1/*******************************************************************************
2
3  Intel 10 Gigabit PCI Express Linux driver
4  Copyright(c) 1999 - 2013 Intel Corporation.
5
6  This program is free software; you can redistribute it and/or modify it
7  under the terms and conditions of the GNU General Public License,
8  version 2, as published by the Free Software Foundation.
9
10  This program is distributed in the hope it will be useful, but WITHOUT
11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  more details.
14
15  You should have received a copy of the GNU General Public License along with
16  this program; if not, write to the Free Software Foundation, Inc.,
17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19  The full GNU General Public License is included in this distribution in
20  the file called "COPYING".
21
22  Contact Information:
23  Linux NICS <linux.nics@intel.com>
24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28#include "ixgbe.h"
29#include <linux/ptp_classify.h>
30
31/*
32 * The 82599 and the X540 do not have true 64bit nanosecond scale
33 * counter registers. Instead, SYSTIME is defined by a fixed point
34 * system which allows the user to define the scale counter increment
35 * value at every level change of the oscillator driving the SYSTIME
36 * value. For both devices the TIMINCA:IV field defines this
37 * increment. On the X540 device, 31 bits are provided. However on the
38 * 82599 only provides 24 bits. The time unit is determined by the
39 * clock frequency of the oscillator in combination with the TIMINCA
40 * register. When these devices link at 10Gb the oscillator has a
41 * period of 6.4ns. In order to convert the scale counter into
42 * nanoseconds the cyclecounter and timecounter structures are
43 * used. The SYSTIME registers need to be converted to ns values by use
44 * of only a right shift (division by power of 2). The following math
45 * determines the largest incvalue that will fit into the available
46 * bits in the TIMINCA register.
47 *
48 * PeriodWidth: Number of bits to store the clock period
49 * MaxWidth: The maximum width value of the TIMINCA register
50 * Period: The clock period for the oscillator
51 * round(): discard the fractional portion of the calculation
52 *
53 * Period * [ 2 ^ ( MaxWidth - PeriodWidth ) ]
54 *
55 * For the X540, MaxWidth is 31 bits, and the base period is 6.4 ns
56 * For the 82599, MaxWidth is 24 bits, and the base period is 6.4 ns
57 *
58 * The period also changes based on the link speed:
59 * At 10Gb link or no link, the period remains the same.
60 * At 1Gb link, the period is multiplied by 10. (64ns)
61 * At 100Mb link, the period is multiplied by 100. (640ns)
62 *
63 * The calculated value allows us to right shift the SYSTIME register
64 * value in order to quickly convert it into a nanosecond clock,
65 * while allowing for the maximum possible adjustment value.
66 *
67 * These diagrams are only for the 10Gb link period
68 *
69 *           SYSTIMEH            SYSTIMEL
70 *       +--------------+  +--------------+
71 * X540  |      32      |  | 1 | 3 |  28  |
72 *       *--------------+  +--------------+
73 *        \________ 36 bits ______/  fract
74 *
75 *       +--------------+  +--------------+
76 * 82599 |      32      |  | 8 | 3 |  21  |
77 *       *--------------+  +--------------+
78 *        \________ 43 bits ______/  fract
79 *
80 * The 36 bit X540 SYSTIME overflows every
81 *   2^36 * 10^-9 / 60 = 1.14 minutes or 69 seconds
82 *
83 * The 43 bit 82599 SYSTIME overflows every
84 *   2^43 * 10^-9 / 3600 = 2.4 hours
85 */
86#define IXGBE_INCVAL_10GB 0x66666666
87#define IXGBE_INCVAL_1GB  0x40000000
88#define IXGBE_INCVAL_100  0x50000000
89
90#define IXGBE_INCVAL_SHIFT_10GB  28
91#define IXGBE_INCVAL_SHIFT_1GB   24
92#define IXGBE_INCVAL_SHIFT_100   21
93
94#define IXGBE_INCVAL_SHIFT_82599 7
95#define IXGBE_INCPER_SHIFT_82599 24
96#define IXGBE_MAX_TIMEADJ_VALUE  0x7FFFFFFFFFFFFFFFULL
97
98#define IXGBE_OVERFLOW_PERIOD    (HZ * 30)
99#define IXGBE_PTP_TX_TIMEOUT     (HZ * 15)
100
101/* half of a one second clock period, for use with PPS signal. We have to use
102 * this instead of something pre-defined like IXGBE_PTP_PPS_HALF_SECOND, in
103 * order to force at least 64bits of precision for shifting
104 */
105#define IXGBE_PTP_PPS_HALF_SECOND 500000000ULL
106
107/**
108 * ixgbe_ptp_setup_sdp
109 * @hw: the hardware private structure
110 *
111 * this function enables or disables the clock out feature on SDP0 for
112 * the X540 device. It will create a 1second periodic output that can
113 * be used as the PPS (via an interrupt).
