1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2012-2013 Solarflare Communications Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 as published
7 * by the Free Software Foundation, incorporated herein by reference.
8 */
9
10#include "net_driver.h"
11#include "ef10_regs.h"
12#include "io.h"
13#include "mcdi.h"
14#include "mcdi_pcol.h"
15#include "nic.h"
16#include "workarounds.h"
17#include "selftest.h"
18#include <linux/in.h>
19#include <linux/jhash.h>
20#include <linux/wait.h>
21#include <linux/workqueue.h>
22
23/* Hardware control for EF10 architecture including 'Huntington'. */
24
25#define EFX_EF10_DRVGEN_EV		7
26enum {
27	EFX_EF10_TEST = 1,
28	EFX_EF10_REFILL,
29};
30
31/* The reserved RSS context value */
32#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
33
34/* The filter table(s) are managed by firmware and we have write-only
35 * access.  When removing filters we must identify them to the
36 * firmware by a 64-bit handle, but this is too wide for Linux kernel
37 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
38 * be able to tell in advance whether a requested insertion will
39 * replace an existing filter.  Therefore we maintain a software hash
40 * table, which should be at least as large as the hardware hash
41 * table.
42 *
43 * Huntington has a single 8K filter table shared between all filter
44 * types and both ports.
45 */
46#define HUNT_FILTER_TBL_ROWS 8192
47
48struct efx_ef10_filter_table {
49/* The RX match field masks supported by this fw & hw, in order of priority */
50	enum efx_filter_match_flags rx_match_flags[
51		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
52	unsigned int rx_match_count;
53
54	struct {
55		unsigned long spec;	/* pointer to spec plus flag bits */
56/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
57 * used to mark and sweep MAC filters for the device address lists.
58 */
59#define EFX_EF10_FILTER_FLAG_BUSY	1UL
60#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
61#define EFX_EF10_FILTER_FLAGS		3UL
62		u64 handle;		/* firmware handle */
63	} *entry;
64	wait_queue_head_t waitq;
65/* Shadow of net_device address lists, guarded by mac_lock */
66#define EFX_EF10_FILTER_DEV_UC_MAX	32
67#define EFX_EF10_FILTER_DEV_MC_MAX	256
68	struct {
69		u8 addr[ETH_ALEN];
70		u16 id;
71	} dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX],
72	  dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
73	int dev_uc_count;		/* negative for PROMISC */
74	int dev_mc_count;		/* negative for PROMISC/ALLMULTI */
75};
76
77/* An arbitrary search limit for the software hash table */
78#define EFX_EF10_FILTER_SEARCH_LIMIT 200
79
80static void efx_ef10_rx_push_rss_config(struct efx_nic *efx);
81static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
82static void efx_ef10_filter_table_remove(struct efx_nic *efx);
83
84static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
85{
86	efx_dword_t reg;
87
88	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
89	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
90		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
91}
92
93static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
94{
95	return resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]);
96}
97
98static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
99{
100	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
101	struct efx_ef10_nic_data *nic_data = efx->nic_data;
102	size_t outlen;
103	int rc;
104
105	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
106
107	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
108			  outbuf, sizeof(outbuf), &outlen);
109	if (rc)
110		return rc;
111	if (outlen < sizeof(outbuf)) {
112		netif_err(efx, drv, efx->net_dev,
113			  "unable to read datapath firmware capabilities\n");
114		return -EIO;
115	}
116
117	nic_data->datapath_caps =
118		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
119
120	if (!(nic_data->datapath_caps &
121	      (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN))) {
122		netif_err(efx, drv, efx->net_dev,
123			  "current firmware does not support TSO\n");
124		return -ENODEV;
125	}
126
127	if (!(nic_data->datapath_caps &
128	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
129		netif_err(efx, probe, efx->net_dev,
130			  "current firmware does not support an RX prefix\n");
131		return -ENODEV;
132	}
133
134	return 0;
135}
136
137static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
138{
139	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
140	int rc;
141
142	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
143			  outbuf, sizeof(outbuf), NULL);
144	if (rc)
145		return rc;
146	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
147	return rc > 0 ? rc : -ERANGE;
148}
149
150static int efx_ef10_get_mac_address(struct efx_nic *efx, u8 *mac_address)
151{
152	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
153	size_t outlen;
154	int rc;
155
156	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
157
158	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
159			  outbuf, sizeof(outbuf), &outlen);
160	if (rc)
161		return rc;
162	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
163		return -EIO;
164
165	ether_addr_copy(mac_address,
166			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
167	return 0;
168}
169
170static int efx_ef10_probe(struct efx_nic *efx)
171{
172	struct efx_ef10_nic_data *nic_data;
173	int i, rc;
174
175	/* We can have one VI for each 8K region.  However, until we
176	 * use TX option descriptors we need two TX queues per channel.
177	 */
178	efx->max_channels =
179		min_t(unsigned int,
180		      EFX_MAX_CHANNELS,
181		      resource_size(&efx->pci_dev->resource[EFX_MEM_BAR]) /
182		      (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
183	if (WARN_ON(efx->max_channels == 0))
184		return -EIO;
185
186	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
187	if (!nic_data)
188		return -ENOMEM;
189	efx->nic_data = nic_data;
190
191	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
192				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
193	if (rc)
194		goto fail1;
195
196	/* Get the MC's warm boot count.  In case it's rebooting right
197	 * now, be prepared to retry.
198	 */
199	i = 0;
200	for (;;) {
201		rc = efx_ef10_get_warm_boot_count(efx);
202		if (rc >= 0)
203			break;
204		if (++i == 5)
205			goto fail2;
206		ssleep(1);
207	}
208	nic_data->warm_boot_count = rc;
209
210	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
211
212	/* In case we're recovering from a crash (kexec), we want to
213	 * cancel any outstanding request by the previous user of this
214	 * function.  We send a special message using the least
215	 * significant bits of the 'high' (doorbell) register.
216	 */
217	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);
218
219	rc = efx_mcdi_init(efx);
220	if (rc)
221		goto fail2;
222
223	/* Reset (most) configuration for this function */
224	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
225	if (rc)
226		goto fail3;
227
228	/* Enable event logging */
229	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
230	if (rc)
231		goto fail3;
232
233	rc = efx_ef10_init_datapath_caps(efx);
234	if (rc < 0)
235		goto fail3;
236
237	efx->rx_packet_len_offset =
238		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;
239
240	rc = efx_mcdi_port_get_number(efx);
241	if (rc < 0)
242		goto fail3;
243	efx->port_num = rc;
244
245	rc = efx_ef10_get_mac_address(efx, efx->net_dev->perm_addr);
246	if (rc)
247		goto fail3;
248
249	rc = efx_ef10_get_sysclk_freq(efx);
250	if (rc < 0)
251		goto fail3;
252	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */
253
254	/* Check whether firmware supports bug 35388 workaround */
255	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true);
256	if (rc == 0)
257		nic_data->workaround_35388 = true;
258	else if (rc != -ENOSYS && rc != -ENOENT)
259		goto fail3;
260	netif_dbg(efx, probe, efx->net_dev,
261		  "workaround for bug 35388 is %sabled\n",
262		  nic_data->workaround_35388 ? "en" : "dis");
263
264	rc = efx_mcdi_mon_probe(efx);
265	if (rc)
266		goto fail3;
267
268	efx_ptp_probe(efx, NULL);
269
270	return 0;
271
272fail3:
273	efx_mcdi_fini(efx);
274fail2:
275	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
276fail1:
277	kfree(nic_data);
278	efx->nic_data = NULL;
279	return rc;
280}
281
282static int efx_ef10_free_vis(struct efx_nic *efx)
283{
284	MCDI_DECLARE_BUF_OUT_OR_ERR(outbuf, 0);
285	size_t outlen;
286	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
287				    outbuf, sizeof(outbuf), &outlen);
288
289	/* -EALREADY means nothing to free, so ignore */
290	if (rc == -EALREADY)
291		rc = 0;
292	if (rc)
293		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
294				       rc);
295	return rc;
296}
297
298#ifdef EFX_USE_PIO
299
300static void efx_ef10_free_piobufs(struct efx_nic *efx)
301{
302	struct efx_ef10_nic_data *nic_data = efx->nic_data;
303	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
304	unsigned int i;
305	int rc;
306
307	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);
308
309	for (i = 0; i < nic_data->n_piobufs; i++) {
310		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
311			       nic_data->piobuf_handle[i]);
312		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
313				  NULL, 0, NULL);
314		WARN_ON(rc);
315	}
316
317	nic_data->n_piobufs = 0;
318}
319
320static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
321{
322	struct efx_ef10_nic_data *nic_data = efx->nic_data;
323	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
324	unsigned int i;
325	size_t outlen;
326	int rc = 0;
327
328	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);
329
330	for (i = 0; i < n; i++) {
331		rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
332				  outbuf, sizeof(outbuf), &outlen);
333		if (rc)
334			break;
335		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
336			rc = -EIO;
337			break;
338		}
339		nic_data->piobuf_handle[i] =
340			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
341		netif_dbg(efx, probe, efx->net_dev,
342			  "allocated PIO buffer %u handle %x\n", i,
343			  nic_data->piobuf_handle[i]);
344	}
345
346	nic_data->n_piobufs = i;
347	if (rc)
348		efx_ef10_free_piobufs(efx);
349	return rc;
350}
351
352static int efx_ef10_link_piobufs(struct efx_nic *efx)
353{
354	struct efx_ef10_nic_data *nic_data = efx->nic_data;
355	MCDI_DECLARE_BUF(inbuf,
356			 max(MC_CMD_LINK_PIOBUF_IN_LEN,
357			     MC_CMD_UNLINK_PIOBUF_IN_LEN));
358	struct efx_channel *channel;
359	struct efx_tx_queue *tx_queue;
360	unsigned int offset, index;
361	int rc;
362
363	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
364	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);
365
366	/* Link a buffer to each VI in the write-combining mapping */
367	for (index = 0; index < nic_data->n_piobufs; ++index) {
368		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
369			       nic_data->piobuf_handle[index]);
370		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
371			       nic_data->pio_write_vi_base + index);
372		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
373				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
374				  NULL, 0, NULL);
375		if (rc) {
376			netif_err(efx, drv, efx->net_dev,
377				  "failed to link VI %u to PIO buffer %u (%d)\n",
378				  nic_data->pio_write_vi_base + index, index,
379				  rc);
380			goto fail;
381		}
382		netif_dbg(efx, probe, efx->net_dev,
383			  "linked VI %u to PIO buffer %u\n",
384			  nic_data->pio_write_vi_base + index, index);
385	}
386
387	/* Link a buffer to each TX queue */
388	efx_for_each_channel(channel, efx) {
389		efx_for_each_channel_tx_queue(tx_queue, channel) {
390			/* We assign the PIO buffers to queues in
391			 * reverse order to allow for the following
392			 * special case.
393			 */
394			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
395				   tx_queue->channel->channel - 1) *
396				  efx_piobuf_size);
397			index = offset / ER_DZ_TX_PIOBUF_SIZE;
398			offset = offset % ER_DZ_TX_PIOBUF_SIZE;
399
400			/* When the host page size is 4K, the first
401			 * host page in the WC mapping may be within
402			 * the same VI page as the last TX queue.  We
403			 * can only link one buffer to each VI.
404			 */
405			if (tx_queue->queue == nic_data->pio_write_vi_base) {
406				BUG_ON(index != 0);
407				rc = 0;
408			} else {
409				MCDI_SET_DWORD(inbuf,
410					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
411					       nic_data->piobuf_handle[index]);
412				MCDI_SET_DWORD(inbuf,
413					       LINK_PIOBUF_IN_TXQ_INSTANCE,
414					       tx_queue->queue);
415				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
416						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
417						  NULL, 0, NULL);
418			}
419
420			if (rc) {
421				/* This is non-fatal; the TX path just
422				 * won't use PIO for this queue
423				 */
424				netif_err(efx, drv, efx->net_dev,
425					  "failed to link VI %u to PIO buffer %u (%d)\n",
426					  tx_queue->queue, index, rc);
427				tx_queue->piobuf = NULL;
428			} else {
429				tx_queue->piobuf =
430					nic_data->pio_write_base +
431					index * EFX_VI_PAGE_SIZE + offset;
432				tx_queue->piobuf_offset = offset;
433				netif_dbg(efx, probe, efx->net_dev,
434					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
435					  tx_queue->queue, index,
436					  tx_queue->piobuf_offset,
437					  tx_queue->piobuf);
438			}
439		}
440	}
441
442	return 0;
443
444fail:
445	while (index--) {
446		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
447			       nic_data->pio_write_vi_base + index);
448		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
449			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
450			     NULL, 0, NULL);
451	}
452	return rc;
453}
454
455#else /* !EFX_USE_PIO */
456
457static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
458{
459	return n == 0 ? 0 : -ENOBUFS;
460}
461
462static int efx_ef10_link_piobufs(struct efx_nic *efx)
463{
464	return 0;
465}
466
467static void efx_ef10_free_piobufs(struct efx_nic *efx)
468{
469}
470
471#endif /* EFX_USE_PIO */
472
473static void efx_ef10_remove(struct efx_nic *efx)
474{
475	struct efx_ef10_nic_data *nic_data = efx->nic_data;
476	int rc;
477
478	efx_ptp_remove(efx);
479
480	efx_mcdi_mon_remove(efx);
481
482	efx_ef10_rx_free_indir_table(efx);
483
484	if (nic_data->wc_membase)
485		iounmap(nic_data->wc_membase);
486
487	rc = efx_ef10_free_vis(efx);
488	WARN_ON(rc != 0);
489
490	if (!nic_data->must_restore_piobufs)
491		efx_ef10_free_piobufs(efx);
492
493	efx_mcdi_fini(efx);
494	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
495	kfree(nic_data);
496}
497
498static int efx_ef10_alloc_vis(struct efx_nic *efx,
499			      unsigned int min_vis, unsigned int max_vis)
500{
501	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
502	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
503	struct efx_ef10_nic_data *nic_data = efx->nic_data;
504	size_t outlen;
505	int rc;
506
507	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
508	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
509	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
510			  outbuf, sizeof(outbuf), &outlen);
511	if (rc != 0)
512		return rc;
513
514	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
515		return -EIO;
516
517	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
518		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));
519
520	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
521	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
522	return 0;
523}
524
525/* Note that the failure path of this function does not free
526 * resources, as this will be done by efx_ef10_remove().
