1 /****************************************************************************
2  * Driver for Solarflare network controllers and boards
3  * Copyright 2005-2006 Fen Systems Ltd.
4  * Copyright 2006-2013 Solarflare Communications Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published
8  * by the Free Software Foundation, incorporated herein by reference.
9  */
10 
11 #include <linux/bitops.h>
12 #include <linux/delay.h>
13 #include <linux/pci.h>
14 #include <linux/module.h>
15 #include <linux/seq_file.h>
16 #include <linux/i2c.h>
17 #include <linux/mii.h>
18 #include <linux/slab.h>
19 #include "net_driver.h"
20 #include "bitfield.h"
21 #include "efx.h"
22 #include "nic.h"
23 #include "farch_regs.h"
24 #include "io.h"
25 #include "phy.h"
26 #include "workarounds.h"
27 #include "selftest.h"
28 #include "mdio_10g.h"
29 
30 /* Hardware control for SFC4000 (aka Falcon). */
31 
32 /**************************************************************************
33  *
34  * NIC stats
35  *
36  **************************************************************************
37  */
38 
39 #define FALCON_MAC_STATS_SIZE 0x100
40 
41 #define XgRxOctets_offset 0x0
42 #define XgRxOctets_WIDTH 48
43 #define XgRxOctetsOK_offset 0x8
44 #define XgRxOctetsOK_WIDTH 48
45 #define XgRxPkts_offset 0x10
46 #define XgRxPkts_WIDTH 32
47 #define XgRxPktsOK_offset 0x14
48 #define XgRxPktsOK_WIDTH 32
49 #define XgRxBroadcastPkts_offset 0x18
50 #define XgRxBroadcastPkts_WIDTH 32
51 #define XgRxMulticastPkts_offset 0x1C
52 #define XgRxMulticastPkts_WIDTH 32
53 #define XgRxUnicastPkts_offset 0x20
54 #define XgRxUnicastPkts_WIDTH 32
55 #define XgRxUndersizePkts_offset 0x24
56 #define XgRxUndersizePkts_WIDTH 32
57 #define XgRxOversizePkts_offset 0x28
58 #define XgRxOversizePkts_WIDTH 32
59 #define XgRxJabberPkts_offset 0x2C
60 #define XgRxJabberPkts_WIDTH 32
61 #define XgRxUndersizeFCSerrorPkts_offset 0x30
62 #define XgRxUndersizeFCSerrorPkts_WIDTH 32
63 #define XgRxDropEvents_offset 0x34
64 #define XgRxDropEvents_WIDTH 32
65 #define XgRxFCSerrorPkts_offset 0x38
66 #define XgRxFCSerrorPkts_WIDTH 32
67 #define XgRxAlignError_offset 0x3C
68 #define XgRxAlignError_WIDTH 32
69 #define XgRxSymbolError_offset 0x40
70 #define XgRxSymbolError_WIDTH 32
71 #define XgRxInternalMACError_offset 0x44
72 #define XgRxInternalMACError_WIDTH 32
73 #define XgRxControlPkts_offset 0x48
74 #define XgRxControlPkts_WIDTH 32
75 #define XgRxPausePkts_offset 0x4C
76 #define XgRxPausePkts_WIDTH 32
77 #define XgRxPkts64Octets_offset 0x50
78 #define XgRxPkts64Octets_WIDTH 32
79 #define XgRxPkts65to127Octets_offset 0x54
80 #define XgRxPkts65to127Octets_WIDTH 32
81 #define XgRxPkts128to255Octets_offset 0x58
82 #define XgRxPkts128to255Octets_WIDTH 32
83 #define XgRxPkts256to511Octets_offset 0x5C
84 #define XgRxPkts256to511Octets_WIDTH 32
85 #define XgRxPkts512to1023Octets_offset 0x60
86 #define XgRxPkts512to1023Octets_WIDTH 32
87 #define XgRxPkts1024to15xxOctets_offset 0x64
88 #define XgRxPkts1024to15xxOctets_WIDTH 32
89 #define XgRxPkts15xxtoMaxOctets_offset 0x68
90 #define XgRxPkts15xxtoMaxOctets_WIDTH 32
91 #define XgRxLengthError_offset 0x6C
92 #define XgRxLengthError_WIDTH 32
93 #define XgTxPkts_offset 0x80
94 #define XgTxPkts_WIDTH 32
95 #define XgTxOctets_offset 0x88
96 #define XgTxOctets_WIDTH 48
97 #define XgTxMulticastPkts_offset 0x90
98 #define XgTxMulticastPkts_WIDTH 32
99 #define XgTxBroadcastPkts_offset 0x94
100 #define XgTxBroadcastPkts_WIDTH 32
101 #define XgTxUnicastPkts_offset 0x98
102 #define XgTxUnicastPkts_WIDTH 32
103 #define XgTxControlPkts_offset 0x9C
104 #define XgTxControlPkts_WIDTH 32
105 #define XgTxPausePkts_offset 0xA0
106 #define XgTxPausePkts_WIDTH 32
107 #define XgTxPkts64Octets_offset 0xA4
108 #define XgTxPkts64Octets_WIDTH 32
109 #define XgTxPkts65to127Octets_offset 0xA8
110 #define XgTxPkts65to127Octets_WIDTH 32
111 #define XgTxPkts128to255Octets_offset 0xAC
112 #define XgTxPkts128to255Octets_WIDTH 32
113 #define XgTxPkts256to511Octets_offset 0xB0
114 #define XgTxPkts256to511Octets_WIDTH 32
115 #define XgTxPkts512to1023Octets_offset 0xB4
116 #define XgTxPkts512to1023Octets_WIDTH 32
117 #define XgTxPkts1024to15xxOctets_offset 0xB8
118 #define XgTxPkts1024to15xxOctets_WIDTH 32
119 #define XgTxPkts1519toMaxOctets_offset 0xBC
120 #define XgTxPkts1519toMaxOctets_WIDTH 32
121 #define XgTxUndersizePkts_offset 0xC0
122 #define XgTxUndersizePkts_WIDTH 32
123 #define XgTxOversizePkts_offset 0xC4
124 #define XgTxOversizePkts_WIDTH 32
125 #define XgTxNonTcpUdpPkt_offset 0xC8
126 #define XgTxNonTcpUdpPkt_WIDTH 16
127 #define XgTxMacSrcErrPkt_offset 0xCC
128 #define XgTxMacSrcErrPkt_WIDTH 16
129 #define XgTxIpSrcErrPkt_offset 0xD0
130 #define XgTxIpSrcErrPkt_WIDTH 16
131 #define XgDmaDone_offset 0xD4
132 #define XgDmaDone_WIDTH 32
133 
134 #define FALCON_XMAC_STATS_DMA_FLAG(efx)				\
135 	(*(u32 *)((efx)->stats_buffer.addr + XgDmaDone_offset))
136 
137 #define FALCON_DMA_STAT(ext_name, hw_name)				\
138 	[FALCON_STAT_ ## ext_name] =					\
139 	{ #ext_name,							\
140 	  /* 48-bit stats are zero-padded to 64 on DMA */		\
141 	  hw_name ## _ ## WIDTH == 48 ? 64 : hw_name ## _ ## WIDTH,	\
142 	  hw_name ## _ ## offset }
143 #define FALCON_OTHER_STAT(ext_name)					\
144 	[FALCON_STAT_ ## ext_name] = { #ext_name, 0, 0 }
145 #define GENERIC_SW_STAT(ext_name)				\
146 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
147 
148 static const struct efx_hw_stat_desc falcon_stat_desc[FALCON_STAT_COUNT] = {
149 	FALCON_DMA_STAT(tx_bytes, XgTxOctets),
150 	FALCON_DMA_STAT(tx_packets, XgTxPkts),
151 	FALCON_DMA_STAT(tx_pause, XgTxPausePkts),
152 	FALCON_DMA_STAT(tx_control, XgTxControlPkts),
153 	FALCON_DMA_STAT(tx_unicast, XgTxUnicastPkts),
154 	FALCON_DMA_STAT(tx_multicast, XgTxMulticastPkts),
155 	FALCON_DMA_STAT(tx_broadcast, XgTxBroadcastPkts),
156 	FALCON_DMA_STAT(tx_lt64, XgTxUndersizePkts),
157 	FALCON_DMA_STAT(tx_64, XgTxPkts64Octets),
158 	FALCON_DMA_STAT(tx_65_to_127, XgTxPkts65to127Octets),
159 	FALCON_DMA_STAT(tx_128_to_255, XgTxPkts128to255Octets),
160 	FALCON_DMA_STAT(tx_256_to_511, XgTxPkts256to511Octets),
161 	FALCON_DMA_STAT(tx_512_to_1023, XgTxPkts512to1023Octets),
162 	FALCON_DMA_STAT(tx_1024_to_15xx, XgTxPkts1024to15xxOctets),
163 	FALCON_DMA_STAT(tx_15xx_to_jumbo, XgTxPkts1519toMaxOctets),
164 	FALCON_DMA_STAT(tx_gtjumbo, XgTxOversizePkts),
165 	FALCON_DMA_STAT(tx_non_tcpudp, XgTxNonTcpUdpPkt),
166 	FALCON_DMA_STAT(tx_mac_src_error, XgTxMacSrcErrPkt),
167 	FALCON_DMA_STAT(tx_ip_src_error, XgTxIpSrcErrPkt),
168 	FALCON_DMA_STAT(rx_bytes, XgRxOctets),
169 	FALCON_DMA_STAT(rx_good_bytes, XgRxOctetsOK),
170 	FALCON_OTHER_STAT(rx_bad_bytes),
171 	FALCON_DMA_STAT(rx_packets, XgRxPkts),
172 	FALCON_DMA_STAT(rx_good, XgRxPktsOK),
173 	FALCON_DMA_STAT(rx_bad, XgRxFCSerrorPkts),
174 	FALCON_DMA_STAT(rx_pause, XgRxPausePkts),
175 	FALCON_DMA_STAT(rx_control, XgRxControlPkts),
176 	FALCON_DMA_STAT(rx_unicast, XgRxUnicastPkts),
177 	FALCON_DMA_STAT(rx_multicast, XgRxMulticastPkts),
178 	FALCON_DMA_STAT(rx_broadcast, XgRxBroadcastPkts),
179 	FALCON_DMA_STAT(rx_lt64, XgRxUndersizePkts),
180 	FALCON_DMA_STAT(rx_64, XgRxPkts64Octets),
181 	FALCON_DMA_STAT(rx_65_to_127, XgRxPkts65to127Octets),
182 	FALCON_DMA_STAT(rx_128_to_255, XgRxPkts128to255Octets),
183 	FALCON_DMA_STAT(rx_256_to_511, XgRxPkts256to511Octets),
184 	FALCON_DMA_STAT(rx_512_to_1023, XgRxPkts512to1023Octets),
185 	FALCON_DMA_STAT(rx_1024_to_15xx, XgRxPkts1024to15xxOctets),
186 	FALCON_DMA_STAT(rx_15xx_to_jumbo, XgRxPkts15xxtoMaxOctets),
187 	FALCON_DMA_STAT(rx_gtjumbo, XgRxOversizePkts),
188 	FALCON_DMA_STAT(rx_bad_lt64, XgRxUndersizeFCSerrorPkts),
189 	FALCON_DMA_STAT(rx_bad_gtjumbo, XgRxJabberPkts),
190 	FALCON_DMA_STAT(rx_overflow, XgRxDropEvents),
191 	FALCON_DMA_STAT(rx_symbol_error, XgRxSymbolError),
192 	FALCON_DMA_STAT(rx_align_error, XgRxAlignError),
193 	FALCON_DMA_STAT(rx_length_error, XgRxLengthError),
194 	FALCON_DMA_STAT(rx_internal_error, XgRxInternalMACError),
195 	FALCON_OTHER_STAT(rx_nodesc_drop_cnt),
196 	GENERIC_SW_STAT(rx_nodesc_trunc),
197 	GENERIC_SW_STAT(rx_noskb_drops),
198 };
199 static const unsigned long falcon_stat_mask[] = {
200 	[0 ... BITS_TO_LONGS(FALCON_STAT_COUNT) - 1] = ~0UL,
201 };
202 
203 /**************************************************************************
204  *
205  * Basic SPI command set and bit definitions
206  *
207  *************************************************************************/
208 
209 #define SPI_WRSR 0x01		/* Write status register */
210 #define SPI_WRITE 0x02		/* Write data to memory array */
211 #define SPI_READ 0x03		/* Read data from memory array */
212 #define SPI_WRDI 0x04		/* Reset write enable latch */
213 #define SPI_RDSR 0x05		/* Read status register */
214 #define SPI_WREN 0x06		/* Set write enable latch */
215 #define SPI_SST_EWSR 0x50	/* SST: Enable write to status register */
216 
217 #define SPI_STATUS_WPEN 0x80	/* Write-protect pin enabled */
218 #define SPI_STATUS_BP2 0x10	/* Block protection bit 2 */
219 #define SPI_STATUS_BP1 0x08	/* Block protection bit 1 */
220 #define SPI_STATUS_BP0 0x04	/* Block protection bit 0 */
221 #define SPI_STATUS_WEN 0x02	/* State of the write enable latch */
222 #define SPI_STATUS_NRDY 0x01	/* Device busy flag */
223 
224 /**************************************************************************
225  *
226  * Non-volatile memory layout
227  *
228  **************************************************************************
229  */
230 
231 /* SFC4000 flash is partitioned into:
232  *     0-0x400       chip and board config (see struct falcon_nvconfig)
233  *     0x400-0x8000  unused (or may contain VPD if EEPROM not present)
234  *     0x8000-end    boot code (mapped to PCI expansion ROM)
235  * SFC4000 small EEPROM (size < 0x400) is used for VPD only.
236  * SFC4000 large EEPROM (size >= 0x400) is partitioned into:
237  *     0-0x400       chip and board config
238  *     configurable  VPD
239  *     0x800-0x1800  boot config
240  * Aside from the chip and board config, all of these are optional and may
241  * be absent or truncated depending on the devices used.