114 *
115 * It calculates when the systime will be on an exact second, and then
116 * aligns the start of the PPS signal to that value. The shift is
117 * necessary because it can change based on the link speed.
118 */
119static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
120{
121	struct ixgbe_hw *hw = &adapter->hw;
122	int shift = adapter->cc.shift;
123	u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
124	u64 ns = 0, clock_edge = 0;
125
126	if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
127	    (hw->mac.type == ixgbe_mac_X540)) {
128
129		/* disable the pin first */
130		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
131		IXGBE_WRITE_FLUSH(hw);
132
133		esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
134
135		/*
136		 * enable the SDP0 pin as output, and connected to the
137		 * native function for Timesync (ClockOut)
138		 */
139		esdp |= (IXGBE_ESDP_SDP0_DIR |
140			 IXGBE_ESDP_SDP0_NATIVE);
141
142		/*
143		 * enable the Clock Out feature on SDP0, and allow
144		 * interrupts to occur when the pin changes
145		 */
146		tsauxc = (IXGBE_TSAUXC_EN_CLK |
147			  IXGBE_TSAUXC_SYNCLK |
148			  IXGBE_TSAUXC_SDP0_INT);
149
150		/* clock period (or pulse length) */
151		clktiml = (u32)(IXGBE_PTP_PPS_HALF_SECOND << shift);
152		clktimh = (u32)((IXGBE_PTP_PPS_HALF_SECOND << shift) >> 32);
153
154		/*
155		 * Account for the cyclecounter wrap-around value by
156		 * using the converted ns value of the current time to
157		 * check for when the next aligned second would occur.
158		 */
159		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
160		clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
161		ns = timecounter_cyc2time(&adapter->tc, clock_edge);
162
163		div_u64_rem(ns, IXGBE_PTP_PPS_HALF_SECOND, &rem);
164		clock_edge += ((IXGBE_PTP_PPS_HALF_SECOND - (u64)rem) << shift);
165
166		/* specify the initial clock start time */
167		trgttiml = (u32)clock_edge;
168		trgttimh = (u32)(clock_edge >> 32);
169
170		IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
171		IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
172		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
173		IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
174
175		IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
176		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
177	} else {
178		IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
179	}
180
181	IXGBE_WRITE_FLUSH(hw);
182}
183
184/**
185 * ixgbe_ptp_read - read raw cycle counter (to be used by time counter)
186 * @cc: the cyclecounter structure
187 *
188 * this function reads the cyclecounter registers and is called by the
189 * cyclecounter structure used to construct a ns counter from the
190 * arbitrary fixed point registers
191 */
192static cycle_t ixgbe_ptp_read(const struct cyclecounter *cc)
193{
194	struct ixgbe_adapter *adapter =
195		container_of(cc, struct ixgbe_adapter, cc);
196	struct ixgbe_hw *hw = &adapter->hw;
197	u64 stamp = 0;
198
199	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
200	stamp |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
201
202	return stamp;
203}
204
205/**
206 * ixgbe_ptp_adjfreq
207 * @ptp: the ptp clock structure
208 * @ppb: parts per billion adjustment from base
209 *
210 * adjust the frequency of the ptp cycle counter by the
211 * indicated ppb from the base frequency.
212 */
213static int ixgbe_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
214{
215	struct ixgbe_adapter *adapter =
216		container_of(ptp, struct ixgbe_adapter, ptp_caps);
217	struct ixgbe_hw *hw = &adapter->hw;
218	u64 freq;
219	u32 diff, incval;
220	int neg_adj = 0;
221
222	if (ppb < 0) {
223		neg_adj = 1;
224		ppb = -ppb;
225	}
226
227	smp_mb();
228	incval = ACCESS_ONCE(adapter->base_incval);
229
230	freq = incval;
231	freq *= ppb;
232	diff = div_u64(freq, 1000000000ULL);
233
234	incval = neg_adj ? (incval - diff) : (incval + diff);
235
236	switch (hw->mac.type) {
237	case ixgbe_mac_X540:
238		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
239		break;
240	case ixgbe_mac_82599EB:
241		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
242				(1 << IXGBE_INCPER_SHIFT_82599) |
243				incval);
244		break;
245	default:
246		break;
247	}
248
249	return 0;
250}
251
252/**
253 * ixgbe_ptp_adjtime
254 * @ptp: the ptp clock structure
255 * @delta: offset to adjust the cycle counter by
256 *
257 * adjust the timer by resetting the timecounter structure.
