
2428 		 * We fail if we cannot find (2).
2429 		 *
2430 		 * We can stop once either
2431 		 * (a) we find (1), in which case we have definitely
2432 		 *     found (2) as well; or
2433 		 * (b) we have searched exhaustively for (1), and have
2434 		 *     either found (2) or searched exhaustively for it
2435 		 */
2436 		u32 key = efx_farch_filter_build(&filter, &spec);
2437 		unsigned int hash = efx_farch_filter_hash(key);
2438 		unsigned int incr = efx_farch_filter_increment(key);
2439 		unsigned int max_rep_depth = table->search_limit[spec.type];
2440 		unsigned int max_ins_depth =
2441 			spec.priority <= EFX_FILTER_PRI_HINT ?
2442 			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443 			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444 		unsigned int i = hash & (table->size - 1);
2445 
2446 		ins_index = -1;
2447 		depth = 1;
2448 
2449 		spin_lock_bh(&efx->filter_lock);
2450 
2451 		for (;;) {
2452 			if (!test_bit(i, table->used_bitmap)) {
2453 				if (ins_index < 0)
2454 					ins_index = i;
2455 			} else if (efx_farch_filter_equal(&spec,
2456 							  &table->spec[i])) {
2457 				/* Case (a) */
2458 				if (ins_index < 0)
2459 					ins_index = i;
2460 				rep_index = i;
2461 				break;
2462 			}
2463 
2464 			if (depth >= max_rep_depth &&
2465 			    (ins_index >= 0 || depth >= max_ins_depth)) {
2466 				/* Case (b) */
2467 				if (ins_index < 0) {
2468 					rc = -EBUSY;
2469 					goto out;
2470 				}
2471 				rep_index = -1;
2472 				break;
2473 			}
2474 
2475 			i = (i + incr) & (table->size - 1);
2476 			++depth;
2477 		}
2478 	}
2479 
2480 	/* If we found a filter to be replaced, check whether we
2481 	 * should do so
2482 	 */
2483 	if (rep_index >= 0) {
2484 		struct efx_farch_filter_spec *saved_spec =
2485 			&table->spec[rep_index];
2486 
2487 		if (spec.priority == saved_spec->priority && !replace_equal) {
2488 			rc = -EEXIST;
2489 			goto out;
2490 		}
2491 		if (spec.priority < saved_spec->priority) {
2492 			rc = -EPERM;
2493 			goto out;
2494 		}
2495 		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2496 		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2497 			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498 	}
2499 
2500 	/* Insert the filter */
2501 	if (ins_index != rep_index) {
2502 		__set_bit(ins_index, table->used_bitmap);
2503 		++table->used;
2504 	}
2505 	table->spec[ins_index] = spec;
2506 
2507 	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2508 		efx_farch_filter_push_rx_config(efx);
2509 	} else {
2510 		if (table->search_limit[spec.type] < depth) {
2511 			table->search_limit[spec.type] = depth;
2512 			if (spec.flags & EFX_FILTER_FLAG_TX)
2513 				efx_farch_filter_push_tx_limits(efx);
2514 			else
2515 				efx_farch_filter_push_rx_config(efx);
2516 		}
2517 
2518 		efx_writeo(efx, &filter,
2519 			   table->offset + table->step * ins_index);
2520 
2521 		/* If we were able to replace a filter by inserting
2522 		 * at a lower depth, clear the replaced filter
2523 		 */
2524 		if (ins_index != rep_index && rep_index >= 0)
2525 			efx_farch_filter_table_clear_entry(efx, table,
2526 							   rep_index);
2527 	}
2528 
2529 	netif_vdbg(efx, hw, efx->net_dev,
2530 		   "%s: filter type %d index %d rxq %u set",
2531 		   __func__, spec.type, ins_index, spec.dmaq_id);
2532 	rc = efx_farch_filter_make_id(&spec, ins_index);
2533 
2534 out:
2535 	spin_unlock_bh(&efx->filter_lock);
2536 	return rc;
2537 }
2538 
2539 static void
efx_farch_filter_table_clear_entry(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx)2540 efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2541 				   struct efx_farch_filter_table *table,
2542 				   unsigned int filter_idx)
2543 {
2544 	static efx_oword_t filter;
2545 
2546 	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2547 	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2548 
2549 	__clear_bit(filter_idx, table->used_bitmap);
2550 	--table->used;
2551 	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2552 
2553 	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2554 
2555 	/* If this filter required a greater search depth than
2556 	 * any other, the search limit for its type can now be
2557 	 * decreased.  However, it is hard to determine that
2558 	 * unless the table has become completely empty - in
2559 	 * which case, all its search limits can be set to 0.
