1/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580
2 *
3 * Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18#include <linux/module.h>
19#include <linux/device.h>
20#include <linux/pci.h>
21#include <linux/ptp_classify.h>
22
23#include "igb.h"
24
25#define INCVALUE_MASK		0x7fffffff
26#define ISGN			0x80000000
27
28/* The 82580 timesync updates the system timer every 8ns by 8ns,
29 * and this update value cannot be reprogrammed.
30 *
31 * Neither the 82576 nor the 82580 offer registers wide enough to hold
32 * nanoseconds time values for very long. For the 82580, SYSTIM always
33 * counts nanoseconds, but the upper 24 bits are not available. The
34 * frequency is adjusted by changing the 32 bit fractional nanoseconds
35 * register, TIMINCA.
36 *
37 * For the 82576, the SYSTIM register time unit is affect by the
38 * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
39 * field are needed to provide the nominal 16 nanosecond period,
40 * leaving 19 bits for fractional nanoseconds.
41 *
42 * We scale the NIC clock cycle by a large factor so that relatively
43 * small clock corrections can be added or subtracted at each clock
44 * tick. The drawbacks of a large factor are a) that the clock
45 * register overflows more quickly (not such a big deal) and b) that
46 * the increment per tick has to fit into 24 bits.  As a result we
47 * need to use a shift of 19 so we can fit a value of 16 into the
48 * TIMINCA register.
49 *
50 *
51 *             SYSTIMH            SYSTIML
52 *        +--------------+   +---+---+------+
53 *  82576 |      32      |   | 8 | 5 |  19  |
54 *        +--------------+   +---+---+------+
55 *         \________ 45 bits _______/  fract
56 *
57 *        +----------+---+   +--------------+
58 *  82580 |    24    | 8 |   |      32      |
59 *        +----------+---+   +--------------+
60 *          reserved  \______ 40 bits _____/
61 *
62 *
63 * The 45 bit 82576 SYSTIM overflows every
64 *   2^45 * 10^-9 / 3600 = 9.77 hours.
65 *
66 * The 40 bit 82580 SYSTIM overflows every
67 *   2^40 * 10^-9 /  60  = 18.3 minutes.
68 */
69
70#define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 9)
71#define IGB_PTP_TX_TIMEOUT		(HZ * 15)
72#define INCPERIOD_82576			(1 << E1000_TIMINCA_16NS_SHIFT)
73#define INCVALUE_82576_MASK		((1 << E1000_TIMINCA_16NS_SHIFT) - 1)
74#define INCVALUE_82576			(16 << IGB_82576_TSYNC_SHIFT)
75#define IGB_NBITS_82580			40
76
77static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
78
79/* SYSTIM read access for the 82576 */
80static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc)
81{
82	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
83	struct e1000_hw *hw = &igb->hw;
84	u64 val;
85	u32 lo, hi;
86
87	lo = rd32(E1000_SYSTIML);
88	hi = rd32(E1000_SYSTIMH);
89
90	val = ((u64) hi) << 32;
91	val |= lo;
92
93	return val;
94}
95
96/* SYSTIM read access for the 82580 */
97static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc)
98{
99	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
100	struct e1000_hw *hw = &igb->hw;
101	u32 lo, hi;
102	u64 val;
103
104	/* The timestamp latches on lowest register read. For the 82580
105	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
106	 * need to provide nanosecond resolution, so we just ignore it.
107	 */
108	rd32(E1000_SYSTIMR);
109	lo = rd32(E1000_SYSTIML);
110	hi = rd32(E1000_SYSTIMH);
111
112	val = ((u64) hi) << 32;
113	val |= lo;
114
115	return val;
116}
117
118/* SYSTIM read access for I210/I211 */
119static void igb_ptp_read_i210(struct igb_adapter *adapter,
120			      struct timespec64 *ts)
121{
122	struct e1000_hw *hw = &adapter->hw;
123	u32 sec, nsec;
124
125	/* The timestamp latches on lowest register read. For I210/I211, the
126	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
127	 * resolution, we can ignore it.
128	 */
129	rd32(E1000_SYSTIMR);
130	nsec = rd32(E1000_SYSTIML);
131	sec = rd32(E1000_SYSTIMH);
132
133	ts->tv_sec = sec;
134	ts->tv_nsec = nsec;
135}
136
137static void igb_ptp_write_i210(struct igb_adapter *adapter,
138			       const struct timespec64 *ts)
139{
140	struct e1000_hw *hw = &adapter->hw;
141
142	/* Writing the SYSTIMR register is not necessary as it only provides
143	 * sub-nanosecond resolution.
