1 /****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10 #include "net_driver.h"
11 #include "ef10_regs.h"
12 #include "io.h"
13 #include "mcdi.h"
14 #include "mcdi_pcol.h"
15 #include "nic.h"
16 #include "workarounds.h"
17 #include "selftest.h"
18 #include <linux/in.h>
19 #include <linux/jhash.h>
20 #include <linux/wait.h>
21 #include <linux/workqueue.h>
22
23 /* Hardware control for EF10 architecture including 'Huntington'. */
24
25 #define EFX_EF10_DRVGEN_EV 7
26 enum {
27 EFX_EF10_TEST = 1,
28 EFX_EF10_REFILL,
29 };
30
31 /* The reserved RSS context value */
32 #define EFX_EF10_RSS_CONTEXT_INVALID 0xffffffff
33
34 /* The filter table(s) are managed by firmware and we have write-only
35 * access. When removing filters we must identify them to the
36 * firmware by a 64-bit handle, but this is too wide for Linux kernel
37 * interfaces (32-bit for RX NFC, 16-bit for RFS). Also, we need to
38 * be able to tell in advance whether a requested insertion will
39 * replace an existing filter. Therefore we maintain a software hash
40 * table, which should be at least as large as the hardware hash
41 * table.
42 *
43 * Huntington has a single 8K filter table shared between all filter
44 * types and both ports.
45 */
46 #define HUNT_FILTER_TBL_ROWS 8192
47
48 struct efx_ef10_filter_table {
49 /* The RX match field masks supported by this fw & hw, in order of priority */
50 enum efx_filter_match_flags rx_match_flags[
51 MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52 unsigned int rx_match_count;
53
54 struct {
55 unsigned long spec; /* pointer to spec plus flag bits */
56 /* BUSY flag indicates that an update is in progress. AUTO_OLD is
57 * used to mark and sweep MAC filters for the device address lists.
58 */
59 #define EFX_EF10_FILTER_FLAG_BUSY 1UL
60 #define EFX_EF10_FILTER_FLAG_AUTO_OLD 2UL
61 #define EFX_EF10_FILTER_FLAGS 3UL
62 u64 handle; /* firmware handle */
63 } *entry;
64 wait_queue_head_t waitq;
65 /* Shadow of net_device address lists, guarded by mac_lock */
66 #define EFX_EF10_FILTER_DEV_UC_MAX 32
67 #define EFX_EF10_FILTER_DEV_MC_MAX 256
68 struct {
69 u8 addr[ETH_ALEN];
70 u16 id;
71 } dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72 dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73 int dev_uc_count; /* negative for PROMISC */
74 int dev_mc_count; /* negative for PROMISC/ALLMULTI */
75 };
76
77 /* An arbitrary search limit for the software hash table */
78 #define EFX_EF10_FILTER_SEARCH_LIMIT 200
79
80 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82 static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83
efx_ef10_get_warm_boot_count(struct efx_nic * efx)84 static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85 {
86 efx_dword_t reg;
87
88 efx_readd(efx, ®, ER_DZ_BIU_MC_SFT_STATUS);
89 return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90 EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91 }
92
efx_ef10_mem_map_size(struct efx_nic * efx)93 static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94 {
95 return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96 }
97
efx_ef10_init_datapath_caps(struct efx_nic * efx)98 static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99 {
100 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101 struct efx_ef10_nic_data *nic_data = efx->nic_data;
102 size_t outlen;
103 int rc;
104
105 BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106
107 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108 outbuf, sizeof(outbuf), &outlen);
109 if (rc)
110 return rc;
111 if (outlen < sizeof(outbuf)) {
112 netif_err(efx, drv, efx->net_dev,
113 "unable to read datapath firmware capabilities\n");
114 return -EIO;
115 }
116
117 nic_data->datapath_caps =
118 MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119
120 if (!(nic_data->datapath_caps &
121 (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122 netif_err(efx, drv, efx->net_dev,
123 "current firmware does not support TSO\n");
124 return -ENODEV;
125 }
126
127 if (!(nic_data->datapath_caps &
128 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129 netif_err(efx, probe, efx->net_dev,
130 "current firmware does not support an RX prefix\n");
131 return -ENODEV;
132 }
133
134 return 0;
135 }
136
efx_ef10_get_sysclk_freq(struct efx_nic * efx)137 static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138 {
139 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140 int rc;
141
142 rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143 outbuf, sizeof(outbuf), NULL);
144 if (rc)
145 return rc;
146 rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147 return rc > 0 ? rc : -ERANGE;
148 }
149
efx_ef10_get_mac_address(struct efx_nic * efx,u8 * mac_address)150 static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151 {
152 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153 size_t outlen;
154 int rc;
155
156 BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157
158 rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159 outbuf, sizeof(outbuf), &outlen);
160 if (rc)
161 return rc;
162 if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163 return -EIO;
164
165 ether_addr_copy(mac_address,
166 MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
167 return 0;
168 }
169
efx_ef10_probe(struct efx_nic * efx)170 static int efx_ef10_probe(struct efx_nic *efx)
171 {
172 struct efx_ef10_nic_data *nic_data;
173 int i, rc;
174
175 /* We can have one VI for each 8K region. However, until we
176 * use TX option descriptors we need two TX queues per channel.
177 */
178 efx->max_channels =
179 min_t(unsigned int,
180 EFX_MAX_CHANNELS,
181 resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182 (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183 if (WARN_ON(efx->max_channels == 0))
184 return -EIO;
185
186 nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
187 if (!nic_data)
188 return -ENOMEM;
189 efx->nic_data = nic_data;
190
191 rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
192 8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
193 if (rc)
194 goto fail1;
195
196 /* Get the MC's warm boot count. In case it's rebooting right
197 * now, be prepared to retry.
198 */
199 i = 0;
200 for (;;) {
201 rc = efx_ef10_get_warm_boot_count(efx);
202 if (rc >= 0)
203 break;
204 if (++i == 5)
205 goto fail2;
206 ssleep(1);
207 }
208 nic_data->warm_boot_count = rc;
209
210 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
211
212 /* In case we're recovering from a crash (kexec), we want to
213 * cancel any outstanding request by the previous user of this
214 * function. We send a special message using the least
215 * significant bits of the 'high' (doorbell) register.
216 */
217 _efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
218
219 rc = efx_mcdi_init(efx);
220 if (rc)
221 goto fail2;
222
223 /* Reset (most) configuration for this function */
224 rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
225 if (rc)
226 goto fail3;
227
228 /* Enable event logging */
229 rc = efx_mcdi_log_ctrl(efx, true, false, 0);
230 if (rc)
231 goto fail3;
232
233 rc = efx_ef10_init_datapath_caps(efx);
234 if (rc < 0)
235 goto fail3;
236
237 efx->rx_packet_len_offset =
238 ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
239
240 rc = efx_mcdi_port_get_number(efx);
241 if (rc < 0)
242 goto fail3;
243 efx->port_num = rc;
244
245 rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
246 if (rc)
247 goto fail3;
248
249 rc = efx_ef10_get_sysclk_freq(efx);
250 if (rc < 0)
251 goto fail3;
252 efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
253
254 /* Check whether firmware supports bug 35388 workaround */
255 rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
256 if (rc == 0)
257 nic_data->workaround_35388 = true;
258 else if (rc != -ENOSYS && rc != -ENOENT)
259 goto fail3;
260 netif_dbg(efx, probe, efx->net_dev,
261 "workaround for bug 35388 is %sabled\n",
262 nic_data->workaround_35388 ? "en" : "dis");
263
264 rc = efx_mcdi_mon_probe(efx);
265 if (rc)
266 goto fail3;
267
268 efx_ptp_probe(efx, NULL);
269
270 return 0;
271
272 fail3:
273 efx_mcdi_fini(efx);
274 fail2:
275 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
276 fail1:
277 kfree(nic_data);
278 efx->nic_data = NULL;
279 return rc;
280 }
281
efx_ef10_free_vis(struct efx_nic * efx)282 static int efx_ef10_free_vis(struct efx_nic *efx)
283 {
284 MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
285 size_t outlen;
286 int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
287 outbuf, sizeof(outbuf), &outlen);
288
289 /* -EALREADY means nothing to free, so ignore */
290 if (rc == -EALREADY)
291 rc = 0;
292 if (rc)
293 efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
294 rc);
295 return rc;
296 }
297
298 #ifdef EFX_USE_PIO
299
efx_ef10_free_piobufs(struct efx_nic * efx)300 static void efx_ef10_free_piobufs(struct efx_nic *efx)
301 {
302 struct efx_ef10_nic_data *nic_data = efx->nic_data;
303 MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
304 unsigned int i;
305 int rc;
306
307 BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
308
309 for (i = 0; i < nic_data->n_piobufs; i++) {
310 MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
311 nic_data->piobuf_handle[i]);
312 rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
313 NULL, 0, NULL);
314 WARN_ON(rc);
315 }
316
317 nic_data->n_piobufs = 0;
318 }
319
efx_ef10_alloc_piobufs(struct efx_nic * efx,unsigned int n)320 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
321 {
322 struct efx_ef10_nic_data *nic_data = efx->nic_data;
323 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
324 unsigned int i;
325 size_t outlen;
326 int rc = 0;
327
328 BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
329
330 for (i = 0; i < n; i++) {
331 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
332 outbuf, sizeof(outbuf), &outlen);
333 if (rc)
334 break;
335 if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
336 rc = -EIO;
337 break;
338 }
339 nic_data->piobuf_handle[i] =
340 MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
341 netif_dbg(efx, probe, efx->net_dev,
342 "allocated PIO buffer %u handle %x\n", i,
343 nic_data->piobuf_handle[i]);
344 }
345
346 nic_data->n_piobufs = i;
347 if (rc)
348 efx_ef10_free_piobufs(efx);
349 return rc;
350 }
351
efx_ef10_link_piobufs(struct efx_nic * efx)352 static int efx_ef10_link_piobufs(struct efx_nic *efx)
353 {
354 struct efx_ef10_nic_data *nic_data = efx->nic_data;
355 MCDI_DECLARE_BUF(inbuf,
356 max(MC_CMD_LINK_PIOBUF_IN_LEN,
357 MC_CMD_UNLINK_PIOBUF_IN_LEN));
358 struct efx_channel *channel;
359 struct efx_tx_queue *tx_queue;
360 unsigned int offset, index;
361 int rc;
362
363 BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
364 BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
365
366 /* Link a buffer to each VI in the write-combining mapping */
367 for (index = 0; index < nic_data->n_piobufs; ++index) {
368 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
369 nic_data->piobuf_handle[index]);
370 MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
371 nic_data->pio_write_vi_base + index);
372 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
373 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
374 NULL, 0, NULL);
375 if (rc) {
376 netif_err(efx, drv, efx->net_dev,
377 "failed to link VI %u to PIO buffer %u (%d)\n",
378 nic_data->pio_write_vi_base + index, index,
379 rc);
380 goto fail;
381 }
382 netif_dbg(efx, probe, efx->net_dev,
383 "linked VI %u to PIO buffer %u\n",
384 nic_data->pio_write_vi_base + index, index);
385 }
386
387 /* Link a buffer to each TX queue */
388 efx_for_each_channel(channel, efx) {
389 efx_for_each_channel_tx_queue(tx_queue, channel) {
390 /* We assign the PIO buffers to queues in
391 * reverse order to allow for the following
392 * special case.
393 */
394 offset = ((efx->tx_channel_offset + efx->n_tx_channels -
395 tx_queue->channel->channel - 1) *
396 efx_piobuf_size);
397 index = offset / ER_DZ_TX_PIOBUF_SIZE;
398 offset = offset % ER_DZ_TX_PIOBUF_SIZE;
399
400 /* When the host page size is 4K, the first
401 * host page in the WC mapping may be within
402 * the same VI page as the last TX queue. We
403 * can only link one buffer to each VI.
404 */
405 if (tx_queue->queue == nic_data->pio_write_vi_base) {
406 BUG_ON(index != 0);
407 rc = 0;
408 } else {
409 MCDI_SET_DWORD(inbuf,
410 LINK_PIOBUF_IN_PIOBUF_HANDLE,
411 nic_data->piobuf_handle[index]);
412 MCDI_SET_DWORD(inbuf,
413 LINK_PIOBUF_IN_TXQ_INSTANCE,
414 tx_queue->queue);
415 rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
416 inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
417 NULL, 0, NULL);
418 }
419
420 if (rc) {
421 /* This is non-fatal; the TX path just
422 * won't use PIO for this queue
423 */
424 netif_err(efx, drv, efx->net_dev,
425 "failed to link VI %u to PIO buffer %u (%d)\n",
426 tx_queue->queue, index, rc);
427 tx_queue->piobuf = NULL;
428 } else {
429 tx_queue->piobuf =
430 nic_data->pio_write_base +
431 index * EFX_VI_PAGE_SIZE + offset;
432 tx_queue->piobuf_offset = offset;
433 netif_dbg(efx, probe, efx->net_dev,
434 "linked VI %u to PIO buffer %u offset %x addr %p\n",
435 tx_queue->queue, index,
436 tx_queue->piobuf_offset,
437 tx_queue->piobuf);
438 }
439 }
440 }
441
442 return 0;
443
444 fail:
445 while (index--) {
446 MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
447 nic_data->pio_write_vi_base + index);
448 efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
449 inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
450 NULL, 0, NULL);
451 }
452 return rc;
453 }
454
455 #else /* !EFX_USE_PIO */
456
efx_ef10_alloc_piobufs(struct efx_nic * efx,unsigned int n)457 static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
458 {
459 return n == 0 ? 0 : -ENOBUFS;
460 }
461
efx_ef10_link_piobufs(struct efx_nic * efx)462 static int efx_ef10_link_piobufs(struct efx_nic *efx)
463 {
464 return 0;
465 }
466
efx_ef10_free_piobufs(struct efx_nic * efx)467 static void efx_ef10_free_piobufs(struct efx_nic *efx)
468 {
469 }
470
471 #endif /* EFX_USE_PIO */
472
efx_ef10_remove(struct efx_nic * efx)473 static void efx_ef10_remove(struct efx_nic *efx)
474 {
475 struct efx_ef10_nic_data *nic_data = efx->nic_data;
476 int rc;
477
478 efx_ptp_remove(efx);
479
480 efx_mcdi_mon_remove(efx);
481
482 efx_ef10_rx_free_indir_table(efx);
483
484 if (nic_data->wc_membase)
485 iounmap(nic_data->wc_membase);
486
487 rc = efx_ef10_free_vis(efx);
488 WARN_ON(rc != 0);
489
490 if (!nic_data->must_restore_piobufs)
491 efx_ef10_free_piobufs(efx);
492
493 efx_mcdi_fini(efx);
494 efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
495 kfree(nic_data);
496 }
497
efx_ef10_alloc_vis(struct efx_nic * efx,unsigned int min_vis,unsigned int max_vis)498 static int efx_ef10_alloc_vis(struct efx_nic *efx,
499 unsigned int min_vis, unsigned int max_vis)
500 {
501 MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
502 MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
503 struct efx_ef10_nic_data *nic_data = efx->nic_data;
504 size_t outlen;
505 int rc;
506
507 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
508 MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
509 rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
510 outbuf, sizeof(outbuf), &outlen);
511 if (rc != 0)
512 return rc;
513
514 if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
515 return -EIO;
516
517 netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
518 MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
519
520 nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
521 nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
522 return 0;
523 }
524
525 /* Note that the failure path of this function does not free
526 * resources, as this will be done by efx_ef10_remove().
