1 /* Intel PRO/1000 Linux driver
2 * Copyright(c) 1999 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * Linux NICS <linux.nics@intel.com>
18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
20 */
21
22 /* ethtool support for e1000 */
23
24 #include <linux/netdevice.h>
25 #include <linux/interrupt.h>
26 #include <linux/ethtool.h>
27 #include <linux/pci.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/vmalloc.h>
31 #include <linux/pm_runtime.h>
32
33 #include "e1000.h"
34
35 enum { NETDEV_STATS, E1000_STATS };
36
37 struct e1000_stats {
38 char stat_string[ETH_GSTRING_LEN];
39 int type;
40 int sizeof_stat;
41 int stat_offset;
42 };
43
44 #define E1000_STAT(str, m) { \
45 .stat_string = str, \
46 .type = E1000_STATS, \
47 .sizeof_stat = sizeof(((struct e1000_adapter *)0)->m), \
48 .stat_offset = offsetof(struct e1000_adapter, m) }
49 #define E1000_NETDEV_STAT(str, m) { \
50 .stat_string = str, \
51 .type = NETDEV_STATS, \
52 .sizeof_stat = sizeof(((struct rtnl_link_stats64 *)0)->m), \
53 .stat_offset = offsetof(struct rtnl_link_stats64, m) }
54
55 static const struct e1000_stats e1000_gstrings_stats[] = {
56 E1000_STAT("rx_packets", stats.gprc),
57 E1000_STAT("tx_packets", stats.gptc),
58 E1000_STAT("rx_bytes", stats.gorc),
59 E1000_STAT("tx_bytes", stats.gotc),
60 E1000_STAT("rx_broadcast", stats.bprc),
61 E1000_STAT("tx_broadcast", stats.bptc),
62 E1000_STAT("rx_multicast", stats.mprc),
63 E1000_STAT("tx_multicast", stats.mptc),
64 E1000_NETDEV_STAT("rx_errors", rx_errors),
65 E1000_NETDEV_STAT("tx_errors", tx_errors),
66 E1000_NETDEV_STAT("tx_dropped", tx_dropped),
67 E1000_STAT("multicast", stats.mprc),
68 E1000_STAT("collisions", stats.colc),
69 E1000_NETDEV_STAT("rx_length_errors", rx_length_errors),
70 E1000_NETDEV_STAT("rx_over_errors", rx_over_errors),
71 E1000_STAT("rx_crc_errors", stats.crcerrs),
72 E1000_NETDEV_STAT("rx_frame_errors", rx_frame_errors),
73 E1000_STAT("rx_no_buffer_count", stats.rnbc),
74 E1000_STAT("rx_missed_errors", stats.mpc),
75 E1000_STAT("tx_aborted_errors", stats.ecol),
76 E1000_STAT("tx_carrier_errors", stats.tncrs),
77 E1000_NETDEV_STAT("tx_fifo_errors", tx_fifo_errors),
78 E1000_NETDEV_STAT("tx_heartbeat_errors", tx_heartbeat_errors),
79 E1000_STAT("tx_window_errors", stats.latecol),
80 E1000_STAT("tx_abort_late_coll", stats.latecol),
81 E1000_STAT("tx_deferred_ok", stats.dc),
82 E1000_STAT("tx_single_coll_ok", stats.scc),
83 E1000_STAT("tx_multi_coll_ok", stats.mcc),
84 E1000_STAT("tx_timeout_count", tx_timeout_count),
85 E1000_STAT("tx_restart_queue", restart_queue),
86 E1000_STAT("rx_long_length_errors", stats.roc),
87 E1000_STAT("rx_short_length_errors", stats.ruc),
88 E1000_STAT("rx_align_errors", stats.algnerrc),
89 E1000_STAT("tx_tcp_seg_good", stats.tsctc),
90 E1000_STAT("tx_tcp_seg_failed", stats.tsctfc),
91 E1000_STAT("rx_flow_control_xon", stats.xonrxc),
92 E1000_STAT("rx_flow_control_xoff", stats.xoffrxc),
93 E1000_STAT("tx_flow_control_xon", stats.xontxc),
94 E1000_STAT("tx_flow_control_xoff", stats.xofftxc),
95 E1000_STAT("rx_csum_offload_good", hw_csum_good),
96 E1000_STAT("rx_csum_offload_errors", hw_csum_err),
97 E1000_STAT("rx_header_split", rx_hdr_split),
98 E1000_STAT("alloc_rx_buff_failed", alloc_rx_buff_failed),
99 E1000_STAT("tx_smbus", stats.mgptc),
100 E1000_STAT("rx_smbus", stats.mgprc),
101 E1000_STAT("dropped_smbus", stats.mgpdc),
102 E1000_STAT("rx_dma_failed", rx_dma_failed),
103 E1000_STAT("tx_dma_failed", tx_dma_failed),
104 E1000_STAT("rx_hwtstamp_cleared", rx_hwtstamp_cleared),
105 E1000_STAT("uncorr_ecc_errors", uncorr_errors),
106 E1000_STAT("corr_ecc_errors", corr_errors),