258 */
259static int ixgbe_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
260{
261	struct ixgbe_adapter *adapter =
262		container_of(ptp, struct ixgbe_adapter, ptp_caps);
263	unsigned long flags;
264
265	spin_lock_irqsave(&adapter->tmreg_lock, flags);
266	timecounter_adjtime(&adapter->tc, delta);
267	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
268
269	ixgbe_ptp_setup_sdp(adapter);
270
271	return 0;
272}
273
274/**
275 * ixgbe_ptp_gettime
276 * @ptp: the ptp clock structure
277 * @ts: timespec structure to hold the current time value
278 *
279 * read the timecounter and return the correct value on ns,
280 * after converting it into a struct timespec.
281 */
282static int ixgbe_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
283{
284	struct ixgbe_adapter *adapter =
285		container_of(ptp, struct ixgbe_adapter, ptp_caps);
286	u64 ns;
287	unsigned long flags;
288
289	spin_lock_irqsave(&adapter->tmreg_lock, flags);
290	ns = timecounter_read(&adapter->tc);
291	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
292
293	*ts = ns_to_timespec64(ns);
294
295	return 0;
296}
297
298/**
299 * ixgbe_ptp_settime
300 * @ptp: the ptp clock structure
301 * @ts: the timespec containing the new time for the cycle counter
302 *
303 * reset the timecounter to use a new base value instead of the kernel
304 * wall timer value.
305 */
306static int ixgbe_ptp_settime(struct ptp_clock_info *ptp,
307			     const struct timespec64 *ts)
308{
309	struct ixgbe_adapter *adapter =
310		container_of(ptp, struct ixgbe_adapter, ptp_caps);
311	u64 ns;
312	unsigned long flags;
313
314	ns = timespec64_to_ns(ts);
315
316	/* reset the timecounter */
317	spin_lock_irqsave(&adapter->tmreg_lock, flags);
318	timecounter_init(&adapter->tc, &adapter->cc, ns);
319	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
320
321	ixgbe_ptp_setup_sdp(adapter);
322	return 0;
323}
324
325/**
326 * ixgbe_ptp_feature_enable
327 * @ptp: the ptp clock structure
328 * @rq: the requested feature to change
329 * @on: whether to enable or disable the feature
330 *
331 * enable (or disable) ancillary features of the phc subsystem.
332 * our driver only supports the PPS feature on the X540
333 */
334static int ixgbe_ptp_feature_enable(struct ptp_clock_info *ptp,
335				    struct ptp_clock_request *rq, int on)
336{
337	struct ixgbe_adapter *adapter =
338		container_of(ptp, struct ixgbe_adapter, ptp_caps);
339
340	/**
341	 * When PPS is enabled, unmask the interrupt for the ClockOut
342	 * feature, so that the interrupt handler can send the PPS
343	 * event when the clock SDP triggers. Clear mask when PPS is
344	 * disabled
345	 */
346	if (rq->type == PTP_CLK_REQ_PPS) {
347		switch (adapter->hw.mac.type) {
348		case ixgbe_mac_X540:
349			if (on)
350				adapter->flags2 |= IXGBE_FLAG2_PTP_PPS_ENABLED;
351			else
352				adapter->flags2 &= ~IXGBE_FLAG2_PTP_PPS_ENABLED;
353
354			ixgbe_ptp_setup_sdp(adapter);
355			return 0;
356		default:
357			break;
358		}
359	}
360
361	return -ENOTSUPP;
362}
363
364/**
365 * ixgbe_ptp_check_pps_event
366 * @adapter: the private adapter structure
367 * @eicr: the interrupt cause register value
368 *
369 * This function is called by the interrupt routine when checking for
370 * interrupts. It will check and handle a pps event.
371 */
372void ixgbe_ptp_check_pps_event(struct ixgbe_adapter *adapter, u32 eicr)
373{
374	struct ixgbe_hw *hw = &adapter->hw;
375	struct ptp_clock_event event;
376
377	event.type = PTP_CLOCK_PPS;
378
379	/* this check is necessary in case the interrupt was enabled via some
380	 * alternative means (ex. debug_fs). Better to check here than
381	 * everywhere that calls this function.
382	 */
383	if (!adapter->ptp_clock)
384		return;
385
386	switch (hw->mac.type) {
387	case ixgbe_mac_X540:
388		ptp_clock_event(adapter->ptp_clock, &event);
389		break;
390	default:
391		break;
392	}
393}
394
395/**
396 * ixgbe_ptp_overflow_check - watchdog task to detect SYSTIME overflow
397 * @adapter: private adapter struct
398 *
399 * this watchdog task periodically reads the timecounter
400 * in order to prevent missing when the system time registers wrap
401 * around. This needs to be run approximately twice a minute.