527 */
528static int efx_ef10_dimension_resources(struct efx_nic *efx)
529{
530	struct efx_ef10_nic_data *nic_data = efx->nic_data;
531	unsigned int uc_mem_map_size, wc_mem_map_size;
532	unsigned int min_vis, pio_write_vi_base, max_vis;
533	void __iomem *membase;
534	int rc;
535
536	min_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
537
538#ifdef EFX_USE_PIO
539	/* Try to allocate PIO buffers if wanted and if the full
540	 * number of PIO buffers would be sufficient to allocate one
541	 * copy-buffer per TX channel.  Failure is non-fatal, as there
542	 * are only a small number of PIO buffers shared between all
543	 * functions of the controller.
544	 */
545	if (efx_piobuf_size != 0 &&
546	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
547	    efx->n_tx_channels) {
548		unsigned int n_piobufs =
549			DIV_ROUND_UP(efx->n_tx_channels,
550				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);
551
552		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
553		if (rc)
554			netif_err(efx, probe, efx->net_dev,
555				  "failed to allocate PIO buffers (%d)\n", rc);
556		else
557			netif_dbg(efx, probe, efx->net_dev,
558				  "allocated %u PIO buffers\n", n_piobufs);
559	}
560#else
561	nic_data->n_piobufs = 0;
562#endif
563
564	/* PIO buffers should be mapped with write-combining enabled,
565	 * and we want to make single UC and WC mappings rather than
566	 * several of each (in fact that's the only option if host
567	 * page size is >4K).  So we may allocate some extra VIs just
568	 * for writing PIO buffers through.
569	 *
570	 * The UC mapping contains (min_vis - 1) complete VIs and the
571	 * first half of the next VI.  Then the WC mapping begins with
572	 * the second half of this last VI.
573	 */
574	uc_mem_map_size = PAGE_ALIGN((min_vis - 1) * EFX_VI_PAGE_SIZE +
575				     ER_DZ_TX_PIOBUF);
576	if (nic_data->n_piobufs) {
577		/* pio_write_vi_base rounds down to give the number of complete
578		 * VIs inside the UC mapping.
579		 */
580		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
581		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
582					       nic_data->n_piobufs) *
583					      EFX_VI_PAGE_SIZE) -
584				   uc_mem_map_size);
585		max_vis = pio_write_vi_base + nic_data->n_piobufs;
586	} else {
587		pio_write_vi_base = 0;
588		wc_mem_map_size = 0;
589		max_vis = min_vis;
590	}
591
592	/* In case the last attached driver failed to free VIs, do it now */
593	rc = efx_ef10_free_vis(efx);
594	if (rc != 0)
595		return rc;
596
597	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
598	if (rc != 0)
599		return rc;
600
601	/* If we didn't get enough VIs to map all the PIO buffers, free the
602	 * PIO buffers
603	 */
604	if (nic_data->n_piobufs &&
605	    nic_data->n_allocated_vis <
606	    pio_write_vi_base + nic_data->n_piobufs) {
607		netif_dbg(efx, probe, efx->net_dev,
608			  "%u VIs are not sufficient to map %u PIO buffers\n",
609			  nic_data->n_allocated_vis, nic_data->n_piobufs);
610		efx_ef10_free_piobufs(efx);
611	}
612
613	/* Shrink the original UC mapping of the memory BAR */
614	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
615	if (!membase) {
616		netif_err(efx, probe, efx->net_dev,
617			  "could not shrink memory BAR to %x\n",
618			  uc_mem_map_size);
619		return -ENOMEM;
620	}
621	iounmap(efx->membase);
622	efx->membase = membase;
623
624	/* Set up the WC mapping if needed */
625	if (wc_mem_map_size) {
626		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
627						  uc_mem_map_size,
628						  wc_mem_map_size);
629		if (!nic_data->wc_membase) {
630			netif_err(efx, probe, efx->net_dev,
631				  "could not allocate WC mapping of size %x\n",
632				  wc_mem_map_size);
633			return -ENOMEM;
634		}
635		nic_data->pio_write_vi_base = pio_write_vi_base;
636		nic_data->pio_write_base =
637			nic_data->wc_membase +
638			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
639			 uc_mem_map_size);
640
641		rc = efx_ef10_link_piobufs(efx);
642		if (rc)
643			efx_ef10_free_piobufs(efx);
644	}
645
646	netif_dbg(efx, probe, efx->net_dev,
647		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
648		  &efx->membase_phys, efx->membase, uc_mem_map_size,
649		  nic_data->wc_membase, wc_mem_map_size);
650
651	return 0;
652}
653
654static int efx_ef10_init_nic(struct efx_nic *efx)
655{
656	struct efx_ef10_nic_data *nic_data = efx->nic_data;
657	int rc;
658
659	if (nic_data->must_check_datapath_caps) {
660		rc = efx_ef10_init_datapath_caps(efx);
661		if (rc)
662			return rc;
663		nic_data->must_check_datapath_caps = false;
664	}
665
666	if (nic_data->must_realloc_vis) {
667		/* We cannot let the number of VIs change now */
668		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
669					nic_data->n_allocated_vis);
670		if (rc)
671			return rc;
672		nic_data->must_realloc_vis = false;
673	}
674
675	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
676		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
677		if (rc == 0) {
678			rc = efx_ef10_link_piobufs(efx);
679			if (rc)
680				efx_ef10_free_piobufs(efx);
681		}
682
683		/* Log an error on failure, but this is non-fatal */
684		if (rc)
685			netif_err(efx, drv, efx->net_dev,
686				  "failed to restore PIO buffers (%d)\n", rc);
687		nic_data->must_restore_piobufs = false;
688	}
689
690	efx_ef10_rx_push_rss_config(efx);
691	return 0;
692}
693
694static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
695{
696	struct efx_ef10_nic_data *nic_data = efx->nic_data;
697
698	/* All our allocations have been reset */
699	nic_data->must_realloc_vis = true;
700	nic_data->must_restore_filters = true;
701	nic_data->must_restore_piobufs = true;
702	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
703}
704
705static int efx_ef10_map_reset_flags(u32 *flags)
706{
707	enum {
708		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
709				   ETH_RESET_SHARED_SHIFT),
710		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
711				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
712				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
713				 ETH_RESET_SHARED_SHIFT)
714	};
715
716	/* We assume for now that our PCI function is permitted to
717	 * reset everything.
718	 */
719
720	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
721		*flags &= ~EF10_RESET_MC;
722		return RESET_TYPE_WORLD;
723	}
724
725	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
726		*flags &= ~EF10_RESET_PORT;
727		return RESET_TYPE_ALL;
728	}
729
730	/* no invisible reset implemented */
731
732	return -EINVAL;
733}
734
735static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
736{
737	int rc = efx_mcdi_reset(efx, reset_type);
738
739	/* If it was a port reset, trigger reallocation of MC resources.
740	 * Note that on an MC reset nothing needs to be done now because we'll
741	 * detect the MC reset later and handle it then.
742	 * For an FLR, we never get an MC reset event, but the MC has reset all
743	 * resources assigned to us, so we have to trigger reallocation now.
744	 */
745	if ((reset_type == RESET_TYPE_ALL ||
746	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
747		efx_ef10_reset_mc_allocations(efx);
748	return rc;
749}
750
751#define EF10_DMA_STAT(ext_name, mcdi_name)			\
752	[EF10_STAT_ ## ext_name] =				\
753	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
754#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
755	[EF10_STAT_ ## int_name] =				\
756	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
757#define EF10_OTHER_STAT(ext_name)				\
758	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
759#define GENERIC_SW_STAT(ext_name)				\
760	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
761
762static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
763	EF10_DMA_STAT(tx_bytes, TX_BYTES),
764	EF10_DMA_STAT(tx_packets, TX_PKTS),
765	EF10_DMA_STAT(tx_pause, TX_PAUSE_PKTS),
766	EF10_DMA_STAT(tx_control, TX_CONTROL_PKTS),
767	EF10_DMA_STAT(tx_unicast, TX_UNICAST_PKTS),
768	EF10_DMA_STAT(tx_multicast, TX_MULTICAST_PKTS),
769	EF10_DMA_STAT(tx_broadcast, TX_BROADCAST_PKTS),
770	EF10_DMA_STAT(tx_lt64, TX_LT64_PKTS),
771	EF10_DMA_STAT(tx_64, TX_64_PKTS),
772	EF10_DMA_STAT(tx_65_to_127, TX_65_TO_127_PKTS),
773	EF10_DMA_STAT(tx_128_to_255, TX_128_TO_255_PKTS),
774	EF10_DMA_STAT(tx_256_to_511, TX_256_TO_511_PKTS),
775	EF10_DMA_STAT(tx_512_to_1023, TX_512_TO_1023_PKTS),
776	EF10_DMA_STAT(tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
777	EF10_DMA_STAT(tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
778	EF10_DMA_STAT(rx_bytes, RX_BYTES),
779	EF10_DMA_INVIS_STAT(rx_bytes_minus_good_bytes, RX_BAD_BYTES),
780	EF10_OTHER_STAT(rx_good_bytes),
781	EF10_OTHER_STAT(rx_bad_bytes),
782	EF10_DMA_STAT(rx_packets, RX_PKTS),
783	EF10_DMA_STAT(rx_good, RX_GOOD_PKTS),
784	EF10_DMA_STAT(rx_bad, RX_BAD_FCS_PKTS),
785	EF10_DMA_STAT(rx_pause, RX_PAUSE_PKTS),
786	EF10_DMA_STAT(rx_control, RX_CONTROL_PKTS),
787	EF10_DMA_STAT(rx_unicast, RX_UNICAST_PKTS),
788	EF10_DMA_STAT(rx_multicast, RX_MULTICAST_PKTS),
789	EF10_DMA_STAT(rx_broadcast, RX_BROADCAST_PKTS),
790	EF10_DMA_STAT(rx_lt64, RX_UNDERSIZE_PKTS),
791	EF10_DMA_STAT(rx_64, RX_64_PKTS),
792	EF10_DMA_STAT(rx_65_to_127, RX_65_TO_127_PKTS),
793	EF10_DMA_STAT(rx_128_to_255, RX_128_TO_255_PKTS),
794	EF10_DMA_STAT(rx_256_to_511, RX_256_TO_511_PKTS),
795	EF10_DMA_STAT(rx_512_to_1023, RX_512_TO_1023_PKTS),
796	EF10_DMA_STAT(rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
797	EF10_DMA_STAT(rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
798	EF10_DMA_STAT(rx_gtjumbo, RX_GTJUMBO_PKTS),
799	EF10_DMA_STAT(rx_bad_gtjumbo, RX_JABBER_PKTS),
800	EF10_DMA_STAT(rx_overflow, RX_OVERFLOW_PKTS),
801	EF10_DMA_STAT(rx_align_error, RX_ALIGN_ERROR_PKTS),
802	EF10_DMA_STAT(rx_length_error, RX_LENGTH_ERROR_PKTS),
803	EF10_DMA_STAT(rx_nodesc_drops, RX_NODESC_DROPS),
804	GENERIC_SW_STAT(rx_nodesc_trunc),
805	GENERIC_SW_STAT(rx_noskb_drops),
806	EF10_DMA_STAT(rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
807	EF10_DMA_STAT(rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
808	EF10_DMA_STAT(rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
809	EF10_DMA_STAT(rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
810	EF10_DMA_STAT(rx_pm_trunc_qbb, PM_TRUNC_QBB),
811	EF10_DMA_STAT(rx_pm_discard_qbb, PM_DISCARD_QBB),
812	EF10_DMA_STAT(rx_pm_discard_mapping, PM_DISCARD_MAPPING),
813	EF10_DMA_STAT(rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
814	EF10_DMA_STAT(rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
815	EF10_DMA_STAT(rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
816	EF10_DMA_STAT(rx_dp_hlb_fetch, RXDP_EMERGENCY_FETCH_CONDITIONS),
817	EF10_DMA_STAT(rx_dp_hlb_wait, RXDP_EMERGENCY_WAIT_CONDITIONS),
818};
819
820#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_tx_bytes) |		\
821			       (1ULL << EF10_STAT_tx_packets) |		\
822			       (1ULL << EF10_STAT_tx_pause) |		\
823			       (1ULL << EF10_STAT_tx_unicast) |		\
824			       (1ULL << EF10_STAT_tx_multicast) |	\
825			       (1ULL << EF10_STAT_tx_broadcast) |	\
826			       (1ULL << EF10_STAT_rx_bytes) |		\
827			       (1ULL << EF10_STAT_rx_bytes_minus_good_bytes) | \
828			       (1ULL << EF10_STAT_rx_good_bytes) |	\
829			       (1ULL << EF10_STAT_rx_bad_bytes) |	\
830			       (1ULL << EF10_STAT_rx_packets) |		\
831			       (1ULL << EF10_STAT_rx_good) |		\
832			       (1ULL << EF10_STAT_rx_bad) |		\
833			       (1ULL << EF10_STAT_rx_pause) |		\
834			       (1ULL << EF10_STAT_rx_control) |		\
835			       (1ULL << EF10_STAT_rx_unicast) |		\
836			       (1ULL << EF10_STAT_rx_multicast) |	\
837			       (1ULL << EF10_STAT_rx_broadcast) |	\
838			       (1ULL << EF10_STAT_rx_lt64) |		\
839			       (1ULL << EF10_STAT_rx_64) |		\
840			       (1ULL << EF10_STAT_rx_65_to_127) |	\
841			       (1ULL << EF10_STAT_rx_128_to_255) |	\
842			       (1ULL << EF10_STAT_rx_256_to_511) |	\
843			       (1ULL << EF10_STAT_rx_512_to_1023) |	\
844			       (1ULL << EF10_STAT_rx_1024_to_15xx) |	\
845			       (1ULL << EF10_STAT_rx_15xx_to_jumbo) |	\
846			       (1ULL << EF10_STAT_rx_gtjumbo) |		\
847			       (1ULL << EF10_STAT_rx_bad_gtjumbo) |	\
848			       (1ULL << EF10_STAT_rx_overflow) |	\
849			       (1ULL << EF10_STAT_rx_nodesc_drops) |	\
850			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
851			       (1ULL << GENERIC_STAT_rx_noskb_drops))
852
853/* These statistics are only provided by the 10G MAC.  For a 10G/40G
854 * switchable port we do not expose these because they might not
855 * include all the packets they should.