242  */
243 #define FALCON_NVCONFIG_END 0x400U
244 #define FALCON_FLASH_BOOTCODE_START 0x8000U
245 #define FALCON_EEPROM_BOOTCONFIG_START 0x800U
246 #define FALCON_EEPROM_BOOTCONFIG_END 0x1800U
247 
248 /* Board configuration v2 (v1 is obsolete; later versions are compatible) */
249 struct falcon_nvconfig_board_v2 {
250 	__le16 nports;
251 	u8 port0_phy_addr;
252 	u8 port0_phy_type;
253 	u8 port1_phy_addr;
254 	u8 port1_phy_type;
255 	__le16 asic_sub_revision;
256 	__le16 board_revision;
257 } __packed;
258 
259 /* Board configuration v3 extra information */
260 struct falcon_nvconfig_board_v3 {
261 	__le32 spi_device_type[2];
262 } __packed;
263 
264 /* Bit numbers for spi_device_type */
265 #define SPI_DEV_TYPE_SIZE_LBN 0
266 #define SPI_DEV_TYPE_SIZE_WIDTH 5
267 #define SPI_DEV_TYPE_ADDR_LEN_LBN 6
268 #define SPI_DEV_TYPE_ADDR_LEN_WIDTH 2
269 #define SPI_DEV_TYPE_ERASE_CMD_LBN 8
270 #define SPI_DEV_TYPE_ERASE_CMD_WIDTH 8
271 #define SPI_DEV_TYPE_ERASE_SIZE_LBN 16
272 #define SPI_DEV_TYPE_ERASE_SIZE_WIDTH 5
273 #define SPI_DEV_TYPE_BLOCK_SIZE_LBN 24
274 #define SPI_DEV_TYPE_BLOCK_SIZE_WIDTH 5
275 #define SPI_DEV_TYPE_FIELD(type, field)					\
276 	(((type) >> EFX_LOW_BIT(field)) & EFX_MASK32(EFX_WIDTH(field)))
277 
278 #define FALCON_NVCONFIG_OFFSET 0x300
279 
280 #define FALCON_NVCONFIG_BOARD_MAGIC_NUM 0xFA1C
281 struct falcon_nvconfig {
282 	efx_oword_t ee_vpd_cfg_reg;			/* 0x300 */
283 	u8 mac_address[2][8];			/* 0x310 */
284 	efx_oword_t pcie_sd_ctl0123_reg;		/* 0x320 */
285 	efx_oword_t pcie_sd_ctl45_reg;			/* 0x330 */
286 	efx_oword_t pcie_pcs_ctl_stat_reg;		/* 0x340 */
287 	efx_oword_t hw_init_reg;			/* 0x350 */
288 	efx_oword_t nic_stat_reg;			/* 0x360 */
289 	efx_oword_t glb_ctl_reg;			/* 0x370 */
290 	efx_oword_t srm_cfg_reg;			/* 0x380 */
291 	efx_oword_t spare_reg;				/* 0x390 */
292 	__le16 board_magic_num;			/* 0x3A0 */
293 	__le16 board_struct_ver;
294 	__le16 board_checksum;
295 	struct falcon_nvconfig_board_v2 board_v2;
296 	efx_oword_t ee_base_page_reg;			/* 0x3B0 */
297 	struct falcon_nvconfig_board_v3 board_v3;	/* 0x3C0 */
298 } __packed;
299 
300 /*************************************************************************/
301 
302 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method);
303 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx);
304 
305 static const unsigned int
306 /* "Large" EEPROM device: Atmel AT25640 or similar
307  * 8 KB, 16-bit address, 32 B write block */
308 large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
309 		     | (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
310 		     | (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
311 /* Default flash device: Atmel AT25F1024
312  * 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
313 default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
314 		      | (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
315 		      | (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
316 		      | (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
317 		      | (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
318 
319 /**************************************************************************
320  *
321  * I2C bus - this is a bit-bashing interface using GPIO pins
322  * Note that it uses the output enables to tristate the outputs
323  * SDA is the data pin and SCL is the clock
324  *
325  **************************************************************************
326  */
falcon_setsda(void * data,int state)327 static void falcon_setsda(void *data, int state)
328 {
329 	struct efx_nic *efx = (struct efx_nic *)data;
330 	efx_oword_t reg;
331 
332 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
333 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
334 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
335 }
336 
falcon_setscl(void * data,int state)337 static void falcon_setscl(void *data, int state)
338 {
339 	struct efx_nic *efx = (struct efx_nic *)data;
340 	efx_oword_t reg;
341 
342 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
343 	EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
344 	efx_writeo(efx, &reg, FR_AB_GPIO_CTL);
345 }
346 
falcon_getsda(void * data)347 static int falcon_getsda(void *data)
348 {
349 	struct efx_nic *efx = (struct efx_nic *)data;
350 	efx_oword_t reg;
351 
352 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
353 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
354 }
355 
falcon_getscl(void * data)356 static int falcon_getscl(void *data)
357 {
358 	struct efx_nic *efx = (struct efx_nic *)data;
359 	efx_oword_t reg;
360 
361 	efx_reado(efx, &reg, FR_AB_GPIO_CTL);
362 	return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
363 }
364 
365 static const struct i2c_algo_bit_data falcon_i2c_bit_operations = {
366 	.setsda		= falcon_setsda,
367 	.setscl		= falcon_setscl,
368 	.getsda		= falcon_getsda,
369 	.getscl		= falcon_getscl,
370 	.udelay		= 5,
371 	/* Wait up to 50 ms for slave to let us pull SCL high */
372 	.timeout	= DIV_ROUND_UP(HZ, 20),
373 };
374 
falcon_push_irq_moderation(struct efx_channel * channel)375 static void falcon_push_irq_moderation(struct efx_channel *channel)
376 {
377 	efx_dword_t timer_cmd;
378 	struct efx_nic *efx = channel->efx;
379 
380 	/* Set timer register */
381 	if (channel->irq_moderation) {
382 		EFX_POPULATE_DWORD_2(timer_cmd,
383 				     FRF_AB_TC_TIMER_MODE,
384 				     FFE_BB_TIMER_MODE_INT_HLDOFF,
385 				     FRF_AB_TC_TIMER_VAL,
386 				     channel->irq_moderation - 1);
387 	} else {
388 		EFX_POPULATE_DWORD_2(timer_cmd,
389 				     FRF_AB_TC_TIMER_MODE,
390 				     FFE_BB_TIMER_MODE_DIS,
391 				     FRF_AB_TC_TIMER_VAL, 0);
392 	}
393 	BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
394 	efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
395 			       channel->channel);
396 }
397 
398 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
399 
falcon_prepare_flush(struct efx_nic * efx)400 static void falcon_prepare_flush(struct efx_nic *efx)
401 {
402 	falcon_deconfigure_mac_wrapper(efx);
403 
404 	/* Wait for the tx and rx fifo's to get to the next packet boundary
405 	 * (~1ms without back-pressure), then to drain the remainder of the
406 	 * fifo's at data path speeds (negligible), with a healthy margin. */
407 	msleep(10);
408 }
409 
410 /* Acknowledge a legacy interrupt from Falcon
411  *
412  * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
413  *
414  * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
415  * BIU. Interrupt acknowledge is read sensitive so must write instead
416  * (then read to ensure the BIU collector is flushed)
417  *
418  * NB most hardware supports MSI interrupts
419  */
falcon_irq_ack_a1(struct efx_nic * efx)420 static inline void falcon_irq_ack_a1(struct efx_nic *efx)
421 {
422 	efx_dword_t reg;
423 
424 	EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
425 	efx_writed(efx, &reg, FR_AA_INT_ACK_KER);
426 	efx_readd(efx, &reg, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
427 }
428 
falcon_legacy_interrupt_a1(int irq,void * dev_id)429 static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
430 {
431 	struct efx_nic *efx = dev_id;
432 	efx_oword_t *int_ker = efx->irq_status.addr;
433 	int syserr;
434 	int queues;
435 
436 	/* Check to see if this is our interrupt.  If it isn't, we
437 	 * exit without having touched the hardware.
438 	 */
439 	if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
440 		netif_vdbg(efx, intr, efx->net_dev,
441 			   "IRQ %d on CPU %d not for me\n", irq,
442 			   raw_smp_processor_id());
443 		return IRQ_NONE;
444 	}
445 	efx->last_irq_cpu = raw_smp_processor_id();
446 	netif_vdbg(efx, intr, efx->net_dev,
447 		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
448 		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
449 
450 	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
451 		return IRQ_HANDLED;
452 
453 	/* Check to see if we have a serious error condition */
454 	syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
455 	if (unlikely(syserr))
456 		return efx_farch_fatal_interrupt(efx);
457 
458 	/* Determine interrupting queues, clear interrupt status
459 	 * register and acknowledge the device interrupt.
460 	 */
461 	BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
462 	queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
463 	EFX_ZERO_OWORD(*int_ker);
464 	wmb(); /* Ensure the vector is cleared before interrupt ack */
465 	falcon_irq_ack_a1(efx);
466 
467 	if (queues & 1)
468 		efx_schedule_channel_irq(efx_get_channel(efx, 0));
469 	if (queues & 2)
470 		efx_schedule_channel_irq(efx_get_channel(efx, 1));
471 	return IRQ_HANDLED;
472 }
473 
474 /**************************************************************************
475  *
476  * RSS
477  *
478  **************************************************************************
479  */
480 
falcon_b0_rx_push_rss_config(struct efx_nic * efx)481 static void falcon_b0_rx_push_rss_config(struct efx_nic *efx)
482 {
483 	efx_oword_t temp;
484 
485 	/* Set hash key for IPv4 */
486 	memcpy(&temp, efx->rx_hash_key, sizeof(temp));
487 	efx_writeo(efx, &temp, FR_BZ_RX_RSS_TKEY);
488 
489 	efx_farch_rx_push_indir_table(efx);
490 }
491 
492 /**************************************************************************
493  *
494  * EEPROM/flash
495  *
496  **************************************************************************
497  */
498 
499 #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
500 
falcon_spi_poll(struct efx_nic * efx)501 static int falcon_spi_poll(struct efx_nic *efx)
502 {
503 	efx_oword_t reg;
504 	efx_reado(efx, &reg, FR_AB_EE_SPI_HCMD);
505 	return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
506 }
507 
508 /* Wait for SPI command completion */
falcon_spi_wait(struct efx_nic * efx)509 static int falcon_spi_wait(struct efx_nic *efx)
510 {
511 	/* Most commands will finish quickly, so we start polling at
512 	 * very short intervals.  Sometimes the command may have to
513 	 * wait for VPD or expansion ROM access outside of our
514 	 * control, so we allow up to 100 ms. */
515 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
516 	int i;
517 
518 	for (i = 0; i < 10; i++) {
519 		if (!falcon_spi_poll(efx))
520 			return 0;
521 		udelay(10);
522 	}
523 
524 	for (;;) {
525 		if (!falcon_spi_poll(efx))
526 			return 0;
527 		if (time_after_eq(jiffies, timeout)) {
528 			netif_err(efx, hw, efx->net_dev,
529 				  "timed out waiting for SPI\n");
530 			return -ETIMEDOUT;
531 		}
532 		schedule_timeout_uninterruptible(1);
533 	}
534 }
535 
536 static int
falcon_spi_cmd(struct efx_nic * efx,const struct falcon_spi_device * spi,unsigned int command,int address,const void * in,void * out,size_t len)537 falcon_spi_cmd(struct efx_nic *efx, const struct falcon_spi_device *spi,
538 	       unsigned int command, int address,
539 	       const void *in, void *out, size_t len)
540 {
541 	bool addressed = (address >= 0);
542 	bool reading = (out != NULL);
543 	efx_oword_t reg;
544 	int rc;
545 
546 	/* Input validation */
547 	if (len > FALCON_SPI_MAX_LEN)
548 		return -EINVAL;
549 
550 	/* Check that previous command is not still running */
551 	rc = falcon_spi_poll(efx);
552 	if (rc)
553 		return rc;
554 
555 	/* Program address register, if we have an address */
556 	if (addressed) {
557 		EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
558 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HADR);
559 	}
560 
561 	/* Program data register, if we have data */
562 	if (in != NULL) {
563 		memcpy(&reg, in, len);
564 		efx_writeo(efx, &reg, FR_AB_EE_SPI_HDATA);
565 	}
566 
567 	/* Issue read/write command */
568 	EFX_POPULATE_OWORD_7(reg,
569 			     FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
570 			     FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
571 			     FRF_AB_EE_SPI_HCMD_DABCNT, len,
572 			     FRF_AB_EE_SPI_HCMD_READ, reading,
573 			     FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
574 			     FRF_AB_EE_SPI_HCMD_ADBCNT,
575 			     (addressed ? spi->addr_len : 0),
576 			     FRF_AB_EE_SPI_HCMD_ENC, command);
577 	efx_writeo(efx, &reg, FR_AB_EE_SPI_HCMD);
578 
579 	/* Wait for read/write to complete */
580 	rc = falcon_spi_wait(efx);
581 	if (rc)
582 		return rc;
583 
584 	/* Read data */
585 	if (out != NULL) {
586 		efx_reado(efx, &reg, FR_AB_EE_SPI_HDATA);
587 		memcpy(out, &reg, len);
588 	}
589 
590 	return 0;
591 }
592 
593 static inline u8
falcon_spi_munge_command(const struct falcon_spi_device * spi,const u8 command,const unsigned int address)594 falcon_spi_munge_command(const struct falcon_spi_device *spi,
595 			 const u8 command, const unsigned int address)
596 {
597 	return command | (((address >> 8) & spi->munge_address) << 3);
598 }
599 
600 static int
falcon_spi_read(struct efx_nic * efx,const struct falcon_spi_device * spi,loff_t start,size_t len,size_t * retlen,u8 * buffer)601 falcon_spi_read(struct efx_nic *efx, const struct falcon_spi_device *spi,
602 		loff_t start, size_t len, size_t *retlen, u8 *buffer)
603 {
604 	size_t block_len, pos = 0;
605 	unsigned int command;
606 	int rc = 0;
607 
608 	while (pos < len) {
609 		block_len = min(len - pos, FALCON_SPI_MAX_LEN);
610 
611 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
612 		rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
613 				    buffer + pos, block_len);
614 		if (rc)
615 			break;
616 		pos += block_len;
617 
618 		/* Avoid locking up the system */
619 		cond_resched();
620 		if (signal_pending(current)) {
621 			rc = -EINTR;
622 			break;
623 		}
624 	}
625 
626 	if (retlen)
627 		*retlen = pos;
628 	return rc;
629 }
630 
631 #ifdef CONFIG_SFC_MTD
632 
633 struct falcon_mtd_partition {
634 	struct efx_mtd_partition common;
635 	const struct falcon_spi_device *spi;
636 	size_t offset;
637 };
638 
639 #define to_falcon_mtd_partition(mtd)				\
640 	container_of(mtd, struct falcon_mtd_partition, common.mtd)
641 
642 static size_t
falcon_spi_write_limit(const struct falcon_spi_device * spi,size_t start)643 falcon_spi_write_limit(const struct falcon_spi_device *spi, size_t start)
644 {
645 	return min(FALCON_SPI_MAX_LEN,
646 		   (spi->block_size - (start & (spi->block_size - 1))));
647 }
648 
649 /* Wait up to 10 ms for buffered write completion */
650 static int
falcon_spi_wait_write(struct efx_nic * efx,const struct falcon_spi_device * spi)651 falcon_spi_wait_write(struct efx_nic *efx, const struct falcon_spi_device *spi)
652 {
653 	unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
654 	u8 status;
655 	int rc;
656 
657 	for (;;) {
658 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
659 				    &status, sizeof(status));
660 		if (rc)
661 			return rc;
662 		if (!(status & SPI_STATUS_NRDY))
663 			return 0;
664 		if (time_after_eq(jiffies, timeout)) {
665 			netif_err(efx, hw, efx->net_dev,
666 				  "SPI write timeout on device %d"
667 				  " last status=0x%02x\n",
668 				  spi->device_id, status);
669 			return -ETIMEDOUT;
670 		}
671 		schedule_timeout_uninterruptible(1);
672 	}
673 }
674 
675 static int
falcon_spi_write(struct efx_nic * efx,const struct falcon_spi_device * spi,loff_t start,size_t len,size_t * retlen,const u8 * buffer)676 falcon_spi_write(struct efx_nic *efx, const struct falcon_spi_device *spi,
677 		 loff_t start, size_t len, size_t *retlen, const u8 *buffer)
678 {
679 	u8 verify_buffer[FALCON_SPI_MAX_LEN];
680 	size_t block_len, pos = 0;
681 	unsigned int command;
682 	int rc = 0;
683 
684 	while (pos < len) {
685 		rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
686 		if (rc)
687 			break;
688 
689 		block_len = min(len - pos,
690 				falcon_spi_write_limit(spi, start + pos));
691 		command = falcon_spi_munge_command(spi, SPI_WRITE, start + pos);
692 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
693 				    buffer + pos, NULL, block_len);
694 		if (rc)
695 			break;
696 
697 		rc = falcon_spi_wait_write(efx, spi);
698 		if (rc)
699 			break;
700 
701 		command = falcon_spi_munge_command(spi, SPI_READ, start + pos);
702 		rc = falcon_spi_cmd(efx, spi, command, start + pos,
703 				    NULL, verify_buffer, block_len);
704 		if (memcmp(verify_buffer, buffer + pos, block_len)) {
705 			rc = -EIO;
706 			break;
707 		}
708 
709 		pos += block_len;
710 
711 		/* Avoid locking up the system */
712 		cond_resched();
713 		if (signal_pending(current)) {
714 			rc = -EINTR;
715 			break;
716 		}
717 	}
718 
719 	if (retlen)
720 		*retlen = pos;
721 	return rc;
722 }
723 
724 static int
falcon_spi_slow_wait(struct falcon_mtd_partition * part,bool uninterruptible)725 falcon_spi_slow_wait(struct falcon_mtd_partition *part, bool uninterruptible)
726 {
727 	const struct falcon_spi_device *spi = part->spi;
728 	struct efx_nic *efx = part->common.mtd.priv;
729 	u8 status;
730 	int rc, i;
731 
732 	/* Wait up to 4s for flash/EEPROM to finish a slow operation. */
733 	for (i = 0; i < 40; i++) {
734 		__set_current_state(uninterruptible ?