402 */
403void ixgbe_ptp_overflow_check(struct ixgbe_adapter *adapter)
404{
405	bool timeout = time_is_before_jiffies(adapter->last_overflow_check +
406					     IXGBE_OVERFLOW_PERIOD);
407	struct timespec64 ts;
408
409	if (timeout) {
410		ixgbe_ptp_gettime(&adapter->ptp_caps, &ts);
411		adapter->last_overflow_check = jiffies;
412	}
413}
414
415/**
416 * ixgbe_ptp_rx_hang - detect error case when Rx timestamp registers latched
417 * @adapter: private network adapter structure
418 *
419 * this watchdog task is scheduled to detect error case where hardware has
420 * dropped an Rx packet that was timestamped when the ring is full. The
421 * particular error is rare but leaves the device in a state unable to timestamp
422 * any future packets.
423 */
424void ixgbe_ptp_rx_hang(struct ixgbe_adapter *adapter)
425{
426	struct ixgbe_hw *hw = &adapter->hw;
427	u32 tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
428	unsigned long rx_event;
429
430	/* if we don't have a valid timestamp in the registers, just update the
431	 * timeout counter and exit
432	 */
433	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID)) {
434		adapter->last_rx_ptp_check = jiffies;
435		return;
436	}
437
438	/* determine the most recent watchdog or rx_timestamp event */
439	rx_event = adapter->last_rx_ptp_check;
440	if (time_after(adapter->last_rx_timestamp, rx_event))
441		rx_event = adapter->last_rx_timestamp;
442
443	/* only need to read the high RXSTMP register to clear the lock */
444	if (time_is_before_jiffies(rx_event + 5*HZ)) {
445		IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
446		adapter->last_rx_ptp_check = jiffies;
447
448		e_warn(drv, "clearing RX Timestamp hang\n");
449	}
450}
451
452/**
453 * ixgbe_ptp_tx_hwtstamp - utility function which checks for TX time stamp
454 * @adapter: the private adapter struct
455 *
456 * if the timestamp is valid, we convert it into the timecounter ns
457 * value, then store that result into the shhwtstamps structure which
458 * is passed up the network stack
459 */
460static void ixgbe_ptp_tx_hwtstamp(struct ixgbe_adapter *adapter)
461{
462	struct ixgbe_hw *hw = &adapter->hw;
463	struct skb_shared_hwtstamps shhwtstamps;
464	u64 regval = 0, ns;
465	unsigned long flags;
466
467	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPL);
468	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_TXSTMPH) << 32;
469
470	spin_lock_irqsave(&adapter->tmreg_lock, flags);
471	ns = timecounter_cyc2time(&adapter->tc, regval);
472	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
473
474	memset(&shhwtstamps, 0, sizeof(shhwtstamps));
475	shhwtstamps.hwtstamp = ns_to_ktime(ns);
476	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
477
478	dev_kfree_skb_any(adapter->ptp_tx_skb);
479	adapter->ptp_tx_skb = NULL;
480	clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
481}
482
483/**
484 * ixgbe_ptp_tx_hwtstamp_work
485 * @work: pointer to the work struct
486 *
487 * This work item polls TSYNCTXCTL valid bit to determine when a Tx hardware
488 * timestamp has been taken for the current skb. It is necessary, because the
489 * descriptor's "done" bit does not correlate with the timestamp event.
490 */
491static void ixgbe_ptp_tx_hwtstamp_work(struct work_struct *work)
492{
493	struct ixgbe_adapter *adapter = container_of(work, struct ixgbe_adapter,
494						     ptp_tx_work);
495	struct ixgbe_hw *hw = &adapter->hw;
496	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
497					      IXGBE_PTP_TX_TIMEOUT);
498	u32 tsynctxctl;
499
500	if (timeout) {
501		dev_kfree_skb_any(adapter->ptp_tx_skb);
502		adapter->ptp_tx_skb = NULL;
503		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
504		e_warn(drv, "clearing Tx Timestamp hang\n");
505		return;
506	}
507
508	tsynctxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
509	if (tsynctxctl & IXGBE_TSYNCTXCTL_VALID)
510		ixgbe_ptp_tx_hwtstamp(adapter);
511	else
512		/* reschedule to keep checking if it's not available yet */
513		schedule_work(&adapter->ptp_tx_work);
514}
515
516/**
517 * ixgbe_ptp_rx_hwtstamp - utility function which checks for RX time stamp
518 * @adapter: pointer to adapter struct
519 * @skb: particular skb to send timestamp with
520 *
521 * if the timestamp is valid, we convert it into the timecounter ns
522 * value, then store that result into the shhwtstamps structure which
523 * is passed up the network stack
524 */
525void ixgbe_ptp_rx_hwtstamp(struct ixgbe_adapter *adapter, struct sk_buff *skb)
526{
527	struct ixgbe_hw *hw = &adapter->hw;
528	struct skb_shared_hwtstamps *shhwtstamps;
529	u64 regval = 0, ns;
530	u32 tsyncrxctl;
531	unsigned long flags;
532
533	tsyncrxctl = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
534	if (!(tsyncrxctl & IXGBE_TSYNCRXCTL_VALID))
535		return;
536
537	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPL);
538	regval |= (u64)IXGBE_READ_REG(hw, IXGBE_RXSTMPH) << 32;
539
540	spin_lock_irqsave(&adapter->tmreg_lock, flags);
541	ns = timecounter_cyc2time(&adapter->tc, regval);
542	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
543
544	shhwtstamps = skb_hwtstamps(skb);
545	shhwtstamps->hwtstamp = ns_to_ktime(ns);
546
547	/* Update the last_rx_timestamp timer in order to enable watchdog check
548	 * for error case of latched timestamp on a dropped packet.