856 */
857#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_tx_control) |	\
858				 (1ULL << EF10_STAT_tx_lt64) |		\
859				 (1ULL << EF10_STAT_tx_64) |		\
860				 (1ULL << EF10_STAT_tx_65_to_127) |	\
861				 (1ULL << EF10_STAT_tx_128_to_255) |	\
862				 (1ULL << EF10_STAT_tx_256_to_511) |	\
863				 (1ULL << EF10_STAT_tx_512_to_1023) |	\
864				 (1ULL << EF10_STAT_tx_1024_to_15xx) |	\
865				 (1ULL << EF10_STAT_tx_15xx_to_jumbo))
866
867/* These statistics are only provided by the 40G MAC.  For a 10G/40G
868 * switchable port we do expose these because the errors will otherwise
869 * be silent.
870 */
871#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_rx_align_error) |	\
872				  (1ULL << EF10_STAT_rx_length_error))
873
874/* These statistics are only provided if the firmware supports the
875 * capability PM_AND_RXDP_COUNTERS.
876 */
877#define HUNT_PM_AND_RXDP_STAT_MASK (					\
878	(1ULL << EF10_STAT_rx_pm_trunc_bb_overflow) |			\
879	(1ULL << EF10_STAT_rx_pm_discard_bb_overflow) |			\
880	(1ULL << EF10_STAT_rx_pm_trunc_vfifo_full) |			\
881	(1ULL << EF10_STAT_rx_pm_discard_vfifo_full) |			\
882	(1ULL << EF10_STAT_rx_pm_trunc_qbb) |				\
883	(1ULL << EF10_STAT_rx_pm_discard_qbb) |				\
884	(1ULL << EF10_STAT_rx_pm_discard_mapping) |			\
885	(1ULL << EF10_STAT_rx_dp_q_disabled_packets) |			\
886	(1ULL << EF10_STAT_rx_dp_di_dropped_packets) |			\
887	(1ULL << EF10_STAT_rx_dp_streaming_packets) |			\
888	(1ULL << EF10_STAT_rx_dp_hlb_fetch) |				\
889	(1ULL << EF10_STAT_rx_dp_hlb_wait))
890
891static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
892{
893	u64 raw_mask = HUNT_COMMON_STAT_MASK;
894	u32 port_caps = efx_mcdi_phy_get_caps(efx);
895	struct efx_ef10_nic_data *nic_data = efx->nic_data;
896
897	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
898		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
899	else
900		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
901
902	if (nic_data->datapath_caps &
903	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
904		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;
905
906	return raw_mask;
907}
908
909static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
910{
911	u64 raw_mask = efx_ef10_raw_stat_mask(efx);
912
913#if BITS_PER_LONG == 64
914	mask[0] = raw_mask;
915#else
916	mask[0] = raw_mask & 0xffffffff;
917	mask[1] = raw_mask >> 32;
918#endif
919}
920
921static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
922{
923	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
924
925	efx_ef10_get_stat_mask(efx, mask);
926	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
927				      mask, names);
928}
929
930static int efx_ef10_try_update_nic_stats(struct efx_nic *efx)
931{
932	struct efx_ef10_nic_data *nic_data = efx->nic_data;
933	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
934	__le64 generation_start, generation_end;
935	u64 *stats = nic_data->stats;
936	__le64 *dma_stats;
937
938	efx_ef10_get_stat_mask(efx, mask);
939
940	dma_stats = efx->stats_buffer.addr;
941	nic_data = efx->nic_data;
942
943	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
944	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
945		return 0;
946	rmb();
947	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
948			     stats, efx->stats_buffer.addr, false);
949	rmb();
950	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
951	if (generation_end != generation_start)
952		return -EAGAIN;
953
954	/* Update derived statistics */
955	efx_nic_fix_nodesc_drop_stat(efx, &stats[EF10_STAT_rx_nodesc_drops]);
956	stats[EF10_STAT_rx_good_bytes] =
957		stats[EF10_STAT_rx_bytes] -
958		stats[EF10_STAT_rx_bytes_minus_good_bytes];
959	efx_update_diff_stat(&stats[EF10_STAT_rx_bad_bytes],
960			     stats[EF10_STAT_rx_bytes_minus_good_bytes]);
961	efx_update_sw_stats(efx, stats);
962	return 0;
963}
964
965
966static size_t efx_ef10_update_stats(struct efx_nic *efx, u64 *full_stats,
967				    struct rtnl_link_stats64 *core_stats)
968{
969	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
970	struct efx_ef10_nic_data *nic_data = efx->nic_data;
971	u64 *stats = nic_data->stats;
972	size_t stats_count = 0, index;
973	int retry;
974
975	efx_ef10_get_stat_mask(efx, mask);
976
977	/* If we're unlucky enough to read statistics during the DMA, wait
978	 * up to 10ms for it to finish (typically takes <500us)
979	 */
980	for (retry = 0; retry < 100; ++retry) {
981		if (efx_ef10_try_update_nic_stats(efx) == 0)
982			break;
983		udelay(100);
984	}
985
986	if (full_stats) {
987		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
988			if (efx_ef10_stat_desc[index].name) {
989				*full_stats++ = stats[index];
990				++stats_count;
991			}
992		}
993	}
994
995	if (core_stats) {
996		core_stats->rx_packets = stats[EF10_STAT_rx_packets];
997		core_stats->tx_packets = stats[EF10_STAT_tx_packets];
998		core_stats->rx_bytes = stats[EF10_STAT_rx_bytes];
999		core_stats->tx_bytes = stats[EF10_STAT_tx_bytes];
1000		core_stats->rx_dropped = stats[EF10_STAT_rx_nodesc_drops] +
1001					 stats[GENERIC_STAT_rx_nodesc_trunc] +
1002					 stats[GENERIC_STAT_rx_noskb_drops];
1003		core_stats->multicast = stats[EF10_STAT_rx_multicast];
1004		core_stats->rx_length_errors =
1005			stats[EF10_STAT_rx_gtjumbo] +
1006			stats[EF10_STAT_rx_length_error];
1007		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
1008		core_stats->rx_frame_errors = stats[EF10_STAT_rx_align_error];
1009		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
1010		core_stats->rx_errors = (core_stats->rx_length_errors +
1011					 core_stats->rx_crc_errors +
1012					 core_stats->rx_frame_errors);
1013	}
1014
1015	return stats_count;
1016}
1017
1018static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
1019{
1020	struct efx_nic *efx = channel->efx;
1021	unsigned int mode, value;
1022	efx_dword_t timer_cmd;
1023
1024	if (channel->irq_moderation) {
1025		mode = 3;
1026		value = channel->irq_moderation - 1;
1027	} else {
1028		mode = 0;
1029		value = 0;
1030	}
1031
1032	if (EFX_EF10_WORKAROUND_35388(efx)) {
1033		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
1034				     EFE_DD_EVQ_IND_TIMER_FLAGS,
1035				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
1036				     ERF_DD_EVQ_IND_TIMER_VAL, value);
1037		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
1038				channel->channel);
1039	} else {
1040		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
1041				     ERF_DZ_TC_TIMER_VAL, value);
1042		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
1043				channel->channel);
1044	}
1045}
1046
1047static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
1048{
1049	wol->supported = 0;
1050	wol->wolopts = 0;
1051	memset(&wol->sopass, 0, sizeof(wol->sopass));
1052}
1053
1054static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
1055{
1056	if (type != 0)
1057		return -EINVAL;
1058	return 0;
1059}
1060
1061static void efx_ef10_mcdi_request(struct efx_nic *efx,
1062				  const efx_dword_t *hdr, size_t hdr_len,
1063				  const efx_dword_t *sdu, size_t sdu_len)
1064{
1065	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1066	u8 *pdu = nic_data->mcdi_buf.addr;
1067
1068	memcpy(pdu, hdr, hdr_len);
1069	memcpy(pdu + hdr_len, sdu, sdu_len);
1070	wmb();
1071
1072	/* The hardware provides 'low' and 'high' (doorbell) registers
1073	 * for passing the 64-bit address of an MCDI request to
1074	 * firmware.  However the dwords are swapped by firmware.  The
1075	 * least significant bits of the doorbell are then 0 for all
1076	 * MCDI requests due to alignment.
1077	 */
1078	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
1079		    ER_DZ_MC_DB_LWRD);
1080	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
1081		    ER_DZ_MC_DB_HWRD);
1082}
1083
1084static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
1085{
1086	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1087	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;
1088
1089	rmb();
1090	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
1091}
1092
1093static void
1094efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
1095			    size_t offset, size_t outlen)
1096{
1097	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1098	const u8 *pdu = nic_data->mcdi_buf.addr;
1099
1100	memcpy(outbuf, pdu + offset, outlen);
1101}
1102
1103static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
1104{
1105	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1106	int rc;
1107
1108	rc = efx_ef10_get_warm_boot_count(efx);
1109	if (rc < 0) {
1110		/* The firmware is presumably in the process of
1111		 * rebooting.  However, we are supposed to report each
1112		 * reboot just once, so we must only do that once we
1113		 * can read and store the updated warm boot count.
1114		 */
1115		return 0;
1116	}
1117
1118	if (rc == nic_data->warm_boot_count)
1119		return 0;
1120
1121	nic_data->warm_boot_count = rc;
1122
1123	/* All our allocations have been reset */
1124	efx_ef10_reset_mc_allocations(efx);
1125
1126	/* The datapath firmware might have been changed */
1127	nic_data->must_check_datapath_caps = true;
1128
1129	/* MAC statistics have been cleared on the NIC; clear the local
1130	 * statistic that we update with efx_update_diff_stat().
1131	 */
1132	nic_data->stats[EF10_STAT_rx_bad_bytes] = 0;
1133
1134	return -EIO;
1135}
1136
1137/* Handle an MSI interrupt
1138 *
1139 * Handle an MSI hardware interrupt.  This routine schedules event
1140 * queue processing.  No interrupt acknowledgement cycle is necessary.
1141 * Also, we never need to check that the interrupt is for us, since
1142 * MSI interrupts cannot be shared.
1143 */
1144static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
1145{
1146	struct efx_msi_context *context = dev_id;
1147	struct efx_nic *efx = context->efx;
1148
1149	netif_vdbg(efx, intr, efx->net_dev,
1150		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
1151
1152	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
1153		/* Note test interrupts */
1154		if (context->index == efx->irq_level)
1155			efx->last_irq_cpu = raw_smp_processor_id();
1156
1157		/* Schedule processing of the channel */
1158		efx_schedule_channel_irq(efx->channel[context->index]);
1159	}
1160
1161	return IRQ_HANDLED;
1162}
1163
1164static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
1165{
1166	struct efx_nic *efx = dev_id;
1167	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1168	struct efx_channel *channel;
1169	efx_dword_t reg;
1170	u32 queues;
1171
1172	/* Read the ISR which also ACKs the interrupts */
1173	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
1174	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);
1175
1176	if (queues == 0)
1177		return IRQ_NONE;
1178
1179	if (likely(soft_enabled)) {
1180		/* Note test interrupts */
1181		if (queues & (1U << efx->irq_level))
1182			efx->last_irq_cpu = raw_smp_processor_id();
1183
1184		efx_for_each_channel(channel, efx) {
1185			if (queues & 1)
1186				efx_schedule_channel_irq(channel);
1187			queues >>= 1;
1188		}
1189	}
1190
1191	netif_vdbg(efx, intr, efx->net_dev,
1192		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1193		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1194
1195	return IRQ_HANDLED;
1196}
1197
1198static void efx_ef10_irq_test_generate(struct efx_nic *efx)
1199{
1200	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);
1201
1202	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);
1203
1204	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
1205	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
1206			    inbuf, sizeof(inbuf), NULL, 0, NULL);
1207}
1208
1209static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
1210{
1211	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
1212				    (tx_queue->ptr_mask + 1) *
1213				    sizeof(efx_qword_t),
1214				    GFP_KERNEL);
1215}
1216
1217/* This writes to the TX_DESC_WPTR and also pushes data */
1218static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
1219					 const efx_qword_t *txd)
1220{
1221	unsigned int write_ptr;
1222	efx_oword_t reg;
1223
1224	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1225	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
1226	reg.qword[0] = *txd;
1227	efx_writeo_page(tx_queue->efx, &reg,
1228			ER_DZ_TX_DESC_UPD, tx_queue->queue);
1229}
1230
1231static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
1232{
1233	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1234						       EFX_BUF_SIZE));
1235	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_TXQ_OUT_LEN);
1236	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
1237	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
1238	struct efx_channel *channel = tx_queue->channel;
1239	struct efx_nic *efx = tx_queue->efx;
1240	size_t inlen, outlen;
1241	dma_addr_t dma_addr;
1242	efx_qword_t *txd;
1243	int rc;
1244	int i;
1245
1246	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
1247	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
1248	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
1249	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
1250	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
1251			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
1252			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
1253	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1254	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1255
1256	dma_addr = tx_queue->txd.buf.dma_addr;
1257
1258	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
1259		  tx_queue->queue, entries, (u64)dma_addr);
1260
1261	for (i = 0; i < entries; ++i) {
1262		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
1263		dma_addr += EFX_BUF_SIZE;
1264	}
1265
1266	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);
1267
1268	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
1269			  outbuf, sizeof(outbuf), &outlen);
1270	if (rc)
1271		goto fail;
1272
1273	/* A previous user of this TX queue might have set us up the
1274	 * bomb by writing a descriptor to the TX push collector but
1275	 * not the doorbell.  (Each collector belongs to a port, not a
1276	 * queue or function, so cannot easily be reset.)  We must
1277	 * attempt to push a no-op descriptor in its place.