527 */
efx_ef10_dimension_resources(struct efx_nic * efx)528 static int efx_ef10_dimension_resources(struct efx_nic *efx)
529 {
530 struct efx_ef10_nic_data *nic_data = efx->nic_data;
531 unsigned int uc_mem_map_size, wc_mem_map_size;
532 unsigned int min_vis, pio_write_vi_base, max_vis;
533 void __iomem *membase;
534 int rc;
535
536 min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
537
538 #ifdef EFX_USE_PIO
539 /* Try to allocate PIO buffers if wanted and if the full
540 * number of PIO buffers would be sufficient to allocate one
541 * copy-buffer per TX channel. Failure is non-fatal, as there
542 * are only a small number of PIO buffers shared between all
543 * functions of the controller.
544 */
545 if (efx_piobuf_size != 0 &&
546 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
547 efx->n_tx_channels) {
548 unsigned int n_piobufs =
549 DIV_ROUND_UP(efx->n_tx_channels,
550 ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
551
552 rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
553 if (rc)
554 netif_err(efx, probe, efx->net_dev,
555 "failed to allocate PIO buffers (%d)\n", rc);
556 else
557 netif_dbg(efx, probe, efx->net_dev,
558 "allocated %u PIO buffers\n", n_piobufs);
559 }
560 #else
561 nic_data->n_piobufs = 0;
562 #endif
563
564 /* PIO buffers should be mapped with write-combining enabled,
565 * and we want to make single UC and WC mappings rather than
566 * several of each (in fact that's the only option if host
567 * page size is >4K). So we may allocate some extra VIs just
568 * for writing PIO buffers through.
569 *
570 * The UC mapping contains (min_vis - 1) complete VIs and the
571 * first half of the next VI. Then the WC mapping begins with
572 * the second half of this last VI.
573 */
574 uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
575 ER_DZ_TX_PIOBUF);
576 if (nic_data->n_piobufs) {
577 /* pio_write_vi_base rounds down to give the number of complete
578 * VIs inside the UC mapping.
579 */
580 pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
581 wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
582 nic_data->n_piobufs) *
583 EFX_VI_PAGE_SIZE) -
584 uc_mem_map_size);
585 max_vis = pio_write_vi_base + nic_data->n_piobufs;
586 } else {
587 pio_write_vi_base = 0;
588 wc_mem_map_size = 0;
589 max_vis = min_vis;
590 }
591
592 /* In case the last attached driver failed to free VIs, do it now */
593 rc = efx_ef10_free_vis(efx);
594 if (rc != 0)
595 return rc;
596
597 rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
598 if (rc != 0)
599 return rc;
600
601 /* If we didn't get enough VIs to map all the PIO buffers, free the
602 * PIO buffers
603 */
604 if (nic_data->n_piobufs &&
605 nic_data->n_allocated_vis <
606 pio_write_vi_base + nic_data->n_piobufs) {
607 netif_dbg(efx, probe, efx->net_dev,
608 "%u VIs are not sufficient to map %u PIO buffers\n",
609 nic_data->n_allocated_vis, nic_data->n_piobufs);
610 efx_ef10_free_piobufs(efx);
611 }
612
613 /* Shrink the original UC mapping of the memory BAR */
614 membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
615 if (!membase) {
616 netif_err(efx, probe, efx->net_dev,
617 "could not shrink memory BAR to %x\n",
618 uc_mem_map_size);
619 return -ENOMEM;
620 }
621 iounmap(efx->membase);
622 efx->membase = membase;
623
624 /* Set up the WC mapping if needed */
625 if (wc_mem_map_size) {
626 nic_data->wc_membase = ioremap_wc(efx->membase_phys +
627 uc_mem_map_size,
628 wc_mem_map_size);
629 if (!nic_data->wc_membase) {
630 netif_err(efx, probe, efx->net_dev,
631 "could not allocate WC mapping of size %x\n",
632 wc_mem_map_size);
633 return -ENOMEM;
634 }
635 nic_data->pio_write_vi_base = pio_write_vi_base;
636 nic_data->pio_write_base =
637 nic_data->wc_membase +
638 (pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
639 uc_mem_map_size);
640
641 rc = efx_ef10_link_piobufs(efx);
642 if (rc)
643 efx_ef10_free_piobufs(efx);
644 }
645
646 netif_dbg(efx, probe, efx->net_dev,
647 "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
648 &efx->membase_phys, efx->membase, uc_mem_map_size,
649 nic_data->wc_membase, wc_mem_map_size);
650
651 return 0;
652 }
653
efx_ef10_init_nic(struct efx_nic * efx)654 static int efx_ef10_init_nic(struct efx_nic *efx)
655 {
656 struct efx_ef10_nic_data *nic_data = efx->nic_data;
657 int rc;
658
659 if (nic_data->must_check_datapath_caps) {
660 rc = efx_ef10_init_datapath_caps(efx);
661 if (rc)
662 return rc;
663 nic_data->must_check_datapath_caps = false;
664 }
665
666 if (nic_data->must_realloc_vis) {
667 /* We cannot let the number of VIs change now */
668 rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
669 nic_data->n_allocated_vis);
670 if (rc)
671 return rc;
672 nic_data->must_realloc_vis = false;
673 }
674
675 if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
676 rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
677 if (rc == 0) {
678 rc = efx_ef10_link_piobufs(efx);
679 if (rc)
680 efx_ef10_free_piobufs(efx);
681 }
682
683 /* Log an error on failure, but this is non-fatal */
684 if (rc)
685 netif_err(efx, drv, efx->net_dev,
686 "failed to restore PIO buffers (%d)\n", rc);
687 nic_data->must_restore_piobufs = false;
688 }
689
690 efx_ef10_rx_push_rss_config(efx);
691 return 0;
692 }
693
efx_ef10_reset_mc_allocations(struct efx_nic * efx)694 static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
695 {
696 struct efx_ef10_nic_data *nic_data = efx->nic_data;
697
698 /* All our allocations have been reset */
699 nic_data->must_realloc_vis = true;
700 nic_data->must_restore_filters = true;
701 nic_data->must_restore_piobufs = true;
702 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
703 }
704
efx_ef10_map_reset_flags(u32 * flags)705 static int efx_ef10_map_reset_flags(u32 *flags)
706 {
707 enum {
708 EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
709 ETH_RESET_SHARED_SHIFT),
710 EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
711 ETH_RESET_OFFLOAD | ETH_RESET_MAC |
712 ETH_RESET_PHY | ETH_RESET_MGMT) <<
713 ETH_RESET_SHARED_SHIFT)
714 };
715
716 /* We assume for now that our PCI function is permitted to
717 * reset everything.
718 */
719
720 if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
721 *flags &= ~EF10_RESET_MC;
722 return RESET_TYPE_WORLD;
723 }
724
725 if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
726 *flags &= ~EF10_RESET_PORT;
727 return RESET_TYPE_ALL;
728 }
729
730 /* no invisible reset implemented */
731
732 return -EINVAL;
733 }
734
efx_ef10_reset(struct efx_nic * efx,enum reset_type reset_type)735 static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
736 {
737 int rc = efx_mcdi_reset(efx, reset_type);
738
739 /* If it was a port reset, trigger reallocation of MC resources.
740 * Note that on an MC reset nothing needs to be done now because we'll
741 * detect the MC reset later and handle it then.
742 * For an FLR, we never get an MC reset event, but the MC has reset all
743 * resources assigned to us, so we have to trigger reallocation now.
744 */
745 if ((reset_type == RESET_TYPE_ALL ||
746 reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
747 efx_ef10_reset_mc_allocations(efx);
748 return rc;
749 }
750
751 #define EF10_DMA_STAT(ext_name, mcdi_name) \
752 [EF10_STAT_ ## ext_name] = \
753 { #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
754 #define EF10_DMA_INVIS_STAT(int_name, mcdi_name) \
755 [EF10_STAT_ ## int_name] = \
756 { NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
757 #define EF10_OTHER_STAT(ext_name) \
758 [EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
759 #define GENERIC_SW_STAT(ext_name) \
760 [GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
761
762 static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
763 EF10_DMA_STAT(tx_bytes, TX_BYTES),
764 EF10_DMA_STAT(tx_packets, TX_PKTS),
765 EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
766 EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
767 EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
768 EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
769 EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
770 EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
771 EF10_DMA_STAT(tx_64, TX_64_PKTS),
772 EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
773 EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
774 EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
775 EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
776 EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
777 EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
778 EF10_DMA_STAT(rx_bytes, RX_BYTES),
779 EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
780 EF10_OTHER_STAT(rx_good_bytes),
781 EF10_OTHER_STAT(rx_bad_bytes),
782 EF10_DMA_STAT(rx_packets, RX_PKTS),
783 EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
784 EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
785 EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
786 EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
787 EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
788 EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
789 EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
790 EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
791 EF10_DMA_STAT(rx_64, RX_64_PKTS),
792 EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
793 EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
794 EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
795 EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
796 EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
797 EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
798 EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
799 EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
800 EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
801 EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
802 EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
803 EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
804 GENERIC_SW_STAT(rx_nodesc_trunc),
805 GENERIC_SW_STAT(rx_noskb_drops),
806 EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
807 EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
808 EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
809 EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
810 EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
811 EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
812 EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
813 EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
814 EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
815 EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
816 EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
817 EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
818 };
819
820 #define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) | \
821 (1ULL << EF10_STAT_tx_packets) | \
822 (1ULL << EF10_STAT_tx_pause) | \
823 (1ULL << EF10_STAT_tx_unicast) | \
824 (1ULL << EF10_STAT_tx_multicast) | \
825 (1ULL << EF10_STAT_tx_broadcast) | \
826 (1ULL << EF10_STAT_rx_bytes) | \
827 (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
828 (1ULL << EF10_STAT_rx_good_bytes) | \
829 (1ULL << EF10_STAT_rx_bad_bytes) | \
830 (1ULL << EF10_STAT_rx_packets) | \
831 (1ULL << EF10_STAT_rx_good) | \
832 (1ULL << EF10_STAT_rx_bad) | \
833 (1ULL << EF10_STAT_rx_pause) | \
834 (1ULL << EF10_STAT_rx_control) | \
835 (1ULL << EF10_STAT_rx_unicast) | \
836 (1ULL << EF10_STAT_rx_multicast) | \
837 (1ULL << EF10_STAT_rx_broadcast) | \
838 (1ULL << EF10_STAT_rx_lt64) | \
839 (1ULL << EF10_STAT_rx_64) | \
840 (1ULL << EF10_STAT_rx_65_to_127) | \
841 (1ULL << EF10_STAT_rx_128_to_255) | \
842 (1ULL << EF10_STAT_rx_256_to_511) | \
843 (1ULL << EF10_STAT_rx_512_to_1023) | \
844 (1ULL << EF10_STAT_rx_1024_to_15xx) | \
845 (1ULL << EF10_STAT_rx_15xx_to_jumbo) | \
846 (1ULL << EF10_STAT_rx_gtjumbo) | \
847 (1ULL << EF10_STAT_rx_bad_gtjumbo) | \
848 (1ULL << EF10_STAT_rx_overflow) | \
849 (1ULL << EF10_STAT_rx_nodesc_drops) | \
850 (1ULL << GENERIC_STAT_rx_nodesc_trunc) | \
851 (1ULL << GENERIC_STAT_rx_noskb_drops))
852
853 /* These statistics are only provided by the 10G MAC. For a 10G/40G
854 * switchable port we do not expose these because they might not
855 * include all the packets they should.
856 */
857 #define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) | \
858 (1ULL << EF10_STAT_tx_lt64) | \
859 (1ULL << EF10_STAT_tx_64) | \
860 (1ULL << EF10_STAT_tx_65_to_127) | \
861 (1ULL << EF10_STAT_tx_128_to_255) | \
862 (1ULL << EF10_STAT_tx_256_to_511) | \
863 (1ULL << EF10_STAT_tx_512_to_1023) | \
864 (1ULL << EF10_STAT_tx_1024_to_15xx) | \
865 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
866
867 /* These statistics are only provided by the 40G MAC. For a 10G/40G
868 * switchable port we do expose these because the errors will otherwise
869 * be silent.
870 */
871 #define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) | \
872 (1ULL << EF10_STAT_rx_length_error))
873
874 /* These statistics are only provided if the firmware supports the
875 * capability PM_AND_RXDP_COUNTERS.