2560 	 */
2561 	if (unlikely(table->used == 0)) {
2562 		memset(table->search_limit, 0, sizeof(table->search_limit));
2563 		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2564 			efx_farch_filter_push_tx_limits(efx);
2565 		else
2566 			efx_farch_filter_push_rx_config(efx);
2567 	}
2568 }
2569 
efx_farch_filter_remove(struct efx_nic * efx,struct efx_farch_filter_table * table,unsigned int filter_idx,enum efx_filter_priority priority)2570 static int efx_farch_filter_remove(struct efx_nic *efx,
2571 				   struct efx_farch_filter_table *table,
2572 				   unsigned int filter_idx,
2573 				   enum efx_filter_priority priority)
2574 {
2575 	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2576 
2577 	if (!test_bit(filter_idx, table->used_bitmap) ||
2578 	    spec->priority != priority)
2579 		return -ENOENT;
2580 
2581 	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2582 		efx_farch_filter_init_rx_auto(efx, spec);
2583 		efx_farch_filter_push_rx_config(efx);
2584 	} else {
2585 		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
efx_farch_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2591 int efx_farch_filter_remove_safe(struct efx_nic *efx,
2592 				 enum efx_filter_priority priority,
2593 				 u32 filter_id)
2594 {
2595 	struct efx_farch_filter_state *state = efx->filter_state;
2596 	enum efx_farch_filter_table_id table_id;
2597 	struct efx_farch_filter_table *table;
2598 	unsigned int filter_idx;
2599 	struct efx_farch_filter_spec *spec;
2600 	int rc;
2601 
2602 	table_id = efx_farch_filter_id_table_id(filter_id);
2603 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2604 		return -ENOENT;
2605 	table = &state->table[table_id];
2606 
2607 	filter_idx = efx_farch_filter_id_index(filter_id);
2608 	if (filter_idx >= table->size)
2609 		return -ENOENT;
2610 	spec = &table->spec[filter_idx];
2611 
2612 	spin_lock_bh(&efx->filter_lock);
2613 	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2614 	spin_unlock_bh(&efx->filter_lock);
2615 
2616 	return rc;
2617 }
2618 
efx_farch_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec_buf)2619 int efx_farch_filter_get_safe(struct efx_nic *efx,
2620 			      enum efx_filter_priority priority,
2621 			      u32 filter_id, struct efx_filter_spec *spec_buf)
2622 {
2623 	struct efx_farch_filter_state *state = efx->filter_state;
2624 	enum efx_farch_filter_table_id table_id;
2625 	struct efx_farch_filter_table *table;
2626 	struct efx_farch_filter_spec *spec;
2627 	unsigned int filter_idx;
2628 	int rc;
2629 
2630 	table_id = efx_farch_filter_id_table_id(filter_id);
2631 	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632 		return -ENOENT;
2633 	table = &state->table[table_id];
2634 
2635 	filter_idx = efx_farch_filter_id_index(filter_id);
2636 	if (filter_idx >= table->size)
2637 		return -ENOENT;
2638 	spec = &table->spec[filter_idx];
2639 
2640 	spin_lock_bh(&efx->filter_lock);
2641 
2642 	if (test_bit(filter_idx, table->used_bitmap) &&
2643 	    spec->priority == priority) {
2644 		efx_farch_filter_to_gen_spec(spec_buf, spec);
2645 		rc = 0;
2646 	} else {
2647 		rc = -ENOENT;
2648 	}
2649 
2650 	spin_unlock_bh(&efx->filter_lock);
2651 
2652 	return rc;
2653 }
2654 
2655 static void
efx_farch_filter_table_clear(struct efx_nic * efx,enum efx_farch_filter_table_id table_id,enum efx_filter_priority priority)2656 efx_farch_filter_table_clear(struct efx_nic *efx,
2657 			     enum efx_farch_filter_table_id table_id,
2658 			     enum efx_filter_priority priority)
2659 {
2660 	struct efx_farch_filter_state *state = efx->filter_state;
2661 	struct efx_farch_filter_table *table = &state->table[table_id];
2662 	unsigned int filter_idx;
2663 
2664 	spin_lock_bh(&efx->filter_lock);
2665 	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2666 		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2667 			efx_farch_filter_remove(efx, table,
2668 						filter_idx, priority);
2669 	}
2670 	spin_unlock_bh(&efx->filter_lock);
2671 }
2672 
efx_farch_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2673 int efx_farch_filter_clear_rx(struct efx_nic *efx,
2674 			       enum efx_filter_priority priority)
2675 {
2676 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2677 				     priority);
2678 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2679 				     priority);
2680 	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2681 				     priority);
2682 	return 0;
2683 }
2684 
efx_farch_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2685 u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2686 				   enum efx_filter_priority priority)
2687 {
2688 	struct efx_farch_filter_state *state = efx->filter_state;
2689 	enum efx_farch_filter_table_id table_id;
2690 	struct efx_farch_filter_table *table;