1278	 */
1279	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
1280	tx_queue->insert_count = 1;
1281	txd = efx_tx_desc(tx_queue, 0);
1282	EFX_POPULATE_QWORD_4(*txd,
1283			     ESF_DZ_TX_DESC_IS_OPT, true,
1284			     ESF_DZ_TX_OPTION_TYPE,
1285			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
1286			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
1287			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
1288	tx_queue->write_count = 1;
1289	wmb();
1290	efx_ef10_push_tx_desc(tx_queue, txd);
1291
1292	return;
1293
1294fail:
1295	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
1296		    tx_queue->queue);
1297}
1298
1299static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
1300{
1301	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
1302	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_TXQ_OUT_LEN);
1303	struct efx_nic *efx = tx_queue->efx;
1304	size_t outlen;
1305	int rc;
1306
1307	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
1308		       tx_queue->queue);
1309
1310	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
1311			  outbuf, sizeof(outbuf), &outlen);
1312
1313	if (rc && rc != -EALREADY)
1314		goto fail;
1315
1316	return;
1317
1318fail:
1319	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
1320			       outbuf, outlen, rc);
1321}
1322
1323static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
1324{
1325	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
1326}
1327
1328/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
1329static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
1330{
1331	unsigned int write_ptr;
1332	efx_dword_t reg;
1333
1334	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1335	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
1336	efx_writed_page(tx_queue->efx, &reg,
1337			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
1338}
1339
1340static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
1341{
1342	unsigned int old_write_count = tx_queue->write_count;
1343	struct efx_tx_buffer *buffer;
1344	unsigned int write_ptr;
1345	efx_qword_t *txd;
1346
1347	tx_queue->xmit_more_available = false;
1348	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
1349		return;
1350
1351	do {
1352		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
1353		buffer = &tx_queue->buffer[write_ptr];
1354		txd = efx_tx_desc(tx_queue, write_ptr);
1355		++tx_queue->write_count;
1356
1357		/* Create TX descriptor ring entry */
1358		if (buffer->flags & EFX_TX_BUF_OPTION) {
1359			*txd = buffer->option;
1360		} else {
1361			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
1362			EFX_POPULATE_QWORD_3(
1363				*txd,
1364				ESF_DZ_TX_KER_CONT,
1365				buffer->flags & EFX_TX_BUF_CONT,
1366				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
1367				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
1368		}
1369	} while (tx_queue->write_count != tx_queue->insert_count);
1370
1371	wmb(); /* Ensure descriptors are written before they are fetched */
1372
1373	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
1374		txd = efx_tx_desc(tx_queue,
1375				  old_write_count & tx_queue->ptr_mask);
1376		efx_ef10_push_tx_desc(tx_queue, txd);
1377		++tx_queue->pushes;
1378	} else {
1379		efx_ef10_notify_tx_desc(tx_queue);
1380	}
1381}
1382
1383static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context)
1384{
1385	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
1386	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
1387	size_t outlen;
1388	int rc;
1389
1390	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
1391		       EVB_PORT_ID_ASSIGNED);
1392	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE,
1393		       MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE);
1394	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES,
1395		       EFX_MAX_CHANNELS);
1396
1397	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
1398		outbuf, sizeof(outbuf), &outlen);
1399	if (rc != 0)
1400		return rc;
1401
1402	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
1403		return -EIO;
1404
1405	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);
1406
1407	return 0;
1408}
1409
1410static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
1411{
1412	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
1413	int rc;
1414
1415	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
1416		       context);
1417
1418	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
1419			    NULL, 0, NULL);
1420	WARN_ON(rc != 0);
1421}
1422
1423static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context)
1424{
1425	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
1426	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
1427	int i, rc;
1428
1429	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
1430		       context);
1431	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1432		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);
1433
1434	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
1435		MCDI_PTR(tablebuf,
1436			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
1437				(u8) efx->rx_indir_table[i];
1438
1439	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
1440			  sizeof(tablebuf), NULL, 0, NULL);
1441	if (rc != 0)
1442		return rc;
1443
1444	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
1445		       context);
1446	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
1447		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
1448	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
1449		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
1450			efx->rx_hash_key[i];
1451
1452	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
1453			    sizeof(keybuf), NULL, 0, NULL);
1454}
1455
1456static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
1457{
1458	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1459
1460	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
1461		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
1462	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1463}
1464
1465static void efx_ef10_rx_push_rss_config(struct efx_nic *efx)
1466{
1467	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1468	int rc;
1469
1470	netif_dbg(efx, drv, efx->net_dev, "pushing RSS config\n");
1471
1472	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID) {
1473		rc = efx_ef10_alloc_rss_context(efx, &nic_data->rx_rss_context);
1474		if (rc != 0)
1475			goto fail;
1476	}
1477
1478	rc = efx_ef10_populate_rss_table(efx, nic_data->rx_rss_context);
1479	if (rc != 0)
1480		goto fail;
1481
1482	return;
1483
1484fail:
1485	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
1486}
1487
1488static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
1489{
1490	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
1491				    (rx_queue->ptr_mask + 1) *
1492				    sizeof(efx_qword_t),
1493				    GFP_KERNEL);
1494}
1495
1496static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
1497{
1498	MCDI_DECLARE_BUF(inbuf,
1499			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
1500						EFX_BUF_SIZE));
1501	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_RXQ_OUT_LEN);
1502	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1503	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
1504	struct efx_nic *efx = rx_queue->efx;
1505	size_t inlen, outlen;
1506	dma_addr_t dma_addr;
1507	int rc;
1508	int i;
1509
1510	rx_queue->scatter_n = 0;
1511	rx_queue->scatter_len = 0;
1512
1513	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
1514	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
1515	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
1516	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
1517		       efx_rx_queue_index(rx_queue));
1518	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
1519			      INIT_RXQ_IN_FLAG_PREFIX, 1,
1520			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
1521	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
1522	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
1523
1524	dma_addr = rx_queue->rxd.buf.dma_addr;
1525
1526	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
1527		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);
1528
1529	for (i = 0; i < entries; ++i) {
1530		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
1531		dma_addr += EFX_BUF_SIZE;
1532	}
1533
1534	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);
1535
1536	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
1537			  outbuf, sizeof(outbuf), &outlen);
1538	if (rc)
1539		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
1540			    efx_rx_queue_index(rx_queue));
1541}
1542
1543static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
1544{
1545	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
1546	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_RXQ_OUT_LEN);
1547	struct efx_nic *efx = rx_queue->efx;
1548	size_t outlen;
1549	int rc;
1550
1551	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
1552		       efx_rx_queue_index(rx_queue));
1553
1554	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
1555			  outbuf, sizeof(outbuf), &outlen);
1556
1557	if (rc && rc != -EALREADY)
1558		goto fail;
1559
1560	return;
1561
1562fail:
1563	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
1564			       outbuf, outlen, rc);
1565}
1566
1567static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
1568{
1569	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
1570}
1571
1572/* This creates an entry in the RX descriptor queue */
1573static inline void
1574efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
1575{
1576	struct efx_rx_buffer *rx_buf;
1577	efx_qword_t *rxd;
1578
1579	rxd = efx_rx_desc(rx_queue, index);
1580	rx_buf = efx_rx_buffer(rx_queue, index);
1581	EFX_POPULATE_QWORD_2(*rxd,
1582			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
1583			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
1584}
1585
1586static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
1587{
1588	struct efx_nic *efx = rx_queue->efx;
1589	unsigned int write_count;
1590	efx_dword_t reg;
1591
1592	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
1593	write_count = rx_queue->added_count & ~7;
1594	if (rx_queue->notified_count == write_count)
1595		return;
1596
1597	do
1598		efx_ef10_build_rx_desc(
1599			rx_queue,
1600			rx_queue->notified_count & rx_queue->ptr_mask);
1601	while (++rx_queue->notified_count != write_count);
1602
1603	wmb();
1604	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
1605			     write_count & rx_queue->ptr_mask);
1606	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
1607			efx_rx_queue_index(rx_queue));
1608}
1609
1610static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;
1611
1612static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
1613{
1614	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
1615	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
1616	efx_qword_t event;
1617
1618	EFX_POPULATE_QWORD_2(event,
1619			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
1620			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);
1621
1622	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
1623
1624	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
1625	 * already swapped the data to little-endian order.
1626	 */
1627	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
1628	       sizeof(efx_qword_t));
1629
1630	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
1631			   inbuf, sizeof(inbuf), 0,
1632			   efx_ef10_rx_defer_refill_complete, 0);
1633}
1634
1635static void
1636efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
1637				  int rc, efx_dword_t *outbuf,
1638				  size_t outlen_actual)
1639{
1640	/* nothing to do */
1641}
1642
1643static int efx_ef10_ev_probe(struct efx_channel *channel)
1644{
1645	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
1646				    (channel->eventq_mask + 1) *
1647				    sizeof(efx_qword_t),
1648				    GFP_KERNEL);
1649}
1650
1651static int efx_ef10_ev_init(struct efx_channel *channel)
1652{
1653	MCDI_DECLARE_BUF(inbuf,
1654			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
1655						EFX_BUF_SIZE));
1656	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
1657	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
1658	struct efx_nic *efx = channel->efx;
1659	struct efx_ef10_nic_data *nic_data;
1660	bool supports_rx_merge;
1661	size_t inlen, outlen;
1662	dma_addr_t dma_addr;
1663	int rc;
1664	int i;
1665
1666	nic_data = efx->nic_data;
1667	supports_rx_merge =
1668		!!(nic_data->datapath_caps &
1669		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);
1670
1671	/* Fill event queue with all ones (i.e. empty events) */
1672	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1673
1674	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
1675	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
1676	/* INIT_EVQ expects index in vector table, not absolute */
1677	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
1678	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
1679			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
1680			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
1681			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
1682			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
1683	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
1684		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
1685	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
1686	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
1687	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
1688		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
1689	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);
1690
1691	dma_addr = channel->eventq.buf.dma_addr;
1692	for (i = 0; i < entries; ++i) {
1693		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
1694		dma_addr += EFX_BUF_SIZE;
1695	}
1696
1697	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);
1698
1699	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
1700			  outbuf, sizeof(outbuf), &outlen);
1701	/* IRQ return is ignored */
1702	return rc;
1703}
1704
1705static void efx_ef10_ev_fini(struct efx_channel *channel)
1706{
1707	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
1708	MCDI_DECLARE_BUF(outbuf, MC_CMD_FINI_EVQ_OUT_LEN);
1709	struct efx_nic *efx = channel->efx;
1710	size_t outlen;
1711	int rc;
1712
1713	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);
1714
1715	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
1716			  outbuf, sizeof(outbuf), &outlen);
1717
1718	if (rc && rc != -EALREADY)
1719		goto fail;
1720
1721	return;
1722
1723fail:
1724	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
1725			       outbuf, outlen, rc);
1726}
1727
1728static void efx_ef10_ev_remove(struct efx_channel *channel)
1729{
1730	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
1731}
1732
1733static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
1734					   unsigned int rx_queue_label)
1735{
1736	struct efx_nic *efx = rx_queue->efx;
1737
1738	netif_info(efx, hw, efx->net_dev,
1739		   "rx event arrived on queue %d labeled as queue %u\n",
1740		   efx_rx_queue_index(rx_queue), rx_queue_label);
1741
1742	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1743}
1744
1745static void
1746efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
1747			     unsigned int actual, unsigned int expected)
1748{
1749	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
1750	struct efx_nic *efx = rx_queue->efx;
1751
1752	netif_info(efx, hw, efx->net_dev,
1753		   "dropped %d events (index=%d expected=%d)\n",
1754		   dropped, actual, expected);
1755
1756	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1757}
1758
1759/* partially received RX was aborted. clean up. */
1760static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
1761{
1762	unsigned int rx_desc_ptr;
1763
1764	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
1765		  "scattered RX aborted (dropping %u buffers)\n",
1766		  rx_queue->scatter_n);
1767
1768	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;
1769
1770	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
1771		      0, EFX_RX_PKT_DISCARD);
1772
1773	rx_queue->removed_count += rx_queue->scatter_n;
1774	rx_queue->scatter_n = 0;
1775	rx_queue->scatter_len = 0;
1776	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
1777}
1778
1779static int efx_ef10_handle_rx_event(struct efx_channel *channel,
1780				    const efx_qword_t *event)
1781{
1782	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
1783	unsigned int n_descs, n_packets, i;
1784	struct efx_nic *efx = channel->efx;
1785	struct efx_rx_queue *rx_queue;
1786	bool rx_cont;
1787	u16 flags = 0;
1788
1789	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1790		return 0;
1791
1792	/* Basic packet information */
1793	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
1794	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
1795	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
1796	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
1797	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);
1798
1799	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
1800		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
1801			    EFX_QWORD_FMT "\n",
1802			    EFX_QWORD_VAL(*event));
1803
1804	rx_queue = efx_channel_get_rx_queue(channel);
1805
1806	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
1807		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);
1808
1809	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
1810		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1811
1812	if (n_descs != rx_queue->scatter_n + 1) {
1813		struct efx_ef10_nic_data *nic_data = efx->nic_data;
1814
1815		/* detect rx abort */
1816		if (unlikely(n_descs == rx_queue->scatter_n)) {
1817			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
1818				netdev_WARN(efx->net_dev,
1819					    "invalid RX abort: scatter_n=%u event="
1820					    EFX_QWORD_FMT "\n",
1821					    rx_queue->scatter_n,
1822					    EFX_QWORD_VAL(*event));
1823			efx_ef10_handle_rx_abort(rx_queue);
1824			return 0;
1825		}
1826
1827		/* Check that RX completion merging is valid, i.e.
1828		 * the current firmware supports it and this is a
1829		 * non-scattered packet.