876 */
877 #define HUNT_PM_AND_RXDP_STAT_MASK ( \
878 (1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) | \
879 (1ULL << EF10_STAT_rx_pm_discard_bb_overflow) | \
880 (1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) | \
881 (1ULL << EF10_STAT_rx_pm_discard_vfifo_full) | \
882 (1ULL << EF10_STAT_rx_pm_trunc_qbb) | \
883 (1ULL << EF10_STAT_rx_pm_discard_qbb) | \
884 (1ULL << EF10_STAT_rx_pm_discard_mapping) | \
885 (1ULL << EF10_STAT_rx_dp_q_disabled_packets) | \
886 (1ULL << EF10_STAT_rx_dp_di_dropped_packets) | \
887 (1ULL << EF10_STAT_rx_dp_streaming_packets) | \
888 (1ULL << EF10_STAT_rx_dp_hlb_fetch) | \
889 (1ULL << EF10_STAT_rx_dp_hlb_wait))
890
efx_ef10_raw_stat_mask(struct efx_nic * efx)891 static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
892 {
893 u64 raw_mask = HUNT_COMMON_STAT_MASK;
894 u32 port_caps = efx_mcdi_phy_get_caps(efx);
895 struct efx_ef10_nic_data *nic_data = efx->nic_data;
896
897 if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
898 raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
899 else
900 raw_mask |= HUNT_10G_ONLY_STAT_MASK;
901
902 if (nic_data->datapath_caps &
903 (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
904 raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
905
906 return raw_mask;
907 }
908
efx_ef10_get_stat_mask(struct efx_nic * efx,unsigned long * mask)909 static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
910 {
911 u64 raw_mask = efx_ef10_raw_stat_mask(efx);
912
913 #if BITS_PER_LONG == 64
914 mask[0] = raw_mask;
915 #else
916 mask[0] = raw_mask & 0xffffffff;
917 mask[1] = raw_mask >> 32;
918 #endif
919 }
920
efx_ef10_describe_stats(struct efx_nic * efx,u8 * names)921 static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
922 {
923 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
924
925 efx_ef10_get_stat_mask(efx, mask);
926 return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
927 mask, names);
928 }
929
efx_ef10_try_update_nic_stats(struct efx_nic * efx)930 static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
931 {
932 struct efx_ef10_nic_data *nic_data = efx->nic_data;
933 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
934 __le64 generation_start, generation_end;
935 u64 *stats = nic_data->stats;
936 __le64 *dma_stats;
937
938 efx_ef10_get_stat_mask(efx, mask);
939
940 dma_stats = efx->stats_buffer.addr;
941 nic_data = efx->nic_data;
942
943 generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
944 if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
945 return 0;
946 rmb();
947 efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
948 stats, efx->stats_buffer.addr, false);
949 rmb();
950 generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
951 if (generation_end != generation_start)
952 return -EAGAIN;
953
954 /* Update derived statistics */
955 efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
956 stats[EF10_STAT_rx_good_bytes] =
957 stats[EF10_STAT_rx_bytes] -
958 stats[EF10_STAT_rx_bytes_minus_good_bytes];
959 efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
960 stats[EF10_STAT_rx_bytes_minus_good_bytes]);
961 efx_update_sw_stats(efx, stats);
962 return 0;
963 }
964
965
efx_ef10_update_stats(struct efx_nic * efx,u64 * full_stats,struct rtnl_link_stats64 * core_stats)966 static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
967 struct rtnl_link_stats64 *core_stats)
968 {
969 DECLARE_BITMAP(mask, EF10_STAT_COUNT);
970 struct efx_ef10_nic_data *nic_data = efx->nic_data;
971 u64 *stats = nic_data->stats;
972 size_t stats_count = 0, index;
973 int retry;
974
975 efx_ef10_get_stat_mask(efx, mask);
976
977 /* If we're unlucky enough to read statistics during the DMA, wait
978 * up to 10ms for it to finish (typically takes <500us)
979 */
980 for (retry = 0; retry < 100; ++retry) {
981 if (efx_ef10_try_update_nic_stats(efx) == 0)
982 break;
983 udelay(100);
984 }
985
986 if (full_stats) {
987 for_each_set_bit(index, mask, EF10_STAT_COUNT) {
988 if (efx_ef10_stat_desc[index].name) {
989 *full_stats++ = stats[index];
990 ++stats_count;
991 }
992 }
993 }
994
995 if (core_stats) {
996 core_stats->rx_packets = stats[EF10_STAT_rx_packets];
997 core_stats->tx_packets = stats[EF10_STAT_tx_packets];
998 core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
999 core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
1000 core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops] +
1001 stats[GENERIC_STAT_rx_nodesc_trunc] +
1002 stats[GENERIC_STAT_rx_noskb_drops];
1003 core_stats->multicast = stats[EF10_STAT_rx_multicast];
1004 core_stats->rx_length_errors =
1005 stats[EF10_STAT_rx_gtjumbo] +
1006 stats[EF10_STAT_rx_length_error];
1007 core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1008 core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1009 core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1010 core_stats->rx_errors = (core_stats->rx_length_errors +
1011 core_stats->rx_crc_errors +
1012 core_stats->rx_frame_errors);
1013 }
1014
1015 return stats_count;
1016 }
1017
efx_ef10_push_irq_moderation(struct efx_channel * channel)1018 static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1019 {
1020 struct efx_nic *efx = channel->efx;
1021 unsigned int mode, value;
1022 efx_dword_t timer_cmd;
1023
1024 if (channel->irq_moderation) {
1025 mode = 3;
1026 value = channel->irq_moderation - 1;
1027 } else {
1028 mode = 0;
1029 value = 0;
1030 }
1031
1032 if (EFX_EF10_WORKAROUND_35388(efx)) {
1033 EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1034 EFE_DD_EVQ_IND_TIMER_FLAGS,
1035 ERF_DD_EVQ_IND_TIMER_MODE, mode,
1036 ERF_DD_EVQ_IND_TIMER_VAL, value);
1037 efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1038 channel->channel);
1039 } else {
1040 EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1041 ERF_DZ_TC_TIMER_VAL, value);
1042 efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1043 channel->channel);
1044 }
1045 }
1046
efx_ef10_get_wol(struct efx_nic * efx,struct ethtool_wolinfo * wol)1047 static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1048 {
1049 wol->supported = 0;
1050 wol->wolopts = 0;
1051 memset(&wol->sopass, 0, sizeof(wol->sopass));
1052 }
1053
efx_ef10_set_wol(struct efx_nic * efx,u32 type)1054 static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1055 {
1056 if (type != 0)
1057 return -EINVAL;
1058 return 0;
1059 }
1060
efx_ef10_mcdi_request(struct efx_nic * efx,const efx_dword_t * hdr,size_t hdr_len,const efx_dword_t * sdu,size_t sdu_len)1061 static void efx_ef10_mcdi_request(struct efx_nic *efx,
1062 const efx_dword_t *hdr, size_t hdr_len,
1063 const efx_dword_t *sdu, size_t sdu_len)
1064 {
1065 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1066 u8 *pdu = nic_data->mcdi_buf.addr;
1067
1068 memcpy(pdu, hdr, hdr_len);
1069 memcpy(pdu + hdr_len, sdu, sdu_len);
1070 wmb();
1071
1072 /* The hardware provides 'low' and 'high' (doorbell) registers
1073 * for passing the 64-bit address of an MCDI request to
1074 * firmware. However the dwords are swapped by firmware. The
1075 * least significant bits of the doorbell are then 0 for all
1076 * MCDI requests due to alignment.
1077 */
1078 _efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1079 ER_DZ_MC_DB_LWRD);
1080 _efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1081 ER_DZ_MC_DB_HWRD);
1082 }
1083
efx_ef10_mcdi_poll_response(struct efx_nic * efx)1084 static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1085 {
1086 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1087 const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1088
1089 rmb();
1090 return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1091 }
1092
1093 static void
efx_ef10_mcdi_read_response(struct efx_nic * efx,efx_dword_t * outbuf,size_t offset,size_t outlen)1094 efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1095 size_t offset, size_t outlen)
1096 {
1097 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1098 const u8 *pdu = nic_data->mcdi_buf.addr;
1099
1100 memcpy(outbuf, pdu + offset, outlen);
1101 }
1102
efx_ef10_mcdi_poll_reboot(struct efx_nic * efx)1103 static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1104 {
1105 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1106 int rc;
1107
1108 rc = efx_ef10_get_warm_boot_count(efx);
1109 if (rc < 0) {
1110 /* The firmware is presumably in the process of
1111 * rebooting. However, we are supposed to report each
1112 * reboot just once, so we must only do that once we
1113 * can read and store the updated warm boot count.
1114 */
1115 return 0;
1116 }
1117
1118 if (rc == nic_data->warm_boot_count)
1119 return 0;
1120
1121 nic_data->warm_boot_count = rc;
1122
1123 /* All our allocations have been reset */
1124 efx_ef10_reset_mc_allocations(efx);
1125
1126 /* The datapath firmware might have been changed */
1127 nic_data->must_check_datapath_caps = true;
1128
1129 /* MAC statistics have been cleared on the NIC; clear the local
1130 * statistic that we update with efx_update_diff_stat().
1131 */
1132 nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1133
1134 return -EIO;
1135 }
1136
1137 /* Handle an MSI interrupt
1138 *
1139 * Handle an MSI hardware interrupt. This routine schedules event
1140 * queue processing. No interrupt acknowledgement cycle is necessary.
1141 * Also, we never need to check that the interrupt is for us, since
1142 * MSI interrupts cannot be shared.
1143 */
efx_ef10_msi_interrupt(int irq,void * dev_id)1144 static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1145 {
1146 struct efx_msi_context *context = dev_id;
1147 struct efx_nic *efx = context->efx;
1148
1149 netif_vdbg(efx, intr, efx->net_dev,
1150 "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1151
1152 if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1153 /* Note test interrupts */
1154 if (context->index == efx->irq_level)
1155 efx->last_irq_cpu = raw_smp_processor_id();
1156
1157 /* Schedule processing of the channel */
1158 efx_schedule_channel_irq(efx->channel[context->index]);
1159 }
1160
1161 return IRQ_HANDLED;
1162 }
1163
efx_ef10_legacy_interrupt(int irq,void * dev_id)1164 static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1165 {
1166 struct efx_nic *efx = dev_id;
1167 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1168 struct efx_channel *channel;
1169 efx_dword_t reg;
1170 u32 queues;
1171
1172 /* Read the ISR which also ACKs the interrupts */
1173 efx_readd(efx, ®, ER_DZ_BIU_INT_ISR);
1174 queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1175
1176 if (queues == 0)
1177 return IRQ_NONE;
1178
1179 if (likely(soft_enabled)) {
1180 /* Note test interrupts */
1181 if (queues & (1U << efx->irq_level))
1182 efx->last_irq_cpu = raw_smp_processor_id();
1183
1184 efx_for_each_channel(channel, efx) {
1185 if (queues & 1)
1186 efx_schedule_channel_irq(channel);
1187 queues >>= 1;
1188 }
1189 }
1190
1191 netif_vdbg(efx, intr, efx->net_dev,
1192 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1193 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1194
1195 return IRQ_HANDLED;
1196 }
1197
efx_ef10_irq_test_generate(struct efx_nic * efx)1198 static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1199 {
1200 MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1201
1202 BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1203
1204 MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1205 (void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1206 inbuf, sizeof(inbuf), NULL, 0, NULL);
1207 }
1208
efx_ef10_tx_probe(struct efx_tx_queue * tx_queue)1209 static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1210 {
1211 return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1212 (tx_queue->ptr_mask + 1) *
1213 sizeof(efx_qword_t),
1214 GFP_KERNEL);
1215 }
1216
1217 /* This writes to the TX_DESC_WPTR and also pushes data */
efx_ef10_push_tx_desc(struct efx_tx_queue * tx_queue,const efx_qword_t * txd)1218 static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1219 const efx_qword_t *txd)
1220 {
1221 unsigned int write_ptr;
1222 efx_oword_t reg;
1223
1224 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1225 EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1226 reg.qword[0] = *txd;
1227 efx_writeo_page(tx_queue->efx, ®,
1228 ER_DZ_TX_DESC_UPD, tx_queue->queue);
1229 }
1230
efx_ef10_tx_init(struct efx_tx_queue * tx_queue)1231 static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1232 {
1233 MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1234 EFX_BUF_SIZE));
1235 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1236 bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1237 size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1238 struct efx_channel *channel = tx_queue->channel;
1239 struct efx_nic *efx = tx_queue->efx;
1240 size_t inlen, outlen;
1241 dma_addr_t dma_addr;
1242 efx_qword_t *txd;
1243 int rc;
1244 int i;
1245
1246 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1247 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1248 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1249 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1250 MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1251 INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1252 INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1253 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1254 MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1255
1256 dma_addr = tx_queue->txd.buf.dma_addr;
1257
1258 netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1259 tx_queue->queue, entries, (u64)dma_addr);
1260
1261 for (i = 0; i < entries; ++i) {
1262 MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1263 dma_addr += EFX_BUF_SIZE;
1264 }
1265
1266 inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1267
1268 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1269 outbuf, sizeof(outbuf), &outlen);
1270 if (rc)
1271 goto fail;
1272
1273 /* A previous user of this TX queue might have set us up the
1274 * bomb by writing a descriptor to the TX push collector but
1275 * not the doorbell. (Each collector belongs to a port, not a
1276 * queue or function, so cannot easily be reset.) We must
1277 * attempt to push a no-op descriptor in its place.