144	 */
145	wr32(E1000_SYSTIML, ts->tv_nsec);
146	wr32(E1000_SYSTIMH, ts->tv_sec);
147}
148
149/**
150 * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
151 * @adapter: board private structure
152 * @hwtstamps: timestamp structure to update
153 * @systim: unsigned 64bit system time value.
154 *
155 * We need to convert the system time value stored in the RX/TXSTMP registers
156 * into a hwtstamp which can be used by the upper level timestamping functions.
157 *
158 * The 'tmreg_lock' spinlock is used to protect the consistency of the
159 * system time value. This is needed because reading the 64 bit time
160 * value involves reading two (or three) 32 bit registers. The first
161 * read latches the value. Ditto for writing.
162 *
163 * In addition, here have extended the system time with an overflow
164 * counter in software.
165 **/
166static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
167				       struct skb_shared_hwtstamps *hwtstamps,
168				       u64 systim)
169{
170	unsigned long flags;
171	u64 ns;
172
173	switch (adapter->hw.mac.type) {
174	case e1000_82576:
175	case e1000_82580:
176	case e1000_i354:
177	case e1000_i350:
178		spin_lock_irqsave(&adapter->tmreg_lock, flags);
179
180		ns = timecounter_cyc2time(&adapter->tc, systim);
181
182		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
183
184		memset(hwtstamps, 0, sizeof(*hwtstamps));
185		hwtstamps->hwtstamp = ns_to_ktime(ns);
186		break;
187	case e1000_i210:
188	case e1000_i211:
189		memset(hwtstamps, 0, sizeof(*hwtstamps));
190		/* Upper 32 bits contain s, lower 32 bits contain ns. */
191		hwtstamps->hwtstamp = ktime_set(systim >> 32,
192						systim & 0xFFFFFFFF);
193		break;
194	default:
195		break;
196	}
197}
198
199/* PTP clock operations */
200static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
201{
202	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
203					       ptp_caps);
204	struct e1000_hw *hw = &igb->hw;
205	int neg_adj = 0;
206	u64 rate;
207	u32 incvalue;
208
209	if (ppb < 0) {
210		neg_adj = 1;
211		ppb = -ppb;
212	}
213	rate = ppb;
214	rate <<= 14;
215	rate = div_u64(rate, 1953125);
216
217	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
218
219	if (neg_adj)
220		incvalue -= rate;
221	else
222		incvalue += rate;
223
224	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
225
226	return 0;
227}
228
229static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb)
230{
231	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
232					       ptp_caps);
233	struct e1000_hw *hw = &igb->hw;
234	int neg_adj = 0;
235	u64 rate;
236	u32 inca;
237
238	if (ppb < 0) {
239		neg_adj = 1;
240		ppb = -ppb;
241	}
242	rate = ppb;
243	rate <<= 26;
244	rate = div_u64(rate, 1953125);
245
246	inca = rate & INCVALUE_MASK;
247	if (neg_adj)
248		inca |= ISGN;
249
250	wr32(E1000_TIMINCA, inca);
251
252	return 0;
253}
254
255static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
256{
257	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
258					       ptp_caps);
259	unsigned long flags;
260
261	spin_lock_irqsave(&igb->tmreg_lock, flags);
262	timecounter_adjtime(&igb->tc, delta);
263	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
264
265	return 0;
266}
267
268static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
269{
270	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
271					       ptp_caps);
272	unsigned long flags;
273	struct timespec64 now, then = ns_to_timespec64(delta);
274
275	spin_lock_irqsave(&igb->tmreg_lock, flags);
276
277	igb_ptp_read_i210(igb, &now);
278	now = timespec64_add(now, then);
279	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
280
281	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
282
283	return 0;
284}
285
286static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp,
287				 struct timespec64 *ts)
288{
289	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
290					       ptp_caps);
291	unsigned long flags;
292	u64 ns;
293
294	spin_lock_irqsave(&igb->tmreg_lock, flags);
295
296	ns = timecounter_read(&igb->tc);
297
298	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
299