1830		 */
1831		if (!(nic_data->datapath_caps &
1832		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
1833		    rx_queue->scatter_n != 0 || rx_cont) {
1834			efx_ef10_handle_rx_bad_lbits(
1835				rx_queue, next_ptr_lbits,
1836				(rx_queue->removed_count +
1837				 rx_queue->scatter_n + 1) &
1838				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
1839			return 0;
1840		}
1841
1842		/* Merged completion for multiple non-scattered packets */
1843		rx_queue->scatter_n = 1;
1844		rx_queue->scatter_len = 0;
1845		n_packets = n_descs;
1846		++channel->n_rx_merge_events;
1847		channel->n_rx_merge_packets += n_packets;
1848		flags |= EFX_RX_PKT_PREFIX_LEN;
1849	} else {
1850		++rx_queue->scatter_n;
1851		rx_queue->scatter_len += rx_bytes;
1852		if (rx_cont)
1853			return 0;
1854		n_packets = 1;
1855	}
1856
1857	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
1858		flags |= EFX_RX_PKT_DISCARD;
1859
1860	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
1861		channel->n_rx_ip_hdr_chksum_err += n_packets;
1862	} else if (unlikely(EFX_QWORD_FIELD(*event,
1863					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
1864		channel->n_rx_tcp_udp_chksum_err += n_packets;
1865	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
1866		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
1867		flags |= EFX_RX_PKT_CSUMMED;
1868	}
1869
1870	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
1871		flags |= EFX_RX_PKT_TCP;
1872
1873	channel->irq_mod_score += 2 * n_packets;
1874
1875	/* Handle received packet(s) */
1876	for (i = 0; i < n_packets; i++) {
1877		efx_rx_packet(rx_queue,
1878			      rx_queue->removed_count & rx_queue->ptr_mask,
1879			      rx_queue->scatter_n, rx_queue->scatter_len,
1880			      flags);
1881		rx_queue->removed_count += rx_queue->scatter_n;
1882	}
1883
1884	rx_queue->scatter_n = 0;
1885	rx_queue->scatter_len = 0;
1886
1887	return n_packets;
1888}
1889
1890static int
1891efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
1892{
1893	struct efx_nic *efx = channel->efx;
1894	struct efx_tx_queue *tx_queue;
1895	unsigned int tx_ev_desc_ptr;
1896	unsigned int tx_ev_q_label;
1897	int tx_descs = 0;
1898
1899	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
1900		return 0;
1901
1902	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
1903		return 0;
1904
1905	/* Transmit completion */
1906	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
1907	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
1908	tx_queue = efx_channel_get_tx_queue(channel,
1909					    tx_ev_q_label % EFX_TXQ_TYPES);
1910	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
1911		    tx_queue->ptr_mask);
1912	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);
1913
1914	return tx_descs;
1915}
1916
1917static void
1918efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1919{
1920	struct efx_nic *efx = channel->efx;
1921	int subcode;
1922
1923	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);
1924
1925	switch (subcode) {
1926	case ESE_DZ_DRV_TIMER_EV:
1927	case ESE_DZ_DRV_WAKE_UP_EV:
1928		break;
1929	case ESE_DZ_DRV_START_UP_EV:
1930		/* event queue init complete. ok. */
1931		break;
1932	default:
1933		netif_err(efx, hw, efx->net_dev,
1934			  "channel %d unknown driver event type %d"
1935			  " (data " EFX_QWORD_FMT ")\n",
1936			  channel->channel, subcode,
1937			  EFX_QWORD_VAL(*event));
1938
1939	}
1940}
1941
1942static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
1943						   efx_qword_t *event)
1944{
1945	struct efx_nic *efx = channel->efx;
1946	u32 subcode;
1947
1948	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);
1949
1950	switch (subcode) {
1951	case EFX_EF10_TEST:
1952		channel->event_test_cpu = raw_smp_processor_id();
1953		break;
1954	case EFX_EF10_REFILL:
1955		/* The queue must be empty, so we won't receive any rx
1956		 * events, so efx_process_channel() won't refill the
1957		 * queue. Refill it here
1958		 */
1959		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
1960		break;
1961	default:
1962		netif_err(efx, hw, efx->net_dev,
1963			  "channel %d unknown driver event type %u"
1964			  " (data " EFX_QWORD_FMT ")\n",
1965			  channel->channel, (unsigned) subcode,
1966			  EFX_QWORD_VAL(*event));
1967	}
1968}
1969
1970static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
1971{
1972	struct efx_nic *efx = channel->efx;
1973	efx_qword_t event, *p_event;
1974	unsigned int read_ptr;
1975	int ev_code;
1976	int tx_descs = 0;
1977	int spent = 0;
1978
1979	if (quota <= 0)
1980		return spent;
1981
1982	read_ptr = channel->eventq_read_ptr;
1983
1984	for (;;) {
1985		p_event = efx_event(channel, read_ptr);
1986		event = *p_event;
1987
1988		if (!efx_event_present(&event))
1989			break;
1990
1991		EFX_SET_QWORD(*p_event);
1992
1993		++read_ptr;
1994
1995		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);
1996
1997		netif_vdbg(efx, drv, efx->net_dev,
1998			   "processing event on %d " EFX_QWORD_FMT "\n",
1999			   channel->channel, EFX_QWORD_VAL(event));
2000
2001		switch (ev_code) {
2002		case ESE_DZ_EV_CODE_MCDI_EV:
2003			efx_mcdi_process_event(channel, &event);
2004			break;
2005		case ESE_DZ_EV_CODE_RX_EV:
2006			spent += efx_ef10_handle_rx_event(channel, &event);
2007			if (spent >= quota) {
2008				/* XXX can we split a merged event to
2009				 * avoid going over-quota?
2010				 */
2011				spent = quota;
2012				goto out;
2013			}
2014			break;
2015		case ESE_DZ_EV_CODE_TX_EV:
2016			tx_descs += efx_ef10_handle_tx_event(channel, &event);
2017			if (tx_descs > efx->txq_entries) {
2018				spent = quota;
2019				goto out;
2020			} else if (++spent == quota) {
2021				goto out;
2022			}
2023			break;
2024		case ESE_DZ_EV_CODE_DRIVER_EV:
2025			efx_ef10_handle_driver_event(channel, &event);
2026			if (++spent == quota)
2027				goto out;
2028			break;
2029		case EFX_EF10_DRVGEN_EV:
2030			efx_ef10_handle_driver_generated_event(channel, &event);
2031			break;
2032		default:
2033			netif_err(efx, hw, efx->net_dev,
2034				  "channel %d unknown event type %d"
2035				  " (data " EFX_QWORD_FMT ")\n",
2036				  channel->channel, ev_code,
2037				  EFX_QWORD_VAL(event));
2038		}
2039	}
2040
2041out:
2042	channel->eventq_read_ptr = read_ptr;
2043	return spent;
2044}
2045
2046static void efx_ef10_ev_read_ack(struct efx_channel *channel)
2047{
2048	struct efx_nic *efx = channel->efx;
2049	efx_dword_t rptr;
2050
2051	if (EFX_EF10_WORKAROUND_35388(efx)) {
2052		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
2053			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
2054		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
2055			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));
2056
2057		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2058				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
2059				     ERF_DD_EVQ_IND_RPTR,
2060				     (channel->eventq_read_ptr &
2061				      channel->eventq_mask) >>
2062				     ERF_DD_EVQ_IND_RPTR_WIDTH);
2063		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2064				channel->channel);
2065		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
2066				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
2067				     ERF_DD_EVQ_IND_RPTR,
2068				     channel->eventq_read_ptr &
2069				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
2070		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
2071				channel->channel);
2072	} else {
2073		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
2074				     channel->eventq_read_ptr &
2075				     channel->eventq_mask);
2076		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
2077	}
2078}
2079
2080static void efx_ef10_ev_test_generate(struct efx_channel *channel)
2081{
2082	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
2083	struct efx_nic *efx = channel->efx;
2084	efx_qword_t event;
2085	int rc;
2086
2087	EFX_POPULATE_QWORD_2(event,
2088			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
2089			     ESF_DZ_EV_DATA, EFX_EF10_TEST);
2090
2091	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);
2092
2093	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
2094	 * already swapped the data to little-endian order.
2095	 */
2096	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
2097	       sizeof(efx_qword_t));
2098
2099	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
2100			  NULL, 0, NULL);
2101	if (rc != 0)
2102		goto fail;
2103
2104	return;
2105
2106fail:
2107	WARN_ON(true);
2108	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2109}
2110
2111void efx_ef10_handle_drain_event(struct efx_nic *efx)
2112{
2113	if (atomic_dec_and_test(&efx->active_queues))
2114		wake_up(&efx->flush_wq);
2115
2116	WARN_ON(atomic_read(&efx->active_queues) < 0);
2117}
2118
2119static int efx_ef10_fini_dmaq(struct efx_nic *efx)
2120{
2121	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2122	struct efx_channel *channel;
2123	struct efx_tx_queue *tx_queue;
2124	struct efx_rx_queue *rx_queue;
2125	int pending;
2126
2127	/* If the MC has just rebooted, the TX/RX queues will have already been
2128	 * torn down, but efx->active_queues needs to be set to zero.
2129	 */
2130	if (nic_data->must_realloc_vis) {
2131		atomic_set(&efx->active_queues, 0);
2132		return 0;
2133	}
2134
2135	/* Do not attempt to write to the NIC during EEH recovery */
2136	if (efx->state != STATE_RECOVERY) {
2137		efx_for_each_channel(channel, efx) {
2138			efx_for_each_channel_rx_queue(rx_queue, channel)
2139				efx_ef10_rx_fini(rx_queue);
2140			efx_for_each_channel_tx_queue(tx_queue, channel)
2141				efx_ef10_tx_fini(tx_queue);
2142		}
2143
2144		wait_event_timeout(efx->flush_wq,
2145				   atomic_read(&efx->active_queues) == 0,
2146				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
2147		pending = atomic_read(&efx->active_queues);
2148		if (pending) {
2149			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
2150				  pending);
2151			return -ETIMEDOUT;
2152		}
2153	}
2154
2155	return 0;
2156}
2157
2158static void efx_ef10_prepare_flr(struct efx_nic *efx)
2159{
2160	atomic_set(&efx->active_queues, 0);
2161}
2162
2163static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
2164				  const struct efx_filter_spec *right)
2165{
2166	if ((left->match_flags ^ right->match_flags) |
2167	    ((left->flags ^ right->flags) &
2168	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
2169		return false;
2170
2171	return memcmp(&left->outer_vid, &right->outer_vid,
2172		      sizeof(struct efx_filter_spec) -
2173		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
2174}
2175
2176static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
2177{
2178	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
2179	return jhash2((const u32 *)&spec->outer_vid,
2180		      (sizeof(struct efx_filter_spec) -
2181		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
2182		      0);
2183	/* XXX should we randomise the initval? */
2184}
2185
2186/* Decide whether a filter should be exclusive or else should allow
2187 * delivery to additional recipients.  Currently we decide that
2188 * filters for specific local unicast MAC and IP addresses are
2189 * exclusive.
2190 */
2191static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
2192{
2193	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
2194	    !is_multicast_ether_addr(spec->loc_mac))
2195		return true;
2196
2197	if ((spec->match_flags &
2198	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
2199	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
2200		if (spec->ether_type == htons(ETH_P_IP) &&
2201		    !ipv4_is_multicast(spec->loc_host[0]))
2202			return true;
2203		if (spec->ether_type == htons(ETH_P_IPV6) &&
2204		    ((const u8 *)spec->loc_host)[0] != 0xff)
2205			return true;
2206	}
2207
2208	return false;
2209}
2210
2211static struct efx_filter_spec *
2212efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
2213			   unsigned int filter_idx)
2214{
2215	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
2216					  ~EFX_EF10_FILTER_FLAGS);
2217}
2218
2219static unsigned int
2220efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
2221			   unsigned int filter_idx)
2222{
2223	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
2224}
2225
2226static void
2227efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
2228			  unsigned int filter_idx,
2229			  const struct efx_filter_spec *spec,
2230			  unsigned int flags)
2231{
2232	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
2233}
2234
2235static void efx_ef10_filter_push_prep(struct efx_nic *efx,
2236				      const struct efx_filter_spec *spec,
2237				      efx_dword_t *inbuf, u64 handle,
2238				      bool replacing)
2239{
2240	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2241
2242	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);
2243
2244	if (replacing) {
2245		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2246			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
2247		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
2248	} else {
2249		u32 match_fields = 0;
2250
2251		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2252			       efx_ef10_filter_is_exclusive(spec) ?
2253			       MC_CMD_FILTER_OP_IN_OP_INSERT :
2254			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);
2255
2256		/* Convert match flags and values.  Unlike almost
2257		 * everything else in MCDI, these fields are in
2258		 * network byte order.
2259		 */
2260		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
2261			match_fields |=
2262				is_multicast_ether_addr(spec->loc_mac) ?
2263				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
2264				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
2265#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
2266		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
2267			match_fields |=					     \
2268				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
2269				mcdi_field ## _LBN;			     \
2270			BUILD_BUG_ON(					     \
2271				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
2272				sizeof(spec->gen_field));		     \
2273			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
2274			       &spec->gen_field, sizeof(spec->gen_field));   \
2275		}
2276		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
2277		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
2278		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
2279		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
2280		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
2281		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
2282		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
2283		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
2284		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
2285		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
2286#undef COPY_FIELD
2287		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
2288			       match_fields);
2289	}
2290
2291	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);
2292	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
2293		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2294		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
2295		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
2296	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
2297		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
2298	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
2299		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
2300		       0 : spec->dmaq_id);
2301	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
2302		       (spec->flags & EFX_FILTER_FLAG_RX_RSS) ?