549	 */
550	adapter->last_rx_timestamp = jiffies;
551}
552
553int ixgbe_ptp_get_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
554{
555	struct hwtstamp_config *config = &adapter->tstamp_config;
556
557	return copy_to_user(ifr->ifr_data, config,
558			    sizeof(*config)) ? -EFAULT : 0;
559}
560
561/**
562 * ixgbe_ptp_set_timestamp_mode - setup the hardware for the requested mode
563 * @adapter: the private ixgbe adapter structure
564 * @config: the hwtstamp configuration requested
565 *
566 * Outgoing time stamping can be enabled and disabled. Play nice and
567 * disable it when requested, although it shouldn't cause any overhead
568 * when no packet needs it. At most one packet in the queue may be
569 * marked for time stamping, otherwise it would be impossible to tell
570 * for sure to which packet the hardware time stamp belongs.
571 *
572 * Incoming time stamping has to be configured via the hardware
573 * filters. Not all combinations are supported, in particular event
574 * type has to be specified. Matching the kind of event packet is
575 * not supported, with the exception of "all V2 events regardless of
576 * level 2 or 4".
577 *
578 * Since hardware always timestamps Path delay packets when timestamping V2
579 * packets, regardless of the type specified in the register, only use V2
580 * Event mode. This more accurately tells the user what the hardware is going
581 * to do anyways.
582 *
583 * Note: this may modify the hwtstamp configuration towards a more general
584 * mode, if required to support the specifically requested mode.
585 */
586static int ixgbe_ptp_set_timestamp_mode(struct ixgbe_adapter *adapter,
587				 struct hwtstamp_config *config)
588{
589	struct ixgbe_hw *hw = &adapter->hw;
590	u32 tsync_tx_ctl = IXGBE_TSYNCTXCTL_ENABLED;
591	u32 tsync_rx_ctl = IXGBE_TSYNCRXCTL_ENABLED;
592	u32 tsync_rx_mtrl = PTP_EV_PORT << 16;
593	bool is_l2 = false;
594	u32 regval;
595
596	/* reserved for future extensions */
597	if (config->flags)
598		return -EINVAL;
599
600	switch (config->tx_type) {
601	case HWTSTAMP_TX_OFF:
602		tsync_tx_ctl = 0;
603	case HWTSTAMP_TX_ON:
604		break;
605	default:
606		return -ERANGE;
607	}
608
609	switch (config->rx_filter) {
610	case HWTSTAMP_FILTER_NONE:
611		tsync_rx_ctl = 0;
612		tsync_rx_mtrl = 0;
613		break;
614	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
615		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
616		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_SYNC_MSG;
617		break;
618	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
619		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_L4_V1;
620		tsync_rx_mtrl |= IXGBE_RXMTRL_V1_DELAY_REQ_MSG;
621		break;
622	case HWTSTAMP_FILTER_PTP_V2_EVENT:
623	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
624	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
625	case HWTSTAMP_FILTER_PTP_V2_SYNC:
626	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
627	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
628	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
629	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
630	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
631		tsync_rx_ctl |= IXGBE_TSYNCRXCTL_TYPE_EVENT_V2;
632		is_l2 = true;
633		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
634		break;
635	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
636	case HWTSTAMP_FILTER_ALL:
637	default:
638		/*
639		 * register RXMTRL must be set in order to do V1 packets,
640		 * therefore it is not possible to time stamp both V1 Sync and
641		 * Delay_Req messages and hardware does not support
642		 * timestamping all packets => return error
643		 */
644		config->rx_filter = HWTSTAMP_FILTER_NONE;
645		return -ERANGE;
646	}
647
648	if (hw->mac.type == ixgbe_mac_82598EB) {
649		if (tsync_rx_ctl | tsync_tx_ctl)
650			return -ERANGE;
651		return 0;
652	}
653
654	/* define ethertype filter for timestamping L2 packets */
655	if (is_l2)