300	*ts = ns_to_timespec64(ns);
301
302	return 0;
303}
304
305static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp,
306				struct timespec64 *ts)
307{
308	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
309					       ptp_caps);
310	unsigned long flags;
311
312	spin_lock_irqsave(&igb->tmreg_lock, flags);
313
314	igb_ptp_read_i210(igb, ts);
315
316	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
317
318	return 0;
319}
320
321static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
322				 const struct timespec64 *ts)
323{
324	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
325					       ptp_caps);
326	unsigned long flags;
327	u64 ns;
328
329	ns = timespec64_to_ns(ts);
330
331	spin_lock_irqsave(&igb->tmreg_lock, flags);
332
333	timecounter_init(&igb->tc, &igb->cc, ns);
334
335	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
336
337	return 0;
338}
339
340static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
341				const struct timespec64 *ts)
342{
343	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
344					       ptp_caps);
345	unsigned long flags;
346
347	spin_lock_irqsave(&igb->tmreg_lock, flags);
348
349	igb_ptp_write_i210(igb, ts);
350
351	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
352
353	return 0;
354}
355
356static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
357{
358	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
359	static const u32 mask[IGB_N_SDP] = {
360		E1000_CTRL_SDP0_DIR,
361		E1000_CTRL_SDP1_DIR,
362		E1000_CTRL_EXT_SDP2_DIR,
363		E1000_CTRL_EXT_SDP3_DIR,
364	};
365
366	if (input)
367		*ptr &= ~mask[pin];
368	else
369		*ptr |= mask[pin];
370}
371
372static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
373{
374	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
375		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
376	};
377	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
378		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
379	};
380	static const u32 ts_sdp_en[IGB_N_SDP] = {
381		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
382	};
383	struct e1000_hw *hw = &igb->hw;
384	u32 ctrl, ctrl_ext, tssdp = 0;
385
386	ctrl = rd32(E1000_CTRL);
387	ctrl_ext = rd32(E1000_CTRL_EXT);
388	tssdp = rd32(E1000_TSSDP);
389
390	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
391
392	/* Make sure this pin is not enabled as an output. */
393	tssdp &= ~ts_sdp_en[pin];
394
395	if (chan == 1) {
396		tssdp &= ~AUX1_SEL_SDP3;
397		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
398	} else {
399		tssdp &= ~AUX0_SEL_SDP3;
400		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
401	}
402
403	wr32(E1000_TSSDP, tssdp);
404	wr32(E1000_CTRL, ctrl);
405	wr32(E1000_CTRL_EXT, ctrl_ext);
406}
407
408static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin)
409{
410	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
411		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
412	};
413	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
414		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
415	};
416	static const u32 ts_sdp_en[IGB_N_SDP] = {
417		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
418	};
419	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
420		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
421		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
422	};
423	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
424		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
425		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
426	};
427	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
428		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
429		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
430	};
431	struct e1000_hw *hw = &igb->hw;
432	u32 ctrl, ctrl_ext, tssdp = 0;
433
434	ctrl = rd32(E1000_CTRL);
435	ctrl_ext = rd32(E1000_CTRL_EXT);
436	tssdp = rd32(E1000_TSSDP);
437
438	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
439
440	/* Make sure this pin is not enabled as an input. */
441	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
442		tssdp &= ~AUX0_TS_SDP_EN;
443