2303		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
2304		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
2305	if (spec->flags & EFX_FILTER_FLAG_RX_RSS)
2306		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
2307			       spec->rss_context !=
2308			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
2309			       spec->rss_context : nic_data->rx_rss_context);
2310}
2311
2312static int efx_ef10_filter_push(struct efx_nic *efx,
2313				const struct efx_filter_spec *spec,
2314				u64 *handle, bool replacing)
2315{
2316	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2317	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
2318	int rc;
2319
2320	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
2321	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2322			  outbuf, sizeof(outbuf), NULL);
2323	if (rc == 0)
2324		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2325	if (rc == -ENOSPC)
2326		rc = -EBUSY; /* to match efx_farch_filter_insert() */
2327	return rc;
2328}
2329
2330static int efx_ef10_filter_rx_match_pri(struct efx_ef10_filter_table *table,
2331					enum efx_filter_match_flags match_flags)
2332{
2333	unsigned int match_pri;
2334
2335	for (match_pri = 0;
2336	     match_pri < table->rx_match_count;
2337	     match_pri++)
2338		if (table->rx_match_flags[match_pri] == match_flags)
2339			return match_pri;
2340
2341	return -EPROTONOSUPPORT;
2342}
2343
2344static s32 efx_ef10_filter_insert(struct efx_nic *efx,
2345				  struct efx_filter_spec *spec,
2346				  bool replace_equal)
2347{
2348	struct efx_ef10_filter_table *table = efx->filter_state;
2349	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2350	struct efx_filter_spec *saved_spec;
2351	unsigned int match_pri, hash;
2352	unsigned int priv_flags;
2353	bool replacing = false;
2354	int ins_index = -1;
2355	DEFINE_WAIT(wait);
2356	bool is_mc_recip;
2357	s32 rc;
2358
2359	/* For now, only support RX filters */
2360	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
2361	    EFX_FILTER_FLAG_RX)
2362		return -EINVAL;
2363
2364	rc = efx_ef10_filter_rx_match_pri(table, spec->match_flags);
2365	if (rc < 0)
2366		return rc;
2367	match_pri = rc;
2368
2369	hash = efx_ef10_filter_hash(spec);
2370	is_mc_recip = efx_filter_is_mc_recipient(spec);
2371	if (is_mc_recip)
2372		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
2373
2374	/* Find any existing filters with the same match tuple or
2375	 * else a free slot to insert at.  If any of them are busy,
2376	 * we have to wait and retry.
2377	 */
2378	for (;;) {
2379		unsigned int depth = 1;
2380		unsigned int i;
2381
2382		spin_lock_bh(&efx->filter_lock);
2383
2384		for (;;) {
2385			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2386			saved_spec = efx_ef10_filter_entry_spec(table, i);
2387
2388			if (!saved_spec) {
2389				if (ins_index < 0)
2390					ins_index = i;
2391			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2392				if (table->entry[i].spec &
2393				    EFX_EF10_FILTER_FLAG_BUSY)
2394					break;
2395				if (spec->priority < saved_spec->priority &&
2396				    spec->priority != EFX_FILTER_PRI_AUTO) {
2397					rc = -EPERM;
2398					goto out_unlock;
2399				}
2400				if (!is_mc_recip) {
2401					/* This is the only one */
2402					if (spec->priority ==
2403					    saved_spec->priority &&
2404					    !replace_equal) {
2405						rc = -EEXIST;
2406						goto out_unlock;
2407					}
2408					ins_index = i;
2409					goto found;
2410				} else if (spec->priority >
2411					   saved_spec->priority ||
2412					   (spec->priority ==
2413					    saved_spec->priority &&
2414					    replace_equal)) {
2415					if (ins_index < 0)
2416						ins_index = i;
2417					else
2418						__set_bit(depth, mc_rem_map);
2419				}
2420			}
2421
2422			/* Once we reach the maximum search depth, use
2423			 * the first suitable slot or return -EBUSY if
2424			 * there was none
2425			 */
2426			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2427				if (ins_index < 0) {
2428					rc = -EBUSY;
2429					goto out_unlock;
2430				}
2431				goto found;
2432			}
2433
2434			++depth;
2435		}
2436
2437		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2438		spin_unlock_bh(&efx->filter_lock);
2439		schedule();
2440	}
2441
2442found:
2443	/* Create a software table entry if necessary, and mark it
2444	 * busy.  We might yet fail to insert, but any attempt to
2445	 * insert a conflicting filter while we're waiting for the
2446	 * firmware must find the busy entry.
2447	 */
2448	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2449	if (saved_spec) {
2450		if (spec->priority == EFX_FILTER_PRI_AUTO &&
2451		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
2452			/* Just make sure it won't be removed */
2453			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
2454				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2455			table->entry[ins_index].spec &=
2456				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2457			rc = ins_index;
2458			goto out_unlock;
2459		}
2460		replacing = true;
2461		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
2462	} else {
2463		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2464		if (!saved_spec) {
2465			rc = -ENOMEM;
2466			goto out_unlock;
2467		}
2468		*saved_spec = *spec;
2469		priv_flags = 0;
2470	}
2471	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2472				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);
2473
2474	/* Mark lower-priority multicast recipients busy prior to removal */
2475	if (is_mc_recip) {
2476		unsigned int depth, i;
2477
2478		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2479			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2480			if (test_bit(depth, mc_rem_map))
2481				table->entry[i].spec |=
2482					EFX_EF10_FILTER_FLAG_BUSY;
2483		}
2484	}
2485
2486	spin_unlock_bh(&efx->filter_lock);
2487
2488	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
2489				  replacing);
2490
2491	/* Finalise the software table entry */
2492	spin_lock_bh(&efx->filter_lock);
2493	if (rc == 0) {
2494		if (replacing) {
2495			/* Update the fields that may differ */
2496			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
2497				saved_spec->flags |=
2498					EFX_FILTER_FLAG_RX_OVER_AUTO;
2499			saved_spec->priority = spec->priority;
2500			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
2501			saved_spec->flags |= spec->flags;
2502			saved_spec->rss_context = spec->rss_context;
2503			saved_spec->dmaq_id = spec->dmaq_id;
2504		}
2505	} else if (!replacing) {
2506		kfree(saved_spec);
2507		saved_spec = NULL;
2508	}
2509	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);
2510
2511	/* Remove and finalise entries for lower-priority multicast
2512	 * recipients
2513	 */
2514	if (is_mc_recip) {
2515		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2516		unsigned int depth, i;
2517
2518		memset(inbuf, 0, sizeof(inbuf));
2519
2520		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
2521			if (!test_bit(depth, mc_rem_map))
2522				continue;
2523
2524			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2525			saved_spec = efx_ef10_filter_entry_spec(table, i);
2526			priv_flags = efx_ef10_filter_entry_flags(table, i);
2527
2528			if (rc == 0) {
2529				spin_unlock_bh(&efx->filter_lock);
2530				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2531					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2532				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2533					       table->entry[i].handle);
2534				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2535						  inbuf, sizeof(inbuf),
2536						  NULL, 0, NULL);
2537				spin_lock_bh(&efx->filter_lock);
2538			}
2539
2540			if (rc == 0) {
2541				kfree(saved_spec);
2542				saved_spec = NULL;
2543				priv_flags = 0;
2544			} else {
2545				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
2546			}
2547			efx_ef10_filter_set_entry(table, i, saved_spec,
2548						  priv_flags);
2549		}
2550	}
2551
2552	/* If successful, return the inserted filter ID */
2553	if (rc == 0)
2554		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;
2555
2556	wake_up_all(&table->waitq);
2557out_unlock:
2558	spin_unlock_bh(&efx->filter_lock);
2559	finish_wait(&table->waitq, &wait);
2560	return rc;
2561}
2562
2563static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
2564{
2565	/* no need to do anything here on EF10 */
2566}
2567
2568/* Remove a filter.
2569 * If !by_index, remove by ID
2570 * If by_index, remove by index
2571 * Filter ID may come from userland and must be range-checked.
2572 */
2573static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
2574					   unsigned int priority_mask,
2575					   u32 filter_id, bool by_index)
2576{
2577	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2578	struct efx_ef10_filter_table *table = efx->filter_state;
2579	MCDI_DECLARE_BUF(inbuf,
2580			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2581			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2582	struct efx_filter_spec *spec;
2583	DEFINE_WAIT(wait);
2584	int rc;
2585
2586	/* Find the software table entry and mark it busy.  Don't
2587	 * remove it yet; any attempt to update while we're waiting
2588	 * for the firmware must find the busy entry.
2589	 */
2590	for (;;) {
2591		spin_lock_bh(&efx->filter_lock);
2592		if (!(table->entry[filter_idx].spec &
2593		      EFX_EF10_FILTER_FLAG_BUSY))
2594			break;
2595		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
2596		spin_unlock_bh(&efx->filter_lock);
2597		schedule();
2598	}
2599
2600	spec = efx_ef10_filter_entry_spec(table, filter_idx);
2601	if (!spec ||
2602	    (!by_index &&
2603	     efx_ef10_filter_rx_match_pri(table, spec->match_flags) !=
2604	     filter_id / HUNT_FILTER_TBL_ROWS)) {
2605		rc = -ENOENT;
2606		goto out_unlock;
2607	}
2608
2609	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
2610	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
2611		/* Just remove flags */
2612		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
2613		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
2614		rc = 0;
2615		goto out_unlock;
2616	}
2617
2618	if (!(priority_mask & (1U << spec->priority))) {
2619		rc = -ENOENT;
2620		goto out_unlock;
2621	}
2622
2623	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2624	spin_unlock_bh(&efx->filter_lock);
2625
2626	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2627		/* Reset to an automatic filter */
2628
2629		struct efx_filter_spec new_spec = *spec;
2630
2631		new_spec.priority = EFX_FILTER_PRI_AUTO;
2632		new_spec.flags = (EFX_FILTER_FLAG_RX |
2633				  EFX_FILTER_FLAG_RX_RSS);
2634		new_spec.dmaq_id = 0;
2635		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
2636		rc = efx_ef10_filter_push(efx, &new_spec,
2637					  &table->entry[filter_idx].handle,
2638					  true);
2639
2640		spin_lock_bh(&efx->filter_lock);
2641		if (rc == 0)
2642			*spec = new_spec;
2643	} else {
2644		/* Really remove the filter */
2645
2646		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2647			       efx_ef10_filter_is_exclusive(spec) ?
2648			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
2649			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
2650		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2651			       table->entry[filter_idx].handle);
2652		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
2653				  inbuf, sizeof(inbuf), NULL, 0, NULL);
2654
2655		spin_lock_bh(&efx->filter_lock);
2656		if (rc == 0) {
2657			kfree(spec);
2658			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2659		}
2660	}
2661
2662	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2663	wake_up_all(&table->waitq);
2664out_unlock:
2665	spin_unlock_bh(&efx->filter_lock);
2666	finish_wait(&table->waitq, &wait);
2667	return rc;
2668}
2669
2670static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
2671				       enum efx_filter_priority priority,
2672				       u32 filter_id)
2673{
2674	return efx_ef10_filter_remove_internal(efx, 1U << priority,
2675					       filter_id, false);
2676}
2677
2678static int efx_ef10_filter_get_safe(struct efx_nic *efx,
2679				    enum efx_filter_priority priority,
2680				    u32 filter_id, struct efx_filter_spec *spec)
2681{
2682	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
2683	struct efx_ef10_filter_table *table = efx->filter_state;
2684	const struct efx_filter_spec *saved_spec;
2685	int rc;
2686
2687	spin_lock_bh(&efx->filter_lock);
2688	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
2689	if (saved_spec && saved_spec->priority == priority &&
2690	    efx_ef10_filter_rx_match_pri(table, saved_spec->match_flags) ==
2691	    filter_id / HUNT_FILTER_TBL_ROWS) {
2692		*spec = *saved_spec;
2693		rc = 0;
2694	} else {
2695		rc = -ENOENT;
2696	}
2697	spin_unlock_bh(&efx->filter_lock);
2698	return rc;
2699}
2700
2701static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
2702				     enum efx_filter_priority priority)
2703{
2704	unsigned int priority_mask;
2705	unsigned int i;
2706	int rc;
2707
2708	priority_mask = (((1U << (priority + 1)) - 1) &
2709			 ~(1U << EFX_FILTER_PRI_AUTO));
2710
2711	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
2712		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
2713						     i, true);
2714		if (rc && rc != -ENOENT)
2715			return rc;
2716	}
2717
2718	return 0;
2719}
2720
2721static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
2722					 enum efx_filter_priority priority)
2723{
2724	struct efx_ef10_filter_table *table = efx->filter_state;
2725	unsigned int filter_idx;
2726	s32 count = 0;
2727
2728	spin_lock_bh(&efx->filter_lock);
2729	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2730		if (table->entry[filter_idx].spec &&
2731		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
2732		    priority)
2733			++count;
2734	}
2735	spin_unlock_bh(&efx->filter_lock);
2736	return count;
2737}
2738
2739static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
2740{
2741	struct efx_ef10_filter_table *table = efx->filter_state;
2742
2743	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
2744}
2745
2746static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
2747				      enum efx_filter_priority priority,
2748				      u32 *buf, u32 size)
2749{
2750	struct efx_ef10_filter_table *table = efx->filter_state;
2751	struct efx_filter_spec *spec;
2752	unsigned int filter_idx;
2753	s32 count = 0;
2754
2755	spin_lock_bh(&efx->filter_lock);
2756	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
2757		spec = efx_ef10_filter_entry_spec(table, filter_idx);
2758		if (spec && spec->priority == priority) {
2759			if (count == size) {
2760				count = -EMSGSIZE;
2761				break;
2762			}
2763			buf[count++] = (efx_ef10_filter_rx_match_pri(
2764						table, spec->match_flags) *
2765					HUNT_FILTER_TBL_ROWS +
2766					filter_idx);
2767		}
2768	}
2769	spin_unlock_bh(&efx->filter_lock);
2770	return count;
2771}
2772
2773#ifdef CONFIG_RFS_ACCEL
2774
2775static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;
2776
2777static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
2778				      struct efx_filter_spec *spec)
2779{
2780	struct efx_ef10_filter_table *table = efx->filter_state;
2781	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
2782	struct efx_filter_spec *saved_spec;
2783	unsigned int hash, i, depth = 1;
2784	bool replacing = false;
2785	int ins_index = -1;
2786	u64 cookie;
2787	s32 rc;
2788
2789	/* Must be an RX filter without RSS and not for a multicast
2790	 * destination address (RFS only works for connected sockets).
2791	 * These restrictions allow us to pass only a tiny amount of
2792	 * data through to the completion function.
2793	 */
2794	EFX_WARN_ON_PARANOID(spec->flags !=
2795			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
2796	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
2797	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));
2798
2799	hash = efx_ef10_filter_hash(spec);
2800
2801	spin_lock_bh(&efx->filter_lock);
2802
2803	/* Find any existing filter with the same match tuple or else
2804	 * a free slot to insert at.  If an existing filter is busy,
2805	 * we have to give up.