1278 */
1279 tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1280 tx_queue->insert_count = 1;
1281 txd = efx_tx_desc(tx_queue, 0);
1282 EFX_POPULATE_QWORD_4(*txd,
1283 ESF_DZ_TX_DESC_IS_OPT, true,
1284 ESF_DZ_TX_OPTION_TYPE,
1285 ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1286 ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1287 ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1288 tx_queue->write_count = 1;
1289 wmb();
1290 efx_ef10_push_tx_desc(tx_queue, txd);
1291
1292 return;
1293
1294 fail:
1295 netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1296 tx_queue->queue);
1297 }
1298
efx_ef10_tx_fini(struct efx_tx_queue * tx_queue)1299 static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1300 {
1301 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1302 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1303 struct efx_nic *efx = tx_queue->efx;
1304 size_t outlen;
1305 int rc;
1306
1307 MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1308 tx_queue->queue);
1309
1310 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1311 outbuf, sizeof(outbuf), &outlen);
1312
1313 if (rc && rc != -EALREADY)
1314 goto fail;
1315
1316 return;
1317
1318 fail:
1319 efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1320 outbuf, outlen, rc);
1321 }
1322
efx_ef10_tx_remove(struct efx_tx_queue * tx_queue)1323 static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1324 {
1325 efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1326 }
1327
1328 /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
efx_ef10_notify_tx_desc(struct efx_tx_queue * tx_queue)1329 static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1330 {
1331 unsigned int write_ptr;
1332 efx_dword_t reg;
1333
1334 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1335 EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1336 efx_writed_page(tx_queue->efx, ®,
1337 ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1338 }
1339
efx_ef10_tx_write(struct efx_tx_queue * tx_queue)1340 static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1341 {
1342 unsigned int old_write_count = tx_queue->write_count;
1343 struct efx_tx_buffer *buffer;
1344 unsigned int write_ptr;
1345 efx_qword_t *txd;
1346
1347 tx_queue->xmit_more_available = false;
1348 if (unlikely(tx_queue->write_count == tx_queue->insert_count))
1349 return;
1350
1351 do {
1352 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1353 buffer = &tx_queue->buffer[write_ptr];
1354 txd = efx_tx_desc(tx_queue, write_ptr);
1355 ++tx_queue->write_count;
1356
1357 /* Create TX descriptor ring entry */
1358 if (buffer->flags & EFX_TX_BUF_OPTION) {
1359 *txd = buffer->option;
1360 } else {
1361 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1362 EFX_POPULATE_QWORD_3(
1363 *txd,
1364 ESF_DZ_TX_KER_CONT,
1365 buffer->flags & EFX_TX_BUF_CONT,
1366 ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1367 ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1368 }
1369 } while (tx_queue->write_count != tx_queue->insert_count);
1370
1371 wmb(); /* Ensure descriptors are written before they are fetched */
1372
1373 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1374 txd = efx_tx_desc(tx_queue,
1375 old_write_count & tx_queue->ptr_mask);
1376 efx_ef10_push_tx_desc(tx_queue, txd);
1377 ++tx_queue->pushes;
1378 } else {
1379 efx_ef10_notify_tx_desc(tx_queue);
1380 }
1381 }
1382
efx_ef10_alloc_rss_context(struct efx_nic * efx,u32 * context)1383 static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1384 {
1385 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1386 MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1387 size_t outlen;
1388 int rc;
1389
1390 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1391 EVB_PORT_ID_ASSIGNED);
1392 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1393 MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1394 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1395 EFX_MAX_CHANNELS);
1396
1397 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1398 outbuf, sizeof(outbuf), &outlen);
1399 if (rc != 0)
1400 return rc;
1401
1402 if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1403 return -EIO;
1404
1405 *context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1406
1407 return 0;
1408 }
1409
efx_ef10_free_rss_context(struct efx_nic * efx,u32 context)1410 static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1411 {
1412 MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1413 int rc;
1414
1415 MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1416 context);
1417
1418 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1419 NULL, 0, NULL);
1420 WARN_ON(rc != 0);
1421 }
1422
efx_ef10_populate_rss_table(struct efx_nic * efx,u32 context)1423 static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1424 {
1425 MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1426 MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1427 int i, rc;
1428
1429 MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1430 context);
1431 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1432 MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1433
1434 for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1435 MCDI_PTR(tablebuf,
1436 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1437 (u8) efx->rx_indir_table[i];
1438
1439 rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1440 sizeof(tablebuf), NULL, 0, NULL);
1441 if (rc != 0)
1442 return rc;
1443
1444 MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1445 context);
1446 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1447 MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1448 for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1449 MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1450 efx->rx_hash_key[i];
1451
1452 return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1453 sizeof(keybuf), NULL, 0, NULL);
1454 }
1455
efx_ef10_rx_free_indir_table(struct efx_nic * efx)1456 static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1457 {
1458 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1459
1460 if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1461 efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1462 nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1463 }
1464
efx_ef10_rx_push_rss_config(struct efx_nic * efx)1465 static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1466 {
1467 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1468 int rc;
1469
1470 netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1471
1472 if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1473 rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1474 if (rc != 0)
1475 goto fail;
1476 }
1477
1478 rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1479 if (rc != 0)
1480 goto fail;
1481
1482 return;
1483
1484 fail:
1485 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1486 }
1487
efx_ef10_rx_probe(struct efx_rx_queue * rx_queue)1488 static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1489 {
1490 return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1491 (rx_queue->ptr_mask + 1) *
1492 sizeof(efx_qword_t),
1493 GFP_KERNEL);
1494 }
1495
efx_ef10_rx_init(struct efx_rx_queue * rx_queue)1496 static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1497 {
1498 MCDI_DECLARE_BUF(inbuf,
1499 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1500 EFX_BUF_SIZE));
1501 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1502 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1503 size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1504 struct efx_nic *efx = rx_queue->efx;
1505 size_t inlen, outlen;
1506 dma_addr_t dma_addr;
1507 int rc;
1508 int i;
1509
1510 rx_queue->scatter_n = 0;
1511 rx_queue->scatter_len = 0;
1512
1513 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1514 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1515 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1516 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1517 efx_rx_queue_index(rx_queue));
1518 MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1519 INIT_RXQ_IN_FLAG_PREFIX, 1,
1520 INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1521 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1522 MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1523
1524 dma_addr = rx_queue->rxd.buf.dma_addr;
1525
1526 netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1527 efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1528
1529 for (i = 0; i < entries; ++i) {
1530 MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1531 dma_addr += EFX_BUF_SIZE;
1532 }
1533
1534 inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1535
1536 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1537 outbuf, sizeof(outbuf), &outlen);
1538 if (rc)
1539 netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1540 efx_rx_queue_index(rx_queue));
1541 }
1542
efx_ef10_rx_fini(struct efx_rx_queue * rx_queue)1543 static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1544 {
1545 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1546 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1547 struct efx_nic *efx = rx_queue->efx;
1548 size_t outlen;
1549 int rc;
1550
1551 MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1552 efx_rx_queue_index(rx_queue));
1553
1554 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1555 outbuf, sizeof(outbuf), &outlen);
1556
1557 if (rc && rc != -EALREADY)
1558 goto fail;
1559
1560 return;
1561
1562 fail:
1563 efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1564 outbuf, outlen, rc);
1565 }
1566
efx_ef10_rx_remove(struct efx_rx_queue * rx_queue)1567 static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1568 {
1569 efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1570 }
1571
1572 /* This creates an entry in the RX descriptor queue */
1573 static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue * rx_queue,unsigned int index)1574 efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1575 {
1576 struct efx_rx_buffer *rx_buf;
1577 efx_qword_t *rxd;
1578
1579 rxd = efx_rx_desc(rx_queue, index);
1580 rx_buf = efx_rx_buffer(rx_queue, index);
1581 EFX_POPULATE_QWORD_2(*rxd,
1582 ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1583 ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1584 }
1585
efx_ef10_rx_write(struct efx_rx_queue * rx_queue)1586 static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1587 {
1588 struct efx_nic *efx = rx_queue->efx;
1589 unsigned int write_count;
1590 efx_dword_t reg;
1591
1592 /* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1593 write_count = rx_queue->added_count & ~7;
1594 if (rx_queue->notified_count == write_count)
1595 return;
1596
1597 do
1598 efx_ef10_build_rx_desc(
1599 rx_queue,
1600 rx_queue->notified_count & rx_queue->ptr_mask);
1601 while (++rx_queue->notified_count != write_count);
1602
1603 wmb();
1604 EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1605 write_count & rx_queue->ptr_mask);
1606 efx_writed_page(efx, ®, ER_DZ_RX_DESC_UPD,
1607 efx_rx_queue_index(rx_queue));
1608 }
1609
1610 static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1611
efx_ef10_rx_defer_refill(struct efx_rx_queue * rx_queue)1612 static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1613 {
1614 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1615 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1616 efx_qword_t event;
1617
1618 EFX_POPULATE_QWORD_2(event,
1619 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1620 ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1621
1622 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1623
1624 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1625 * already swapped the data to little-endian order.
1626 */
1627 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1628 sizeof(efx_qword_t));
1629
1630 efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1631 inbuf, sizeof(inbuf), 0,
1632 efx_ef10_rx_defer_refill_complete, 0);
1633 }
1634
1635 static void
efx_ef10_rx_defer_refill_complete(struct efx_nic * efx,unsigned long cookie,int rc,efx_dword_t * outbuf,size_t outlen_actual)1636 efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1637 int rc, efx_dword_t *outbuf,
1638 size_t outlen_actual)
1639 {
1640 /* nothing to do */
1641 }
1642
efx_ef10_ev_probe(struct efx_channel * channel)1643 static int efx_ef10_ev_probe(struct efx_channel *channel)
1644 {
1645 return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1646 (channel->eventq_mask + 1) *
1647 sizeof(efx_qword_t),
1648 GFP_KERNEL);
1649 }
1650
efx_ef10_ev_init(struct efx_channel * channel)1651 static int efx_ef10_ev_init(struct efx_channel *channel)
1652 {
1653 MCDI_DECLARE_BUF(inbuf,
1654 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1655 EFX_BUF_SIZE));
1656 MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1657 size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1658 struct efx_nic *efx = channel->efx;
1659 struct efx_ef10_nic_data *nic_data;
1660 bool supports_rx_merge;
1661 size_t inlen, outlen;
1662 dma_addr_t dma_addr;
1663 int rc;
1664 int i;
1665
1666 nic_data = efx->nic_data;
1667 supports_rx_merge =
1668 !!(nic_data->datapath_caps &
1669 1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1670
1671 /* Fill event queue with all ones (i.e. empty events) */
1672 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1673
1674 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1675 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1676 /* INIT_EVQ expects index in vector table, not absolute */
1677 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1678 MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1679 INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1680 INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1681 INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1682 INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1683 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1684 MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1685 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1686 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1687 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1688 MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1689 MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1690
1691 dma_addr = channel->eventq.buf.dma_addr;
1692 for (i = 0; i < entries; ++i) {
1693 MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1694 dma_addr += EFX_BUF_SIZE;
1695 }
1696
1697 inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1698
1699 rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1700 outbuf, sizeof(outbuf), &outlen);
1701 /* IRQ return is ignored */
1702 return rc;
1703 }
1704
efx_ef10_ev_fini(struct efx_channel * channel)1705 static void efx_ef10_ev_fini(struct efx_channel *channel)
1706 {
1707 MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1708 MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1709 struct efx_nic *efx = channel->efx;
1710 size_t outlen;
1711 int rc;
1712
1713 MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1714
1715 rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1716 outbuf, sizeof(outbuf), &outlen);
1717
1718 if (rc && rc != -EALREADY)
1719 goto fail;
1720
1721 return;
1722
1723 fail:
1724 efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1725 outbuf, outlen, rc);
1726 }
1727
efx_ef10_ev_remove(struct efx_channel * channel)1728 static void efx_ef10_ev_remove(struct efx_channel *channel)
1729 {
1730 efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1731 }
1732
efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue * rx_queue,unsigned int rx_queue_label)1733 static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1734 unsigned int rx_queue_label)
1735 {
1736 struct efx_nic *efx = rx_queue->efx;
1737
1738 netif_info(efx, hw, efx->net_dev,
1739 "rx event arrived on queue %d labeled as queue %u\n",
1740 efx_rx_queue_index(rx_queue), rx_queue_label);
1741
1742 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1743 }
1744
1745 static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue * rx_queue,unsigned int actual,unsigned int expected)1746 efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1747 unsigned int actual, unsigned int expected)
1748 {
1749 unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1750 struct efx_nic *efx = rx_queue->efx;
1751
1752 netif_info(efx, hw, efx->net_dev,
1753 "dropped %d events (index=%d expected=%d)\n",
1754 dropped, actual, expected);
1755
1756 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1757 }
1758
1759 /* partially received RX was aborted. clean up. */
efx_ef10_handle_rx_abort(struct efx_rx_queue * rx_queue)1760 static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1761 {
1762 unsigned int rx_desc_ptr;
1763
1764 netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1765 "scattered RX aborted (dropping %u buffers)\n",
1766 rx_queue->scatter_n);
1767
1768 rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1769
1770 efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1771 0, EFX_RX_PKT_DISCARD);
1772
1773 rx_queue->removed_count += rx_queue->scatter_n;
1774 rx_queue->scatter_n = 0;
1775 rx_queue->scatter_len = 0;
1776 ++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1777 }
1778
efx_ef10_handle_rx_event(struct efx_channel * channel,const efx_qword_t * event)1779 static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1780 const efx_qword_t *event)
1781 {
1782 unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1783 unsigned int n_descs, n_packets, i;
1784 struct efx_nic *efx = channel->efx;
1785 struct efx_rx_queue *rx_queue;
1786 bool rx_cont;
1787 u16 flags = 0;
1788
1789 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1790 return 0;
1791
1792 /* Basic packet information */
1793 rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1794 next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1795 rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1796 rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1797 rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1798
1799 if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1800 netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1801 EFX_QWORD_FMT "\n",
1802 EFX_QWORD_VAL(*event));
1803
1804 rx_queue = efx_channel_get_rx_queue(channel);
1805
1806 if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1807 efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1808
1809 n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1810 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1811
1812 if (n_descs != rx_queue->scatter_n + 1) {
1813 struct efx_ef10_nic_data *nic_data = efx->nic_data;
1814
1815 /* detect rx abort */
1816 if (unlikely(n_descs == rx_queue->scatter_n)) {
1817 if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1818 netdev_WARN(efx->net_dev,
1819 "invalid RX abort: scatter_n=%u event="
1820 EFX_QWORD_FMT "\n",
1821 rx_queue->scatter_n,
1822 EFX_QWORD_VAL(*event));
1823 efx_ef10_handle_rx_abort(rx_queue);
1824 return 0;
1825 }
1826
1827 /* Check that RX completion merging is valid, i.e.
1828 * the current firmware supports it and this is a
1829 * non-scattered packet.