444	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
445		tssdp &= ~AUX1_TS_SDP_EN;
446
447	tssdp &= ~ts_sdp_sel_clr[pin];
448	if (chan == 1)
449		tssdp |= ts_sdp_sel_tt1[pin];
450	else
451		tssdp |= ts_sdp_sel_tt0[pin];
452
453	tssdp |= ts_sdp_en[pin];
454
455	wr32(E1000_TSSDP, tssdp);
456	wr32(E1000_CTRL, ctrl);
457	wr32(E1000_CTRL_EXT, ctrl_ext);
458}
459
460static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
461				       struct ptp_clock_request *rq, int on)
462{
463	struct igb_adapter *igb =
464		container_of(ptp, struct igb_adapter, ptp_caps);
465	struct e1000_hw *hw = &igb->hw;
466	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh;
467	unsigned long flags;
468	struct timespec ts;
469	int pin = -1;
470	s64 ns;
471
472	switch (rq->type) {
473	case PTP_CLK_REQ_EXTTS:
474		if (on) {
475			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
476					   rq->extts.index);
477			if (pin < 0)
478				return -EBUSY;
479		}
480		if (rq->extts.index == 1) {
481			tsauxc_mask = TSAUXC_EN_TS1;
482			tsim_mask = TSINTR_AUTT1;
483		} else {
484			tsauxc_mask = TSAUXC_EN_TS0;
485			tsim_mask = TSINTR_AUTT0;
486		}
487		spin_lock_irqsave(&igb->tmreg_lock, flags);
488		tsauxc = rd32(E1000_TSAUXC);
489		tsim = rd32(E1000_TSIM);
490		if (on) {
491			igb_pin_extts(igb, rq->extts.index, pin);
492			tsauxc |= tsauxc_mask;
493			tsim |= tsim_mask;
494		} else {
495			tsauxc &= ~tsauxc_mask;
496			tsim &= ~tsim_mask;
497		}
498		wr32(E1000_TSAUXC, tsauxc);
499		wr32(E1000_TSIM, tsim);
500		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
501		return 0;
502
503	case PTP_CLK_REQ_PEROUT:
504		if (on) {
505			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
506					   rq->perout.index);
507			if (pin < 0)
508				return -EBUSY;
509		}
510		ts.tv_sec = rq->perout.period.sec;
511		ts.tv_nsec = rq->perout.period.nsec;
512		ns = timespec_to_ns(&ts);
513		ns = ns >> 1;
514		if (on && ns < 500000LL) {
515			/* 2k interrupts per second is an awful lot. */
516			return -EINVAL;
517		}
518		ts = ns_to_timespec(ns);
519		if (rq->perout.index == 1) {
520			tsauxc_mask = TSAUXC_EN_TT1;
521			tsim_mask = TSINTR_TT1;
522			trgttiml = E1000_TRGTTIML1;
523			trgttimh = E1000_TRGTTIMH1;
524		} else {
525			tsauxc_mask = TSAUXC_EN_TT0;
526			tsim_mask = TSINTR_TT0;
527			trgttiml = E1000_TRGTTIML0;
528			trgttimh = E1000_TRGTTIMH0;
529		}
530		spin_lock_irqsave(&igb->tmreg_lock, flags);
531		tsauxc = rd32(E1000_TSAUXC);
532		tsim = rd32(E1000_TSIM);
533		if (on) {
534			int i = rq->perout.index;
535
536			igb_pin_perout(igb, i, pin);
537			igb->perout[i].start.tv_sec = rq->perout.start.sec;
538			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
539			igb->perout[i].period.tv_sec = ts.tv_sec;
540			igb->perout[i].period.tv_nsec = ts.tv_nsec;
541			wr32(trgttimh, rq->perout.start.sec);
542			wr32(trgttiml, rq->perout.start.nsec);
543			tsauxc |= tsauxc_mask;
544			tsim |= tsim_mask;
545		} else {
546			tsauxc &= ~tsauxc_mask;
547			tsim &= ~tsim_mask;
548		}
549		wr32(E1000_TSAUXC, tsauxc);
550		wr32(E1000_TSIM, tsim);
551		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
552		return 0;
553
554	case PTP_CLK_REQ_PPS:
555		spin_lock_irqsave(&igb->tmreg_lock, flags);
556		tsim = rd32(E1000_TSIM);
557		if (on)
558			tsim |= TSINTR_SYS_WRAP;
559		else
560			tsim &= ~TSINTR_SYS_WRAP;
561		wr32(E1000_TSIM, tsim);
562		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
563		return 0;
564	}
565
566	return -EOPNOTSUPP;
567}
568
569static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
570				  struct ptp_clock_request *rq, int on)
571{
572	return -EOPNOTSUPP;
573}
574
575static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
576			      enum ptp_pin_function func, unsigned int chan)
577{
578	switch (func) {
579	case PTP_PF_NONE:
580	case PTP_PF_EXTTS:
581	case PTP_PF_PEROUT:
582		break;
583	case PTP_PF_PHYSYNC:
584		return -1;
585	}
586	return 0;
587}
588
589/**
590 * igb_ptp_tx_work
591 * @work: pointer to work struct
592 *
593 * This work function polls the TSYNCTXCTL valid bit to determine when a
594 * timestamp has been taken for the current stored skb.