2691 	unsigned int filter_idx;
2692 	u32 count = 0;
2693 
2694 	spin_lock_bh(&efx->filter_lock);
2695 
2696 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2697 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2698 	     table_id++) {
2699 		table = &state->table[table_id];
2700 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701 			if (test_bit(filter_idx, table->used_bitmap) &&
2702 			    table->spec[filter_idx].priority == priority)
2703 				++count;
2704 		}
2705 	}
2706 
2707 	spin_unlock_bh(&efx->filter_lock);
2708 
2709 	return count;
2710 }
2711 
efx_farch_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2712 s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2713 				enum efx_filter_priority priority,
2714 				u32 *buf, u32 size)
2715 {
2716 	struct efx_farch_filter_state *state = efx->filter_state;
2717 	enum efx_farch_filter_table_id table_id;
2718 	struct efx_farch_filter_table *table;
2719 	unsigned int filter_idx;
2720 	s32 count = 0;
2721 
2722 	spin_lock_bh(&efx->filter_lock);
2723 
2724 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2725 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2726 	     table_id++) {
2727 		table = &state->table[table_id];
2728 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2729 			if (test_bit(filter_idx, table->used_bitmap) &&
2730 			    table->spec[filter_idx].priority == priority) {
2731 				if (count == size) {
2732 					count = -EMSGSIZE;
2733 					goto out;
2734 				}
2735 				buf[count++] = efx_farch_filter_make_id(
2736 					&table->spec[filter_idx], filter_idx);
2737 			}
2738 		}
2739 	}
2740 out:
2741 	spin_unlock_bh(&efx->filter_lock);
2742 
2743 	return count;
2744 }
2745 
2746 /* Restore filter stater after reset */
efx_farch_filter_table_restore(struct efx_nic * efx)2747 void efx_farch_filter_table_restore(struct efx_nic *efx)
2748 {
2749 	struct efx_farch_filter_state *state = efx->filter_state;
2750 	enum efx_farch_filter_table_id table_id;
2751 	struct efx_farch_filter_table *table;
2752 	efx_oword_t filter;
2753 	unsigned int filter_idx;
2754 
2755 	spin_lock_bh(&efx->filter_lock);
2756 
2757 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2758 		table = &state->table[table_id];
2759 
2760 		/* Check whether this is a regular register table */
2761 		if (table->step == 0)
2762 			continue;
2763 
2764 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2765 			if (!test_bit(filter_idx, table->used_bitmap))
2766 				continue;
2767 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2768 			efx_writeo(efx, &filter,
2769 				   table->offset + table->step * filter_idx);
2770 		}
2771 	}
2772 
2773 	efx_farch_filter_push_rx_config(efx);
2774 	efx_farch_filter_push_tx_limits(efx);
2775 
2776 	spin_unlock_bh(&efx->filter_lock);
2777 }
2778 
efx_farch_filter_table_remove(struct efx_nic * efx)2779 void efx_farch_filter_table_remove(struct efx_nic *efx)
2780 {
2781 	struct efx_farch_filter_state *state = efx->filter_state;
2782 	enum efx_farch_filter_table_id table_id;
2783 
2784 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2785 		kfree(state->table[table_id].used_bitmap);
2786 		vfree(state->table[table_id].spec);
2787 	}
2788 	kfree(state);
2789 }
2790 
efx_farch_filter_table_probe(struct efx_nic * efx)2791 int efx_farch_filter_table_probe(struct efx_nic *efx)
2792 {
2793 	struct efx_farch_filter_state *state;
2794 	struct efx_farch_filter_table *table;
2795 	unsigned table_id;
2796 
2797 	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2798 	if (!state)
2799 		return -ENOMEM;
2800 	efx->filter_state = state;
2801 
2802 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2803 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2804 		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2805 		table->offset = FR_BZ_RX_FILTER_TBL0;
2806 		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2807 		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2808 	}
2809 
2810 	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2811 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2812 		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2813 		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2814 		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2815 		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2816 
2817 		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2818 		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2819 		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2820 
2821 		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2822 		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2823 		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2824 		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2825 		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2826 	}