1830 */
1831 if (!(nic_data->datapath_caps &
1832 (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1833 rx_queue->scatter_n != 0 || rx_cont) {
1834 efx_ef10_handle_rx_bad_lbits(
1835 rx_queue, next_ptr_lbits,
1836 (rx_queue->removed_count +
1837 rx_queue->scatter_n + 1) &
1838 ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1839 return 0;
1840 }
1841
1842 /* Merged completion for multiple non-scattered packets */
1843 rx_queue->scatter_n = 1;
1844 rx_queue->scatter_len = 0;
1845 n_packets = n_descs;
1846 ++channel->n_rx_merge_events;
1847 channel->n_rx_merge_packets += n_packets;
1848 flags |= EFX_RX_PKT_PREFIX_LEN;
1849 } else {
1850 ++rx_queue->scatter_n;
1851 rx_queue->scatter_len += rx_bytes;
1852 if (rx_cont)
1853 return 0;
1854 n_packets = 1;
1855 }
1856
1857 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1858 flags |= EFX_RX_PKT_DISCARD;
1859
1860 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1861 channel->n_rx_ip_hdr_chksum_err += n_packets;
1862 } else if (unlikely(EFX_QWORD_FIELD(*event,
1863 ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1864 channel->n_rx_tcp_udp_chksum_err += n_packets;
1865 } else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1866 rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1867 flags |= EFX_RX_PKT_CSUMMED;
1868 }
1869
1870 if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1871 flags |= EFX_RX_PKT_TCP;
1872
1873 channel->irq_mod_score += 2 * n_packets;
1874
1875 /* Handle received packet(s) */
1876 for (i = 0; i < n_packets; i++) {
1877 efx_rx_packet(rx_queue,
1878 rx_queue->removed_count & rx_queue->ptr_mask,
1879 rx_queue->scatter_n, rx_queue->scatter_len,
1880 flags);
1881 rx_queue->removed_count += rx_queue->scatter_n;
1882 }
1883
1884 rx_queue->scatter_n = 0;
1885 rx_queue->scatter_len = 0;
1886
1887 return n_packets;
1888 }
1889
1890 static int
efx_ef10_handle_tx_event(struct efx_channel * channel,efx_qword_t * event)1891 efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1892 {
1893 struct efx_nic *efx = channel->efx;
1894 struct efx_tx_queue *tx_queue;
1895 unsigned int tx_ev_desc_ptr;
1896 unsigned int tx_ev_q_label;
1897 int tx_descs = 0;
1898
1899 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1900 return 0;
1901
1902 if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1903 return 0;
1904
1905 /* Transmit completion */
1906 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1907 tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1908 tx_queue = efx_channel_get_tx_queue(channel,
1909 tx_ev_q_label % EFX_TXQ_TYPES);
1910 tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1911 tx_queue->ptr_mask);
1912 efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1913
1914 return tx_descs;
1915 }
1916
1917 static void
efx_ef10_handle_driver_event(struct efx_channel * channel,efx_qword_t * event)1918 efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1919 {
1920 struct efx_nic *efx = channel->efx;
1921 int subcode;
1922
1923 subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1924
1925 switch (subcode) {
1926 case ESE_DZ_DRV_TIMER_EV:
1927 case ESE_DZ_DRV_WAKE_UP_EV:
1928 break;
1929 case ESE_DZ_DRV_START_UP_EV:
1930 /* event queue init complete. ok. */
1931 break;
1932 default:
1933 netif_err(efx, hw, efx->net_dev,
1934 "channel %d unknown driver event type %d"
1935 " (data " EFX_QWORD_FMT ")\n",
1936 channel->channel, subcode,
1937 EFX_QWORD_VAL(*event));
1938
1939 }
1940 }
1941
efx_ef10_handle_driver_generated_event(struct efx_channel * channel,efx_qword_t * event)1942 static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1943 efx_qword_t *event)
1944 {
1945 struct efx_nic *efx = channel->efx;
1946 u32 subcode;
1947
1948 subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1949
1950 switch (subcode) {
1951 case EFX_EF10_TEST:
1952 channel->event_test_cpu = raw_smp_processor_id();
1953 break;
1954 case EFX_EF10_REFILL:
1955 /* The queue must be empty, so we won't receive any rx
1956 * events, so efx_process_channel() won't refill the
1957 * queue. Refill it here
1958 */
1959 efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1960 break;
1961 default:
1962 netif_err(efx, hw, efx->net_dev,
1963 "channel %d unknown driver event type %u"
1964 " (data " EFX_QWORD_FMT ")\n",
1965 channel->channel, (unsigned) subcode,
1966 EFX_QWORD_VAL(*event));
1967 }
1968 }
1969
efx_ef10_ev_process(struct efx_channel * channel,int quota)1970 static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1971 {
1972 struct efx_nic *efx = channel->efx;
1973 efx_qword_t event, *p_event;
1974 unsigned int read_ptr;
1975 int ev_code;
1976 int tx_descs = 0;
1977 int spent = 0;
1978
1979 if (quota <= 0)
1980 return spent;
1981
1982 read_ptr = channel->eventq_read_ptr;
1983
1984 for (;;) {
1985 p_event = efx_event(channel, read_ptr);
1986 event = *p_event;
1987
1988 if (!efx_event_present(&event))
1989 break;
1990
1991 EFX_SET_QWORD(*p_event);
1992
1993 ++read_ptr;
1994
1995 ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1996
1997 netif_vdbg(efx, drv, efx->net_dev,
1998 "processing event on %d " EFX_QWORD_FMT "\n",
1999 channel->channel, EFX_QWORD_VAL(event));
2000
2001 switch (ev_code) {
2002 case ESE_DZ_EV_CODE_MCDI_EV:
2003 efx_mcdi_process_event(channel, &event);
2004 break;
2005 case ESE_DZ_EV_CODE_RX_EV:
2006 spent += efx_ef10_handle_rx_event(channel, &event);
2007 if (spent >= quota) {
2008 /* XXX can we split a merged event to
2009 * avoid going over-quota?
2010 */
2011 spent = quota;
2012 goto out;
2013 }
2014 break;
2015 case ESE_DZ_EV_CODE_TX_EV:
2016 tx_descs += efx_ef10_handle_tx_event(channel, &event);
2017 if (tx_descs > efx->txq_entries) {
2018 spent = quota;
2019 goto out;
2020 } else if (++spent == quota) {
2021 goto out;
2022 }
2023 break;
2024 case ESE_DZ_EV_CODE_DRIVER_EV:
2025 efx_ef10_handle_driver_event(channel, &event);
2026 if (++spent == quota)
2027 goto out;
2028 break;
2029 case EFX_EF10_DRVGEN_EV:
2030 efx_ef10_handle_driver_generated_event(channel, &event);
2031 break;
2032 default:
2033 netif_err(efx, hw, efx->net_dev,
2034 "channel %d unknown event type %d"
2035 " (data " EFX_QWORD_FMT ")\n",
2036 channel->channel, ev_code,
2037 EFX_QWORD_VAL(event));
2038 }
2039 }
2040
2041 out:
2042 channel->eventq_read_ptr = read_ptr;
2043 return spent;
2044 }
2045
efx_ef10_ev_read_ack(struct efx_channel * channel)2046 static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2047 {
2048 struct efx_nic *efx = channel->efx;
2049 efx_dword_t rptr;
2050
2051 if (EFX_EF10_WORKAROUND_35388(efx)) {
2052 BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2053 (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2054 BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2055 (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2056
2057 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2058 EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2059 ERF_DD_EVQ_IND_RPTR,
2060 (channel->eventq_read_ptr &
2061 channel->eventq_mask) >>
2062 ERF_DD_EVQ_IND_RPTR_WIDTH);
2063 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2064 channel->channel);
2065 EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2066 EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2067 ERF_DD_EVQ_IND_RPTR,
2068 channel->eventq_read_ptr &
2069 ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2070 efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2071 channel->channel);
2072 } else {
2073 EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2074 channel->eventq_read_ptr &
2075 channel->eventq_mask);
2076 efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2077 }
2078 }
2079
efx_ef10_ev_test_generate(struct efx_channel * channel)2080 static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2081 {
2082 MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2083 struct efx_nic *efx = channel->efx;
2084 efx_qword_t event;
2085 int rc;
2086
2087 EFX_POPULATE_QWORD_2(event,
2088 ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2089 ESF_DZ_EV_DATA, EFX_EF10_TEST);
2090
2091 MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2092
2093 /* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2094 * already swapped the data to little-endian order.
2095 */
2096 memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2097 sizeof(efx_qword_t));
2098
2099 rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2100 NULL, 0, NULL);
2101 if (rc != 0)
2102 goto fail;
2103
2104 return;
2105
2106 fail:
2107 WARN_ON(true);
2108 netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2109 }
2110
efx_ef10_handle_drain_event(struct efx_nic * efx)2111 void efx_ef10_handle_drain_event(struct efx_nic *efx)
2112 {
2113 if (atomic_dec_and_test(&efx->active_queues))
2114 wake_up(&efx->flush_wq);
2115
2116 WARN_ON(atomic_read(&efx->active_queues) < 0);
2117 }
2118
efx_ef10_fini_dmaq(struct efx_nic * efx)2119 static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2120 {
2121 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2122 struct efx_channel *channel;
2123 struct efx_tx_queue *tx_queue;
2124 struct efx_rx_queue *rx_queue;
2125 int pending;
2126
2127 /* If the MC has just rebooted, the TX/RX queues will have already been
2128 * torn down, but efx->active_queues needs to be set to zero.
2129 */
2130 if (nic_data->must_realloc_vis) {
2131 atomic_set(&efx->active_queues, 0);
2132 return 0;
2133 }
2134
2135 /* Do not attempt to write to the NIC during EEH recovery */
2136 if (efx->state != STATE_RECOVERY) {
2137 efx_for_each_channel(channel, efx) {
2138 efx_for_each_channel_rx_queue(rx_queue, channel)
2139 efx_ef10_rx_fini(rx_queue);
2140 efx_for_each_channel_tx_queue(tx_queue, channel)
2141 efx_ef10_tx_fini(tx_queue);
2142 }
2143
2144 wait_event_timeout(efx->flush_wq,
2145 atomic_read(&efx->active_queues) == 0,
2146 msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2147 pending = atomic_read(&efx->active_queues);
2148 if (pending) {
2149 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2150 pending);
2151 return -ETIMEDOUT;
2152 }
2153 }
2154
2155 return 0;
2156 }
2157
efx_ef10_prepare_flr(struct efx_nic * efx)2158 static void efx_ef10_prepare_flr(struct efx_nic *efx)
2159 {
2160 atomic_set(&efx->active_queues, 0);
2161 }
2162
efx_ef10_filter_equal(const struct efx_filter_spec * left,const struct efx_filter_spec * right)2163 static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2164 const struct efx_filter_spec *right)
2165 {
2166 if ((left->match_flags ^ right->match_flags) |
2167 ((left->flags ^ right->flags) &
2168 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2169 return false;
2170
2171 return memcmp(&left->outer_vid, &right->outer_vid,
2172 sizeof(struct efx_filter_spec) -
2173 offsetof(struct efx_filter_spec, outer_vid)) == 0;
2174 }
2175
efx_ef10_filter_hash(const struct efx_filter_spec * spec)2176 static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2177 {
2178 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2179 return jhash2((const u32 *)&spec->outer_vid,
2180 (sizeof(struct efx_filter_spec) -
2181 offsetof(struct efx_filter_spec, outer_vid)) / 4,
2182 0);
2183 /* XXX should we randomise the initval? */
2184 }
2185
2186 /* Decide whether a filter should be exclusive or else should allow
2187 * delivery to additional recipients. Currently we decide that
2188 * filters for specific local unicast MAC and IP addresses are
2189 * exclusive.
2190 */
efx_ef10_filter_is_exclusive(const struct efx_filter_spec * spec)2191 static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2192 {
2193 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2194 !is_multicast_ether_addr(spec->loc_mac))
2195 return true;
2196
2197 if ((spec->match_flags &
2198 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2199 (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2200 if (spec->ether_type == htons(ETH_P_IP) &&
2201 !ipv4_is_multicast(spec->loc_host[0]))
2202 return true;
2203 if (spec->ether_type == htons(ETH_P_IPV6) &&
2204 ((const u8 *)spec->loc_host)[0] != 0xff)
2205 return true;
2206 }
2207
2208 return false;
2209 }
2210
2211 static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table * table,unsigned int filter_idx)2212 efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2213 unsigned int filter_idx)
2214 {
2215 return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2216 ~EFX_EF10_FILTER_FLAGS);
2217 }
2218
2219 static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table * table,unsigned int filter_idx)2220 efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2221 unsigned int filter_idx)
2222 {
2223 return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2224 }
2225
2226 static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table * table,unsigned int filter_idx,const struct efx_filter_spec * spec,unsigned int flags)2227 efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2228 unsigned int filter_idx,
2229 const struct efx_filter_spec *spec,
2230 unsigned int flags)
2231 {
2232 table->entry[filter_idx].spec = (unsigned long)spec | flags;
2233 }
2234
efx_ef10_filter_push_prep(struct efx_nic * efx,const struct efx_filter_spec * spec,efx_dword_t * inbuf,u64 handle,bool replacing)2235 static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2236 const struct efx_filter_spec *spec,
2237 efx_dword_t *inbuf, u64 handle,
2238 bool replacing)
2239 {
2240 struct efx_ef10_nic_data *nic_data = efx->nic_data;
2241
2242 memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2243
2244 if (replacing) {
2245 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2246 MC_CMD_FILTER_OP_IN_OP_REPLACE);
2247 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2248 } else {
2249 u32 match_fields = 0;
2250
2251 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2252 efx_ef10_filter_is_exclusive(spec) ?
2253 MC_CMD_FILTER_OP_IN_OP_INSERT :
2254 MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2255
2256 /* Convert match flags and values. Unlike almost
2257 * everything else in MCDI, these fields are in
2258 * network byte order.
2259 */
2260 if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2261 match_fields |=
2262 is_multicast_ether_addr(spec->loc_mac) ?
2263 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2264 1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2265 #define COPY_FIELD(gen_flag, gen_field, mcdi_field) \
2266 if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) { \
2267 match_fields |= \
2268 1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2269 mcdi_field ## _LBN; \
2270 BUILD_BUG_ON( \
2271 MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2272 sizeof(spec->gen_field)); \
2273 memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ## mcdi_field), \
2274 &spec->gen_field, sizeof(spec->gen_field)); \
2275 }
2276 COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2277 COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2278 COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2279 COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2280 COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2281 COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2282 COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2283 COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2284 COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2285 COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2286 #undef COPY_FIELD
2287 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2288 match_fields);
2289 }
2290
2291 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2292 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2293 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2294 MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2295 MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2296 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2297 MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2298 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2299 spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2300 0 : spec->dmaq_id);
2301 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2302 (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2303 MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2304 MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2305 if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2306 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2307 spec->rss_context !=
2308 EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2309 spec->rss_context : nic_data->rx_rss_context);
2310 }
2311
efx_ef10_filter_push(struct efx_nic * efx,const struct efx_filter_spec * spec,u64 * handle,bool replacing)2312 static int efx_ef10_filter_push(struct efx_nic *efx,
2313 const struct efx_filter_spec *spec,
2314 u64 *handle, bool replacing)
2315 {
2316 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2317 MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2318 int rc;
2319
2320 efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2321 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2322 outbuf, sizeof(outbuf), NULL);
2323 if (rc == 0)
2324 *handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2325 if (rc == -ENOSPC)
2326 rc = -EBUSY; /* to match efx_farch_filter_insert() */
2327 return rc;
2328 }
2329
efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table * table,enum efx_filter_match_flags match_flags)2330 static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2331 enum efx_filter_match_flags match_flags)
2332 {
2333 unsigned int match_pri;
2334
2335 for (match_pri = 0;
2336 match_pri < table->rx_match_count;
2337 match_pri++)
2338 if (table->rx_match_flags[match_pri] == match_flags)
2339 return match_pri;
2340
2341 return -EPROTONOSUPPORT;
2342 }
2343
efx_ef10_filter_insert(struct efx_nic * efx,struct efx_filter_spec * spec,bool replace_equal)2344 static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2345 struct efx_filter_spec *spec,
2346 bool replace_equal)
2347 {
2348 struct efx_ef10_filter_table *table = efx->filter_state;
2349 DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2350 struct efx_filter_spec *saved_spec;
2351 unsigned int match_pri, hash;
2352 unsigned int priv_flags;
2353 bool replacing = false;
2354 int ins_index = -1;
2355 DEFINE_WAIT(wait);
2356 bool is_mc_recip;
2357 s32 rc;
2358
2359 /* For now, only support RX filters */
2360 if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2361 EFX_FILTER_FLAG_RX)
2362 return -EINVAL;
2363
2364 rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2365 if (rc < 0)
2366 return rc;
2367 match_pri = rc;
2368
2369 hash = efx_ef10_filter_hash(spec);
2370 is_mc_recip = efx_filter_is_mc_recipient(spec);
2371 if (is_mc_recip)
2372 bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2373
2374 /* Find any existing filters with the same match tuple or
2375 * else a free slot to insert at. If any of them are busy,
2376 * we have to wait and retry.