107 E1000_STAT("tx_hwtstamp_timeouts", tx_hwtstamp_timeouts),
108 };
109
110 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
111 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN)
112 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
113 "Register test (offline)", "Eeprom test (offline)",
114 "Interrupt test (offline)", "Loopback test (offline)",
115 "Link test (on/offline)"
116 };
117
118 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
119
e1000_get_settings(struct net_device * netdev,struct ethtool_cmd * ecmd)120 static int e1000_get_settings(struct net_device *netdev,
121 struct ethtool_cmd *ecmd)
122 {
123 struct e1000_adapter *adapter = netdev_priv(netdev);
124 struct e1000_hw *hw = &adapter->hw;
125 u32 speed;
126
127 if (hw->phy.media_type == e1000_media_type_copper) {
128 ecmd->supported = (SUPPORTED_10baseT_Half |
129 SUPPORTED_10baseT_Full |
130 SUPPORTED_100baseT_Half |
131 SUPPORTED_100baseT_Full |
132 SUPPORTED_1000baseT_Full |
133 SUPPORTED_Autoneg |
134 SUPPORTED_TP);
135 if (hw->phy.type == e1000_phy_ife)
136 ecmd->supported &= ~SUPPORTED_1000baseT_Full;
137 ecmd->advertising = ADVERTISED_TP;
138
139 if (hw->mac.autoneg == 1) {
140 ecmd->advertising |= ADVERTISED_Autoneg;
141 /* the e1000 autoneg seems to match ethtool nicely */
142 ecmd->advertising |= hw->phy.autoneg_advertised;
143 }
144
145 ecmd->port = PORT_TP;
146 ecmd->phy_address = hw->phy.addr;
147 ecmd->transceiver = XCVR_INTERNAL;
148
149 } else {
150 ecmd->supported = (SUPPORTED_1000baseT_Full |
151 SUPPORTED_FIBRE |
152 SUPPORTED_Autoneg);
153
154 ecmd->advertising = (ADVERTISED_1000baseT_Full |
155 ADVERTISED_FIBRE |
156 ADVERTISED_Autoneg);
157
158 ecmd->port = PORT_FIBRE;
159 ecmd->transceiver = XCVR_EXTERNAL;
160 }
161
162 speed = SPEED_UNKNOWN;
163 ecmd->duplex = DUPLEX_UNKNOWN;
164
165 if (netif_running(netdev)) {
166 if (netif_carrier_ok(netdev)) {
167 speed = adapter->link_speed;
168 ecmd->duplex = adapter->link_duplex - 1;
169 }
170 } else if (!pm_runtime_suspended(netdev->dev.parent)) {
171 u32 status = er32(STATUS);
172
173 if (status & E1000_STATUS_LU) {
174 if (status & E1000_STATUS_SPEED_1000)
175 speed = SPEED_1000;
176 else if (status & E1000_STATUS_SPEED_100)
177 speed = SPEED_100;
178 else
179 speed = SPEED_10;
180
181 if (status & E1000_STATUS_FD)
182 ecmd->duplex = DUPLEX_FULL;
183 else
184 ecmd->duplex = DUPLEX_HALF;
185 }
186 }
187
188 ethtool_cmd_speed_set(ecmd, speed);
189 ecmd->autoneg = ((hw->phy.media_type == e1000_media_type_fiber) ||
190 hw->mac.autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
191
192 /* MDI-X => 2; MDI =>1; Invalid =>0 */
193 if ((hw->phy.media_type == e1000_media_type_copper) &&
194 netif_carrier_ok(netdev))
195 ecmd->eth_tp_mdix = hw->phy.is_mdix ? ETH_TP_MDI_X : ETH_TP_MDI;
196 else
197 ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
198
199 if (hw->phy.mdix == AUTO_ALL_MODES)
200 ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
201 else
202 ecmd->eth_tp_mdix_ctrl = hw->phy.mdix;
203
204 return 0;
205 }
206
e1000_set_spd_dplx(struct e1000_adapter * adapter,u32 spd,u8 dplx)207 static int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
208 {
209 struct e1000_mac_info *mac = &adapter->hw.mac;
210
211 mac->autoneg = 0;
212
213 /* Make sure dplx is at most 1 bit and lsb of speed is not set
214 * for the switch() below to work
215 */
216 if ((spd & 1) || (dplx & ~1))
217 goto err_inval;
218
219 /* Fiber NICs only allow 1000 gbps Full duplex */
220 if ((adapter->hw.phy.media_type == e1000_media_type_fiber) &&
221 (spd != SPEED_1000) && (dplx != DUPLEX_FULL)) {
222 goto err_inval;
223 }
224
225 switch (spd + dplx) {
226 case SPEED_10 + DUPLEX_HALF:
227 mac->forced_speed_duplex = ADVERTISE_10_HALF;
228 break;
229 case SPEED_10 + DUPLEX_FULL:
230 mac->forced_speed_duplex = ADVERTISE_10_FULL;
231 break;
232 case SPEED_100 + DUPLEX_HALF:
233 mac->forced_speed_duplex = ADVERTISE_100_HALF;
234 break;
235 case SPEED_100 + DUPLEX_FULL:
236 mac->forced_speed_duplex = ADVERTISE_100_FULL;
237 break;
238 case SPEED_1000 + DUPLEX_FULL:
239 mac->autoneg = 1;
240 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
241 break;
242 case SPEED_1000 + DUPLEX_HALF: /* not supported */
243 default:
244 goto err_inval;
245 }
246
247 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
248 adapter->hw.phy.mdix = AUTO_ALL_MODES;
249
250 return 0;
251
252 err_inval:
253 e_err("Unsupported Speed/Duplex configuration\n");
254 return -EINVAL;
255 }
256
e1000_set_settings(struct net_device * netdev,struct ethtool_cmd * ecmd)257 static int e1000_set_settings(struct net_device *netdev,
258 struct ethtool_cmd *ecmd)
259 {
260 struct e1000_adapter *adapter = netdev_priv(netdev);
261 struct e1000_hw *hw = &adapter->hw;
262 int ret_val = 0;
263
264 pm_runtime_get_sync(netdev->dev.parent);
265
266 /* When SoL/IDER sessions are active, autoneg/speed/duplex
267 * cannot be changed
268 */
269 if (hw->phy.ops.check_reset_block &&
270 hw->phy.ops.check_reset_block(hw)) {
271 e_err("Cannot change link characteristics when SoL/IDER is active.\n");
272 ret_val = -EINVAL;
273 goto out;
274 }
275
276 /* MDI setting is only allowed when autoneg enabled because
277 * some hardware doesn't allow MDI setting when speed or
278 * duplex is forced.
279 */
280 if (ecmd->eth_tp_mdix_ctrl) {
281 if (hw->phy.media_type != e1000_media_type_copper) {
282 ret_val = -EOPNOTSUPP;
283 goto out;
284 }
285
286 if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
287 (ecmd->autoneg != AUTONEG_ENABLE)) {
288 e_err("forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
289 ret_val = -EINVAL;
290 goto out;
291 }
292 }
293
294 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
295 usleep_range(1000, 2000);
296
297 if (ecmd->autoneg == AUTONEG_ENABLE) {
298 hw->mac.autoneg = 1;
299 if (hw->phy.media_type == e1000_media_type_fiber)
300 hw->phy.autoneg_advertised = ADVERTISED_1000baseT_Full |
301 ADVERTISED_FIBRE | ADVERTISED_Autoneg;
302 else
303 hw->phy.autoneg_advertised = ecmd->advertising |
304 ADVERTISED_TP | ADVERTISED_Autoneg;
305 ecmd->advertising = hw->phy.autoneg_advertised;
306 if (adapter->fc_autoneg)
307 hw->fc.requested_mode = e1000_fc_default;
308 } else {
309 u32 speed = ethtool_cmd_speed(ecmd);
310 /* calling this overrides forced MDI setting */
311 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
312 ret_val = -EINVAL;
313 goto out;
314 }
315 }
316
317 /* MDI-X => 2; MDI => 1; Auto => 3 */
318 if (ecmd->eth_tp_mdix_ctrl) {
319 /* fix up the value for auto (3 => 0) as zero is mapped
320 * internally to auto
321 */
322 if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
323 hw->phy.mdix = AUTO_ALL_MODES;
324 else
325 hw->phy.mdix = ecmd->eth_tp_mdix_ctrl;
326 }
327
328 /* reset the link */
329 if (netif_running(adapter->netdev)) {
330 e1000e_down(adapter, true);
331 e1000e_up(adapter);
332 } else {
333 e1000e_reset(adapter);
334 }
335
336 out:
337 pm_runtime_put_sync(netdev->dev.parent);
338 clear_bit(__E1000_RESETTING, &adapter->state);
339 return ret_val;
340 }
341
e1000_get_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)342 static void e1000_get_pauseparam(struct net_device *netdev,
343 struct ethtool_pauseparam *pause)
344 {
345 struct e1000_adapter *adapter = netdev_priv(netdev);
346 struct e1000_hw *hw = &adapter->hw;
347
348 pause->autoneg =