595 **/
596static void igb_ptp_tx_work(struct work_struct *work)
597{
598	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
599						   ptp_tx_work);
600	struct e1000_hw *hw = &adapter->hw;
601	u32 tsynctxctl;
602
603	if (!adapter->ptp_tx_skb)
604		return;
605
606	if (time_is_before_jiffies(adapter->ptp_tx_start +
607				   IGB_PTP_TX_TIMEOUT)) {
608		dev_kfree_skb_any(adapter->ptp_tx_skb);
609		adapter->ptp_tx_skb = NULL;
610		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
611		adapter->tx_hwtstamp_timeouts++;
612		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
613		return;
614	}
615
616	tsynctxctl = rd32(E1000_TSYNCTXCTL);
617	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
618		igb_ptp_tx_hwtstamp(adapter);
619	else
620		/* reschedule to check later */
621		schedule_work(&adapter->ptp_tx_work);
622}
623
624static void igb_ptp_overflow_check(struct work_struct *work)
625{
626	struct igb_adapter *igb =
627		container_of(work, struct igb_adapter, ptp_overflow_work.work);
628	struct timespec64 ts;
629
630	igb->ptp_caps.gettime64(&igb->ptp_caps, &ts);
631
632	pr_debug("igb overflow check at %lld.%09lu\n",
633		 (long long) ts.tv_sec, ts.tv_nsec);
634
635	schedule_delayed_work(&igb->ptp_overflow_work,
636			      IGB_SYSTIM_OVERFLOW_PERIOD);
637}
638
639/**
640 * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
641 * @adapter: private network adapter structure
642 *
643 * This watchdog task is scheduled to detect error case where hardware has
644 * dropped an Rx packet that was timestamped when the ring is full. The
645 * particular error is rare but leaves the device in a state unable to timestamp
646 * any future packets.
647 **/
648void igb_ptp_rx_hang(struct igb_adapter *adapter)
649{
650	struct e1000_hw *hw = &adapter->hw;
651	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
652	unsigned long rx_event;
653
654	if (hw->mac.type != e1000_82576)
655		return;
656
657	/* If we don't have a valid timestamp in the registers, just update the
658	 * timeout counter and exit
659	 */
660	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
661		adapter->last_rx_ptp_check = jiffies;
662		return;
663	}
664
665	/* Determine the most recent watchdog or rx_timestamp event */
666	rx_event = adapter->last_rx_ptp_check;
667	if (time_after(adapter->last_rx_timestamp, rx_event))
668		rx_event = adapter->last_rx_timestamp;
669
670	/* Only need to read the high RXSTMP register to clear the lock */
671	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
672		rd32(E1000_RXSTMPH);
673		adapter->last_rx_ptp_check = jiffies;
674		adapter->rx_hwtstamp_cleared++;
675		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
676	}
677}
678
679/**
680 * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
681 * @adapter: Board private structure.
682 *
683 * If we were asked to do hardware stamping and such a time stamp is
684 * available, then it must have been for this skb here because we only
685 * allow only one such packet into the queue.
686 **/
687static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
688{
689	struct e1000_hw *hw = &adapter->hw;
690	struct skb_shared_hwtstamps shhwtstamps;
691	u64 regval;
692
693	regval = rd32(E1000_TXSTMPL);
694	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
695
696	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
697	skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps);
698	dev_kfree_skb_any(adapter->ptp_tx_skb);
699	adapter->ptp_tx_skb = NULL;
700	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
701}
702
703/**
704 * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
705 * @q_vector: Pointer to interrupt specific structure
706 * @va: Pointer to address containing Rx buffer
707 * @skb: Buffer containing timestamp and packet
708 *
709 * This function is meant to retrieve a timestamp from the first buffer of an
710 * incoming frame.  The value is stored in little endian format starting on
711 * byte 8.
712 **/
713void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector,
714			 unsigned char *va,
715			 struct sk_buff *skb)
716{
717	__le64 *regval = (__le64 *)va;
718
719	/* The timestamp is recorded in little endian format.
720	 * DWORD: 0        1        2        3
721	 * Field: Reserved Reserved SYSTIML  SYSTIMH
722	 */
723	igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb),
724				   le64_to_cpu(regval[1]));
725}
726
727/**
728 * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
729 * @q_vector: Pointer to interrupt specific structure
730 * @skb: Buffer containing timestamp and packet
731 *
732 * This function is meant to retrieve a timestamp from the internal registers
733 * of the adapter and store it in the skb.
734 **/
735void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector,
736			 struct sk_buff *skb)
737{
738	struct igb_adapter *adapter = q_vector->adapter;
739	struct e1000_hw *hw = &adapter->hw;
740	u64 regval;
741
742	/* If this bit is set, then the RX registers contain the time stamp. No
743	 * other packet will be time stamped until we read these registers, so
744	 * read the registers to make them available again. Because only one
745	 * packet can be time stamped at a time, we know that the register
746	 * values must belong to this one here and therefore we don't need to
747	 * compare any of the additional attributes stored for it.
748	 *
749	 * If nothing went wrong, then it should have a shared tx_flags that we
750	 * can turn into a skb_shared_hwtstamps.