2377 */
2378 for (;;) {
2379 unsigned int depth = 1;
2380 unsigned int i;
2381
2382 spin_lock_bh(&efx->filter_lock);
2383
2384 for (;;) {
2385 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2386 saved_spec = efx_ef10_filter_entry_spec(table, i);
2387
2388 if (!saved_spec) {
2389 if (ins_index < 0)
2390 ins_index = i;
2391 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2392 if (table->entry[i].spec &
2393 EFX_EF10_FILTER_FLAG_BUSY)
2394 break;
2395 if (spec->priority < saved_spec->priority &&
2396 spec->priority != EFX_FILTER_PRI_AUTO) {
2397 rc = -EPERM;
2398 goto out_unlock;
2399 }
2400 if (!is_mc_recip) {
2401 /* This is the only one */
2402 if (spec->priority ==
2403 saved_spec->priority &&
2404 !replace_equal) {
2405 rc = -EEXIST;
2406 goto out_unlock;
2407 }
2408 ins_index = i;
2409 goto found;
2410 } else if (spec->priority >
2411 saved_spec->priority ||
2412 (spec->priority ==
2413 saved_spec->priority &&
2414 replace_equal)) {
2415 if (ins_index < 0)
2416 ins_index = i;
2417 else
2418 __set_bit(depth, mc_rem_map);
2419 }
2420 }
2421
2422 /* Once we reach the maximum search depth, use
2423 * the first suitable slot or return -EBUSY if
2424 * there was none
2425 */
2426 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2427 if (ins_index < 0) {
2428 rc = -EBUSY;
2429 goto out_unlock;
2430 }
2431 goto found;
2432 }
2433
2434 ++depth;
2435 }
2436
2437 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2438 spin_unlock_bh(&efx->filter_lock);
2439 schedule();
2440 }
2441
2442 found:
2443 /* Create a software table entry if necessary, and mark it
2444 * busy. We might yet fail to insert, but any attempt to
2445 * insert a conflicting filter while we're waiting for the
2446 * firmware must find the busy entry.
2447 */
2448 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2449 if (saved_spec) {
2450 if (spec->priority == EFX_FILTER_PRI_AUTO &&
2451 saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2452 /* Just make sure it won't be removed */
2453 if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2454 saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2455 table->entry[ins_index].spec &=
2456 ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2457 rc = ins_index;
2458 goto out_unlock;
2459 }
2460 replacing = true;
2461 priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2462 } else {
2463 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2464 if (!saved_spec) {
2465 rc = -ENOMEM;
2466 goto out_unlock;
2467 }
2468 *saved_spec = *spec;
2469 priv_flags = 0;
2470 }
2471 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2472 priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2473
2474 /* Mark lower-priority multicast recipients busy prior to removal */
2475 if (is_mc_recip) {
2476 unsigned int depth, i;
2477
2478 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2479 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2480 if (test_bit(depth, mc_rem_map))
2481 table->entry[i].spec |=
2482 EFX_EF10_FILTER_FLAG_BUSY;
2483 }
2484 }
2485
2486 spin_unlock_bh(&efx->filter_lock);
2487
2488 rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2489 replacing);
2490
2491 /* Finalise the software table entry */
2492 spin_lock_bh(&efx->filter_lock);
2493 if (rc == 0) {
2494 if (replacing) {
2495 /* Update the fields that may differ */
2496 if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2497 saved_spec->flags |=
2498 EFX_FILTER_FLAG_RX_OVER_AUTO;
2499 saved_spec->priority = spec->priority;
2500 saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2501 saved_spec->flags |= spec->flags;
2502 saved_spec->rss_context = spec->rss_context;
2503 saved_spec->dmaq_id = spec->dmaq_id;
2504 }
2505 } else if (!replacing) {
2506 kfree(saved_spec);
2507 saved_spec = NULL;
2508 }
2509 efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2510
2511 /* Remove and finalise entries for lower-priority multicast
2512 * recipients
2513 */
2514 if (is_mc_recip) {
2515 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2516 unsigned int depth, i;
2517
2518 memset(inbuf, 0, sizeof(inbuf));
2519
2520 for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2521 if (!test_bit(depth, mc_rem_map))
2522 continue;
2523
2524 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2525 saved_spec = efx_ef10_filter_entry_spec(table, i);
2526 priv_flags = efx_ef10_filter_entry_flags(table, i);
2527
2528 if (rc == 0) {
2529 spin_unlock_bh(&efx->filter_lock);
2530 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2531 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2532 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2533 table->entry[i].handle);
2534 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2535 inbuf, sizeof(inbuf),
2536 NULL, 0, NULL);
2537 spin_lock_bh(&efx->filter_lock);
2538 }
2539
2540 if (rc == 0) {
2541 kfree(saved_spec);
2542 saved_spec = NULL;
2543 priv_flags = 0;
2544 } else {
2545 priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2546 }
2547 efx_ef10_filter_set_entry(table, i, saved_spec,
2548 priv_flags);
2549 }
2550 }
2551
2552 /* If successful, return the inserted filter ID */
2553 if (rc == 0)
2554 rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2555
2556 wake_up_all(&table->waitq);
2557 out_unlock:
2558 spin_unlock_bh(&efx->filter_lock);
2559 finish_wait(&table->waitq, &wait);
2560 return rc;
2561 }
2562
efx_ef10_filter_update_rx_scatter(struct efx_nic * efx)2563 static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2564 {
2565 /* no need to do anything here on EF10 */
2566 }
2567
2568 /* Remove a filter.
2569 * If !by_index, remove by ID
2570 * If by_index, remove by index
2571 * Filter ID may come from userland and must be range-checked.
2572 */
efx_ef10_filter_remove_internal(struct efx_nic * efx,unsigned int priority_mask,u32 filter_id,bool by_index)2573 static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2574 unsigned int priority_mask,
2575 u32 filter_id, bool by_index)
2576 {
2577 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2578 struct efx_ef10_filter_table *table = efx->filter_state;
2579 MCDI_DECLARE_BUF(inbuf,
2580 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2581 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2582 struct efx_filter_spec *spec;
2583 DEFINE_WAIT(wait);
2584 int rc;
2585
2586 /* Find the software table entry and mark it busy. Don't
2587 * remove it yet; any attempt to update while we're waiting
2588 * for the firmware must find the busy entry.
2589 */
2590 for (;;) {
2591 spin_lock_bh(&efx->filter_lock);
2592 if (!(table->entry[filter_idx].spec &
2593 EFX_EF10_FILTER_FLAG_BUSY))
2594 break;
2595 prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2596 spin_unlock_bh(&efx->filter_lock);
2597 schedule();
2598 }
2599
2600 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2601 if (!spec ||
2602 (!by_index &&
2603 efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2604 filter_id / HUNT_FILTER_TBL_ROWS)) {
2605 rc = -ENOENT;
2606 goto out_unlock;
2607 }
2608
2609 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2610 priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2611 /* Just remove flags */
2612 spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2613 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2614 rc = 0;
2615 goto out_unlock;
2616 }
2617
2618 if (!(priority_mask & (1U << spec->priority))) {
2619 rc = -ENOENT;
2620 goto out_unlock;
2621 }
2622
2623 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2624 spin_unlock_bh(&efx->filter_lock);
2625
2626 if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2627 /* Reset to an automatic filter */
2628
2629 struct efx_filter_spec new_spec = *spec;
2630
2631 new_spec.priority = EFX_FILTER_PRI_AUTO;
2632 new_spec.flags = (EFX_FILTER_FLAG_RX |
2633 EFX_FILTER_FLAG_RX_RSS);
2634 new_spec.dmaq_id = 0;
2635 new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2636 rc = efx_ef10_filter_push(efx, &new_spec,
2637 &table->entry[filter_idx].handle,
2638 true);
2639
2640 spin_lock_bh(&efx->filter_lock);
2641 if (rc == 0)
2642 *spec = new_spec;
2643 } else {
2644 /* Really remove the filter */
2645
2646 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2647 efx_ef10_filter_is_exclusive(spec) ?
2648 MC_CMD_FILTER_OP_IN_OP_REMOVE :
2649 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2650 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2651 table->entry[filter_idx].handle);
2652 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2653 inbuf, sizeof(inbuf), NULL, 0, NULL);
2654
2655 spin_lock_bh(&efx->filter_lock);
2656 if (rc == 0) {
2657 kfree(spec);
2658 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2659 }
2660 }
2661
2662 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2663 wake_up_all(&table->waitq);
2664 out_unlock:
2665 spin_unlock_bh(&efx->filter_lock);
2666 finish_wait(&table->waitq, &wait);
2667 return rc;
2668 }
2669
efx_ef10_filter_remove_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id)2670 static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2671 enum efx_filter_priority priority,
2672 u32 filter_id)
2673 {
2674 return efx_ef10_filter_remove_internal(efx, 1U << priority,
2675 filter_id, false);
2676 }
2677
efx_ef10_filter_get_safe(struct efx_nic * efx,enum efx_filter_priority priority,u32 filter_id,struct efx_filter_spec * spec)2678 static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2679 enum efx_filter_priority priority,
2680 u32 filter_id, struct efx_filter_spec *spec)
2681 {
2682 unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2683 struct efx_ef10_filter_table *table = efx->filter_state;
2684 const struct efx_filter_spec *saved_spec;
2685 int rc;
2686
2687 spin_lock_bh(&efx->filter_lock);
2688 saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2689 if (saved_spec && saved_spec->priority == priority &&
2690 efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2691 filter_id / HUNT_FILTER_TBL_ROWS) {
2692 *spec = *saved_spec;
2693 rc = 0;
2694 } else {
2695 rc = -ENOENT;
2696 }
2697 spin_unlock_bh(&efx->filter_lock);
2698 return rc;
2699 }
2700
efx_ef10_filter_clear_rx(struct efx_nic * efx,enum efx_filter_priority priority)2701 static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2702 enum efx_filter_priority priority)
2703 {
2704 unsigned int priority_mask;
2705 unsigned int i;
2706 int rc;
2707
2708 priority_mask = (((1U << (priority + 1)) - 1) &
2709 ~(1U << EFX_FILTER_PRI_AUTO));
2710
2711 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2712 rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2713 i, true);
2714 if (rc && rc != -ENOENT)
2715 return rc;
2716 }
2717
2718 return 0;
2719 }
2720
efx_ef10_filter_count_rx_used(struct efx_nic * efx,enum efx_filter_priority priority)2721 static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2722 enum efx_filter_priority priority)
2723 {
2724 struct efx_ef10_filter_table *table = efx->filter_state;
2725 unsigned int filter_idx;
2726 s32 count = 0;
2727
2728 spin_lock_bh(&efx->filter_lock);
2729 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2730 if (table->entry[filter_idx].spec &&
2731 efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2732 priority)
2733 ++count;
2734 }
2735 spin_unlock_bh(&efx->filter_lock);
2736 return count;
2737 }
2738
efx_ef10_filter_get_rx_id_limit(struct efx_nic * efx)2739 static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2740 {
2741 struct efx_ef10_filter_table *table = efx->filter_state;
2742
2743 return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2744 }
2745
efx_ef10_filter_get_rx_ids(struct efx_nic * efx,enum efx_filter_priority priority,u32 * buf,u32 size)2746 static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2747 enum efx_filter_priority priority,
2748 u32 *buf, u32 size)
2749 {
2750 struct efx_ef10_filter_table *table = efx->filter_state;
2751 struct efx_filter_spec *spec;
2752 unsigned int filter_idx;
2753 s32 count = 0;
2754
2755 spin_lock_bh(&efx->filter_lock);
2756 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2757 spec = efx_ef10_filter_entry_spec(table, filter_idx);
2758 if (spec && spec->priority == priority) {
2759 if (count == size) {
2760 count = -EMSGSIZE;
2761 break;
2762 }
2763 buf[count++] = (efx_ef10_filter_rx_match_pri(
2764 table, spec->match_flags) *
2765 HUNT_FILTER_TBL_ROWS +
2766 filter_idx);
2767 }
2768 }
2769 spin_unlock_bh(&efx->filter_lock);
2770 return count;
2771 }
2772
2773 #ifdef CONFIG_RFS_ACCEL
2774
2775 static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2776
efx_ef10_filter_rfs_insert(struct efx_nic * efx,struct efx_filter_spec * spec)2777 static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2778 struct efx_filter_spec *spec)
2779 {
2780 struct efx_ef10_filter_table *table = efx->filter_state;
2781 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2782 struct efx_filter_spec *saved_spec;
2783 unsigned int hash, i, depth = 1;
2784 bool replacing = false;
2785 int ins_index = -1;
2786 u64 cookie;
2787 s32 rc;
2788
2789 /* Must be an RX filter without RSS and not for a multicast
2790 * destination address (RFS only works for connected sockets).
2791 * These restrictions allow us to pass only a tiny amount of
2792 * data through to the completion function.
2793 */
2794 EFX_WARN_ON_PARANOID(spec->flags !=
2795 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2796 EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2797 EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2798
2799 hash = efx_ef10_filter_hash(spec);
2800
2801 spin_lock_bh(&efx->filter_lock);
2802
2803 /* Find any existing filter with the same match tuple or else
2804 * a free slot to insert at. If an existing filter is busy,
2805 * we have to give up.
2806 */
2807 for (;;) {
2808 i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2809 saved_spec = efx_ef10_filter_entry_spec(table, i);
2810
2811 if (!saved_spec) {
2812 if (ins_index < 0)
2813 ins_index = i;
2814 } else if (efx_ef10_filter_equal(spec, saved_spec)) {
2815 if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2816 rc = -EBUSY;
2817 goto fail_unlock;
2818 }
2819 if (spec->priority < saved_spec->priority) {
2820 rc = -EPERM;
2821 goto fail_unlock;
2822 }
2823 ins_index = i;
2824 break;
2825 }
2826
2827 /* Once we reach the maximum search depth, use the
2828 * first suitable slot or return -EBUSY if there was
2829 * none
2830 */
2831 if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2832 if (ins_index < 0) {
2833 rc = -EBUSY;
2834 goto fail_unlock;
2835 }
2836 break;
2837 }
2838
2839 ++depth;
2840 }
2841
2842 /* Create a software table entry if necessary, and mark it
2843 * busy. We might yet fail to insert, but any attempt to
2844 * insert a conflicting filter while we're waiting for the
2845 * firmware must find the busy entry.