656		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588),
657				(IXGBE_ETQF_FILTER_EN | /* enable filter */
658				 IXGBE_ETQF_1588 | /* enable timestamping */
659				 ETH_P_1588));     /* 1588 eth protocol type */
660	else
661		IXGBE_WRITE_REG(hw, IXGBE_ETQF(IXGBE_ETQF_FILTER_1588), 0);
662
663	/* enable/disable TX */
664	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCTXCTL);
665	regval &= ~IXGBE_TSYNCTXCTL_ENABLED;
666	regval |= tsync_tx_ctl;
667	IXGBE_WRITE_REG(hw, IXGBE_TSYNCTXCTL, regval);
668
669	/* enable/disable RX */
670	regval = IXGBE_READ_REG(hw, IXGBE_TSYNCRXCTL);
671	regval &= ~(IXGBE_TSYNCRXCTL_ENABLED | IXGBE_TSYNCRXCTL_TYPE_MASK);
672	regval |= tsync_rx_ctl;
673	IXGBE_WRITE_REG(hw, IXGBE_TSYNCRXCTL, regval);
674
675	/* define which PTP packets are time stamped */
676	IXGBE_WRITE_REG(hw, IXGBE_RXMTRL, tsync_rx_mtrl);
677
678	IXGBE_WRITE_FLUSH(hw);
679
680	/* clear TX/RX time stamp registers, just to be sure */
681	regval = IXGBE_READ_REG(hw, IXGBE_TXSTMPH);
682	regval = IXGBE_READ_REG(hw, IXGBE_RXSTMPH);
683
684	return 0;
685}
686
687/**
688 * ixgbe_ptp_set_ts_config - user entry point for timestamp mode
689 * @adapter: pointer to adapter struct
690 * @ifreq: ioctl data
691 *
692 * Set hardware to requested mode. If unsupported, return an error with no
693 * changes. Otherwise, store the mode for future reference.
694 */
695int ixgbe_ptp_set_ts_config(struct ixgbe_adapter *adapter, struct ifreq *ifr)
696{
697	struct hwtstamp_config config;
698	int err;
699
700	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
701		return -EFAULT;
702
703	err = ixgbe_ptp_set_timestamp_mode(adapter, &config);
704	if (err)
705		return err;
706
707	/* save these settings for future reference */
708	memcpy(&adapter->tstamp_config, &config,
709	       sizeof(adapter->tstamp_config));
710
711	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
712		-EFAULT : 0;
713}
714
715/**
716 * ixgbe_ptp_start_cyclecounter - create the cycle counter from hw
717 * @adapter: pointer to the adapter structure
718 *
719 * This function should be called to set the proper values for the TIMINCA
720 * register and tell the cyclecounter structure what the tick rate of SYSTIME
721 * is. It does not directly modify SYSTIME registers or the timecounter
722 * structure. It should be called whenever a new TIMINCA value is necessary,
723 * such as during initialization or when the link speed changes.
724 */
725void ixgbe_ptp_start_cyclecounter(struct ixgbe_adapter *adapter)
726{
727	struct ixgbe_hw *hw = &adapter->hw;
728	u32 incval = 0;
729	u32 shift = 0;
730	unsigned long flags;
731
732	/**
733	 * Scale the NIC cycle counter by a large factor so that
734	 * relatively small corrections to the frequency can be added
735	 * or subtracted. The drawbacks of a large factor include
736	 * (a) the clock register overflows more quickly, (b) the cycle
737	 * counter structure must be able to convert the systime value
738	 * to nanoseconds using only a multiplier and a right-shift,
739	 * and (c) the value must fit within the timinca register space
740	 * => math based on internal DMA clock rate and available bits
741	 *
742	 * Note that when there is no link, internal DMA clock is same as when
743	 * link speed is 10Gb. Set the registers correctly even when link is
744	 * down to preserve the clock setting
745	 */
746	switch (adapter->link_speed) {
747	case IXGBE_LINK_SPEED_100_FULL:
748		incval = IXGBE_INCVAL_100;
749		shift = IXGBE_INCVAL_SHIFT_100;
750		break;
751	case IXGBE_LINK_SPEED_1GB_FULL:
752		incval = IXGBE_INCVAL_1GB;
753		shift = IXGBE_INCVAL_SHIFT_1GB;
754		break;
755	case IXGBE_LINK_SPEED_10GB_FULL:
756	default:
757		incval = IXGBE_INCVAL_10GB;
758		shift = IXGBE_INCVAL_SHIFT_10GB;
759		break;
760	}
761
762	/**
763	 * Modify the calculated values to fit within the correct
764	 * number of bits specified by the hardware. The 82599 doesn't
765	 * have the same space as the X540, so bitshift the calculated
766	 * values to fit.