349 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
350
351 if (hw->fc.current_mode == e1000_fc_rx_pause) {
352 pause->rx_pause = 1;
353 } else if (hw->fc.current_mode == e1000_fc_tx_pause) {
354 pause->tx_pause = 1;
355 } else if (hw->fc.current_mode == e1000_fc_full) {
356 pause->rx_pause = 1;
357 pause->tx_pause = 1;
358 }
359 }
360
e1000_set_pauseparam(struct net_device * netdev,struct ethtool_pauseparam * pause)361 static int e1000_set_pauseparam(struct net_device *netdev,
362 struct ethtool_pauseparam *pause)
363 {
364 struct e1000_adapter *adapter = netdev_priv(netdev);
365 struct e1000_hw *hw = &adapter->hw;
366 int retval = 0;
367
368 adapter->fc_autoneg = pause->autoneg;
369
370 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
371 usleep_range(1000, 2000);
372
373 pm_runtime_get_sync(netdev->dev.parent);
374
375 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
376 hw->fc.requested_mode = e1000_fc_default;
377 if (netif_running(adapter->netdev)) {
378 e1000e_down(adapter, true);
379 e1000e_up(adapter);
380 } else {
381 e1000e_reset(adapter);
382 }
383 } else {
384 if (pause->rx_pause && pause->tx_pause)
385 hw->fc.requested_mode = e1000_fc_full;
386 else if (pause->rx_pause && !pause->tx_pause)
387 hw->fc.requested_mode = e1000_fc_rx_pause;
388 else if (!pause->rx_pause && pause->tx_pause)
389 hw->fc.requested_mode = e1000_fc_tx_pause;
390 else if (!pause->rx_pause && !pause->tx_pause)
391 hw->fc.requested_mode = e1000_fc_none;
392
393 hw->fc.current_mode = hw->fc.requested_mode;
394
395 if (hw->phy.media_type == e1000_media_type_fiber) {
396 retval = hw->mac.ops.setup_link(hw);
397 /* implicit goto out */
398 } else {
399 retval = e1000e_force_mac_fc(hw);
400 if (retval)
401 goto out;
402 e1000e_set_fc_watermarks(hw);
403 }
404 }
405
406 out:
407 pm_runtime_put_sync(netdev->dev.parent);
408 clear_bit(__E1000_RESETTING, &adapter->state);
409 return retval;
410 }
411
e1000_get_msglevel(struct net_device * netdev)412 static u32 e1000_get_msglevel(struct net_device *netdev)
413 {
414 struct e1000_adapter *adapter = netdev_priv(netdev);
415 return adapter->msg_enable;
416 }
417
e1000_set_msglevel(struct net_device * netdev,u32 data)418 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
419 {
420 struct e1000_adapter *adapter = netdev_priv(netdev);
421 adapter->msg_enable = data;
422 }
423
e1000_get_regs_len(struct net_device __always_unused * netdev)424 static int e1000_get_regs_len(struct net_device __always_unused *netdev)
425 {
426 #define E1000_REGS_LEN 32 /* overestimate */
427 return E1000_REGS_LEN * sizeof(u32);
428 }
429
e1000_get_regs(struct net_device * netdev,struct ethtool_regs * regs,void * p)430 static void e1000_get_regs(struct net_device *netdev,
431 struct ethtool_regs *regs, void *p)
432 {
433 struct e1000_adapter *adapter = netdev_priv(netdev);
434 struct e1000_hw *hw = &adapter->hw;
435 u32 *regs_buff = p;
436 u16 phy_data;
437
438 pm_runtime_get_sync(netdev->dev.parent);
439
440 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
441
442 regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
443 adapter->pdev->device;
444
445 regs_buff[0] = er32(CTRL);
446 regs_buff[1] = er32(STATUS);
447
448 regs_buff[2] = er32(RCTL);
449 regs_buff[3] = er32(RDLEN(0));
450 regs_buff[4] = er32(RDH(0));
451 regs_buff[5] = er32(RDT(0));
452 regs_buff[6] = er32(RDTR);
453
454 regs_buff[7] = er32(TCTL);
455 regs_buff[8] = er32(TDLEN(0));
456 regs_buff[9] = er32(TDH(0));
457 regs_buff[10] = er32(TDT(0));
458 regs_buff[11] = er32(TIDV);
459
460 regs_buff[12] = adapter->hw.phy.type; /* PHY type (IGP=1, M88=0) */
461