735 				    TASK_UNINTERRUPTIBLE : TASK_INTERRUPTIBLE);
736 		schedule_timeout(HZ / 10);
737 		rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
738 				    &status, sizeof(status));
739 		if (rc)
740 			return rc;
741 		if (!(status & SPI_STATUS_NRDY))
742 			return 0;
743 		if (signal_pending(current))
744 			return -EINTR;
745 	}
746 	pr_err("%s: timed out waiting for %s\n",
747 	       part->common.name, part->common.dev_type_name);
748 	return -ETIMEDOUT;
749 }
750 
751 static int
falcon_spi_unlock(struct efx_nic * efx,const struct falcon_spi_device * spi)752 falcon_spi_unlock(struct efx_nic *efx, const struct falcon_spi_device *spi)
753 {
754 	const u8 unlock_mask = (SPI_STATUS_BP2 | SPI_STATUS_BP1 |
755 				SPI_STATUS_BP0);
756 	u8 status;
757 	int rc;
758 
759 	rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
760 			    &status, sizeof(status));
761 	if (rc)
762 		return rc;
763 
764 	if (!(status & unlock_mask))
765 		return 0; /* already unlocked */
766 
767 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
768 	if (rc)
769 		return rc;
770 	rc = falcon_spi_cmd(efx, spi, SPI_SST_EWSR, -1, NULL, NULL, 0);
771 	if (rc)
772 		return rc;
773 
774 	status &= ~unlock_mask;
775 	rc = falcon_spi_cmd(efx, spi, SPI_WRSR, -1, &status,
776 			    NULL, sizeof(status));
777 	if (rc)
778 		return rc;
779 	rc = falcon_spi_wait_write(efx, spi);
780 	if (rc)
781 		return rc;
782 
783 	return 0;
784 }
785 
786 #define FALCON_SPI_VERIFY_BUF_LEN 16
787 
788 static int
falcon_spi_erase(struct falcon_mtd_partition * part,loff_t start,size_t len)789 falcon_spi_erase(struct falcon_mtd_partition *part, loff_t start, size_t len)
790 {
791 	const struct falcon_spi_device *spi = part->spi;
792 	struct efx_nic *efx = part->common.mtd.priv;
793 	unsigned pos, block_len;
794 	u8 empty[FALCON_SPI_VERIFY_BUF_LEN];
795 	u8 buffer[FALCON_SPI_VERIFY_BUF_LEN];
796 	int rc;
797 
798 	if (len != spi->erase_size)
799 		return -EINVAL;
800 
801 	if (spi->erase_command == 0)
802 		return -EOPNOTSUPP;
803 
804 	rc = falcon_spi_unlock(efx, spi);
805 	if (rc)
806 		return rc;
807 	rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
808 	if (rc)
809 		return rc;
810 	rc = falcon_spi_cmd(efx, spi, spi->erase_command, start, NULL,
811 			    NULL, 0);
812 	if (rc)
813 		return rc;
814 	rc = falcon_spi_slow_wait(part, false);
815 
816 	/* Verify the entire region has been wiped */
817 	memset(empty, 0xff, sizeof(empty));
818 	for (pos = 0; pos < len; pos += block_len) {
819 		block_len = min(len - pos, sizeof(buffer));
820 		rc = falcon_spi_read(efx, spi, start + pos, block_len,
821 				     NULL, buffer);
822 		if (rc)
823 			return rc;
824 		if (memcmp(empty, buffer, block_len))
825 			return -EIO;
826 
827 		/* Avoid locking up the system */
828 		cond_resched();
829 		if (signal_pending(current))
830 			return -EINTR;
831 	}
832 
833 	return rc;
834 }
835 
falcon_mtd_rename(struct efx_mtd_partition * part)836 static void falcon_mtd_rename(struct efx_mtd_partition *part)
837 {
838 	struct efx_nic *efx = part->mtd.priv;
839 
840 	snprintf(part->name, sizeof(part->name), "%s %s",
841 		 efx->name, part->type_name);
842 }
843 
falcon_mtd_read(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,u8 * buffer)844 static int falcon_mtd_read(struct mtd_info *mtd, loff_t start,
845 			   size_t len, size_t *retlen, u8 *buffer)
846 {
847 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
848 	struct efx_nic *efx = mtd->priv;
849 	struct falcon_nic_data *nic_data = efx->nic_data;
850 	int rc;
851 
852 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
853 	if (rc)
854 		return rc;
855 	rc = falcon_spi_read(efx, part->spi, part->offset + start,
856 			     len, retlen, buffer);
857 	mutex_unlock(&nic_data->spi_lock);
858 	return rc;
859 }
860 
falcon_mtd_erase(struct mtd_info * mtd,loff_t start,size_t len)861 static int falcon_mtd_erase(struct mtd_info *mtd, loff_t start, size_t len)
862 {
863 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
864 	struct efx_nic *efx = mtd->priv;
865 	struct falcon_nic_data *nic_data = efx->nic_data;
866 	int rc;
867 
868 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
869 	if (rc)
870 		return rc;
871 	rc = falcon_spi_erase(part, part->offset + start, len);
872 	mutex_unlock(&nic_data->spi_lock);
873 	return rc;
874 }
875 
falcon_mtd_write(struct mtd_info * mtd,loff_t start,size_t len,size_t * retlen,const u8 * buffer)876 static int falcon_mtd_write(struct mtd_info *mtd, loff_t start,
877 			    size_t len, size_t *retlen, const u8 *buffer)
878 {
879 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
880 	struct efx_nic *efx = mtd->priv;
881 	struct falcon_nic_data *nic_data = efx->nic_data;
882 	int rc;
883 
884 	rc = mutex_lock_interruptible(&nic_data->spi_lock);
885 	if (rc)
886 		return rc;
887 	rc = falcon_spi_write(efx, part->spi, part->offset + start,
888 			      len, retlen, buffer);
889 	mutex_unlock(&nic_data->spi_lock);
890 	return rc;
891 }
892 
falcon_mtd_sync(struct mtd_info * mtd)893 static int falcon_mtd_sync(struct mtd_info *mtd)
894 {
895 	struct falcon_mtd_partition *part = to_falcon_mtd_partition(mtd);
896 	struct efx_nic *efx = mtd->priv;
897 	struct falcon_nic_data *nic_data = efx->nic_data;
898 	int rc;
899 
900 	mutex_lock(&nic_data->spi_lock);
901 	rc = falcon_spi_slow_wait(part, true);
902 	mutex_unlock(&nic_data->spi_lock);
903 	return rc;
904 }
905 
falcon_mtd_probe(struct efx_nic * efx)906 static int falcon_mtd_probe(struct efx_nic *efx)
907 {
908 	struct falcon_nic_data *nic_data = efx->nic_data;
909 	struct falcon_mtd_partition *parts;
910 	struct falcon_spi_device *spi;
911 	size_t n_parts;
912 	int rc = -ENODEV;
913 
914 	ASSERT_RTNL();
915 
916 	/* Allocate space for maximum number of partitions */
917 	parts = kcalloc(2, sizeof(*parts), GFP_KERNEL);
918 	if (!parts)
919 		return -ENOMEM;
920 	n_parts = 0;
921 
922 	spi = &nic_data->spi_flash;
923 	if (falcon_spi_present(spi) && spi->size > FALCON_FLASH_BOOTCODE_START) {
924 		parts[n_parts].spi = spi;
925 		parts[n_parts].offset = FALCON_FLASH_BOOTCODE_START;
926 		parts[n_parts].common.dev_type_name = "flash";
927 		parts[n_parts].common.type_name = "sfc_flash_bootrom";
928 		parts[n_parts].common.mtd.type = MTD_NORFLASH;
929 		parts[n_parts].common.mtd.flags = MTD_CAP_NORFLASH;
930 		parts[n_parts].common.mtd.size = spi->size - FALCON_FLASH_BOOTCODE_START;
931 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
932 		n_parts++;
933 	}
934 
935 	spi = &nic_data->spi_eeprom;
936 	if (falcon_spi_present(spi) && spi->size > FALCON_EEPROM_BOOTCONFIG_START) {
937 		parts[n_parts].spi = spi;
938 		parts[n_parts].offset = FALCON_EEPROM_BOOTCONFIG_START;
939 		parts[n_parts].common.dev_type_name = "EEPROM";
940 		parts[n_parts].common.type_name = "sfc_bootconfig";
941 		parts[n_parts].common.mtd.type = MTD_RAM;
942 		parts[n_parts].common.mtd.flags = MTD_CAP_RAM;
943 		parts[n_parts].common.mtd.size =
944 			min(spi->size, FALCON_EEPROM_BOOTCONFIG_END) -
945 			FALCON_EEPROM_BOOTCONFIG_START;
946 		parts[n_parts].common.mtd.erasesize = spi->erase_size;
947 		n_parts++;
948 	}
949 
950 	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
951 	if (rc)
952 		kfree(parts);
953 	return rc;
954 }
955 
956 #endif /* CONFIG_SFC_MTD */
957 
958 /**************************************************************************
959  *
960  * XMAC operations
961  *
962  **************************************************************************
963  */
964 
965 /* Configure the XAUI driver that is an output from Falcon */
falcon_setup_xaui(struct efx_nic * efx)966 static void falcon_setup_xaui(struct efx_nic *efx)
967 {
968 	efx_oword_t sdctl, txdrv;
969 
970 	/* Move the XAUI into low power, unless there is no PHY, in
971 	 * which case the XAUI will have to drive a cable. */
972 	if (efx->phy_type == PHY_TYPE_NONE)
973 		return;
974 
975 	efx_reado(efx, &sdctl, FR_AB_XX_SD_CTL);
976 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
977 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVD, FFE_AB_XX_SD_CTL_DRV_DEF);
978 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
979 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVC, FFE_AB_XX_SD_CTL_DRV_DEF);
980 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
981 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVB, FFE_AB_XX_SD_CTL_DRV_DEF);
982 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_HIDRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
983 	EFX_SET_OWORD_FIELD(sdctl, FRF_AB_XX_LODRVA, FFE_AB_XX_SD_CTL_DRV_DEF);
984 	efx_writeo(efx, &sdctl, FR_AB_XX_SD_CTL);
985 
986 	EFX_POPULATE_OWORD_8(txdrv,
987 			     FRF_AB_XX_DEQD, FFE_AB_XX_TXDRV_DEQ_DEF,
988 			     FRF_AB_XX_DEQC, FFE_AB_XX_TXDRV_DEQ_DEF,
989 			     FRF_AB_XX_DEQB, FFE_AB_XX_TXDRV_DEQ_DEF,
990 			     FRF_AB_XX_DEQA, FFE_AB_XX_TXDRV_DEQ_DEF,
991 			     FRF_AB_XX_DTXD, FFE_AB_XX_TXDRV_DTX_DEF,
992 			     FRF_AB_XX_DTXC, FFE_AB_XX_TXDRV_DTX_DEF,
993 			     FRF_AB_XX_DTXB, FFE_AB_XX_TXDRV_DTX_DEF,
994 			     FRF_AB_XX_DTXA, FFE_AB_XX_TXDRV_DTX_DEF);
995 	efx_writeo(efx, &txdrv, FR_AB_XX_TXDRV_CTL);
996 }
997 
falcon_reset_xaui(struct efx_nic * efx)998 int falcon_reset_xaui(struct efx_nic *efx)
999 {
1000 	struct falcon_nic_data *nic_data = efx->nic_data;
1001 	efx_oword_t reg;
1002 	int count;
1003 
1004 	/* Don't fetch MAC statistics over an XMAC reset */
1005 	WARN_ON(nic_data->stats_disable_count == 0);
1006 
1007 	/* Start reset sequence */
1008 	EFX_POPULATE_OWORD_1(reg, FRF_AB_XX_RST_XX_EN, 1);
1009 	efx_writeo(efx, &reg, FR_AB_XX_PWR_RST);
1010 
1011 	/* Wait up to 10 ms for completion, then reinitialise */
1012 	for (count = 0; count < 1000; count++) {
1013 		efx_reado(efx, &reg, FR_AB_XX_PWR_RST);
1014 		if (EFX_OWORD_FIELD(reg, FRF_AB_XX_RST_XX_EN) == 0 &&
1015 		    EFX_OWORD_FIELD(reg, FRF_AB_XX_SD_RST_ACT) == 0) {
1016 			falcon_setup_xaui(efx);
1017 			return 0;
1018 		}
1019 		udelay(10);
1020 	}
1021 	netif_err(efx, hw, efx->net_dev,
1022 		  "timed out waiting for XAUI/XGXS reset\n");
1023 	return -ETIMEDOUT;
1024 }
1025 
falcon_ack_status_intr(struct efx_nic * efx)1026 static void falcon_ack_status_intr(struct efx_nic *efx)
1027 {
1028 	struct falcon_nic_data *nic_data = efx->nic_data;
1029 	efx_oword_t reg;
1030 
1031 	if ((efx_nic_rev(efx) != EFX_REV_FALCON_B0) || LOOPBACK_INTERNAL(efx))
1032 		return;
1033 
1034 	/* We expect xgmii faults if the wireside link is down */
1035 	if (!efx->link_state.up)
1036 		return;
1037 
1038 	/* We can only use this interrupt to signal the negative edge of
1039 	 * xaui_align [we have to poll the positive edge]. */
1040 	if (nic_data->xmac_poll_required)
1041 		return;
1042 
1043 	efx_reado(efx, &reg, FR_AB_XM_MGT_INT_MSK);
1044 }
1045 
falcon_xgxs_link_ok(struct efx_nic * efx)1046 static bool falcon_xgxs_link_ok(struct efx_nic *efx)
1047 {
1048 	efx_oword_t reg;
1049 	bool align_done, link_ok = false;
1050 	int sync_status;
1051 
1052 	/* Read link status */
1053 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1054 
1055 	align_done = EFX_OWORD_FIELD(reg, FRF_AB_XX_ALIGN_DONE);
1056 	sync_status = EFX_OWORD_FIELD(reg, FRF_AB_XX_SYNC_STAT);
1057 	if (align_done && (sync_status == FFE_AB_XX_STAT_ALL_LANES))
1058 		link_ok = true;
1059 
1060 	/* Clear link status ready for next read */
1061 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_COMMA_DET, FFE_AB_XX_STAT_ALL_LANES);
1062 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_CHAR_ERR, FFE_AB_XX_STAT_ALL_LANES);
1063 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_DISPERR, FFE_AB_XX_STAT_ALL_LANES);
1064 	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1065 
1066 	return link_ok;
1067 }
1068 
falcon_xmac_link_ok(struct efx_nic * efx)1069 static bool falcon_xmac_link_ok(struct efx_nic *efx)
1070 {
1071 	/*
1072 	 * Check MAC's XGXS link status except when using XGMII loopback
1073 	 * which bypasses the XGXS block.