767	 */
768	switch (hw->mac.type) {
769	case ixgbe_mac_X540:
770		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA, incval);
771		break;
772	case ixgbe_mac_82599EB:
773		incval >>= IXGBE_INCVAL_SHIFT_82599;
774		shift -= IXGBE_INCVAL_SHIFT_82599;
775		IXGBE_WRITE_REG(hw, IXGBE_TIMINCA,
776				(1 << IXGBE_INCPER_SHIFT_82599) |
777				incval);
778		break;
779	default:
780		/* other devices aren't supported */
781		return;
782	}
783
784	/* update the base incval used to calculate frequency adjustment */
785	ACCESS_ONCE(adapter->base_incval) = incval;
786	smp_mb();
787
788	/* need lock to prevent incorrect read while modifying cyclecounter */
789	spin_lock_irqsave(&adapter->tmreg_lock, flags);
790
791	memset(&adapter->cc, 0, sizeof(adapter->cc));
792	adapter->cc.read = ixgbe_ptp_read;
793	adapter->cc.mask = CYCLECOUNTER_MASK(64);
794	adapter->cc.shift = shift;
795	adapter->cc.mult = 1;
796
797	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
798}
799
800/**
801 * ixgbe_ptp_reset
802 * @adapter: the ixgbe private board structure
803 *
804 * When the MAC resets, all the hardware bits for timesync are reset. This
805 * function is used to re-enable the device for PTP based on current settings.
806 * We do lose the current clock time, so just reset the cyclecounter to the
807 * system real clock time.
808 *
809 * This function will maintain hwtstamp_config settings, and resets the SDP
810 * output if it was enabled.
811 */
812void ixgbe_ptp_reset(struct ixgbe_adapter *adapter)
813{
814	struct ixgbe_hw *hw = &adapter->hw;
815	unsigned long flags;
816
817	/* set SYSTIME registers to 0 just in case */
818	IXGBE_WRITE_REG(hw, IXGBE_SYSTIML, 0x00000000);
819	IXGBE_WRITE_REG(hw, IXGBE_SYSTIMH, 0x00000000);
820	IXGBE_WRITE_FLUSH(hw);
821
822	/* reset the hardware timestamping mode */
823	ixgbe_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
824
825	ixgbe_ptp_start_cyclecounter(adapter);
826
827	spin_lock_irqsave(&adapter->tmreg_lock, flags);
828
829	/* reset the ns time counter */
830	timecounter_init(&adapter->tc, &adapter->cc,
831			 ktime_to_ns(ktime_get_real()));
832
833	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
834
835	/*
836	 * Now that the shift has been calculated and the systime
837	 * registers reset, (re-)enable the Clock out feature
838	 */
839	ixgbe_ptp_setup_sdp(adapter);
840}
841
842/**
843 * ixgbe_ptp_create_clock
844 * @adapter: the ixgbe private adapter structure
845 *
846 * This function performs setup of the user entry point function table and
847 * initializes the PTP clock device, which is used to access the clock-like
848 * features of the PTP core. It will be called by ixgbe_ptp_init, only if
849 * there isn't already a clock device (such as after a suspend/resume cycle,
850 * where the clock device wasn't destroyed).