2806	 */
2807	for (;;) {
2808		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
2809		saved_spec = efx_ef10_filter_entry_spec(table, i);
2810
2811		if (!saved_spec) {
2812			if (ins_index < 0)
2813				ins_index = i;
2814		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
2815			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
2816				rc = -EBUSY;
2817				goto fail_unlock;
2818			}
2819			if (spec->priority < saved_spec->priority) {
2820				rc = -EPERM;
2821				goto fail_unlock;
2822			}
2823			ins_index = i;
2824			break;
2825		}
2826
2827		/* Once we reach the maximum search depth, use the
2828		 * first suitable slot or return -EBUSY if there was
2829		 * none
2830		 */
2831		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
2832			if (ins_index < 0) {
2833				rc = -EBUSY;
2834				goto fail_unlock;
2835			}
2836			break;
2837		}
2838
2839		++depth;
2840	}
2841
2842	/* Create a software table entry if necessary, and mark it
2843	 * busy.  We might yet fail to insert, but any attempt to
2844	 * insert a conflicting filter while we're waiting for the
2845	 * firmware must find the busy entry.
2846	 */
2847	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
2848	if (saved_spec) {
2849		replacing = true;
2850	} else {
2851		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
2852		if (!saved_spec) {
2853			rc = -ENOMEM;
2854			goto fail_unlock;
2855		}
2856		*saved_spec = *spec;
2857	}
2858	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
2859				  EFX_EF10_FILTER_FLAG_BUSY);
2860
2861	spin_unlock_bh(&efx->filter_lock);
2862
2863	/* Pack up the variables needed on completion */
2864	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;
2865
2866	efx_ef10_filter_push_prep(efx, spec, inbuf,
2867				  table->entry[ins_index].handle, replacing);
2868	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
2869			   MC_CMD_FILTER_OP_OUT_LEN,
2870			   efx_ef10_filter_rfs_insert_complete, cookie);
2871
2872	return ins_index;
2873
2874fail_unlock:
2875	spin_unlock_bh(&efx->filter_lock);
2876	return rc;
2877}
2878
2879static void
2880efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
2881				    int rc, efx_dword_t *outbuf,
2882				    size_t outlen_actual)
2883{
2884	struct efx_ef10_filter_table *table = efx->filter_state;
2885	unsigned int ins_index, dmaq_id;
2886	struct efx_filter_spec *spec;
2887	bool replacing;
2888
2889	/* Unpack the cookie */
2890	replacing = cookie >> 31;
2891	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
2892	dmaq_id = cookie & 0xffff;
2893
2894	spin_lock_bh(&efx->filter_lock);
2895	spec = efx_ef10_filter_entry_spec(table, ins_index);
2896	if (rc == 0) {
2897		table->entry[ins_index].handle =
2898			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
2899		if (replacing)
2900			spec->dmaq_id = dmaq_id;
2901	} else if (!replacing) {
2902		kfree(spec);
2903		spec = NULL;
2904	}
2905	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
2906	spin_unlock_bh(&efx->filter_lock);
2907
2908	wake_up_all(&table->waitq);
2909}
2910
2911static void
2912efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2913				    unsigned long filter_idx,
2914				    int rc, efx_dword_t *outbuf,
2915				    size_t outlen_actual);
2916
2917static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2918					   unsigned int filter_idx)
2919{
2920	struct efx_ef10_filter_table *table = efx->filter_state;
2921	struct efx_filter_spec *spec =
2922		efx_ef10_filter_entry_spec(table, filter_idx);
2923	MCDI_DECLARE_BUF(inbuf,
2924			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
2925			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
2926
2927	if (!spec ||
2928	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
2929	    spec->priority != EFX_FILTER_PRI_HINT ||
2930	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
2931				 flow_id, filter_idx))
2932		return false;
2933
2934	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
2935		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
2936	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
2937		       table->entry[filter_idx].handle);
2938	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
2939			       efx_ef10_filter_rfs_expire_complete, filter_idx))
2940		return false;
2941
2942	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
2943	return true;
2944}
2945
2946static void
2947efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
2948				    unsigned long filter_idx,
2949				    int rc, efx_dword_t *outbuf,
2950				    size_t outlen_actual)
2951{
2952	struct efx_ef10_filter_table *table = efx->filter_state;
2953	struct efx_filter_spec *spec =
2954		efx_ef10_filter_entry_spec(table, filter_idx);
2955
2956	spin_lock_bh(&efx->filter_lock);
2957	if (rc == 0) {
2958		kfree(spec);
2959		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
2960	}
2961	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
2962	wake_up_all(&table->waitq);
2963	spin_unlock_bh(&efx->filter_lock);
2964}
2965
2966#endif /* CONFIG_RFS_ACCEL */
2967
2968static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
2969{
2970	int match_flags = 0;
2971
2972#define MAP_FLAG(gen_flag, mcdi_field) {				\
2973		u32 old_mcdi_flags = mcdi_flags;			\
2974		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
2975				mcdi_field ## _LBN);			\
2976		if (mcdi_flags != old_mcdi_flags)			\
2977			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
2978	}
2979	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
2980	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
2981	MAP_FLAG(REM_HOST, SRC_IP);
2982	MAP_FLAG(LOC_HOST, DST_IP);
2983	MAP_FLAG(REM_MAC, SRC_MAC);
2984	MAP_FLAG(REM_PORT, SRC_PORT);
2985	MAP_FLAG(LOC_MAC, DST_MAC);
2986	MAP_FLAG(LOC_PORT, DST_PORT);
2987	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
2988	MAP_FLAG(INNER_VID, INNER_VLAN);
2989	MAP_FLAG(OUTER_VID, OUTER_VLAN);
2990	MAP_FLAG(IP_PROTO, IP_PROTO);
2991#undef MAP_FLAG
2992
2993	/* Did we map them all? */
2994	if (mcdi_flags)
2995		return -EINVAL;
2996
2997	return match_flags;
2998}
2999
3000static int efx_ef10_filter_table_probe(struct efx_nic *efx)
3001{
3002	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
3003	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
3004	unsigned int pd_match_pri, pd_match_count;
3005	struct efx_ef10_filter_table *table;
3006	size_t outlen;
3007	int rc;
3008
3009	table = kzalloc(sizeof(*table), GFP_KERNEL);
3010	if (!table)
3011		return -ENOMEM;
3012
3013	/* Find out which RX filter types are supported, and their priorities */
3014	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
3015		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
3016	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
3017			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
3018			  &outlen);
3019	if (rc)
3020		goto fail;
3021	pd_match_count = MCDI_VAR_ARRAY_LEN(
3022		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
3023	table->rx_match_count = 0;
3024
3025	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
3026		u32 mcdi_flags =
3027			MCDI_ARRAY_DWORD(
3028				outbuf,
3029				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
3030				pd_match_pri);
3031		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
3032		if (rc < 0) {
3033			netif_dbg(efx, probe, efx->net_dev,
3034				  "%s: fw flags %#x pri %u not supported in driver\n",
3035				  __func__, mcdi_flags, pd_match_pri);
3036		} else {
3037			netif_dbg(efx, probe, efx->net_dev,
3038				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
3039				  __func__, mcdi_flags, pd_match_pri,
3040				  rc, table->rx_match_count);
3041			table->rx_match_flags[table->rx_match_count++] = rc;
3042		}
3043	}
3044
3045	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
3046	if (!table->entry) {
3047		rc = -ENOMEM;
3048		goto fail;
3049	}
3050
3051	efx->filter_state = table;
3052	init_waitqueue_head(&table->waitq);
3053	return 0;
3054
3055fail:
3056	kfree(table);
3057	return rc;
3058}
3059
3060static void efx_ef10_filter_table_restore(struct efx_nic *efx)
3061{
3062	struct efx_ef10_filter_table *table = efx->filter_state;
3063	struct efx_ef10_nic_data *nic_data = efx->nic_data;
3064	struct efx_filter_spec *spec;
3065	unsigned int filter_idx;
3066	bool failed = false;
3067	int rc;
3068
3069	if (!nic_data->must_restore_filters)
3070		return;
3071
3072	spin_lock_bh(&efx->filter_lock);
3073
3074	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3075		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3076		if (!spec)
3077			continue;
3078
3079		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
3080		spin_unlock_bh(&efx->filter_lock);
3081
3082		rc = efx_ef10_filter_push(efx, spec,
3083					  &table->entry[filter_idx].handle,
3084					  false);
3085		if (rc)
3086			failed = true;
3087
3088		spin_lock_bh(&efx->filter_lock);
3089		if (rc) {
3090			kfree(spec);
3091			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
3092		} else {
3093			table->entry[filter_idx].spec &=
3094				~EFX_EF10_FILTER_FLAG_BUSY;
3095		}
3096	}
3097
3098	spin_unlock_bh(&efx->filter_lock);
3099
3100	if (failed)
3101		netif_err(efx, hw, efx->net_dev,
3102			  "unable to restore all filters\n");
3103	else
3104		nic_data->must_restore_filters = false;
3105}
3106
3107static void efx_ef10_filter_table_remove(struct efx_nic *efx)
3108{
3109	struct efx_ef10_filter_table *table = efx->filter_state;
3110	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
3111	struct efx_filter_spec *spec;
3112	unsigned int filter_idx;
3113	int rc;
3114
3115	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
3116		spec = efx_ef10_filter_entry_spec(table, filter_idx);
3117		if (!spec)
3118			continue;
3119
3120		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
3121			       efx_ef10_filter_is_exclusive(spec) ?
3122			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
3123			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
3124		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
3125			       table->entry[filter_idx].handle);
3126		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
3127				  NULL, 0, NULL);
3128		if (rc)
3129			netdev_WARN(efx->net_dev,
3130				    "filter_idx=%#x handle=%#llx\n",
3131				    filter_idx,
3132				    table->entry[filter_idx].handle);
3133		kfree(spec);
3134	}
3135
3136	vfree(table->entry);
3137	kfree(table);
3138}
3139
3140static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
3141{
3142	struct efx_ef10_filter_table *table = efx->filter_state;
3143	struct net_device *net_dev = efx->net_dev;
3144	struct efx_filter_spec spec;
3145	bool remove_failed = false;
3146	struct netdev_hw_addr *uc;
3147	struct netdev_hw_addr *mc;
3148	unsigned int filter_idx;
3149	int i, n, rc;
3150
3151	if (!efx_dev_registered(efx))
3152		return;
3153
3154	/* Mark old filters that may need to be removed */
3155	spin_lock_bh(&efx->filter_lock);
3156	n = table->dev_uc_count < 0 ? 1 : table->dev_uc_count;
3157	for (i = 0; i < n; i++) {
3158		filter_idx = table->dev_uc_list[i].id % HUNT_FILTER_TBL_ROWS;
3159		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3160	}
3161	n = table->dev_mc_count < 0 ? 1 : table->dev_mc_count;
3162	for (i = 0; i < n; i++) {
3163		filter_idx = table->dev_mc_list[i].id % HUNT_FILTER_TBL_ROWS;
3164		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
3165	}
3166	spin_unlock_bh(&efx->filter_lock);
3167
3168	/* Copy/convert the address lists; add the primary station
3169	 * address and broadcast address
3170	 */
3171	netif_addr_lock_bh(net_dev);
3172	if (net_dev->flags & IFF_PROMISC ||
3173	    netdev_uc_count(net_dev) >= EFX_EF10_FILTER_DEV_UC_MAX) {
3174		table->dev_uc_count = -1;
3175	} else {
3176		table->dev_uc_count = 1 + netdev_uc_count(net_dev);
3177		ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
3178		i = 1;
3179		netdev_for_each_uc_addr(uc, net_dev) {
3180			ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
3181			i++;
3182		}
3183	}
3184	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI) ||
3185	    netdev_mc_count(net_dev) >= EFX_EF10_FILTER_DEV_MC_MAX) {
3186		table->dev_mc_count = -1;
3187	} else {
3188		table->dev_mc_count = 1 + netdev_mc_count(net_dev);
3189		eth_broadcast_addr(table->dev_mc_list[0].addr);
3190		i = 1;
3191		netdev_for_each_mc_addr(mc, net_dev) {
3192			ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
3193			i++;
3194		}
3195	}
3196	netif_addr_unlock_bh(net_dev);
3197
3198	/* Insert/renew unicast filters */
3199	if (table->dev_uc_count >= 0) {
3200		for (i = 0; i < table->dev_uc_count; i++) {
3201			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3202					   EFX_FILTER_FLAG_RX_RSS,
3203					   0);
3204			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3205						 table->dev_uc_list[i].addr);
3206			rc = efx_ef10_filter_insert(efx, &spec, true);
3207			if (rc < 0) {
3208				/* Fall back to unicast-promisc */
3209				while (i--)
3210					efx_ef10_filter_remove_safe(
3211						efx, EFX_FILTER_PRI_AUTO,
3212						table->dev_uc_list[i].id);
3213				table->dev_uc_count = -1;
3214				break;
3215			}
3216			table->dev_uc_list[i].id = rc;
3217		}
3218	}
3219	if (table->dev_uc_count < 0) {
3220		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3221				   EFX_FILTER_FLAG_RX_RSS,
3222				   0);
3223		efx_filter_set_uc_def(&spec);
3224		rc = efx_ef10_filter_insert(efx, &spec, true);
3225		if (rc < 0) {
3226			WARN_ON(1);
3227			table->dev_uc_count = 0;
3228		} else {
3229			table->dev_uc_list[0].id = rc;
3230		}
3231	}
3232
3233	/* Insert/renew multicast filters */
3234	if (table->dev_mc_count >= 0) {
3235		for (i = 0; i < table->dev_mc_count; i++) {
3236			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3237					   EFX_FILTER_FLAG_RX_RSS,
3238					   0);
3239			efx_filter_set_eth_local(&spec, EFX_FILTER_VID_UNSPEC,
3240						 table->dev_mc_list[i].addr);
3241			rc = efx_ef10_filter_insert(efx, &spec, true);
3242			if (rc < 0) {
3243				/* Fall back to multicast-promisc */
3244				while (i--)
3245					efx_ef10_filter_remove_safe(
3246						efx, EFX_FILTER_PRI_AUTO,
3247						table->dev_mc_list[i].id);
3248				table->dev_mc_count = -1;
3249				break;
3250			}
3251			table->dev_mc_list[i].id = rc;
3252		}
3253	}
3254	if (table->dev_mc_count < 0) {
3255		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
3256				   EFX_FILTER_FLAG_RX_RSS,
3257				   0);
3258		efx_filter_set_mc_def(&spec);
3259		rc = efx_ef10_filter_insert(efx, &spec, true);
3260		if (rc < 0) {
3261			WARN_ON(1);
3262			table->dev_mc_count = 0;
3263		} else {
3264			table->dev_mc_list[0].id = rc;
3265		}
3266	}
3267
3268	/* Remove filters that weren't renewed.  Since nothing else
3269	 * changes the AUTO_OLD flag or removes these filters, we
3270	 * don't need to hold the filter_lock while scanning for
3271	 * these filters.