1074 	 * If possible, check PHY's XGXS link status except when using
1075 	 * MAC loopback.
1076 	 */
1077 	return (efx->loopback_mode == LOOPBACK_XGMII ||
1078 		falcon_xgxs_link_ok(efx)) &&
1079 		(!(efx->mdio.mmds & (1 << MDIO_MMD_PHYXS)) ||
1080 		 LOOPBACK_INTERNAL(efx) ||
1081 		 efx_mdio_phyxgxs_lane_sync(efx));
1082 }
1083 
falcon_reconfigure_xmac_core(struct efx_nic * efx)1084 static void falcon_reconfigure_xmac_core(struct efx_nic *efx)
1085 {
1086 	unsigned int max_frame_len;
1087 	efx_oword_t reg;
1088 	bool rx_fc = !!(efx->link_state.fc & EFX_FC_RX);
1089 	bool tx_fc = !!(efx->link_state.fc & EFX_FC_TX);
1090 
1091 	/* Configure MAC  - cut-thru mode is hard wired on */
1092 	EFX_POPULATE_OWORD_3(reg,
1093 			     FRF_AB_XM_RX_JUMBO_MODE, 1,
1094 			     FRF_AB_XM_TX_STAT_EN, 1,
1095 			     FRF_AB_XM_RX_STAT_EN, 1);
1096 	efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1097 
1098 	/* Configure TX */
1099 	EFX_POPULATE_OWORD_6(reg,
1100 			     FRF_AB_XM_TXEN, 1,
1101 			     FRF_AB_XM_TX_PRMBL, 1,
1102 			     FRF_AB_XM_AUTO_PAD, 1,
1103 			     FRF_AB_XM_TXCRC, 1,
1104 			     FRF_AB_XM_FCNTL, tx_fc,
1105 			     FRF_AB_XM_IPG, 0x3);
1106 	efx_writeo(efx, &reg, FR_AB_XM_TX_CFG);
1107 
1108 	/* Configure RX */
1109 	EFX_POPULATE_OWORD_5(reg,
1110 			     FRF_AB_XM_RXEN, 1,
1111 			     FRF_AB_XM_AUTO_DEPAD, 0,
1112 			     FRF_AB_XM_ACPT_ALL_MCAST, 1,
1113 			     FRF_AB_XM_ACPT_ALL_UCAST, !efx->unicast_filter,
1114 			     FRF_AB_XM_PASS_CRC_ERR, 1);
1115 	efx_writeo(efx, &reg, FR_AB_XM_RX_CFG);
1116 
1117 	/* Set frame length */
1118 	max_frame_len = EFX_MAX_FRAME_LEN(efx->net_dev->mtu);
1119 	EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_MAX_RX_FRM_SIZE, max_frame_len);
1120 	efx_writeo(efx, &reg, FR_AB_XM_RX_PARAM);
1121 	EFX_POPULATE_OWORD_2(reg,
1122 			     FRF_AB_XM_MAX_TX_FRM_SIZE, max_frame_len,
1123 			     FRF_AB_XM_TX_JUMBO_MODE, 1);
1124 	efx_writeo(efx, &reg, FR_AB_XM_TX_PARAM);
1125 
1126 	EFX_POPULATE_OWORD_2(reg,
1127 			     FRF_AB_XM_PAUSE_TIME, 0xfffe, /* MAX PAUSE TIME */
1128 			     FRF_AB_XM_DIS_FCNTL, !rx_fc);
1129 	efx_writeo(efx, &reg, FR_AB_XM_FC);
1130 
1131 	/* Set MAC address */
1132 	memcpy(&reg, &efx->net_dev->dev_addr[0], 4);
1133 	efx_writeo(efx, &reg, FR_AB_XM_ADR_LO);
1134 	memcpy(&reg, &efx->net_dev->dev_addr[4], 2);
1135 	efx_writeo(efx, &reg, FR_AB_XM_ADR_HI);
1136 }
1137 
falcon_reconfigure_xgxs_core(struct efx_nic * efx)1138 static void falcon_reconfigure_xgxs_core(struct efx_nic *efx)
1139 {
1140 	efx_oword_t reg;
1141 	bool xgxs_loopback = (efx->loopback_mode == LOOPBACK_XGXS);
1142 	bool xaui_loopback = (efx->loopback_mode == LOOPBACK_XAUI);
1143 	bool xgmii_loopback = (efx->loopback_mode == LOOPBACK_XGMII);
1144 	bool old_xgmii_loopback, old_xgxs_loopback, old_xaui_loopback;
1145 
1146 	/* XGXS block is flaky and will need to be reset if moving
1147 	 * into our out of XGMII, XGXS or XAUI loopbacks. */
1148 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1149 	old_xgxs_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN);
1150 	old_xgmii_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN);
1151 
1152 	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1153 	old_xaui_loopback = EFX_OWORD_FIELD(reg, FRF_AB_XX_LPBKA);
1154 
1155 	/* The PHY driver may have turned XAUI off */
1156 	if ((xgxs_loopback != old_xgxs_loopback) ||
1157 	    (xaui_loopback != old_xaui_loopback) ||
1158 	    (xgmii_loopback != old_xgmii_loopback))
1159 		falcon_reset_xaui(efx);
1160 
1161 	efx_reado(efx, &reg, FR_AB_XX_CORE_STAT);
1162 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_FORCE_SIG,
1163 			    (xgxs_loopback || xaui_loopback) ?
1164 			    FFE_AB_XX_FORCE_SIG_ALL_LANES : 0);
1165 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGXS_LB_EN, xgxs_loopback);
1166 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_XGMII_LB_EN, xgmii_loopback);
1167 	efx_writeo(efx, &reg, FR_AB_XX_CORE_STAT);
1168 
1169 	efx_reado(efx, &reg, FR_AB_XX_SD_CTL);
1170 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKD, xaui_loopback);
1171 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKC, xaui_loopback);
1172 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKB, xaui_loopback);
1173 	EFX_SET_OWORD_FIELD(reg, FRF_AB_XX_LPBKA, xaui_loopback);
1174 	efx_writeo(efx, &reg, FR_AB_XX_SD_CTL);
1175 }
1176 
1177 
1178 /* Try to bring up the Falcon side of the Falcon-Phy XAUI link */
falcon_xmac_link_ok_retry(struct efx_nic * efx,int tries)1179 static bool falcon_xmac_link_ok_retry(struct efx_nic *efx, int tries)
1180 {
1181 	bool mac_up = falcon_xmac_link_ok(efx);
1182 
1183 	if (LOOPBACK_MASK(efx) & LOOPBACKS_EXTERNAL(efx) & LOOPBACKS_WS ||
1184 	    efx_phy_mode_disabled(efx->phy_mode))
1185 		/* XAUI link is expected to be down */
1186 		return mac_up;
1187 
1188 	falcon_stop_nic_stats(efx);
1189 
1190 	while (!mac_up && tries) {
1191 		netif_dbg(efx, hw, efx->net_dev, "bashing xaui\n");
1192 		falcon_reset_xaui(efx);
1193 		udelay(200);
1194 
1195 		mac_up = falcon_xmac_link_ok(efx);
1196 		--tries;
1197 	}
1198 
1199 	falcon_start_nic_stats(efx);
1200 
1201 	return mac_up;
1202 }
1203 
falcon_xmac_check_fault(struct efx_nic * efx)1204 static bool falcon_xmac_check_fault(struct efx_nic *efx)
1205 {
1206 	return !falcon_xmac_link_ok_retry(efx, 5);
1207 }
1208 
falcon_reconfigure_xmac(struct efx_nic * efx)1209 static int falcon_reconfigure_xmac(struct efx_nic *efx)
1210 {
1211 	struct falcon_nic_data *nic_data = efx->nic_data;
1212 
1213 	efx_farch_filter_sync_rx_mode(efx);
1214 
1215 	falcon_reconfigure_xgxs_core(efx);
1216 	falcon_reconfigure_xmac_core(efx);
1217 
1218 	falcon_reconfigure_mac_wrapper(efx);
1219 
1220 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 5);
1221 	falcon_ack_status_intr(efx);
1222 
1223 	return 0;
1224 }
1225 
falcon_poll_xmac(struct efx_nic * efx)1226 static void falcon_poll_xmac(struct efx_nic *efx)
1227 {
1228 	struct falcon_nic_data *nic_data = efx->nic_data;
1229 
1230 	/* We expect xgmii faults if the wireside link is down */
1231 	if (!efx->link_state.up || !nic_data->xmac_poll_required)
1232 		return;
1233 
1234 	nic_data->xmac_poll_required = !falcon_xmac_link_ok_retry(efx, 1);
1235 	falcon_ack_status_intr(efx);
1236 }
1237 
1238 /**************************************************************************
1239  *
1240  * MAC wrapper
1241  *
1242  **************************************************************************
1243  */
1244 
falcon_push_multicast_hash(struct efx_nic * efx)1245 static void falcon_push_multicast_hash(struct efx_nic *efx)
1246 {
1247 	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
1248 
1249 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1250 
1251 	efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
1252 	efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
1253 }
1254 
falcon_reset_macs(struct efx_nic * efx)1255 static void falcon_reset_macs(struct efx_nic *efx)
1256 {
1257 	struct falcon_nic_data *nic_data = efx->nic_data;
1258 	efx_oword_t reg, mac_ctrl;
1259 	int count;
1260 
1261 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
1262 		/* It's not safe to use GLB_CTL_REG to reset the
1263 		 * macs, so instead use the internal MAC resets
1264 		 */
1265 		EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
1266 		efx_writeo(efx, &reg, FR_AB_XM_GLB_CFG);
1267 
1268 		for (count = 0; count < 10000; count++) {
1269 			efx_reado(efx, &reg, FR_AB_XM_GLB_CFG);
1270 			if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
1271 			    0)
1272 				return;
1273 			udelay(10);
1274 		}
1275 
1276 		netif_err(efx, hw, efx->net_dev,
1277 			  "timed out waiting for XMAC core reset\n");
1278 	}
1279 
1280 	/* Mac stats will fail whist the TX fifo is draining */
1281 	WARN_ON(nic_data->stats_disable_count == 0);
1282 
1283 	efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1284 	EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
1285 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1286 
1287 	efx_reado(efx, &reg, FR_AB_GLB_CTL);
1288 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
1289 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
1290 	EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
1291 	efx_writeo(efx, &reg, FR_AB_GLB_CTL);
1292 
1293 	count = 0;
1294 	while (1) {
1295 		efx_reado(efx, &reg, FR_AB_GLB_CTL);
1296 		if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
1297 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
1298 		    !EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
1299 			netif_dbg(efx, hw, efx->net_dev,
1300 				  "Completed MAC reset after %d loops\n",
1301 				  count);
1302 			break;
1303 		}
1304 		if (count > 20) {
1305 			netif_err(efx, hw, efx->net_dev, "MAC reset failed\n");
1306 			break;
1307 		}
1308 		count++;
1309 		udelay(10);
1310 	}
1311 
1312 	/* Ensure the correct MAC is selected before statistics
1313 	 * are re-enabled by the caller */
1314 	efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
1315 
1316 	falcon_setup_xaui(efx);
1317 }
1318 
falcon_drain_tx_fifo(struct efx_nic * efx)1319 static void falcon_drain_tx_fifo(struct efx_nic *efx)
1320 {
1321 	efx_oword_t reg;
1322 
1323 	if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
1324 	    (efx->loopback_mode != LOOPBACK_NONE))
1325 		return;
1326 
1327 	efx_reado(efx, &reg, FR_AB_MAC_CTRL);
1328 	/* There is no point in draining more than once */
1329 	if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
1330 		return;
1331 
1332 	falcon_reset_macs(efx);
1333 }
1334 
falcon_deconfigure_mac_wrapper(struct efx_nic * efx)1335 static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
1336 {
1337 	efx_oword_t reg;
1338 
1339 	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1340 		return;
1341 
1342 	/* Isolate the MAC -> RX */
1343 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1344 	EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
1345 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1346 
1347 	/* Isolate TX -> MAC */
1348 	falcon_drain_tx_fifo(efx);
1349 }
1350 
falcon_reconfigure_mac_wrapper(struct efx_nic * efx)1351 static void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
1352 {
1353 	struct efx_link_state *link_state = &efx->link_state;
1354 	efx_oword_t reg;
1355 	int link_speed, isolate;
1356 
1357 	isolate = !!ACCESS_ONCE(efx->reset_pending);
1358 
1359 	switch (link_state->speed) {
1360 	case 10000: link_speed = 3; break;
1361 	case 1000:  link_speed = 2; break;
1362 	case 100:   link_speed = 1; break;
1363 	default:    link_speed = 0; break;
1364 	}
1365 
1366 	/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
1367 	 * as advertised.  Disable to ensure packets are not
1368 	 * indefinitely held and TX queue can be flushed at any point
1369 	 * while the link is down. */
1370 	EFX_POPULATE_OWORD_5(reg,
1371 			     FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
1372 			     FRF_AB_MAC_BCAD_ACPT, 1,
1373 			     FRF_AB_MAC_UC_PROM, !efx->unicast_filter,
1374 			     FRF_AB_MAC_LINK_STATUS, 1, /* always set */
1375 			     FRF_AB_MAC_SPEED, link_speed);
1376 	/* On B0, MAC backpressure can be disabled and packets get
1377 	 * discarded. */
1378 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1379 		EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
1380 				    !link_state->up || isolate);
1381 	}
1382 
1383 	efx_writeo(efx, &reg, FR_AB_MAC_CTRL);
1384 
1385 	/* Restore the multicast hash registers. */
1386 	falcon_push_multicast_hash(efx);
1387 
1388 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
1389 	/* Enable XOFF signal from RX FIFO (we enabled it during NIC
1390 	 * initialisation but it may read back as 0) */
1391 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
1392 	/* Unisolate the MAC -> RX */
1393 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1394 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, !isolate);
1395 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
1396 }
1397 
falcon_stats_request(struct efx_nic * efx)1398 static void falcon_stats_request(struct efx_nic *efx)
1399 {
1400 	struct falcon_nic_data *nic_data = efx->nic_data;
1401 	efx_oword_t reg;
1402 
1403 	WARN_ON(nic_data->stats_pending);
1404 	WARN_ON(nic_data->stats_disable_count);
1405 
1406 	FALCON_XMAC_STATS_DMA_FLAG(efx) = 0;
1407 	nic_data->stats_pending = true;
1408 	wmb(); /* ensure done flag is clear */
1409 
1410 	/* Initiate DMA transfer of stats */
1411 	EFX_POPULATE_OWORD_2(reg,
1412 			     FRF_AB_MAC_STAT_DMA_CMD, 1,
1413 			     FRF_AB_MAC_STAT_DMA_ADR,
1414 			     efx->stats_buffer.dma_addr);
1415 	efx_writeo(efx, &reg, FR_AB_MAC_STAT_DMA);
1416 
1417 	mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
1418 }
1419 
falcon_stats_complete(struct efx_nic * efx)1420 static void falcon_stats_complete(struct efx_nic *efx)
1421 {
1422 	struct falcon_nic_data *nic_data = efx->nic_data;
1423 
1424 	if (!nic_data->stats_pending)
1425 		return;
1426 
1427 	nic_data->stats_pending = false;
1428 	if (FALCON_XMAC_STATS_DMA_FLAG(efx)) {
1429 		rmb(); /* read the done flag before the stats */
1430 		efx_nic_update_stats(falcon_stat_desc, FALCON_STAT_COUNT,
1431 				     falcon_stat_mask, nic_data->stats,
1432 				     efx->stats_buffer.addr, true);
1433 	} else {
1434 		netif_err(efx, hw, efx->net_dev,
1435 			  "timed out waiting for statistics\n");
1436 	}
1437 }
1438 
falcon_stats_timer_func(unsigned long context)1439 static void falcon_stats_timer_func(unsigned long context)
1440 {
1441 	struct efx_nic *efx = (struct efx_nic *)context;
1442 	struct falcon_nic_data *nic_data = efx->nic_data;
1443 
1444 	spin_lock(&efx->stats_lock);
1445 
1446 	falcon_stats_complete(efx);
1447 	if (nic_data->stats_disable_count == 0)
1448 		falcon_stats_request(efx);
1449 
1450 	spin_unlock(&efx->stats_lock);
1451 }
1452 
falcon_loopback_link_poll(struct efx_nic * efx)1453 static bool falcon_loopback_link_poll(struct efx_nic *efx)
1454 {
1455 	struct efx_link_state old_state = efx->link_state;
1456 
1457 	WARN_ON(!mutex_is_locked(&efx->mac_lock));
1458 	WARN_ON(!LOOPBACK_INTERNAL(efx));
1459 
1460 	efx->link_state.fd = true;
1461 	efx->link_state.fc = efx->wanted_fc;
1462 	efx->link_state.up = true;
1463 	efx->link_state.speed = 10000;
1464 
1465 	return !efx_link_state_equal(&efx->link_state, &old_state);
1466 }
1467 
falcon_reconfigure_port(struct efx_nic * efx)1468 static int falcon_reconfigure_port(struct efx_nic *efx)
1469 {
1470 	int rc;
1471 
1472 	WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
1473 
1474 	/* Poll the PHY link state *before* reconfiguring it. This means we
1475 	 * will pick up the correct speed (in loopback) to select the correct
1476 	 * MAC.