2846 */
2847 saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2848 if (saved_spec) {
2849 replacing = true;
2850 } else {
2851 saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2852 if (!saved_spec) {
2853 rc = -ENOMEM;
2854 goto fail_unlock;
2855 }
2856 *saved_spec = *spec;
2857 }
2858 efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2859 EFX_EF10_FILTER_FLAG_BUSY);
2860
2861 spin_unlock_bh(&efx->filter_lock);
2862
2863 /* Pack up the variables needed on completion */
2864 cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2865
2866 efx_ef10_filter_push_prep(efx, spec, inbuf,
2867 table->entry[ins_index].handle, replacing);
2868 efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2869 MC_CMD_FILTER_OP_OUT_LEN,
2870 efx_ef10_filter_rfs_insert_complete, cookie);
2871
2872 return ins_index;
2873
2874 fail_unlock:
2875 spin_unlock_bh(&efx->filter_lock);
2876 return rc;
2877 }
2878
2879 static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic * efx,unsigned long cookie,int rc,efx_dword_t * outbuf,size_t outlen_actual)2880 efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2881 int rc, efx_dword_t *outbuf,
2882 size_t outlen_actual)
2883 {
2884 struct efx_ef10_filter_table *table = efx->filter_state;
2885 unsigned int ins_index, dmaq_id;
2886 struct efx_filter_spec *spec;
2887 bool replacing;
2888
2889 /* Unpack the cookie */
2890 replacing = cookie >> 31;
2891 ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2892 dmaq_id = cookie & 0xffff;
2893
2894 spin_lock_bh(&efx->filter_lock);
2895 spec = efx_ef10_filter_entry_spec(table, ins_index);
2896 if (rc == 0) {
2897 table->entry[ins_index].handle =
2898 MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2899 if (replacing)
2900 spec->dmaq_id = dmaq_id;
2901 } else if (!replacing) {
2902 kfree(spec);
2903 spec = NULL;
2904 }
2905 efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2906 spin_unlock_bh(&efx->filter_lock);
2907
2908 wake_up_all(&table->waitq);
2909 }
2910
2911 static void
2912 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2913 unsigned long filter_idx,
2914 int rc, efx_dword_t *outbuf,
2915 size_t outlen_actual);
2916
efx_ef10_filter_rfs_expire_one(struct efx_nic * efx,u32 flow_id,unsigned int filter_idx)2917 static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2918 unsigned int filter_idx)
2919 {
2920 struct efx_ef10_filter_table *table = efx->filter_state;
2921 struct efx_filter_spec *spec =
2922 efx_ef10_filter_entry_spec(table, filter_idx);
2923 MCDI_DECLARE_BUF(inbuf,
2924 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2925 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2926
2927 if (!spec ||
2928 (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2929 spec->priority != EFX_FILTER_PRI_HINT ||
2930 !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2931 flow_id, filter_idx))
2932 return false;
2933
2934 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2935 MC_CMD_FILTER_OP_IN_OP_REMOVE);
2936 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2937 table->entry[filter_idx].handle);
2938 if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2939 efx_ef10_filter_rfs_expire_complete, filter_idx))
2940 return false;
2941
2942 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2943 return true;
2944 }
2945
2946 static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic * efx,unsigned long filter_idx,int rc,efx_dword_t * outbuf,size_t outlen_actual)2947 efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2948 unsigned long filter_idx,
2949 int rc, efx_dword_t *outbuf,
2950 size_t outlen_actual)
2951 {
2952 struct efx_ef10_filter_table *table = efx->filter_state;
2953 struct efx_filter_spec *spec =
2954 efx_ef10_filter_entry_spec(table, filter_idx);
2955
2956 spin_lock_bh(&efx->filter_lock);
2957 if (rc == 0) {
2958 kfree(spec);
2959 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2960 }
2961 table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2962 wake_up_all(&table->waitq);
2963 spin_unlock_bh(&efx->filter_lock);
2964 }
2965
2966 #endif /* CONFIG_RFS_ACCEL */
2967
efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)2968 static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2969 {
2970 int match_flags = 0;
2971
2972 #define MAP_FLAG(gen_flag, mcdi_field) { \
2973 u32 old_mcdi_flags = mcdi_flags; \
2974 mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ## \
2975 mcdi_field ## _LBN); \
2976 if (mcdi_flags != old_mcdi_flags) \
2977 match_flags |= EFX_FILTER_MATCH_ ## gen_flag; \
2978 }
2979 MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2980 MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2981 MAP_FLAG(REM_HOST, SRC_IP);
2982 MAP_FLAG(LOC_HOST, DST_IP);
2983 MAP_FLAG(REM_MAC, SRC_MAC);
2984 MAP_FLAG(REM_PORT, SRC_PORT);
2985 MAP_FLAG(LOC_MAC, DST_MAC);
2986 MAP_FLAG(LOC_PORT, DST_PORT);
2987 MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2988 MAP_FLAG(INNER_VID, INNER_VLAN);
2989 MAP_FLAG(OUTER_VID, OUTER_VLAN);
2990 MAP_FLAG(IP_PROTO, IP_PROTO);
2991 #undef MAP_FLAG
2992
2993 /* Did we map them all? */
2994 if (mcdi_flags)
2995 return -EINVAL;
2996
2997 return match_flags;
2998 }
2999
efx_ef10_filter_table_probe(struct efx_nic * efx)3000 static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3001 {
3002 MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3003 MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3004 unsigned int pd_match_pri, pd_match_count;
3005 struct efx_ef10_filter_table *table;
3006 size_t outlen;
3007 int rc;
3008
3009 table = kzalloc(sizeof(*table), GFP_KERNEL);
3010 if (!table)
3011 return -ENOMEM;
3012
3013 /* Find out which RX filter types are supported, and their priorities */
3014 MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3015 MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3016 rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3017 inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3018 &outlen);
3019 if (rc)
3020 goto fail;
3021 pd_match_count = MCDI_VAR_ARRAY_LEN(
3022 outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3023 table->rx_match_count = 0;
3024
3025 for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3026 u32 mcdi_flags =
3027 MCDI_ARRAY_DWORD(
3028 outbuf,
3029 GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3030 pd_match_pri);
3031 rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3032 if (rc < 0) {
3033 netif_dbg(efx, probe, efx->net_dev,
3034 "%s: fw flags %#x pri %u not supported in driver\n",
3035 __func__, mcdi_flags, pd_match_pri);
3036 } else {
3037 netif_dbg(efx, probe, efx->net_dev,
3038 "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3039 __func__, mcdi_flags, pd_match_pri,
3040 rc, table->rx_match_count);
3041 table->rx_match_flags[table->rx_match_count++] = rc;
3042 }
3043 }
3044
3045 table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3046 if (!table->entry) {
3047 rc = -ENOMEM;
3048 goto fail;
3049 }
3050
3051 efx->filter_state = table;
3052 init_waitqueue_head(&table->waitq);
3053 return 0;
3054
3055 fail:
3056 kfree(table);
3057 return rc;
3058 }
3059
efx_ef10_filter_table_restore(struct efx_nic * efx)3060 static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3061 {
3062 struct efx_ef10_filter_table *table = efx->filter_state;
3063 struct efx_ef10_nic_data *nic_data = efx->nic_data;
3064 struct efx_filter_spec *spec;
3065 unsigned int filter_idx;
3066 bool failed = false;
3067 int rc;
3068
3069 if (!nic_data->must_restore_filters)
3070 return;
3071
3072 spin_lock_bh(&efx->filter_lock);
3073
3074 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3075 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3076 if (!spec)
3077 continue;
3078
3079 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3080 spin_unlock_bh(&efx->filter_lock);
3081
3082 rc = efx_ef10_filter_push(efx, spec,
3083 &table->entry[filter_idx].handle,
3084 false);
3085 if (rc)
3086 failed = true;
3087
3088 spin_lock_bh(&efx->filter_lock);
3089 if (rc) {
3090 kfree(spec);
3091 efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3092 } else {
3093 table->entry[filter_idx].spec &=
3094 ~EFX_EF10_FILTER_FLAG_BUSY;
3095 }
3096 }
3097
3098 spin_unlock_bh(&efx->filter_lock);
3099
3100 if (failed)
3101 netif_err(efx, hw, efx->net_dev,
3102 "unable to restore all filters\n");
3103 else
3104 nic_data->must_restore_filters = false;
3105 }
3106
efx_ef10_filter_table_remove(struct efx_nic * efx)3107 static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3108 {
3109 struct efx_ef10_filter_table *table = efx->filter_state;
3110 MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3111 struct efx_filter_spec *spec;
3112 unsigned int filter_idx;
3113 int rc;
3114
3115 for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3116 spec = efx_ef10_filter_entry_spec(table, filter_idx);
3117 if (!spec)
3118 continue;
3119
3120 MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3121 efx_ef10_filter_is_exclusive(spec) ?
3122 MC_CMD_FILTER_OP_IN_OP_REMOVE :
3123 MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3124 MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3125 table->entry[filter_idx].handle);
3126 rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3127 NULL, 0, NULL);
3128 if (rc)
3129 netdev_WARN(efx->net_dev,
3130 "filter_idx=%#x handle=%#llx\n",
3131 filter_idx,
3132 table->entry[filter_idx].handle);
3133 kfree(spec);
3134 }
3135
3136 vfree(table->entry);
3137 kfree(table);
3138 }
3139
efx_ef10_filter_sync_rx_mode(struct efx_nic * efx)3140 static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3141 {
3142 struct efx_ef10_filter_table *table = efx->filter_state;
3143 struct net_device *net_dev = efx->net_dev;
3144 struct efx_filter_spec spec;
3145 bool remove_failed = false;
3146 struct netdev_hw_addr *uc;
3147 struct netdev_hw_addr *mc;
3148 unsigned int filter_idx;
3149 int i, n, rc;
3150
3151 if (!efx_dev_registered(efx))
3152 return;
3153
3154 /* Mark old filters that may need to be removed */
3155 spin_lock_bh(&efx->filter_lock);
3156 n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3157 for (i = 0; i < n; i++) {
3158 filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3159 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3160 }
3161 n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3162 for (i = 0; i < n; i++) {
3163 filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3164 table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3165 }
3166 spin_unlock_bh(&efx->filter_lock);
3167
3168 /* Copy/convert the address lists; add the primary station
3169 * address and broadcast address
3170 */
3171 netif_addr_lock_bh(net_dev);
3172 if (net_dev->flags & IFF_PROMISC ||
3173 netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3174 table->dev_uc_count = -1;
3175 } else {
3176 table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3177 ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3178 i = 1;
3179 netdev_for_each_uc_addr(uc, net_dev) {
3180 ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3181 i++;
3182 }
3183 }
3184 if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3185 netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3186 table->dev_mc_count = -1;
3187 } else {
3188 table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3189 eth_broadcast_addr(table->dev_mc_list[0].addr);
3190 i = 1;
3191 netdev_for_each_mc_addr(mc, net_dev) {
3192 ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3193 i++;
3194 }
3195 }
3196 netif_addr_unlock_bh(net_dev);
3197
3198 /* Insert/renew unicast filters */
3199 if (table->dev_uc_count >= 0) {
3200 for (i = 0; i < table->dev_uc_count; i++) {
3201 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3202 EFX_FILTER_FLAG_RX_RSS,
3203 0);
3204 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3205 table->dev_uc_list[i].addr);
3206 rc = efx_ef10_filter_insert(efx, &spec, true);
3207 if (rc < 0) {
3208 /* Fall back to unicast-promisc */
3209 while (i--)
3210 efx_ef10_filter_remove_safe(
3211 efx, EFX_FILTER_PRI_AUTO,
3212 table->dev_uc_list[i].id);
3213 table->dev_uc_count = -1;
3214 break;
3215 }
3216 table->dev_uc_list[i].id = rc;
3217 }
3218 }
3219 if (table->dev_uc_count < 0) {
3220 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3221 EFX_FILTER_FLAG_RX_RSS,
3222 0);
3223 efx_filter_set_uc_def(&spec);
3224 rc = efx_ef10_filter_insert(efx, &spec, true);
3225 if (rc < 0) {
3226 WARN_ON(1);
3227 table->dev_uc_count = 0;
3228 } else {
3229 table->dev_uc_list[0].id = rc;
3230 }
3231 }
3232
3233 /* Insert/renew multicast filters */
3234 if (table->dev_mc_count >= 0) {
3235 for (i = 0; i < table->dev_mc_count; i++) {
3236 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3237 EFX_FILTER_FLAG_RX_RSS,
3238 0);
3239 efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3240 table->dev_mc_list[i].addr);
3241 rc = efx_ef10_filter_insert(efx, &spec, true);
3242 if (rc < 0) {
3243 /* Fall back to multicast-promisc */
3244 while (i--)
3245 efx_ef10_filter_remove_safe(
3246 efx, EFX_FILTER_PRI_AUTO,
3247 table->dev_mc_list[i].id);
3248 table->dev_mc_count = -1;
3249 break;
3250 }
3251 table->dev_mc_list[i].id = rc;
3252 }
3253 }
3254 if (table->dev_mc_count < 0) {
3255 efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3256 EFX_FILTER_FLAG_RX_RSS,
3257 0);
3258 efx_filter_set_mc_def(&spec);
3259 rc = efx_ef10_filter_insert(efx, &spec, true);
3260 if (rc < 0) {
3261 WARN_ON(1);
3262 table->dev_mc_count = 0;
3263 } else {
3264 table->dev_mc_list[0].id = rc;
3265 }
3266 }
3267
3268 /* Remove filters that weren't renewed. Since nothing else
3269 * changes the AUTO_OLD flag or removes these filters, we
3270 * don't need to hold the filter_lock while scanning for
3271 * these filters.
3272 */
3273 for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3274 if (ACCESS_ONCE(table->entry[i].spec) &
3275 EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3276 if (efx_ef10_filter_remove_internal(
3277 efx, 1U << EFX_FILTER_PRI_AUTO,
3278 i, true) < 0)
3279 remove_failed = true;
3280 }
3281 }
3282 WARN_ON(remove_failed);
3283 }
3284
efx_ef10_mac_reconfigure(struct efx_nic * efx)3285 static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3286 {
3287 efx_ef10_filter_sync_rx_mode(efx);
3288
3289 return efx_mcdi_set_mac(efx);
3290 }
3291
efx_ef10_start_bist(struct efx_nic * efx,u32 bist_type)3292 static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3293 {
3294 MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3295
3296 MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3297 return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3298 NULL, 0, NULL);
3299 }
3300
3301 /* MC BISTs follow a different poll mechanism to phy BISTs.