751	 */
752	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
753		return;
754
755	regval = rd32(E1000_RXSTMPL);
756	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
757
758	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
759
760	/* Update the last_rx_timestamp timer in order to enable watchdog check
761	 * for error case of latched timestamp on a dropped packet.
762	 */
763	adapter->last_rx_timestamp = jiffies;
764}
765
766/**
767 * igb_ptp_get_ts_config - get hardware time stamping config
768 * @netdev:
769 * @ifreq:
770 *
771 * Get the hwtstamp_config settings to return to the user. Rather than attempt
772 * to deconstruct the settings from the registers, just return a shadow copy
773 * of the last known settings.
774 **/
775int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
776{
777	struct igb_adapter *adapter = netdev_priv(netdev);
778	struct hwtstamp_config *config = &adapter->tstamp_config;
779
780	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
781		-EFAULT : 0;
782}
783
784/**
785 * igb_ptp_set_timestamp_mode - setup hardware for timestamping
786 * @adapter: networking device structure
787 * @config: hwtstamp configuration
788 *
789 * Outgoing time stamping can be enabled and disabled. Play nice and
790 * disable it when requested, although it shouldn't case any overhead
791 * when no packet needs it. At most one packet in the queue may be
792 * marked for time stamping, otherwise it would be impossible to tell
793 * for sure to which packet the hardware time stamp belongs.
794 *
795 * Incoming time stamping has to be configured via the hardware
796 * filters. Not all combinations are supported, in particular event
797 * type has to be specified. Matching the kind of event packet is
798 * not supported, with the exception of "all V2 events regardless of
799 * level 2 or 4".
800 */
801static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
802				      struct hwtstamp_config *config)
803{
804	struct e1000_hw *hw = &adapter->hw;
805	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
806	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
807	u32 tsync_rx_cfg = 0;
808	bool is_l4 = false;
809	bool is_l2 = false;
810	u32 regval;
811
812	/* reserved for future extensions */
813	if (config->flags)
814		return -EINVAL;
815
816	switch (config->tx_type) {
817	case HWTSTAMP_TX_OFF:
818		tsync_tx_ctl = 0;
819	case HWTSTAMP_TX_ON:
820		break;
821	default:
822		return -ERANGE;
823	}
824
825	switch (config->rx_filter) {
826	case HWTSTAMP_FILTER_NONE:
827		tsync_rx_ctl = 0;
828		break;
829	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
830		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
831		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
832		is_l4 = true;
833		break;
834	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
835		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
836		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
837		is_l4 = true;
838		break;
839	case HWTSTAMP_FILTER_PTP_V2_EVENT:
840	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
841	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
842	case HWTSTAMP_FILTER_PTP_V2_SYNC:
843	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
844	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
845	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
846	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
847	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
848		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
849		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
850		is_l2 = true;
851		is_l4 = true;
852		break;
853	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
854	case HWTSTAMP_FILTER_ALL:
855		/* 82576 cannot timestamp all packets, which it needs to do to
856		 * support both V1 Sync and Delay_Req messages
857		 */
858		if (hw->mac.type != e1000_82576) {
859			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
860			config->rx_filter = HWTSTAMP_FILTER_ALL;
861			break;
862		}
863		/* fall through */
864	default:
865		config->rx_filter = HWTSTAMP_FILTER_NONE;
866		return -ERANGE;
867	}
868
869	if (hw->mac.type == e1000_82575) {
870		if (tsync_rx_ctl | tsync_tx_ctl)
871			return -EINVAL;
872		return 0;
873	}
874
875	/* Per-packet timestamping only works if all packets are
876	 * timestamped, so enable timestamping in all packets as
877	 * long as one Rx filter was configured.