1477 	 */
1478 	if (LOOPBACK_INTERNAL(efx))
1479 		falcon_loopback_link_poll(efx);
1480 	else
1481 		efx->phy_op->poll(efx);
1482 
1483 	falcon_stop_nic_stats(efx);
1484 	falcon_deconfigure_mac_wrapper(efx);
1485 
1486 	falcon_reset_macs(efx);
1487 
1488 	efx->phy_op->reconfigure(efx);
1489 	rc = falcon_reconfigure_xmac(efx);
1490 	BUG_ON(rc);
1491 
1492 	falcon_start_nic_stats(efx);
1493 
1494 	/* Synchronise efx->link_state with the kernel */
1495 	efx_link_status_changed(efx);
1496 
1497 	return 0;
1498 }
1499 
1500 /* TX flow control may automatically turn itself off if the link
1501  * partner (intermittently) stops responding to pause frames. There
1502  * isn't any indication that this has happened, so the best we do is
1503  * leave it up to the user to spot this and fix it by cycling transmit
1504  * flow control on this end.
1505  */
1506 
falcon_a1_prepare_enable_fc_tx(struct efx_nic * efx)1507 static void falcon_a1_prepare_enable_fc_tx(struct efx_nic *efx)
1508 {
1509 	/* Schedule a reset to recover */
1510 	efx_schedule_reset(efx, RESET_TYPE_INVISIBLE);
1511 }
1512 
falcon_b0_prepare_enable_fc_tx(struct efx_nic * efx)1513 static void falcon_b0_prepare_enable_fc_tx(struct efx_nic *efx)
1514 {
1515 	/* Recover by resetting the EM block */
1516 	falcon_stop_nic_stats(efx);
1517 	falcon_drain_tx_fifo(efx);
1518 	falcon_reconfigure_xmac(efx);
1519 	falcon_start_nic_stats(efx);
1520 }
1521 
1522 /**************************************************************************
1523  *
1524  * PHY access via GMII
1525  *
1526  **************************************************************************
1527  */
1528 
1529 /* Wait for GMII access to complete */
falcon_gmii_wait(struct efx_nic * efx)1530 static int falcon_gmii_wait(struct efx_nic *efx)
1531 {
1532 	efx_oword_t md_stat;
1533 	int count;
1534 
1535 	/* wait up to 50ms - taken max from datasheet */
1536 	for (count = 0; count < 5000; count++) {
1537 		efx_reado(efx, &md_stat, FR_AB_MD_STAT);
1538 		if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
1539 			if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
1540 			    EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
1541 				netif_err(efx, hw, efx->net_dev,
1542 					  "error from GMII access "
1543 					  EFX_OWORD_FMT"\n",
1544 					  EFX_OWORD_VAL(md_stat));
1545 				return -EIO;
1546 			}
1547 			return 0;
1548 		}
1549 		udelay(10);
1550 	}
1551 	netif_err(efx, hw, efx->net_dev, "timed out waiting for GMII\n");
1552 	return -ETIMEDOUT;
1553 }
1554 
1555 /* Write an MDIO register of a PHY connected to Falcon. */
falcon_mdio_write(struct net_device * net_dev,int prtad,int devad,u16 addr,u16 value)1556 static int falcon_mdio_write(struct net_device *net_dev,
1557 			     int prtad, int devad, u16 addr, u16 value)
1558 {
1559 	struct efx_nic *efx = netdev_priv(net_dev);
1560 	struct falcon_nic_data *nic_data = efx->nic_data;
1561 	efx_oword_t reg;
1562 	int rc;
1563 
1564 	netif_vdbg(efx, hw, efx->net_dev,
1565 		   "writing MDIO %d register %d.%d with 0x%04x\n",
1566 		    prtad, devad, addr, value);
1567 
1568 	mutex_lock(&nic_data->mdio_lock);
1569 
1570 	/* Check MDIO not currently being accessed */
1571 	rc = falcon_gmii_wait(efx);
1572 	if (rc)
1573 		goto out;
1574 
1575 	/* Write the address/ID register */
1576 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1577 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1578 
1579 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1580 			     FRF_AB_MD_DEV_ADR, devad);
1581 	efx_writeo(efx, &reg, FR_AB_MD_ID);
1582 
1583 	/* Write data */
1584 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
1585 	efx_writeo(efx, &reg, FR_AB_MD_TXD);
1586 
1587 	EFX_POPULATE_OWORD_2(reg,
1588 			     FRF_AB_MD_WRC, 1,
1589 			     FRF_AB_MD_GC, 0);
1590 	efx_writeo(efx, &reg, FR_AB_MD_CS);
1591 
1592 	/* Wait for data to be written */
1593 	rc = falcon_gmii_wait(efx);
1594 	if (rc) {
1595 		/* Abort the write operation */
1596 		EFX_POPULATE_OWORD_2(reg,
1597 				     FRF_AB_MD_WRC, 0,
1598 				     FRF_AB_MD_GC, 1);
1599 		efx_writeo(efx, &reg, FR_AB_MD_CS);
1600 		udelay(10);
1601 	}
1602 
1603 out:
1604 	mutex_unlock(&nic_data->mdio_lock);
1605 	return rc;
1606 }
1607 
1608 /* Read an MDIO register of a PHY connected to Falcon. */
falcon_mdio_read(struct net_device * net_dev,int prtad,int devad,u16 addr)1609 static int falcon_mdio_read(struct net_device *net_dev,
1610 			    int prtad, int devad, u16 addr)
1611 {
1612 	struct efx_nic *efx = netdev_priv(net_dev);
1613 	struct falcon_nic_data *nic_data = efx->nic_data;
1614 	efx_oword_t reg;
1615 	int rc;
1616 
1617 	mutex_lock(&nic_data->mdio_lock);
1618 
1619 	/* Check MDIO not currently being accessed */
1620 	rc = falcon_gmii_wait(efx);
1621 	if (rc)
1622 		goto out;
1623 
1624 	EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
1625 	efx_writeo(efx, &reg, FR_AB_MD_PHY_ADR);
1626 
1627 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
1628 			     FRF_AB_MD_DEV_ADR, devad);
1629 	efx_writeo(efx, &reg, FR_AB_MD_ID);
1630 
1631 	/* Request data to be read */
1632 	EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
1633 	efx_writeo(efx, &reg, FR_AB_MD_CS);
1634 
1635 	/* Wait for data to become available */
1636 	rc = falcon_gmii_wait(efx);
1637 	if (rc == 0) {
1638 		efx_reado(efx, &reg, FR_AB_MD_RXD);
1639 		rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
1640 		netif_vdbg(efx, hw, efx->net_dev,
1641 			   "read from MDIO %d register %d.%d, got %04x\n",
1642 			   prtad, devad, addr, rc);
1643 	} else {
1644 		/* Abort the read operation */
1645 		EFX_POPULATE_OWORD_2(reg,
1646 				     FRF_AB_MD_RIC, 0,
1647 				     FRF_AB_MD_GC, 1);
1648 		efx_writeo(efx, &reg, FR_AB_MD_CS);
1649 
1650 		netif_dbg(efx, hw, efx->net_dev,
1651 			  "read from MDIO %d register %d.%d, got error %d\n",
1652 			  prtad, devad, addr, rc);
1653 	}
1654 
1655 out:
1656 	mutex_unlock(&nic_data->mdio_lock);
1657 	return rc;
1658 }
1659 
1660 /* This call is responsible for hooking in the MAC and PHY operations */
falcon_probe_port(struct efx_nic * efx)1661 static int falcon_probe_port(struct efx_nic *efx)
1662 {
1663 	struct falcon_nic_data *nic_data = efx->nic_data;
1664 	int rc;
1665 
1666 	switch (efx->phy_type) {
1667 	case PHY_TYPE_SFX7101:
1668 		efx->phy_op = &falcon_sfx7101_phy_ops;
1669 		break;
1670 	case PHY_TYPE_QT2022C2:
1671 	case PHY_TYPE_QT2025C:
1672 		efx->phy_op = &falcon_qt202x_phy_ops;
1673 		break;
1674 	case PHY_TYPE_TXC43128:
1675 		efx->phy_op = &falcon_txc_phy_ops;
1676 		break;
1677 	default:
1678 		netif_err(efx, probe, efx->net_dev, "Unknown PHY type %d\n",
1679 			  efx->phy_type);
1680 		return -ENODEV;
1681 	}
1682 
1683 	/* Fill out MDIO structure and loopback modes */
1684 	mutex_init(&nic_data->mdio_lock);
1685 	efx->mdio.mdio_read = falcon_mdio_read;
1686 	efx->mdio.mdio_write = falcon_mdio_write;
1687 	rc = efx->phy_op->probe(efx);
1688 	if (rc != 0)
1689 		return rc;
1690 
1691 	/* Initial assumption */
1692 	efx->link_state.speed = 10000;
1693 	efx->link_state.fd = true;
1694 
1695 	/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
1696 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1697 		efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
1698 	else
1699 		efx->wanted_fc = EFX_FC_RX;
1700 	if (efx->mdio.mmds & MDIO_DEVS_AN)
1701 		efx->wanted_fc |= EFX_FC_AUTO;
1702 
1703 	/* Allocate buffer for stats */
1704 	rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
1705 				  FALCON_MAC_STATS_SIZE, GFP_KERNEL);
1706 	if (rc)
1707 		return rc;
1708 	netif_dbg(efx, probe, efx->net_dev,
1709 		  "stats buffer at %llx (virt %p phys %llx)\n",
1710 		  (u64)efx->stats_buffer.dma_addr,
1711 		  efx->stats_buffer.addr,
1712 		  (u64)virt_to_phys(efx->stats_buffer.addr));
1713 
1714 	return 0;
1715 }
1716 
falcon_remove_port(struct efx_nic * efx)1717 static void falcon_remove_port(struct efx_nic *efx)
1718 {
1719 	efx->phy_op->remove(efx);
1720 	efx_nic_free_buffer(efx, &efx->stats_buffer);
1721 }
1722 
1723 /* Global events are basically PHY events */
1724 static bool
falcon_handle_global_event(struct efx_channel * channel,efx_qword_t * event)1725 falcon_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
1726 {
1727 	struct efx_nic *efx = channel->efx;
1728 	struct falcon_nic_data *nic_data = efx->nic_data;
1729 
1730 	if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
1731 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
1732 	    EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR))
1733 		/* Ignored */
1734 		return true;
1735 
1736 	if ((efx_nic_rev(efx) == EFX_REV_FALCON_B0) &&
1737 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
1738 		nic_data->xmac_poll_required = true;
1739 		return true;
1740 	}
1741 
1742 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
1743 	    EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
1744 	    EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
1745 		netif_err(efx, rx_err, efx->net_dev,
1746 			  "channel %d seen global RX_RESET event. Resetting.\n",
1747 			  channel->channel);
1748 
1749 		atomic_inc(&efx->rx_reset);
1750 		efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
1751 				   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
1752 		return true;
1753 	}
1754 
1755 	return false;
1756 }
1757 
1758 /**************************************************************************
1759  *
1760  * Falcon test code
1761  *
1762  **************************************************************************/
1763 
1764 static int
falcon_read_nvram(struct efx_nic * efx,struct falcon_nvconfig * nvconfig_out)1765 falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
1766 {
1767 	struct falcon_nic_data *nic_data = efx->nic_data;
1768 	struct falcon_nvconfig *nvconfig;
1769 	struct falcon_spi_device *spi;
1770 	void *region;
1771 	int rc, magic_num, struct_ver;
1772 	__le16 *word, *limit;
1773 	u32 csum;
1774 
1775 	if (falcon_spi_present(&nic_data->spi_flash))
1776 		spi = &nic_data->spi_flash;
1777 	else if (falcon_spi_present(&nic_data->spi_eeprom))
1778 		spi = &nic_data->spi_eeprom;
1779 	else
1780 		return -EINVAL;
1781 
1782 	region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
1783 	if (!region)
1784 		return -ENOMEM;
1785 	nvconfig = region + FALCON_NVCONFIG_OFFSET;
1786 
1787 	mutex_lock(&nic_data->spi_lock);
1788 	rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
1789 	mutex_unlock(&nic_data->spi_lock);
1790 	if (rc) {
1791 		netif_err(efx, hw, efx->net_dev, "Failed to read %s\n",
1792 			  falcon_spi_present(&nic_data->spi_flash) ?