851 */
852static int ixgbe_ptp_create_clock(struct ixgbe_adapter *adapter)
853{
854	struct net_device *netdev = adapter->netdev;
855	long err;
856
857	/* do nothing if we already have a clock device */
858	if (!IS_ERR_OR_NULL(adapter->ptp_clock))
859		return 0;
860
861	switch (adapter->hw.mac.type) {
862	case ixgbe_mac_X540:
863		snprintf(adapter->ptp_caps.name,
864			 sizeof(adapter->ptp_caps.name),
865			 "%s", netdev->name);
866		adapter->ptp_caps.owner = THIS_MODULE;
867		adapter->ptp_caps.max_adj = 250000000;
868		adapter->ptp_caps.n_alarm = 0;
869		adapter->ptp_caps.n_ext_ts = 0;
870		adapter->ptp_caps.n_per_out = 0;
871		adapter->ptp_caps.pps = 1;
872		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
873		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
874		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
875		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
876		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
877		break;
878	case ixgbe_mac_82599EB:
879		snprintf(adapter->ptp_caps.name,
880			 sizeof(adapter->ptp_caps.name),
881			 "%s", netdev->name);
882		adapter->ptp_caps.owner = THIS_MODULE;
883		adapter->ptp_caps.max_adj = 250000000;
884		adapter->ptp_caps.n_alarm = 0;
885		adapter->ptp_caps.n_ext_ts = 0;
886		adapter->ptp_caps.n_per_out = 0;
887		adapter->ptp_caps.pps = 0;
888		adapter->ptp_caps.adjfreq = ixgbe_ptp_adjfreq;
889		adapter->ptp_caps.adjtime = ixgbe_ptp_adjtime;
890		adapter->ptp_caps.gettime64 = ixgbe_ptp_gettime;
891		adapter->ptp_caps.settime64 = ixgbe_ptp_settime;
892		adapter->ptp_caps.enable = ixgbe_ptp_feature_enable;
893		break;
894	default:
895		adapter->ptp_clock = NULL;
896		return -EOPNOTSUPP;
897	}
898
899	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
900						&adapter->pdev->dev);
901	if (IS_ERR(adapter->ptp_clock)) {
902		err = PTR_ERR(adapter->ptp_clock);
903		adapter->ptp_clock = NULL;
904		e_dev_err("ptp_clock_register failed\n");
905		return err;
906	} else
907		e_dev_info("registered PHC device on %s\n", netdev->name);
908
909	/* set default timestamp mode to disabled here. We do this in
910	 * create_clock instead of init, because we don't want to override the
911	 * previous settings during a resume cycle.
912	 */
913	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
914	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
915
916	return 0;
917}
918
919/**
920 * ixgbe_ptp_init
921 * @adapter: the ixgbe private adapter structure
922 *
923 * This function performs the required steps for enabling PTP
924 * support. If PTP support has already been loaded it simply calls the
925 * cyclecounter init routine and exits.
926 */
927void ixgbe_ptp_init(struct ixgbe_adapter *adapter)
928{
929	/* initialize the spin lock first since we can't control when a user
930	 * will call the entry functions once we have initialized the clock
931	 * device
932	 */
933	spin_lock_init(&adapter->tmreg_lock);
934
935	/* obtain a PTP device, or re-use an existing device */
936	if (ixgbe_ptp_create_clock(adapter))
937		return;
938
939	/* we have a clock so we can initialize work now */
940	INIT_WORK(&adapter->ptp_tx_work, ixgbe_ptp_tx_hwtstamp_work);
941
942	/* reset the PTP related hardware bits */
943	ixgbe_ptp_reset(adapter);
944
945	/* enter the IXGBE_PTP_RUNNING state */
946	set_bit(__IXGBE_PTP_RUNNING, &adapter->state);
947
948	return;
949}
950
951/**
952 * ixgbe_ptp_suspend - stop PTP work items
953 * @ adapter: pointer to adapter struct
954 *
955 * this function suspends PTP activity, and prevents more PTP work from being
956 * generated, but does not destroy the PTP clock device.
957 */
958void ixgbe_ptp_suspend(struct ixgbe_adapter *adapter)
959{
960	/* Leave the IXGBE_PTP_RUNNING state. */
961	if (!test_and_clear_bit(__IXGBE_PTP_RUNNING, &adapter->state))
962		return;
963
964	/* since this might be called in suspend, we don't clear the state,
965	 * but simply reset the auxiliary PPS signal control register
966	 */
967	IXGBE_WRITE_REG(&adapter->hw, IXGBE_TSAUXC, 0x0);
968
969	/* ensure that we cancel any pending PTP Tx work item in progress */
970	cancel_work_sync(&adapter->ptp_tx_work);
971	if (adapter->ptp_tx_skb) {
972		dev_kfree_skb_any(adapter->ptp_tx_skb);
973		adapter->ptp_tx_skb = NULL;
974		clear_bit_unlock(__IXGBE_PTP_TX_IN_PROGRESS, &adapter->state);
975	}
976}
977
978/**
979 * ixgbe_ptp_stop - close the PTP device
980 * @adapter: pointer to adapter struct
981 *
982 * completely destroy the PTP device, should only be called when the device is
983 * being fully closed.
984 */
985void ixgbe_ptp_stop(struct ixgbe_adapter *adapter)
986{
987	/* first, suspend PTP activity */
988	ixgbe_ptp_suspend(adapter);
989
990	/* disable the PTP clock device */
991	if (adapter->ptp_clock) {
992		ptp_clock_unregister(adapter->ptp_clock);
993		adapter->ptp_clock = NULL;
994		e_dev_info("removed PHC on %s\n",
995			   adapter->netdev->name);
996	}
997}
998