3272	 */
3273	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
3274		if (ACCESS_ONCE(table->entry[i].spec) &
3275		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
3276			if (efx_ef10_filter_remove_internal(
3277				    efx, 1U << EFX_FILTER_PRI_AUTO,
3278				    i, true) < 0)
3279				remove_failed = true;
3280		}
3281	}
3282	WARN_ON(remove_failed);
3283}
3284
3285static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
3286{
3287	efx_ef10_filter_sync_rx_mode(efx);
3288
3289	return efx_mcdi_set_mac(efx);
3290}
3291
3292static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
3293{
3294	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);
3295
3296	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
3297	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
3298			    NULL, 0, NULL);
3299}
3300
3301/* MC BISTs follow a different poll mechanism to phy BISTs.
3302 * The BIST is done in the poll handler on the MC, and the MCDI command
3303 * will block until the BIST is done.
3304 */
3305static int efx_ef10_poll_bist(struct efx_nic *efx)
3306{
3307	int rc;
3308	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
3309	size_t outlen;
3310	u32 result;
3311
3312	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
3313			   outbuf, sizeof(outbuf), &outlen);
3314	if (rc != 0)
3315		return rc;
3316
3317	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
3318		return -EIO;
3319
3320	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
3321	switch (result) {
3322	case MC_CMD_POLL_BIST_PASSED:
3323		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
3324		return 0;
3325	case MC_CMD_POLL_BIST_TIMEOUT:
3326		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
3327		return -EIO;
3328	case MC_CMD_POLL_BIST_FAILED:
3329		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
3330		return -EIO;
3331	default:
3332		netif_err(efx, hw, efx->net_dev,
3333			  "BIST returned unknown result %u", result);
3334		return -EIO;
3335	}
3336}
3337
3338static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
3339{
3340	int rc;
3341
3342	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);
3343
3344	rc = efx_ef10_start_bist(efx, bist_type);
3345	if (rc != 0)
3346		return rc;
3347
3348	return efx_ef10_poll_bist(efx);
3349}
3350
3351static int
3352efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
3353{
3354	int rc, rc2;
3355
3356	efx_reset_down(efx, RESET_TYPE_WORLD);
3357
3358	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
3359			  NULL, 0, NULL, 0, NULL);
3360	if (rc != 0)
3361		goto out;
3362
3363	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
3364	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;
3365
3366	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);
3367
3368out:
3369	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
3370	return rc ? rc : rc2;
3371}
3372
3373#ifdef CONFIG_SFC_MTD
3374
3375struct efx_ef10_nvram_type_info {
3376	u16 type, type_mask;
3377	u8 port;
3378	const char *name;
3379};
3380
3381static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
3382	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
3383	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
3384	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
3385	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
3386	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
3387	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
3388	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
3389	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
3390	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
3391	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
3392	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
3393};
3394
3395static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
3396					struct efx_mcdi_mtd_partition *part,
3397					unsigned int type)
3398{
3399	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
3400	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
3401	const struct efx_ef10_nvram_type_info *info;
3402	size_t size, erase_size, outlen;
3403	bool protected;
3404	int rc;
3405
3406	for (info = efx_ef10_nvram_types; ; info++) {
3407		if (info ==
3408		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
3409			return -ENODEV;
3410		if ((type & ~info->type_mask) == info->type)
3411			break;
3412	}
3413	if (info->port != efx_port_num(efx))
3414		return -ENODEV;
3415
3416	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
3417	if (rc)
3418		return rc;
3419	if (protected)
3420		return -ENODEV; /* hide it */
3421
3422	part->nvram_type = type;
3423
3424	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
3425	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
3426			  outbuf, sizeof(outbuf), &outlen);
3427	if (rc)
3428		return rc;
3429	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
3430		return -EIO;
3431	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
3432	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
3433		part->fw_subtype = MCDI_DWORD(outbuf,
3434					      NVRAM_METADATA_OUT_SUBTYPE);
3435
3436	part->common.dev_type_name = "EF10 NVRAM manager";
3437	part->common.type_name = info->name;
3438
3439	part->common.mtd.type = MTD_NORFLASH;
3440	part->common.mtd.flags = MTD_CAP_NORFLASH;
3441	part->common.mtd.size = size;
3442	part->common.mtd.erasesize = erase_size;
3443
3444	return 0;
3445}
3446
3447static int efx_ef10_mtd_probe(struct efx_nic *efx)
3448{
3449	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
3450	struct efx_mcdi_mtd_partition *parts;
3451	size_t outlen, n_parts_total, i, n_parts;
3452	unsigned int type;
3453	int rc;
3454
3455	ASSERT_RTNL();
3456
3457	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
3458	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
3459			  outbuf, sizeof(outbuf), &outlen);
3460	if (rc)
3461		return rc;
3462	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
3463		return -EIO;
3464
3465	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
3466	if (n_parts_total >
3467	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
3468		return -EIO;
3469
3470	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
3471	if (!parts)
3472		return -ENOMEM;
3473
3474	n_parts = 0;
3475	for (i = 0; i < n_parts_total; i++) {
3476		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
3477					i);
3478		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
3479		if (rc == 0)
3480			n_parts++;
3481		else if (rc != -ENODEV)
3482			goto fail;
3483	}
3484
3485	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
3486fail:
3487	if (rc)
3488		kfree(parts);
3489	return rc;
3490}
3491
3492#endif /* CONFIG_SFC_MTD */
3493
3494static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
3495{
3496	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
3497}
3498
3499static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
3500					   bool temp)
3501{
3502	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
3503	int rc;
3504
3505	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
3506	    channel->sync_events_state == SYNC_EVENTS_VALID ||
3507	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
3508		return 0;
3509	channel->sync_events_state = SYNC_EVENTS_REQUESTED;
3510
3511	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
3512	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3513	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
3514		       channel->channel);
3515
3516	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3517			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3518
3519	if (rc != 0)
3520		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3521						    SYNC_EVENTS_DISABLED;
3522
3523	return rc;
3524}
3525
3526static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
3527					    bool temp)
3528{
3529	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
3530	int rc;
3531
3532	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
3533	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
3534		return 0;
3535	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
3536		channel->sync_events_state = SYNC_EVENTS_DISABLED;
3537		return 0;
3538	}
3539	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
3540					    SYNC_EVENTS_DISABLED;
3541
3542	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
3543	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
3544	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
3545		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
3546	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
3547		       channel->channel);
3548
3549	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
3550			  inbuf, sizeof(inbuf), NULL, 0, NULL);
3551
3552	return rc;
3553}
3554
3555static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
3556					   bool temp)
3557{
3558	int (*set)(struct efx_channel *channel, bool temp);
3559	struct efx_channel *channel;
3560
3561	set = en ?
3562	      efx_ef10_rx_enable_timestamping :
3563	      efx_ef10_rx_disable_timestamping;
3564
3565	efx_for_each_channel(channel, efx) {
3566		int rc = set(channel, temp);
3567		if (en && rc != 0) {
3568			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
3569			return rc;
3570		}
3571	}
3572
3573	return 0;
3574}
3575
3576static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
3577				      struct hwtstamp_config *init)
3578{
3579	int rc;
3580
3581	switch (init->rx_filter) {
3582	case HWTSTAMP_FILTER_NONE:
3583		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
3584		/* if TX timestamping is still requested then leave PTP on */
3585		return efx_ptp_change_mode(efx,
3586					   init->tx_type != HWTSTAMP_TX_OFF, 0);
3587	case HWTSTAMP_FILTER_ALL:
3588	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3589	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3590	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3591	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3592	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3593	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3594	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3595	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3596	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3597	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3598	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3599	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3600		init->rx_filter = HWTSTAMP_FILTER_ALL;
3601		rc = efx_ptp_change_mode(efx, true, 0);
3602		if (!rc)
3603			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
3604		if (rc)
3605			efx_ptp_change_mode(efx, false, 0);
3606		return rc;
3607	default:
3608		return -ERANGE;
3609	}
3610}
3611
3612const struct efx_nic_type efx_hunt_a0_nic_type = {
3613	.mem_map_size = efx_ef10_mem_map_size,
3614	.probe = efx_ef10_probe,
3615	.remove = efx_ef10_remove,
3616	.dimension_resources = efx_ef10_dimension_resources,
3617	.init = efx_ef10_init_nic,
3618	.fini = efx_port_dummy_op_void,
3619	.map_reset_reason = efx_mcdi_map_reset_reason,
3620	.map_reset_flags = efx_ef10_map_reset_flags,
3621	.reset = efx_ef10_reset,
3622	.probe_port = efx_mcdi_port_probe,
3623	.remove_port = efx_mcdi_port_remove,
3624	.fini_dmaq = efx_ef10_fini_dmaq,
3625	.prepare_flr = efx_ef10_prepare_flr,
3626	.finish_flr = efx_port_dummy_op_void,
3627	.describe_stats = efx_ef10_describe_stats,
3628	.update_stats = efx_ef10_update_stats,
3629	.start_stats = efx_mcdi_mac_start_stats,
3630	.pull_stats = efx_mcdi_mac_pull_stats,
3631	.stop_stats = efx_mcdi_mac_stop_stats,
3632	.set_id_led = efx_mcdi_set_id_led,
3633	.push_irq_moderation = efx_ef10_push_irq_moderation,
3634	.reconfigure_mac = efx_ef10_mac_reconfigure,
3635	.check_mac_fault = efx_mcdi_mac_check_fault,
3636	.reconfigure_port = efx_mcdi_port_reconfigure,
3637	.get_wol = efx_ef10_get_wol,
3638	.set_wol = efx_ef10_set_wol,
3639	.resume_wol = efx_port_dummy_op_void,
3640	.test_chip = efx_ef10_test_chip,
3641	.test_nvram = efx_mcdi_nvram_test_all,
3642	.mcdi_request = efx_ef10_mcdi_request,
3643	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
3644	.mcdi_read_response = efx_ef10_mcdi_read_response,
3645	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
3646	.irq_enable_master = efx_port_dummy_op_void,
3647	.irq_test_generate = efx_ef10_irq_test_generate,
3648	.irq_disable_non_ev = efx_port_dummy_op_void,
3649	.irq_handle_msi = efx_ef10_msi_interrupt,
3650	.irq_handle_legacy = efx_ef10_legacy_interrupt,
3651	.tx_probe = efx_ef10_tx_probe,
3652	.tx_init = efx_ef10_tx_init,
3653	.tx_remove = efx_ef10_tx_remove,
3654	.tx_write = efx_ef10_tx_write,
3655	.rx_push_rss_config = efx_ef10_rx_push_rss_config,
3656	.rx_probe = efx_ef10_rx_probe,
3657	.rx_init = efx_ef10_rx_init,
3658	.rx_remove = efx_ef10_rx_remove,
3659	.rx_write = efx_ef10_rx_write,
3660	.rx_defer_refill = efx_ef10_rx_defer_refill,
3661	.ev_probe = efx_ef10_ev_probe,
3662	.ev_init = efx_ef10_ev_init,
3663	.ev_fini = efx_ef10_ev_fini,
3664	.ev_remove = efx_ef10_ev_remove,
3665	.ev_process = efx_ef10_ev_process,
3666	.ev_read_ack = efx_ef10_ev_read_ack,
3667	.ev_test_generate = efx_ef10_ev_test_generate,
3668	.filter_table_probe = efx_ef10_filter_table_probe,
3669	.filter_table_restore = efx_ef10_filter_table_restore,
3670	.filter_table_remove = efx_ef10_filter_table_remove,
3671	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
3672	.filter_insert = efx_ef10_filter_insert,
3673	.filter_remove_safe = efx_ef10_filter_remove_safe,
3674	.filter_get_safe = efx_ef10_filter_get_safe,
3675	.filter_clear_rx = efx_ef10_filter_clear_rx,
3676	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
3677	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
3678	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
3679#ifdef CONFIG_RFS_ACCEL
3680	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
3681	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
3682#endif
3683#ifdef CONFIG_SFC_MTD
3684	.mtd_probe = efx_ef10_mtd_probe,
3685	.mtd_rename = efx_mcdi_mtd_rename,
3686	.mtd_read = efx_mcdi_mtd_read,
3687	.mtd_erase = efx_mcdi_mtd_erase,
3688	.mtd_write = efx_mcdi_mtd_write,
3689	.mtd_sync = efx_mcdi_mtd_sync,
3690#endif
3691	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
3692	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
3693	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
3694	.sriov_init = efx_ef10_sriov_init,
3695	.sriov_fini = efx_ef10_sriov_fini,
3696	.sriov_mac_address_changed = efx_ef10_sriov_mac_address_changed,
3697	.sriov_wanted = efx_ef10_sriov_wanted,
3698	.sriov_reset = efx_ef10_sriov_reset,
3699
3700	.revision = EFX_REV_HUNT_A0,
3701	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
3702	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
3703	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
3704	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
3705	.can_rx_scatter = true,
3706	.always_rx_scatter = true,
3707	.max_interrupt_mode = EFX_INT_MODE_MSIX,
3708	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
3709	.offload_features = (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
3710			     NETIF_F_RXHASH | NETIF_F_NTUPLE),
3711	.mcdi_max_ver = 2,
3712	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
3713	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
3714			    1 << HWTSTAMP_FILTER_ALL,
3715};
3716