1793 			  "flash" : "EEPROM");
1794 		rc = -EIO;
1795 		goto out;
1796 	}
1797 
1798 	magic_num = le16_to_cpu(nvconfig->board_magic_num);
1799 	struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
1800 
1801 	rc = -EINVAL;
1802 	if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
1803 		netif_err(efx, hw, efx->net_dev,
1804 			  "NVRAM bad magic 0x%x\n", magic_num);
1805 		goto out;
1806 	}
1807 	if (struct_ver < 2) {
1808 		netif_err(efx, hw, efx->net_dev,
1809 			  "NVRAM has ancient version 0x%x\n", struct_ver);
1810 		goto out;
1811 	} else if (struct_ver < 4) {
1812 		word = &nvconfig->board_magic_num;
1813 		limit = (__le16 *) (nvconfig + 1);
1814 	} else {
1815 		word = region;
1816 		limit = region + FALCON_NVCONFIG_END;
1817 	}
1818 	for (csum = 0; word < limit; ++word)
1819 		csum += le16_to_cpu(*word);
1820 
1821 	if (~csum & 0xffff) {
1822 		netif_err(efx, hw, efx->net_dev,
1823 			  "NVRAM has incorrect checksum\n");
1824 		goto out;
1825 	}
1826 
1827 	rc = 0;
1828 	if (nvconfig_out)
1829 		memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
1830 
1831  out:
1832 	kfree(region);
1833 	return rc;
1834 }
1835 
falcon_test_nvram(struct efx_nic * efx)1836 static int falcon_test_nvram(struct efx_nic *efx)
1837 {
1838 	return falcon_read_nvram(efx, NULL);
1839 }
1840 
1841 static const struct efx_farch_register_test falcon_b0_register_tests[] = {
1842 	{ FR_AZ_ADR_REGION,
1843 	  EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
1844 	{ FR_AZ_RX_CFG,
1845 	  EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
1846 	{ FR_AZ_TX_CFG,
1847 	  EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
1848 	{ FR_AZ_TX_RESERVED,
1849 	  EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
1850 	{ FR_AB_MAC_CTRL,
1851 	  EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
1852 	{ FR_AZ_SRM_TX_DC_CFG,
1853 	  EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
1854 	{ FR_AZ_RX_DC_CFG,
1855 	  EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
1856 	{ FR_AZ_RX_DC_PF_WM,
1857 	  EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
1858 	{ FR_BZ_DP_CTRL,
1859 	  EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
1860 	{ FR_AB_GM_CFG2,
1861 	  EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
1862 	{ FR_AB_GMF_CFG0,
1863 	  EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
1864 	{ FR_AB_XM_GLB_CFG,
1865 	  EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
1866 	{ FR_AB_XM_TX_CFG,
1867 	  EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
1868 	{ FR_AB_XM_RX_CFG,
1869 	  EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
1870 	{ FR_AB_XM_RX_PARAM,
1871 	  EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
1872 	{ FR_AB_XM_FC,
1873 	  EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
1874 	{ FR_AB_XM_ADR_LO,
1875 	  EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
1876 	{ FR_AB_XX_SD_CTL,
1877 	  EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
1878 };
1879 
1880 static int
falcon_b0_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)1881 falcon_b0_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
1882 {
1883 	enum reset_type reset_method = RESET_TYPE_INVISIBLE;
1884 	int rc, rc2;
1885 
1886 	mutex_lock(&efx->mac_lock);
1887 	if (efx->loopback_modes) {
1888 		/* We need the 312 clock from the PHY to test the XMAC
1889 		 * registers, so move into XGMII loopback if available */
1890 		if (efx->loopback_modes & (1 << LOOPBACK_XGMII))
1891 			efx->loopback_mode = LOOPBACK_XGMII;
1892 		else
1893 			efx->loopback_mode = __ffs(efx->loopback_modes);
1894 	}
1895 	__efx_reconfigure_port(efx);
1896 	mutex_unlock(&efx->mac_lock);
1897 
1898 	efx_reset_down(efx, reset_method);
1899 
1900 	tests->registers =
1901 		efx_farch_test_registers(efx, falcon_b0_register_tests,
1902 					 ARRAY_SIZE(falcon_b0_register_tests))
1903 		? -1 : 1;
1904 
1905 	rc = falcon_reset_hw(efx, reset_method);
1906 	rc2 = efx_reset_up(efx, reset_method, rc == 0);
1907 	return rc ? rc : rc2;
1908 }
1909 
1910 /**************************************************************************
1911  *
1912  * Device reset
1913  *
1914  **************************************************************************
1915  */
1916 
falcon_map_reset_reason(enum reset_type reason)1917 static enum reset_type falcon_map_reset_reason(enum reset_type reason)
1918 {
1919 	switch (reason) {
1920 	case RESET_TYPE_RX_RECOVERY:
1921 	case RESET_TYPE_DMA_ERROR:
1922 	case RESET_TYPE_TX_SKIP:
1923 		/* These can occasionally occur due to hardware bugs.
1924 		 * We try to reset without disrupting the link.
1925 		 */
1926 		return RESET_TYPE_INVISIBLE;
1927 	default:
1928 		return RESET_TYPE_ALL;
1929 	}
1930 }
1931 
falcon_map_reset_flags(u32 * flags)1932 static int falcon_map_reset_flags(u32 *flags)
1933 {
1934 	enum {
1935 		FALCON_RESET_INVISIBLE = (ETH_RESET_DMA | ETH_RESET_FILTER |
1936 					  ETH_RESET_OFFLOAD | ETH_RESET_MAC),
1937 		FALCON_RESET_ALL = FALCON_RESET_INVISIBLE | ETH_RESET_PHY,
1938 		FALCON_RESET_WORLD = FALCON_RESET_ALL | ETH_RESET_IRQ,
1939 	};
1940 
1941 	if ((*flags & FALCON_RESET_WORLD) == FALCON_RESET_WORLD) {
1942 		*flags &= ~FALCON_RESET_WORLD;
1943 		return RESET_TYPE_WORLD;
1944 	}
1945 
1946 	if ((*flags & FALCON_RESET_ALL) == FALCON_RESET_ALL) {
1947 		*flags &= ~FALCON_RESET_ALL;
1948 		return RESET_TYPE_ALL;
1949 	}
1950 
1951 	if ((*flags & FALCON_RESET_INVISIBLE) == FALCON_RESET_INVISIBLE) {
1952 		*flags &= ~FALCON_RESET_INVISIBLE;
1953 		return RESET_TYPE_INVISIBLE;
1954 	}
1955 
1956 	return -EINVAL;
1957 }
1958 
1959 /* Resets NIC to known state.  This routine must be called in process
1960  * context and is allowed to sleep. */
__falcon_reset_hw(struct efx_nic * efx,enum reset_type method)1961 static int __falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
1962 {
1963 	struct falcon_nic_data *nic_data = efx->nic_data;
1964 	efx_oword_t glb_ctl_reg_ker;
1965 	int rc;
1966 
1967 	netif_dbg(efx, hw, efx->net_dev, "performing %s hardware reset\n",
1968 		  RESET_TYPE(method));
1969 
1970 	/* Initiate device reset */
1971 	if (method == RESET_TYPE_WORLD) {
1972 		rc = pci_save_state(efx->pci_dev);
1973 		if (rc) {
1974 			netif_err(efx, drv, efx->net_dev,
1975 				  "failed to backup PCI state of primary "
1976 				  "function prior to hardware reset\n");
1977 			goto fail1;
1978 		}
1979 		if (efx_nic_is_dual_func(efx)) {
1980 			rc = pci_save_state(nic_data->pci_dev2);
1981 			if (rc) {
1982 				netif_err(efx, drv, efx->net_dev,
1983 					  "failed to backup PCI state of "
1984 					  "secondary function prior to "
1985 					  "hardware reset\n");
1986 				goto fail2;
1987 			}
1988 		}
1989 
1990 		EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
1991 				     FRF_AB_EXT_PHY_RST_DUR,
1992 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
1993 				     FRF_AB_SWRST, 1);
1994 	} else {
1995 		EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
1996 				     /* exclude PHY from "invisible" reset */
1997 				     FRF_AB_EXT_PHY_RST_CTL,
1998 				     method == RESET_TYPE_INVISIBLE,
1999 				     /* exclude EEPROM/flash and PCIe */
2000 				     FRF_AB_PCIE_CORE_RST_CTL, 1,
2001 				     FRF_AB_PCIE_NSTKY_RST_CTL, 1,
2002 				     FRF_AB_PCIE_SD_RST_CTL, 1,
2003 				     FRF_AB_EE_RST_CTL, 1,
2004 				     FRF_AB_EXT_PHY_RST_DUR,
2005 				     FFE_AB_EXT_PHY_RST_DUR_10240US,
2006 				     FRF_AB_SWRST, 1);
2007 	}
2008 	efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2009 
2010 	netif_dbg(efx, hw, efx->net_dev, "waiting for hardware reset\n");
2011 	schedule_timeout_uninterruptible(HZ / 20);
2012 
2013 	/* Restore PCI configuration if needed */
2014 	if (method == RESET_TYPE_WORLD) {
2015 		if (efx_nic_is_dual_func(efx))
2016 			pci_restore_state(nic_data->pci_dev2);
2017 		pci_restore_state(efx->pci_dev);
2018 		netif_dbg(efx, drv, efx->net_dev,
2019 			  "successfully restored PCI config\n");
2020 	}
2021 
2022 	/* Assert that reset complete */
2023 	efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
2024 	if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
2025 		rc = -ETIMEDOUT;
2026 		netif_err(efx, hw, efx->net_dev,
2027 			  "timed out waiting for hardware reset\n");
2028 		goto fail3;
2029 	}
2030 	netif_dbg(efx, hw, efx->net_dev, "hardware reset complete\n");
2031 
2032 	return 0;
2033 
2034 	/* pci_save_state() and pci_restore_state() MUST be called in pairs */
2035 fail2:
2036 	pci_restore_state(efx->pci_dev);
2037 fail1:
2038 fail3:
2039 	return rc;
2040 }
2041 
falcon_reset_hw(struct efx_nic * efx,enum reset_type method)2042 static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
2043 {
2044 	struct falcon_nic_data *nic_data = efx->nic_data;
2045 	int rc;
2046 
2047 	mutex_lock(&nic_data->spi_lock);
2048 	rc = __falcon_reset_hw(efx, method);
2049 	mutex_unlock(&nic_data->spi_lock);
2050 
2051 	return rc;
2052 }
2053 
falcon_monitor(struct efx_nic * efx)2054 static void falcon_monitor(struct efx_nic *efx)
2055 {
2056 	bool link_changed;
2057 	int rc;
2058 
2059 	BUG_ON(!mutex_is_locked(&efx->mac_lock));
2060 
2061 	rc = falcon_board(efx)->type->monitor(efx);
2062 	if (rc) {
2063 		netif_err(efx, hw, efx->net_dev,
2064 			  "Board sensor %s; shutting down PHY\n",
2065 			  (rc == -ERANGE) ? "reported fault" : "failed");
2066 		efx->phy_mode |= PHY_MODE_LOW_POWER;
2067 		rc = __efx_reconfigure_port(efx);
2068 		WARN_ON(rc);
2069 	}
2070 
2071 	if (LOOPBACK_INTERNAL(efx))
2072 		link_changed = falcon_loopback_link_poll(efx);
2073 	else
2074 		link_changed = efx->phy_op->poll(efx);
2075 
2076 	if (link_changed) {
2077 		falcon_stop_nic_stats(efx);
2078 		falcon_deconfigure_mac_wrapper(efx);
2079 
2080 		falcon_reset_macs(efx);
2081 		rc = falcon_reconfigure_xmac(efx);
2082 		BUG_ON(rc);
2083 
2084 		falcon_start_nic_stats(efx);
2085 
2086 		efx_link_status_changed(efx);
2087 	}
2088 
2089 	falcon_poll_xmac(efx);
2090 }
2091 
2092 /* Zeroes out the SRAM contents.  This routine must be called in
2093  * process context and is allowed to sleep.
2094  */
falcon_reset_sram(struct efx_nic * efx)2095 static int falcon_reset_sram(struct efx_nic *efx)
2096 {
2097 	efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
2098 	int count;
2099 
2100 	/* Set the SRAM wake/sleep GPIO appropriately. */
2101 	efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2102 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
2103 	EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
2104 	efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
2105 
2106 	/* Initiate SRAM reset */
2107 	EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
2108 			     FRF_AZ_SRM_INIT_EN, 1,
2109 			     FRF_AZ_SRM_NB_SZ, 0);
2110 	efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2111 
2112 	/* Wait for SRAM reset to complete */
2113 	count = 0;
2114 	do {
2115 		netif_dbg(efx, hw, efx->net_dev,
2116 			  "waiting for SRAM reset (attempt %d)...\n", count);
2117 
2118 		/* SRAM reset is slow; expect around 16ms */
2119 		schedule_timeout_uninterruptible(HZ / 50);
2120 
2121 		/* Check for reset complete */
2122 		efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
2123 		if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
2124 			netif_dbg(efx, hw, efx->net_dev,
2125 				  "SRAM reset complete\n");
2126 
2127 			return 0;
2128 		}
2129 	} while (++count < 20);	/* wait up to 0.4 sec */
2130 
2131 	netif_err(efx, hw, efx->net_dev, "timed out waiting for SRAM reset\n");
2132 	return -ETIMEDOUT;
2133 }
2134 
falcon_spi_device_init(struct efx_nic * efx,struct falcon_spi_device * spi_device,unsigned int device_id,u32 device_type)2135 static void falcon_spi_device_init(struct efx_nic *efx,
2136 				  struct falcon_spi_device *spi_device,
2137 				  unsigned int device_id, u32 device_type)
2138 {
2139 	if (device_type != 0) {
2140 		spi_device->device_id = device_id;
2141 		spi_device->size =
2142 			1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
2143 		spi_device->addr_len =
2144 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
2145 		spi_device->munge_address = (spi_device->size == 1 << 9 &&
2146 					     spi_device->addr_len == 1);
2147 		spi_device->erase_command =
2148 			SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
2149 		spi_device->erase_size =
2150 			1 << SPI_DEV_TYPE_FIELD(device_type,
2151 						SPI_DEV_TYPE_ERASE_SIZE);
2152 		spi_device->block_size =
2153 			1 << SPI_DEV_TYPE_FIELD(device_type,
2154 						SPI_DEV_TYPE_BLOCK_SIZE);
2155 	} else {
2156 		spi_device->size = 0;
2157 	}
2158 }
2159 
2160 /* Extract non-volatile configuration */
falcon_probe_nvconfig(struct efx_nic * efx)2161 static int falcon_probe_nvconfig(struct efx_nic *efx)
2162 {
2163 	struct falcon_nic_data *nic_data = efx->nic_data;
2164 	struct falcon_nvconfig *nvconfig;
2165 	int rc;
2166 
2167 	nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
2168 	if (!nvconfig)
2169 		return -ENOMEM;
2170 
2171 	rc = falcon_read_nvram(efx, nvconfig);
2172 	if (rc)
2173 		goto out;
2174 
2175 	efx->phy_type = nvconfig->board_v2.port0_phy_type;
2176 	efx->mdio.prtad = nvconfig->board_v2.port0_phy_addr;
2177 
2178 	if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
2179 		falcon_spi_device_init(
2180 			efx, &nic_data->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
2181 			le32_to_cpu(nvconfig->board_v3
2182 				    .spi_device_type[FFE_AB_SPI_DEVICE_FLASH]));
2183 		falcon_spi_device_init(
2184 			efx, &nic_data->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
2185 			le32_to_cpu(nvconfig->board_v3
2186 				    .spi_device_type[FFE_AB_SPI_DEVICE_EEPROM]));
2187 	}
2188 
2189 	/* Read the MAC addresses */
2190 	ether_addr_copy(efx->net_dev->perm_addr, nvconfig->mac_address[0]);
2191 
2192 	netif_dbg(efx, probe, efx->net_dev, "PHY is %d phy_id %d\n",
2193 		  efx->phy_type, efx->mdio.prtad);
2194 
2195 	rc = falcon_probe_board(efx,
2196 				le16_to_cpu(nvconfig->board_v2.board_revision));
2197 out:
2198 	kfree(nvconfig);
2199 	return rc;
2200 }
2201 
falcon_dimension_resources(struct efx_nic * efx)2202 static int falcon_dimension_resources(struct efx_nic *efx)
2203 {
2204 	efx->rx_dc_base = 0x20000;
2205 	efx->tx_dc_base = 0x26000;
2206 	return 0;
2207 }
2208 
2209 /* Probe all SPI devices on the NIC */
falcon_probe_spi_devices(struct efx_nic * efx)2210 static void falcon_probe_spi_devices(struct efx_nic *efx)
2211 {
2212 	struct falcon_nic_data *nic_data = efx->nic_data;
2213 	efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
2214 	int boot_dev;
2215 
2216 	efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
2217 	efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2218 	efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2219 
2220 	if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
2221 		boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
2222 			    FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
2223 		netif_dbg(efx, probe, efx->net_dev, "Booted from %s\n",
2224 			  boot_dev == FFE_AB_SPI_DEVICE_FLASH ?