878	 */
879	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
880		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
881		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
882		config->rx_filter = HWTSTAMP_FILTER_ALL;
883		is_l2 = true;
884		is_l4 = true;
885
886		if ((hw->mac.type == e1000_i210) ||
887		    (hw->mac.type == e1000_i211)) {
888			regval = rd32(E1000_RXPBS);
889			regval |= E1000_RXPBS_CFG_TS_EN;
890			wr32(E1000_RXPBS, regval);
891		}
892	}
893
894	/* enable/disable TX */
895	regval = rd32(E1000_TSYNCTXCTL);
896	regval &= ~E1000_TSYNCTXCTL_ENABLED;
897	regval |= tsync_tx_ctl;
898	wr32(E1000_TSYNCTXCTL, regval);
899
900	/* enable/disable RX */
901	regval = rd32(E1000_TSYNCRXCTL);
902	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
903	regval |= tsync_rx_ctl;
904	wr32(E1000_TSYNCRXCTL, regval);
905
906	/* define which PTP packets are time stamped */
907	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
908
909	/* define ethertype filter for timestamped packets */
910	if (is_l2)
911		wr32(E1000_ETQF(3),
912		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
913		      E1000_ETQF_1588 | /* enable timestamping */
914		      ETH_P_1588));     /* 1588 eth protocol type */
915	else
916		wr32(E1000_ETQF(3), 0);
917
918	/* L4 Queue Filter[3]: filter by destination port and protocol */
919	if (is_l4) {
920		u32 ftqf = (IPPROTO_UDP /* UDP */
921			| E1000_FTQF_VF_BP /* VF not compared */
922			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
923			| E1000_FTQF_MASK); /* mask all inputs */
924		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
925
926		wr32(E1000_IMIR(3), htons(PTP_EV_PORT));
927		wr32(E1000_IMIREXT(3),
928		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
929		if (hw->mac.type == e1000_82576) {
930			/* enable source port check */
931			wr32(E1000_SPQF(3), htons(PTP_EV_PORT));
932			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
933		}
934		wr32(E1000_FTQF(3), ftqf);
935	} else {
936		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
937	}
938	wrfl();
939
940	/* clear TX/RX time stamp registers, just to be sure */
941	regval = rd32(E1000_TXSTMPL);
942	regval = rd32(E1000_TXSTMPH);
943	regval = rd32(E1000_RXSTMPL);
944	regval = rd32(E1000_RXSTMPH);
945
946	return 0;
947}
948
949/**
950 * igb_ptp_set_ts_config - set hardware time stamping config
951 * @netdev:
952 * @ifreq:
953 *
954 **/
955int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
956{
957	struct igb_adapter *adapter = netdev_priv(netdev);
958	struct hwtstamp_config config;
959	int err;
960
961	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
962		return -EFAULT;
963
964	err = igb_ptp_set_timestamp_mode(adapter, &config);
965	if (err)
966		return err;
967
968	/* save these settings for future reference */
969	memcpy(&adapter->tstamp_config, &config,
970	       sizeof(adapter->tstamp_config));
971
972	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
973		-EFAULT : 0;
974}
975
976void igb_ptp_init(struct igb_adapter *adapter)
977{
978	struct e1000_hw *hw = &adapter->hw;
979	struct net_device *netdev = adapter->netdev;
980	int i;
981
982	switch (hw->mac.type) {
983	case e1000_82576:
984		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
985		adapter->ptp_caps.owner = THIS_MODULE;
986		adapter->ptp_caps.max_adj = 999999881;
987		adapter->ptp_caps.n_ext_ts = 0;
988		adapter->ptp_caps.pps = 0;
989		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
990		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
991		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
992		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
993		adapter->ptp_caps.enable = igb_ptp_feature_enable;
994		adapter->cc.read = igb_ptp_read_82576;
995		adapter->cc.mask = CYCLECOUNTER_MASK(64);
996		adapter->cc.mult = 1;
997		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
998		/* Dial the nominal frequency. */
999		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1000		break;
1001	case e1000_82580:
1002	case e1000_i354:
1003	case e1000_i350:
1004		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1005		adapter->ptp_caps.owner = THIS_MODULE;
1006		adapter->ptp_caps.max_adj = 62499999;
1007		adapter->ptp_caps.n_ext_ts = 0;
1008		adapter->ptp_caps.pps = 0;
1009		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1010		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1011		adapter->ptp_caps.gettime64 = igb_ptp_gettime_82576;
1012		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1013		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1014		adapter->cc.read = igb_ptp_read_82580;
1015		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1016		adapter->cc.mult = 1;
1017		adapter->cc.shift = 0;
1018		/* Enable the timer functions by clearing bit 31. */
1019		wr32(E1000_TSAUXC, 0x0);
1020		break;
1021	case e1000_i210:
1022	case e1000_i211:
1023		for (i = 0; i < IGB_N_SDP; i++) {
1024			struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1025