2827 
2828 	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2829 		table = &state->table[table_id];
2830 		if (table->size == 0)
2831 			continue;
2832 		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2833 					     sizeof(unsigned long),
2834 					     GFP_KERNEL);
2835 		if (!table->used_bitmap)
2836 			goto fail;
2837 		table->spec = vzalloc(table->size * sizeof(*table->spec));
2838 		if (!table->spec)
2839 			goto fail;
2840 	}
2841 
2842 	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2843 	if (table->size) {
2844 		/* RX default filters must always exist */
2845 		struct efx_farch_filter_spec *spec;
2846 		unsigned i;
2847 
2848 		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2849 			spec = &table->spec[i];
2850 			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2851 			efx_farch_filter_init_rx_auto(efx, spec);
2852 			__set_bit(i, table->used_bitmap);
2853 		}
2854 	}
2855 
2856 	efx_farch_filter_push_rx_config(efx);
2857 
2858 	return 0;
2859 
2860 fail:
2861 	efx_farch_filter_table_remove(efx);
2862 	return -ENOMEM;
2863 }
2864 
2865 /* Update scatter enable flags for filters pointing to our own RX queues */
efx_farch_filter_update_rx_scatter(struct efx_nic * efx)2866 void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2867 {
2868 	struct efx_farch_filter_state *state = efx->filter_state;
2869 	enum efx_farch_filter_table_id table_id;
2870 	struct efx_farch_filter_table *table;
2871 	efx_oword_t filter;
2872 	unsigned int filter_idx;
2873 
2874 	spin_lock_bh(&efx->filter_lock);
2875 
2876 	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2877 	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2878 	     table_id++) {
2879 		table = &state->table[table_id];
2880 
2881 		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2882 			if (!test_bit(filter_idx, table->used_bitmap) ||
2883 			    table->spec[filter_idx].dmaq_id >=
2884 			    efx->n_rx_channels)
2885 				continue;
2886 
2887 			if (efx->rx_scatter)
2888 				table->spec[filter_idx].flags |=
2889 					EFX_FILTER_FLAG_RX_SCATTER;
2890 			else
2891 				table->spec[filter_idx].flags &=
2892 					~EFX_FILTER_FLAG_RX_SCATTER;
2893 
2894 			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2895 				/* Pushed by efx_farch_filter_push_rx_config() */
2896 				continue;
2897 
2898 			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2899 			efx_writeo(efx, &filter,
2900 				   table->offset + table->step * filter_idx);
2901 		}
2902 	}
2903 
2904 	efx_farch_filter_push_rx_config(efx);
2905 
2906 	spin_unlock_bh(&efx->filter_lock);
2907 }
2908 
2909 #ifdef CONFIG_RFS_ACCEL
2910 
efx_farch_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * gen_spec)2911 s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2912 				struct efx_filter_spec *gen_spec)
2913 {
2914 	return efx_farch_filter_insert(efx, gen_spec, true);
2915 }
2916 
efx_farch_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int index)2917 bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2918 				     unsigned int index)
2919 {
2920 	struct efx_farch_filter_state *state = efx->filter_state;
2921 	struct efx_farch_filter_table *table =
2922 		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2923 
2924 	if (test_bit(index, table->used_bitmap) &&
2925 	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2926 	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2927 				flow_id, index)) {
2928 		efx_farch_filter_table_clear_entry(efx, table, index);
2929 		return true;
2930 	}
2931 
2932 	return false;
2933 }
2934 
2935 #endif /* CONFIG_RFS_ACCEL */
2936 
efx_farch_filter_sync_rx_mode(struct efx_nic * efx)2937 void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2938 {
2939 	struct net_device *net_dev = efx->net_dev;
2940 	struct netdev_hw_addr *ha;
2941 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2942 	u32 crc;
2943 	int bit;
2944 
2945 	if (!efx_dev_registered(efx))
2946 		return;
2947 
2948 	netif_addr_lock_bh(net_dev);
2949 
2950 	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2951 
2952 	/* Build multicast hash table */
2953 	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2954 		memset(mc_hash, 0xff, sizeof(*mc_hash));
2955 	} else {
2956 		memset(mc_hash, 0x00, sizeof(*mc_hash));
2957 		netdev_for_each_mc_addr(ha, net_dev) {
2958 			crc = ether_crc_le(ETH_ALEN, ha->addr);
2959 			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2960 			__set_bit_le(bit, mc_hash);
2961 		}
2962 
2963 		/* Broadcast packets go through the multicast hash filter.
2964 		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2965 		 * so we always add bit 0xff to the mask.
2966 		 */
2967 		__set_bit_le(0xff, mc_hash);
2968 	}
2969 
2970 	netif_addr_unlock_bh(net_dev);
2971 }
2972