2225 			  "flash" : "EEPROM");
2226 	} else {
2227 		/* Disable VPD and set clock dividers to safe
2228 		 * values for initial programming. */
2229 		boot_dev = -1;
2230 		netif_dbg(efx, probe, efx->net_dev,
2231 			  "Booted from internal ASIC settings;"
2232 			  " setting SPI config\n");
2233 		EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
2234 				     /* 125 MHz / 7 ~= 20 MHz */
2235 				     FRF_AB_EE_SF_CLOCK_DIV, 7,
2236 				     /* 125 MHz / 63 ~= 2 MHz */
2237 				     FRF_AB_EE_EE_CLOCK_DIV, 63);
2238 		efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
2239 	}
2240 
2241 	mutex_init(&nic_data->spi_lock);
2242 
2243 	if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
2244 		falcon_spi_device_init(efx, &nic_data->spi_flash,
2245 				       FFE_AB_SPI_DEVICE_FLASH,
2246 				       default_flash_type);
2247 	if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
2248 		falcon_spi_device_init(efx, &nic_data->spi_eeprom,
2249 				       FFE_AB_SPI_DEVICE_EEPROM,
2250 				       large_eeprom_type);
2251 }
2252 
falcon_a1_mem_map_size(struct efx_nic * efx)2253 static unsigned int falcon_a1_mem_map_size(struct efx_nic *efx)
2254 {
2255 	return 0x20000;
2256 }
2257 
falcon_b0_mem_map_size(struct efx_nic * efx)2258 static unsigned int falcon_b0_mem_map_size(struct efx_nic *efx)
2259 {
2260 	/* Map everything up to and including the RSS indirection table.
2261 	 * The PCI core takes care of mapping the MSI-X tables.
2262 	 */
2263 	return FR_BZ_RX_INDIRECTION_TBL +
2264 		FR_BZ_RX_INDIRECTION_TBL_STEP * FR_BZ_RX_INDIRECTION_TBL_ROWS;
2265 }
2266 
falcon_probe_nic(struct efx_nic * efx)2267 static int falcon_probe_nic(struct efx_nic *efx)
2268 {
2269 	struct falcon_nic_data *nic_data;
2270 	struct falcon_board *board;
2271 	int rc;
2272 
2273 	efx->primary = efx; /* only one usable function per controller */
2274 
2275 	/* Allocate storage for hardware specific data */
2276 	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
2277 	if (!nic_data)
2278 		return -ENOMEM;
2279 	efx->nic_data = nic_data;
2280 
2281 	rc = -ENODEV;
2282 
2283 	if (efx_farch_fpga_ver(efx) != 0) {
2284 		netif_err(efx, probe, efx->net_dev,
2285 			  "Falcon FPGA not supported\n");
2286 		goto fail1;
2287 	}
2288 
2289 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2290 		efx_oword_t nic_stat;
2291 		struct pci_dev *dev;
2292 		u8 pci_rev = efx->pci_dev->revision;
2293 
2294 		if ((pci_rev == 0xff) || (pci_rev == 0)) {
2295 			netif_err(efx, probe, efx->net_dev,
2296 				  "Falcon rev A0 not supported\n");
2297 			goto fail1;
2298 		}
2299 		efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
2300 		if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
2301 			netif_err(efx, probe, efx->net_dev,
2302 				  "Falcon rev A1 1G not supported\n");
2303 			goto fail1;
2304 		}
2305 		if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
2306 			netif_err(efx, probe, efx->net_dev,
2307 				  "Falcon rev A1 PCI-X not supported\n");
2308 			goto fail1;
2309 		}
2310 
2311 		dev = pci_dev_get(efx->pci_dev);
2312 		while ((dev = pci_get_device(PCI_VENDOR_ID_SOLARFLARE,
2313 					     PCI_DEVICE_ID_SOLARFLARE_SFC4000A_1,
2314 					     dev))) {
2315 			if (dev->bus == efx->pci_dev->bus &&
2316 			    dev->devfn == efx->pci_dev->devfn + 1) {
2317 				nic_data->pci_dev2 = dev;
2318 				break;
2319 			}
2320 		}
2321 		if (!nic_data->pci_dev2) {
2322 			netif_err(efx, probe, efx->net_dev,
2323 				  "failed to find secondary function\n");
2324 			rc = -ENODEV;
2325 			goto fail2;
2326 		}
2327 	}
2328 
2329 	/* Now we can reset the NIC */
2330 	rc = __falcon_reset_hw(efx, RESET_TYPE_ALL);
2331 	if (rc) {
2332 		netif_err(efx, probe, efx->net_dev, "failed to reset NIC\n");
2333 		goto fail3;
2334 	}
2335 
2336 	/* Allocate memory for INT_KER */
2337 	rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t),
2338 				  GFP_KERNEL);
2339 	if (rc)
2340 		goto fail4;
2341 	BUG_ON(efx->irq_status.dma_addr & 0x0f);
2342 
2343 	netif_dbg(efx, probe, efx->net_dev,
2344 		  "INT_KER at %llx (virt %p phys %llx)\n",
2345 		  (u64)efx->irq_status.dma_addr,
2346 		  efx->irq_status.addr,
2347 		  (u64)virt_to_phys(efx->irq_status.addr));
2348 
2349 	falcon_probe_spi_devices(efx);
2350 
2351 	/* Read in the non-volatile configuration */
2352 	rc = falcon_probe_nvconfig(efx);
2353 	if (rc) {
2354 		if (rc == -EINVAL)
2355 			netif_err(efx, probe, efx->net_dev, "NVRAM is invalid\n");
2356 		goto fail5;
2357 	}
2358 
2359 	efx->max_channels = (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ? 4 :
2360 			     EFX_MAX_CHANNELS);
2361 	efx->timer_quantum_ns = 4968; /* 621 cycles */
2362 
2363 	/* Initialise I2C adapter */
2364 	board = falcon_board(efx);
2365 	board->i2c_adap.owner = THIS_MODULE;
2366 	board->i2c_data = falcon_i2c_bit_operations;
2367 	board->i2c_data.data = efx;
2368 	board->i2c_adap.algo_data = &board->i2c_data;
2369 	board->i2c_adap.dev.parent = &efx->pci_dev->dev;
2370 	strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
2371 		sizeof(board->i2c_adap.name));
2372 	rc = i2c_bit_add_bus(&board->i2c_adap);
2373 	if (rc)
2374 		goto fail5;
2375 
2376 	rc = falcon_board(efx)->type->init(efx);
2377 	if (rc) {
2378 		netif_err(efx, probe, efx->net_dev,
2379 			  "failed to initialise board\n");
2380 		goto fail6;
2381 	}
2382 
2383 	nic_data->stats_disable_count = 1;
2384 	setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
2385 		    (unsigned long)efx);
2386 
2387 	return 0;
2388 
2389  fail6:
2390 	i2c_del_adapter(&board->i2c_adap);
2391 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2392  fail5:
2393 	efx_nic_free_buffer(efx, &efx->irq_status);
2394  fail4:
2395  fail3:
2396 	if (nic_data->pci_dev2) {
2397 		pci_dev_put(nic_data->pci_dev2);
2398 		nic_data->pci_dev2 = NULL;
2399 	}
2400  fail2:
2401  fail1:
2402 	kfree(efx->nic_data);
2403 	return rc;
2404 }
2405 
falcon_init_rx_cfg(struct efx_nic * efx)2406 static void falcon_init_rx_cfg(struct efx_nic *efx)
2407 {
2408 	/* RX control FIFO thresholds (32 entries) */
2409 	const unsigned ctrl_xon_thr = 20;
2410 	const unsigned ctrl_xoff_thr = 25;
2411 	efx_oword_t reg;
2412 
2413 	efx_reado(efx, &reg, FR_AZ_RX_CFG);
2414 	if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
2415 		/* Data FIFO size is 5.5K.  The RX DMA engine only
2416 		 * supports scattering for user-mode queues, but will
2417 		 * split DMA writes at intervals of RX_USR_BUF_SIZE
2418 		 * (32-byte units) even for kernel-mode queues.  We
2419 		 * set it to be so large that that never happens.
2420 		 */
2421 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
2422 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
2423 				    (3 * 4096) >> 5);
2424 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, 512 >> 8);
2425 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, 2048 >> 8);
2426 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
2427 		EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
2428 	} else {
2429 		/* Data FIFO size is 80K; register fields moved */
2430 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
2431 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
2432 				    EFX_RX_USR_BUF_SIZE >> 5);
2433 		/* Send XON and XOFF at ~3 * max MTU away from empty/full */
2434 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, 27648 >> 8);
2435 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, 54272 >> 8);
2436 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
2437 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
2438 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
2439 
2440 		/* Enable hash insertion. This is broken for the
2441 		 * 'Falcon' hash so also select Toeplitz TCP/IPv4 and
2442 		 * IPv4 hashes. */
2443 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_INSRT_HDR, 1);
2444 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_HASH_ALG, 1);
2445 		EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_IP_HASH, 1);
2446 	}
2447 	/* Always enable XOFF signal from RX FIFO.  We enable
2448 	 * or disable transmission of pause frames at the MAC. */
2449 	EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
2450 	efx_writeo(efx, &reg, FR_AZ_RX_CFG);
2451 }
2452 
2453 /* This call performs hardware-specific global initialisation, such as
2454  * defining the descriptor cache sizes and number of RSS channels.
2455  * It does not set up any buffers, descriptor rings or event queues.
2456  */
falcon_init_nic(struct efx_nic * efx)2457 static int falcon_init_nic(struct efx_nic *efx)
2458 {
2459 	efx_oword_t temp;
2460 	int rc;
2461 
2462 	/* Use on-chip SRAM */
2463 	efx_reado(efx, &temp, FR_AB_NIC_STAT);
2464 	EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
2465 	efx_writeo(efx, &temp, FR_AB_NIC_STAT);
2466 
2467 	rc = falcon_reset_sram(efx);
2468 	if (rc)
2469 		return rc;
2470 
2471 	/* Clear the parity enables on the TX data fifos as
2472 	 * they produce false parity errors because of timing issues
2473 	 */
2474 	if (EFX_WORKAROUND_5129(efx)) {
2475 		efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
2476 		EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
2477 		efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
2478 	}
2479 
2480 	if (EFX_WORKAROUND_7244(efx)) {
2481 		efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
2482 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
2483 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
2484 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
2485 		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
2486 		efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
2487 	}
2488 
2489 	/* XXX This is documented only for Falcon A0/A1 */
2490 	/* Setup RX.  Wait for descriptor is broken and must
2491 	 * be disabled.  RXDP recovery shouldn't be needed, but is.
2492 	 */
2493 	efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
2494 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
2495 	EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
2496 	if (EFX_WORKAROUND_5583(efx))
2497 		EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
2498 	efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
2499 
2500 	/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
2501 	 * descriptors (which is bad).