1026			snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1027			ppd->index = i;
1028			ppd->func = PTP_PF_NONE;
1029		}
1030		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1031		adapter->ptp_caps.owner = THIS_MODULE;
1032		adapter->ptp_caps.max_adj = 62499999;
1033		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1034		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1035		adapter->ptp_caps.n_pins = IGB_N_SDP;
1036		adapter->ptp_caps.pps = 1;
1037		adapter->ptp_caps.pin_config = adapter->sdp_config;
1038		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580;
1039		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1040		adapter->ptp_caps.gettime64 = igb_ptp_gettime_i210;
1041		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1042		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1043		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1044		/* Enable the timer functions by clearing bit 31. */
1045		wr32(E1000_TSAUXC, 0x0);
1046		break;
1047	default:
1048		adapter->ptp_clock = NULL;
1049		return;
1050	}
1051
1052	wrfl();
1053
1054	spin_lock_init(&adapter->tmreg_lock);
1055	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1056
1057	/* Initialize the clock and overflow work for devices that need it. */
1058	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1059		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1060
1061		igb_ptp_settime_i210(&adapter->ptp_caps, &ts);
1062	} else {
1063		timecounter_init(&adapter->tc, &adapter->cc,
1064				 ktime_to_ns(ktime_get_real()));
1065
1066		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1067				  igb_ptp_overflow_check);
1068
1069		schedule_delayed_work(&adapter->ptp_overflow_work,
1070				      IGB_SYSTIM_OVERFLOW_PERIOD);
1071	}
1072
1073	/* Initialize the time sync interrupts for devices that support it. */
1074	if (hw->mac.type >= e1000_82580) {
1075		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1076		wr32(E1000_IMS, E1000_IMS_TS);
1077	}
1078
1079	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1080	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1081
1082	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1083						&adapter->pdev->dev);
1084	if (IS_ERR(adapter->ptp_clock)) {
1085		adapter->ptp_clock = NULL;
1086		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1087	} else {
1088		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1089			 adapter->netdev->name);
1090		adapter->flags |= IGB_FLAG_PTP;
1091	}
1092}
1093
1094/**
1095 * igb_ptp_stop - Disable PTP device and stop the overflow check.
1096 * @adapter: Board private structure.
1097 *
1098 * This function stops the PTP support and cancels the delayed work.
1099 **/
1100void igb_ptp_stop(struct igb_adapter *adapter)
1101{
1102	switch (adapter->hw.mac.type) {
1103	case e1000_82576:
1104	case e1000_82580:
1105	case e1000_i354:
1106	case e1000_i350:
1107		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1108		break;
1109	case e1000_i210:
1110	case e1000_i211:
1111		/* No delayed work to cancel. */
1112		break;
1113	default:
1114		return;
1115	}
1116
1117	cancel_work_sync(&adapter->ptp_tx_work);
1118	if (adapter->ptp_tx_skb) {
1119		dev_kfree_skb_any(adapter->ptp_tx_skb);
1120		adapter->ptp_tx_skb = NULL;
1121		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1122	}
1123
1124	if (adapter->ptp_clock) {
1125		ptp_clock_unregister(adapter->ptp_clock);
1126		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1127			 adapter->netdev->name);
1128		adapter->flags &= ~IGB_FLAG_PTP;
1129	}
1130}
1131
1132/**
1133 * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1134 * @adapter: Board private structure.
1135 *
1136 * This function handles the reset work required to re-enable the PTP device.
1137 **/
1138void igb_ptp_reset(struct igb_adapter *adapter)
1139{
1140	struct e1000_hw *hw = &adapter->hw;
1141	unsigned long flags;
1142
1143	if (!(adapter->flags & IGB_FLAG_PTP))
1144		return;
1145
1146	/* reset the tstamp_config */
1147	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1148
1149	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1150
1151	switch (adapter->hw.mac.type) {
1152	case e1000_82576:
1153		/* Dial the nominal frequency. */
1154		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1155		break;
1156	case e1000_82580:
1157	case e1000_i354:
1158	case e1000_i350:
1159	case e1000_i210:
1160	case e1000_i211:
1161		wr32(E1000_TSAUXC, 0x0);
1162		wr32(E1000_TSSDP, 0x0);
1163		wr32(E1000_TSIM, TSYNC_INTERRUPTS);
1164		wr32(E1000_IMS, E1000_IMS_TS);
1165		break;
1166	default:
1167		/* No work to do. */
1168		goto out;
1169	}
1170
1171	/* Re-initialize the timer. */
1172	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1173		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1174
1175		igb_ptp_write_i210(adapter, &ts);
1176	} else {
1177		timecounter_init(&adapter->tc, &adapter->cc,
1178				 ktime_to_ns(ktime_get_real()));
1179	}
1180out:
1181	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1182}
1183