3302 * The BIST is done in the poll handler on the MC, and the MCDI command
3303 * will block until the BIST is done.
3304 */
efx_ef10_poll_bist(struct efx_nic * efx)3305 static int efx_ef10_poll_bist(struct efx_nic *efx)
3306 {
3307 int rc;
3308 MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3309 size_t outlen;
3310 u32 result;
3311
3312 rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3313 outbuf, sizeof(outbuf), &outlen);
3314 if (rc != 0)
3315 return rc;
3316
3317 if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3318 return -EIO;
3319
3320 result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3321 switch (result) {
3322 case MC_CMD_POLL_BIST_PASSED:
3323 netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3324 return 0;
3325 case MC_CMD_POLL_BIST_TIMEOUT:
3326 netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3327 return -EIO;
3328 case MC_CMD_POLL_BIST_FAILED:
3329 netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3330 return -EIO;
3331 default:
3332 netif_err(efx, hw, efx->net_dev,
3333 "BIST returned unknown result %u", result);
3334 return -EIO;
3335 }
3336 }
3337
efx_ef10_run_bist(struct efx_nic * efx,u32 bist_type)3338 static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3339 {
3340 int rc;
3341
3342 netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3343
3344 rc = efx_ef10_start_bist(efx, bist_type);
3345 if (rc != 0)
3346 return rc;
3347
3348 return efx_ef10_poll_bist(efx);
3349 }
3350
3351 static int
efx_ef10_test_chip(struct efx_nic * efx,struct efx_self_tests * tests)3352 efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3353 {
3354 int rc, rc2;
3355
3356 efx_reset_down(efx, RESET_TYPE_WORLD);
3357
3358 rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3359 NULL, 0, NULL, 0, NULL);
3360 if (rc != 0)
3361 goto out;
3362
3363 tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3364 tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3365
3366 rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3367
3368 out:
3369 rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3370 return rc ? rc : rc2;
3371 }
3372
3373 #ifdef CONFIG_SFC_MTD
3374
3375 struct efx_ef10_nvram_type_info {
3376 u16 type, type_mask;
3377 u8 port;
3378 const char *name;
3379 };
3380
3381 static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3382 { NVRAM_PARTITION_TYPE_MC_FIRMWARE, 0, 0, "sfc_mcfw" },
3383 { NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0, 0, "sfc_mcfw_backup" },
3384 { NVRAM_PARTITION_TYPE_EXPANSION_ROM, 0, 0, "sfc_exp_rom" },
3385 { NVRAM_PARTITION_TYPE_STATIC_CONFIG, 0, 0, "sfc_static_cfg" },
3386 { NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG, 0, 0, "sfc_dynamic_cfg" },
3387 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0, 0, "sfc_exp_rom_cfg" },
3388 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0, 1, "sfc_exp_rom_cfg" },
3389 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0, 2, "sfc_exp_rom_cfg" },
3390 { NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0, 3, "sfc_exp_rom_cfg" },
3391 { NVRAM_PARTITION_TYPE_LICENSE, 0, 0, "sfc_license" },
3392 { NVRAM_PARTITION_TYPE_PHY_MIN, 0xff, 0, "sfc_phy_fw" },
3393 };
3394
efx_ef10_mtd_probe_partition(struct efx_nic * efx,struct efx_mcdi_mtd_partition * part,unsigned int type)3395 static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3396 struct efx_mcdi_mtd_partition *part,
3397 unsigned int type)
3398 {
3399 MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3400 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3401 const struct efx_ef10_nvram_type_info *info;
3402 size_t size, erase_size, outlen;
3403 bool protected;
3404 int rc;
3405
3406 for (info = efx_ef10_nvram_types; ; info++) {
3407 if (info ==
3408 efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3409 return -ENODEV;
3410 if ((type & ~info->type_mask) == info->type)
3411 break;
3412 }
3413 if (info->port != efx_port_num(efx))
3414 return -ENODEV;
3415
3416 rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3417 if (rc)
3418 return rc;
3419 if (protected)
3420 return -ENODEV; /* hide it */
3421
3422 part->nvram_type = type;
3423
3424 MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3425 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3426 outbuf, sizeof(outbuf), &outlen);
3427 if (rc)
3428 return rc;
3429 if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3430 return -EIO;
3431 if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3432 (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3433 part->fw_subtype = MCDI_DWORD(outbuf,
3434 NVRAM_METADATA_OUT_SUBTYPE);
3435
3436 part->common.dev_type_name = "EF10 NVRAM manager";
3437 part->common.type_name = info->name;
3438
3439 part->common.mtd.type = MTD_NORFLASH;
3440 part->common.mtd.flags = MTD_CAP_NORFLASH;
3441 part->common.mtd.size = size;
3442 part->common.mtd.erasesize = erase_size;
3443
3444 return 0;
3445 }
3446
efx_ef10_mtd_probe(struct efx_nic * efx)3447 static int efx_ef10_mtd_probe(struct efx_nic *efx)
3448 {
3449 MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3450 struct efx_mcdi_mtd_partition *parts;
3451 size_t outlen, n_parts_total, i, n_parts;
3452 unsigned int type;
3453 int rc;
3454
3455 ASSERT_RTNL();
3456
3457 BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3458 rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3459 outbuf, sizeof(outbuf), &outlen);
3460 if (rc)
3461 return rc;
3462 if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3463 return -EIO;
3464
3465 n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3466 if (n_parts_total >
3467 MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3468 return -EIO;
3469
3470 parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3471 if (!parts)
3472 return -ENOMEM;
3473
3474 n_parts = 0;
3475 for (i = 0; i < n_parts_total; i++) {
3476 type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3477 i);
3478 rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3479 if (rc == 0)
3480 n_parts++;
3481 else if (rc != -ENODEV)
3482 goto fail;
3483 }
3484
3485 rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3486 fail:
3487 if (rc)
3488 kfree(parts);
3489 return rc;
3490 }
3491
3492 #endif /* CONFIG_SFC_MTD */
3493
efx_ef10_ptp_write_host_time(struct efx_nic * efx,u32 host_time)3494 static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3495 {
3496 _efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3497 }
3498
efx_ef10_rx_enable_timestamping(struct efx_channel * channel,bool temp)3499 static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3500 bool temp)
3501 {
3502 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3503 int rc;
3504
3505 if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3506 channel->sync_events_state == SYNC_EVENTS_VALID ||
3507 (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3508 return 0;
3509 channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3510
3511 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3512 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3513 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3514 channel->channel);
3515
3516 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3517 inbuf, sizeof(inbuf), NULL, 0, NULL);
3518
3519 if (rc != 0)
3520 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3521 SYNC_EVENTS_DISABLED;
3522
3523 return rc;
3524 }
3525
efx_ef10_rx_disable_timestamping(struct efx_channel * channel,bool temp)3526 static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3527 bool temp)
3528 {
3529 MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3530 int rc;
3531
3532 if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3533 (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3534 return 0;
3535 if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3536 channel->sync_events_state = SYNC_EVENTS_DISABLED;
3537 return 0;
3538 }
3539 channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3540 SYNC_EVENTS_DISABLED;
3541
3542 MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3543 MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3544 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3545 MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3546 MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3547 channel->channel);
3548
3549 rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3550 inbuf, sizeof(inbuf), NULL, 0, NULL);
3551
3552 return rc;
3553 }
3554
efx_ef10_ptp_set_ts_sync_events(struct efx_nic * efx,bool en,bool temp)3555 static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3556 bool temp)
3557 {
3558 int (*set)(struct efx_channel *channel, bool temp);
3559 struct efx_channel *channel;
3560
3561 set = en ?
3562 efx_ef10_rx_enable_timestamping :
3563 efx_ef10_rx_disable_timestamping;
3564
3565 efx_for_each_channel(channel, efx) {
3566 int rc = set(channel, temp);
3567 if (en && rc != 0) {
3568 efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3569 return rc;
3570 }
3571 }
3572
3573 return 0;
3574 }
3575
efx_ef10_ptp_set_ts_config(struct efx_nic * efx,struct hwtstamp_config * init)3576 static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3577 struct hwtstamp_config *init)
3578 {
3579 int rc;
3580
3581 switch (init->rx_filter) {
3582 case HWTSTAMP_FILTER_NONE:
3583 efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3584 /* if TX timestamping is still requested then leave PTP on */
3585 return efx_ptp_change_mode(efx,
3586 init->tx_type != HWTSTAMP_TX_OFF, 0);
3587 case HWTSTAMP_FILTER_ALL:
3588 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3589 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3590 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3591 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3592 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3593 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3594 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3595 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3596 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3597 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3598 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3599 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3600 init->rx_filter = HWTSTAMP_FILTER_ALL;
3601 rc = efx_ptp_change_mode(efx, true, 0);
3602 if (!rc)
3603 rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3604 if (rc)
3605 efx_ptp_change_mode(efx, false, 0);
3606 return rc;
3607 default:
3608 return -ERANGE;
3609 }
3610 }
3611
3612 const struct efx_nic_type efx_hunt_a0_nic_type = {
3613 .mem_map_size = efx_ef10_mem_map_size,
3614 .probe = efx_ef10_probe,
3615 .remove = efx_ef10_remove,
3616 .dimension_resources = efx_ef10_dimension_resources,
3617 .init = efx_ef10_init_nic,
3618 .fini = efx_port_dummy_op_void,
3619 .map_reset_reason = efx_mcdi_map_reset_reason,
3620 .map_reset_flags = efx_ef10_map_reset_flags,
3621 .reset = efx_ef10_reset,
3622 .probe_port = efx_mcdi_port_probe,
3623 .remove_port = efx_mcdi_port_remove,
3624 .fini_dmaq = efx_ef10_fini_dmaq,
3625 .prepare_flr = efx_ef10_prepare_flr,
3626 .finish_flr = efx_port_dummy_op_void,
3627 .describe_stats = efx_ef10_describe_stats,
3628 .update_stats = efx_ef10_update_stats,
3629 .start_stats = efx_mcdi_mac_start_stats,
3630 .pull_stats = efx_mcdi_mac_pull_stats,
3631 .stop_stats = efx_mcdi_mac_stop_stats,
3632 .set_id_led = efx_mcdi_set_id_led,
3633 .push_irq_moderation = efx_ef10_push_irq_moderation,
3634 .reconfigure_mac = efx_ef10_mac_reconfigure,
3635 .check_mac_fault = efx_mcdi_mac_check_fault,
3636 .reconfigure_port = efx_mcdi_port_reconfigure,
3637 .get_wol = efx_ef10_get_wol,
3638 .set_wol = efx_ef10_set_wol,
3639 .resume_wol = efx_port_dummy_op_void,
3640 .test_chip = efx_ef10_test_chip,
3641 .test_nvram = efx_mcdi_nvram_test_all,
3642 .mcdi_request = efx_ef10_mcdi_request,
3643 .mcdi_poll_response = efx_ef10_mcdi_poll_response,
3644 .mcdi_read_response = efx_ef10_mcdi_read_response,
3645 .mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3646 .irq_enable_master = efx_port_dummy_op_void,
3647 .irq_test_generate = efx_ef10_irq_test_generate,
3648 .irq_disable_non_ev = efx_port_dummy_op_void,
3649 .irq_handle_msi = efx_ef10_msi_interrupt,
3650 .irq_handle_legacy = efx_ef10_legacy_interrupt,
3651 .tx_probe = efx_ef10_tx_probe,
3652 .tx_init = efx_ef10_tx_init,
3653 .tx_remove = efx_ef10_tx_remove,
3654 .tx_write = efx_ef10_tx_write,
3655 .rx_push_rss_config = efx_ef10_rx_push_rss_config,
3656 .rx_probe = efx_ef10_rx_probe,
3657 .rx_init = efx_ef10_rx_init,
3658 .rx_remove = efx_ef10_rx_remove,
3659 .rx_write = efx_ef10_rx_write,
3660 .rx_defer_refill = efx_ef10_rx_defer_refill,
3661 .ev_probe = efx_ef10_ev_probe,
3662 .ev_init = efx_ef10_ev_init,
3663 .ev_fini = efx_ef10_ev_fini,
3664 .ev_remove = efx_ef10_ev_remove,
3665 .ev_process = efx_ef10_ev_process,
3666 .ev_read_ack = efx_ef10_ev_read_ack,
3667 .ev_test_generate = efx_ef10_ev_test_generate,
3668 .filter_table_probe = efx_ef10_filter_table_probe,
3669 .filter_table_restore = efx_ef10_filter_table_restore,
3670 .filter_table_remove = efx_ef10_filter_table_remove,
3671 .filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3672 .filter_insert = efx_ef10_filter_insert,
3673 .filter_remove_safe = efx_ef10_filter_remove_safe,
3674 .filter_get_safe = efx_ef10_filter_get_safe,
3675 .filter_clear_rx = efx_ef10_filter_clear_rx,
3676 .filter_count_rx_used = efx_ef10_filter_count_rx_used,
3677 .filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3678 .filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3679 #ifdef CONFIG_RFS_ACCEL
3680 .filter_rfs_insert = efx_ef10_filter_rfs_insert,
3681 .filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3682 #endif
3683 #ifdef CONFIG_SFC_MTD
3684 .mtd_probe = efx_ef10_mtd_probe,
3685 .mtd_rename = efx_mcdi_mtd_rename,
3686 .mtd_read = efx_mcdi_mtd_read,
3687 .mtd_erase = efx_mcdi_mtd_erase,
3688 .mtd_write = efx_mcdi_mtd_write,
3689 .mtd_sync = efx_mcdi_mtd_sync,
3690 #endif
3691 .ptp_write_host_time = efx_ef10_ptp_write_host_time,
3692 .ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3693 .ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3694 .sriov_init = efx_ef10_sriov_init,
3695 .sriov_fini = efx_ef10_sriov_fini,
3696 .sriov_mac_address_changed = efx_ef10_sriov_mac_address_changed,
3697 .sriov_wanted = efx_ef10_sriov_wanted,
3698 .sriov_reset = efx_ef10_sriov_reset,
3699
3700 .revision = EFX_REV_HUNT_A0,
3701 .max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3702 .rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3703 .rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3704 .rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3705 .can_rx_scatter = true,
3706 .always_rx_scatter = true,
3707 .max_interrupt_mode = EFX_INT_MODE_MSIX,
3708 .timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3709 .offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3710 NETIF_F_RXHASH | NETIF_F_NTUPLE),
3711 .mcdi_max_ver = 2,
3712 .max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3713 .hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3714 1 << HWTSTAMP_FILTER_ALL,
3715 };
3716