2502 	 */
2503 	efx_reado(efx, &temp, FR_AZ_TX_CFG);
2504 	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
2505 	efx_writeo(efx, &temp, FR_AZ_TX_CFG);
2506 
2507 	falcon_init_rx_cfg(efx);
2508 
2509 	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2510 		falcon_b0_rx_push_rss_config(efx);
2511 
2512 		/* Set destination of both TX and RX Flush events */
2513 		EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
2514 		efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
2515 	}
2516 
2517 	efx_farch_init_common(efx);
2518 
2519 	return 0;
2520 }
2521 
falcon_remove_nic(struct efx_nic * efx)2522 static void falcon_remove_nic(struct efx_nic *efx)
2523 {
2524 	struct falcon_nic_data *nic_data = efx->nic_data;
2525 	struct falcon_board *board = falcon_board(efx);
2526 
2527 	board->type->fini(efx);
2528 
2529 	/* Remove I2C adapter and clear it in preparation for a retry */
2530 	i2c_del_adapter(&board->i2c_adap);
2531 	memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
2532 
2533 	efx_nic_free_buffer(efx, &efx->irq_status);
2534 
2535 	__falcon_reset_hw(efx, RESET_TYPE_ALL);
2536 
2537 	/* Release the second function after the reset */
2538 	if (nic_data->pci_dev2) {
2539 		pci_dev_put(nic_data->pci_dev2);
2540 		nic_data->pci_dev2 = NULL;
2541 	}
2542 
2543 	/* Tear down the private nic state */
2544 	kfree(efx->nic_data);
2545 	efx->nic_data = NULL;
2546 }
2547 
falcon_describe_nic_stats(struct efx_nic * efx,u8 * names)2548 static size_t falcon_describe_nic_stats(struct efx_nic *efx, u8 *names)
2549 {
2550 	return efx_nic_describe_stats(falcon_stat_desc, FALCON_STAT_COUNT,
2551 				      falcon_stat_mask, names);
2552 }
2553 
falcon_update_nic_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)2554 static size_t falcon_update_nic_stats(struct efx_nic *efx, u64 *full_stats,
2555 				      struct rtnl_link_stats64 *core_stats)
2556 {
2557 	struct falcon_nic_data *nic_data = efx->nic_data;
2558 	u64 *stats = nic_data->stats;
2559 	efx_oword_t cnt;
2560 
2561 	if (!nic_data->stats_disable_count) {
2562 		efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
2563 		stats[FALCON_STAT_rx_nodesc_drop_cnt] +=
2564 			EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
2565 
2566 		if (nic_data->stats_pending &&
2567 		    FALCON_XMAC_STATS_DMA_FLAG(efx)) {
2568 			nic_data->stats_pending = false;
2569 			rmb(); /* read the done flag before the stats */
2570 			efx_nic_update_stats(
2571 				falcon_stat_desc, FALCON_STAT_COUNT,
2572 				falcon_stat_mask,
2573 				stats, efx->stats_buffer.addr, true);
2574 		}
2575 
2576 		/* Update derived statistic */
2577 		efx_update_diff_stat(&stats[FALCON_STAT_rx_bad_bytes],
2578 				     stats[FALCON_STAT_rx_bytes] -
2579 				     stats[FALCON_STAT_rx_good_bytes] -
2580 				     stats[FALCON_STAT_rx_control] * 64);
2581 		efx_update_sw_stats(efx, stats);
2582 	}
2583 
2584 	if (full_stats)
2585 		memcpy(full_stats, stats, sizeof(u64) * FALCON_STAT_COUNT);
2586 
2587 	if (core_stats) {
2588 		core_stats->rx_packets = stats[FALCON_STAT_rx_packets];
2589 		core_stats->tx_packets = stats[FALCON_STAT_tx_packets];
2590 		core_stats->rx_bytes = stats[FALCON_STAT_rx_bytes];
2591 		core_stats->tx_bytes = stats[FALCON_STAT_tx_bytes];
2592 		core_stats->rx_dropped = stats[FALCON_STAT_rx_nodesc_drop_cnt] +
2593 					 stats[GENERIC_STAT_rx_nodesc_trunc] +
2594 					 stats[GENERIC_STAT_rx_noskb_drops];
2595 		core_stats->multicast = stats[FALCON_STAT_rx_multicast];
2596 		core_stats->rx_length_errors =
2597 			stats[FALCON_STAT_rx_gtjumbo] +
2598 			stats[FALCON_STAT_rx_length_error];
2599 		core_stats->rx_crc_errors = stats[FALCON_STAT_rx_bad];
2600 		core_stats->rx_frame_errors = stats[FALCON_STAT_rx_align_error];
2601 		core_stats->rx_fifo_errors = stats[FALCON_STAT_rx_overflow];
2602 
2603 		core_stats->rx_errors = (core_stats->rx_length_errors +
2604 					 core_stats->rx_crc_errors +
2605 					 core_stats->rx_frame_errors +
2606 					 stats[FALCON_STAT_rx_symbol_error]);
2607 	}
2608 
2609 	return FALCON_STAT_COUNT;
2610 }
2611 
falcon_start_nic_stats(struct efx_nic * efx)2612 void falcon_start_nic_stats(struct efx_nic *efx)
2613 {
2614 	struct falcon_nic_data *nic_data = efx->nic_data;
2615 
2616 	spin_lock_bh(&efx->stats_lock);
2617 	if (--nic_data->stats_disable_count == 0)
2618 		falcon_stats_request(efx);
2619 	spin_unlock_bh(&efx->stats_lock);
2620 }
2621 
2622 /* We don't acutally pull stats on falcon. Wait 10ms so that
2623  * they arrive when we call this just after start_stats
2624  */
falcon_pull_nic_stats(struct efx_nic * efx)2625 static void falcon_pull_nic_stats(struct efx_nic *efx)
2626 {
2627 	msleep(10);
2628 }
2629 
falcon_stop_nic_stats(struct efx_nic * efx)2630 void falcon_stop_nic_stats(struct efx_nic *efx)
2631 {
2632 	struct falcon_nic_data *nic_data = efx->nic_data;
2633 	int i;
2634 
2635 	might_sleep();
2636 
2637 	spin_lock_bh(&efx->stats_lock);
2638 	++nic_data->stats_disable_count;
2639 	spin_unlock_bh(&efx->stats_lock);
2640 
2641 	del_timer_sync(&nic_data->stats_timer);
2642 
2643 	/* Wait enough time for the most recent transfer to
2644 	 * complete. */
2645 	for (i = 0; i < 4 && nic_data->stats_pending; i++) {
2646 		if (FALCON_XMAC_STATS_DMA_FLAG(efx))
2647 			break;
2648 		msleep(1);
2649 	}
2650 
2651 	spin_lock_bh(&efx->stats_lock);
2652 	falcon_stats_complete(efx);
2653 	spin_unlock_bh(&efx->stats_lock);
2654 }
2655 
falcon_set_id_led(struct efx_nic * efx,enum efx_led_mode mode)2656 static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
2657 {
2658 	falcon_board(efx)->type->set_id_led(efx, mode);
2659 }
2660 
2661 /**************************************************************************
2662  *
2663  * Wake on LAN
2664  *
2665  **************************************************************************
2666  */
2667 
falcon_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)2668 static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
2669 {
2670 	wol->supported = 0;
2671 	wol->wolopts = 0;
2672 	memset(&wol->sopass, 0, sizeof(wol->sopass));
2673 }
2674 
falcon_set_wol(struct efx_nic * efx,u32 type)2675 static int falcon_set_wol(struct efx_nic *efx, u32 type)
2676 {
2677 	if (type != 0)
2678 		return -EINVAL;
2679 	return 0;
2680 }
2681 
2682 /**************************************************************************
2683  *
2684  * Revision-dependent attributes used by efx.c and nic.c
2685  *
2686  **************************************************************************
2687  */
2688 
2689 const struct efx_nic_type falcon_a1_nic_type = {
2690 	.mem_map_size = falcon_a1_mem_map_size,
2691 	.probe = falcon_probe_nic,
2692 	.remove = falcon_remove_nic,
2693 	.init = falcon_init_nic,
2694 	.dimension_resources = falcon_dimension_resources,
2695 	.fini = falcon_irq_ack_a1,
2696 	.monitor = falcon_monitor,
2697 	.map_reset_reason = falcon_map_reset_reason,
2698 	.map_reset_flags = falcon_map_reset_flags,
2699 	.reset = falcon_reset_hw,
2700 	.probe_port = falcon_probe_port,
2701 	.remove_port = falcon_remove_port,
2702 	.handle_global_event = falcon_handle_global_event,
2703 	.fini_dmaq = efx_farch_fini_dmaq,
2704 	.prepare_flush = falcon_prepare_flush,
2705 	.finish_flush = efx_port_dummy_op_void,
2706 	.prepare_flr = efx_port_dummy_op_void,
2707 	.finish_flr = efx_farch_finish_flr,
2708 	.describe_stats = falcon_describe_nic_stats,
2709 	.update_stats = falcon_update_nic_stats,
2710 	.start_stats = falcon_start_nic_stats,
2711 	.pull_stats = falcon_pull_nic_stats,
2712 	.stop_stats = falcon_stop_nic_stats,
2713 	.set_id_led = falcon_set_id_led,
2714 	.push_irq_moderation = falcon_push_irq_moderation,
2715 	.reconfigure_port = falcon_reconfigure_port,
2716 	.prepare_enable_fc_tx = falcon_a1_prepare_enable_fc_tx,
2717 	.reconfigure_mac = falcon_reconfigure_xmac,
2718 	.check_mac_fault = falcon_xmac_check_fault,
2719 	.get_wol = falcon_get_wol,
2720 	.set_wol = falcon_set_wol,
2721 	.resume_wol = efx_port_dummy_op_void,
2722 	.test_nvram = falcon_test_nvram,
2723 	.irq_enable_master = efx_farch_irq_enable_master,
2724 	.irq_test_generate = efx_farch_irq_test_generate,
2725 	.irq_disable_non_ev = efx_farch_irq_disable_master,
2726 	.irq_handle_msi = efx_farch_msi_interrupt,
2727 	.irq_handle_legacy = falcon_legacy_interrupt_a1,
2728 	.tx_probe = efx_farch_tx_probe,
2729 	.tx_init = efx_farch_tx_init,
2730 	.tx_remove = efx_farch_tx_remove,
2731 	.tx_write = efx_farch_tx_write,
2732 	.rx_push_rss_config = efx_port_dummy_op_void,
2733 	.rx_probe = efx_farch_rx_probe,
2734 	.rx_init = efx_farch_rx_init,
2735 	.rx_remove = efx_farch_rx_remove,
2736 	.rx_write = efx_farch_rx_write,
2737 	.rx_defer_refill = efx_farch_rx_defer_refill,
2738 	.ev_probe = efx_farch_ev_probe,
2739 	.ev_init = efx_farch_ev_init,
2740 	.ev_fini = efx_farch_ev_fini,
2741 	.ev_remove = efx_farch_ev_remove,
2742 	.ev_process = efx_farch_ev_process,
2743 	.ev_read_ack = efx_farch_ev_read_ack,
2744 	.ev_test_generate = efx_farch_ev_test_generate,
2745 
2746 	/* We don't expose the filter table on Falcon A1 as it is not
2747 	 * mapped into function 0, but these implementations still
2748 	 * work with a degenerate case of all tables set to size 0.
2749 	 */
2750 	.filter_table_probe = efx_farch_filter_table_probe,
2751 	.filter_table_restore = efx_farch_filter_table_restore,
2752 	.filter_table_remove = efx_farch_filter_table_remove,
2753 	.filter_insert = efx_farch_filter_insert,
2754 	.filter_remove_safe = efx_farch_filter_remove_safe,
2755 	.filter_get_safe = efx_farch_filter_get_safe,
2756 	.filter_clear_rx = efx_farch_filter_clear_rx,
2757 	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2758 	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2759 	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2760 
2761 #ifdef CONFIG_SFC_MTD
2762 	.mtd_probe = falcon_mtd_probe,
2763 	.mtd_rename = falcon_mtd_rename,
2764 	.mtd_read = falcon_mtd_read,
2765 	.mtd_erase = falcon_mtd_erase,
2766 	.mtd_write = falcon_mtd_write,
2767 	.mtd_sync = falcon_mtd_sync,
2768 #endif
2769 	.sriov_init = efx_falcon_sriov_init,
2770 	.sriov_fini = efx_falcon_sriov_fini,
2771 	.sriov_mac_address_changed = efx_falcon_sriov_mac_address_changed,
2772 	.sriov_wanted = efx_falcon_sriov_wanted,
2773 	.sriov_reset = efx_falcon_sriov_reset,
2774 
2775 	.revision = EFX_REV_FALCON_A1,
2776 	.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
2777 	.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
2778 	.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
2779 	.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
2780 	.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
2781 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2782 	.rx_buffer_padding = 0x24,
2783 	.can_rx_scatter = false,
2784 	.max_interrupt_mode = EFX_INT_MODE_MSI,
2785 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2786 	.offload_features = NETIF_F_IP_CSUM,
2787 	.mcdi_max_ver = -1,
2788 };
2789 
2790 const struct efx_nic_type falcon_b0_nic_type = {
2791 	.mem_map_size = falcon_b0_mem_map_size,
2792 	.probe = falcon_probe_nic,
2793 	.remove = falcon_remove_nic,
2794 	.init = falcon_init_nic,
2795 	.dimension_resources = falcon_dimension_resources,
2796 	.fini = efx_port_dummy_op_void,
2797 	.monitor = falcon_monitor,
2798 	.map_reset_reason = falcon_map_reset_reason,
2799 	.map_reset_flags = falcon_map_reset_flags,
2800 	.reset = falcon_reset_hw,
2801 	.probe_port = falcon_probe_port,
2802 	.remove_port = falcon_remove_port,
2803 	.handle_global_event = falcon_handle_global_event,
2804 	.fini_dmaq = efx_farch_fini_dmaq,
2805 	.prepare_flush = falcon_prepare_flush,
2806 	.finish_flush = efx_port_dummy_op_void,
2807 	.prepare_flr = efx_port_dummy_op_void,
2808 	.finish_flr = efx_farch_finish_flr,
2809 	.describe_stats = falcon_describe_nic_stats,
2810 	.update_stats = falcon_update_nic_stats,
2811 	.start_stats = falcon_start_nic_stats,
2812 	.pull_stats = falcon_pull_nic_stats,
2813 	.stop_stats = falcon_stop_nic_stats,
2814 	.set_id_led = falcon_set_id_led,
2815 	.push_irq_moderation = falcon_push_irq_moderation,
2816 	.reconfigure_port = falcon_reconfigure_port,
2817 	.prepare_enable_fc_tx = falcon_b0_prepare_enable_fc_tx,
2818 	.reconfigure_mac = falcon_reconfigure_xmac,
2819 	.check_mac_fault = falcon_xmac_check_fault,
2820 	.get_wol = falcon_get_wol,
2821 	.set_wol = falcon_set_wol,
2822 	.resume_wol = efx_port_dummy_op_void,
2823 	.test_chip = falcon_b0_test_chip,
2824 	.test_nvram = falcon_test_nvram,
2825 	.irq_enable_master = efx_farch_irq_enable_master,
2826 	.irq_test_generate = efx_farch_irq_test_generate,
2827 	.irq_disable_non_ev = efx_farch_irq_disable_master,
2828 	.irq_handle_msi = efx_farch_msi_interrupt,
2829 	.irq_handle_legacy = efx_farch_legacy_interrupt,
2830 	.tx_probe = efx_farch_tx_probe,
2831 	.tx_init = efx_farch_tx_init,
2832 	.tx_remove = efx_farch_tx_remove,
2833 	.tx_write = efx_farch_tx_write,
2834 	.rx_push_rss_config = falcon_b0_rx_push_rss_config,
2835 	.rx_probe = efx_farch_rx_probe,
2836 	.rx_init = efx_farch_rx_init,
2837 	.rx_remove = efx_farch_rx_remove,
2838 	.rx_write = efx_farch_rx_write,
2839 	.rx_defer_refill = efx_farch_rx_defer_refill,
2840 	.ev_probe = efx_farch_ev_probe,
2841 	.ev_init = efx_farch_ev_init,
2842 	.ev_fini = efx_farch_ev_fini,
2843 	.ev_remove = efx_farch_ev_remove,
2844 	.ev_process = efx_farch_ev_process,
2845 	.ev_read_ack = efx_farch_ev_read_ack,
2846 	.ev_test_generate = efx_farch_ev_test_generate,
2847 	.filter_table_probe = efx_farch_filter_table_probe,
2848 	.filter_table_restore = efx_farch_filter_table_restore,
2849 	.filter_table_remove = efx_farch_filter_table_remove,
2850 	.filter_update_rx_scatter = efx_farch_filter_update_rx_scatter,
2851 	.filter_insert = efx_farch_filter_insert,
2852 	.filter_remove_safe = efx_farch_filter_remove_safe,
2853 	.filter_get_safe = efx_farch_filter_get_safe,
2854 	.filter_clear_rx = efx_farch_filter_clear_rx,
2855 	.filter_count_rx_used = efx_farch_filter_count_rx_used,
2856 	.filter_get_rx_id_limit = efx_farch_filter_get_rx_id_limit,
2857 	.filter_get_rx_ids = efx_farch_filter_get_rx_ids,
2858 #ifdef CONFIG_RFS_ACCEL
2859 	.filter_rfs_insert = efx_farch_filter_rfs_insert,
2860 	.filter_rfs_expire_one = efx_farch_filter_rfs_expire_one,
2861 #endif
2862 #ifdef CONFIG_SFC_MTD
2863 	.mtd_probe = falcon_mtd_probe,
2864 	.mtd_rename = falcon_mtd_rename,
2865 	.mtd_read = falcon_mtd_read,
2866 	.mtd_erase = falcon_mtd_erase,
2867 	.mtd_write = falcon_mtd_write,
2868 	.mtd_sync = falcon_mtd_sync,
2869 #endif
2870 	.sriov_init = efx_falcon_sriov_init,
2871 	.sriov_fini = efx_falcon_sriov_fini,
2872 	.sriov_mac_address_changed = efx_falcon_sriov_mac_address_changed,
2873 	.sriov_wanted = efx_falcon_sriov_wanted,
2874 	.sriov_reset = efx_falcon_sriov_reset,
2875 
2876 	.revision = EFX_REV_FALCON_B0,
2877 	.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
2878 	.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
2879 	.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
2880 	.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
2881 	.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
2882 	.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
2883 	.rx_prefix_size = FS_BZ_RX_PREFIX_SIZE,
2884 	.rx_hash_offset = FS_BZ_RX_PREFIX_HASH_OFST,
2885 	.rx_buffer_padding = 0,
2886 	.can_rx_scatter = true,
2887 	.max_interrupt_mode = EFX_INT_MODE_MSIX,
2888 	.timer_period_max =  1 << FRF_AB_TC_TIMER_VAL_WIDTH,
2889 	.offload_features = NETIF_F_IP_CSUM | NETIF_F_RXHASH | NETIF_F_NTUPLE,
2890 	.mcdi_max_ver = -1,
2891 	.max_rx_ip_filters = FR_BZ_RX_FILTER_TBL0_ROWS,
2892 };
2893