462 /* ethtool doesn't use anything past this point, so all this
463 * code is likely legacy junk for apps that may or may not exist
464 */
465 if (hw->phy.type == e1000_phy_m88) {
466 e1e_rphy(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
467 regs_buff[13] = (u32)phy_data; /* cable length */
468 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
469 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
470 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
471 e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
472 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
473 regs_buff[18] = regs_buff[13]; /* cable polarity */
474 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
475 regs_buff[20] = regs_buff[17]; /* polarity correction */
476 /* phy receive errors */
477 regs_buff[22] = adapter->phy_stats.receive_errors;
478 regs_buff[23] = regs_buff[13]; /* mdix mode */
479 }
480 regs_buff[21] = 0; /* was idle_errors */
481 e1e_rphy(hw, MII_STAT1000, &phy_data);
482 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
483 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
484
485 pm_runtime_put_sync(netdev->dev.parent);
486 }
487
e1000_get_eeprom_len(struct net_device * netdev)488 static int e1000_get_eeprom_len(struct net_device *netdev)
489 {
490 struct e1000_adapter *adapter = netdev_priv(netdev);
491 return adapter->hw.nvm.word_size * 2;
492 }
493
e1000_get_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)494 static int e1000_get_eeprom(struct net_device *netdev,
495 struct ethtool_eeprom *eeprom, u8 *bytes)
496 {
497 struct e1000_adapter *adapter = netdev_priv(netdev);
498 struct e1000_hw *hw = &adapter->hw;
499 u16 *eeprom_buff;
500 int first_word;
501 int last_word;
502 int ret_val = 0;
503 u16 i;
504
505 if (eeprom->len == 0)
506 return -EINVAL;
507
508 eeprom->magic = adapter->pdev->vendor | (adapter->pdev->device << 16);
509
510 first_word = eeprom->offset >> 1;
511 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
512
513 eeprom_buff = kmalloc(sizeof(u16) * (last_word - first_word + 1),
514 GFP_KERNEL);
515 if (!eeprom_buff)
516 return -ENOMEM;
517
518 pm_runtime_get_sync(netdev->dev.parent);
519
520 if (hw->nvm.type == e1000_nvm_eeprom_spi) {
521 ret_val = e1000_read_nvm(hw, first_word,
522 last_word - first_word + 1,
523 eeprom_buff);
524 } else {
525 for (i = 0; i < last_word - first_word + 1; i++) {
526 ret_val = e1000_read_nvm(hw, first_word + i, 1,
527 &eeprom_buff[i]);
528 if (ret_val)
529 break;
530 }
531 }
532
533 pm_runtime_put_sync(netdev->dev.parent);
534
535 if (ret_val) {
536 /* a read error occurred, throw away the result */
537 memset(eeprom_buff, 0xff, sizeof(u16) *
538 (last_word - first_word + 1));
539 } else {
540 /* Device's eeprom is always little-endian, word addressable */
541 for (i = 0; i < last_word - first_word + 1; i++)
542 le16_to_cpus(&eeprom_buff[i]);
543 }
544
545 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
546 kfree(eeprom_buff);
547
548 return ret_val;
549 }
550
e1000_set_eeprom(struct net_device * netdev,struct ethtool_eeprom * eeprom,u8 * bytes)551 static int e1000_set_eeprom(struct net_device *netdev,
552 struct ethtool_eeprom *eeprom, u8 *bytes)
553 {
554 struct e1000_adapter *adapter = netdev_priv(netdev);
555 struct e1000_hw *hw = &adapter->hw;
556 u16 *eeprom_buff;
557 void *ptr;
558 int max_len;
559 int first_word;
560 int last_word;
561 int ret_val = 0;
562 u16 i;
563
564 if (eeprom->len == 0)
565 return -EOPNOTSUPP;
566
567 if (eeprom->magic !=
568 (adapter->pdev->vendor | (adapter->pdev->device << 16)))
569 return -EFAULT;
570
571 if (adapter->flags & FLAG_READ_ONLY_NVM)
572 return -EINVAL;
573
574 max_len = hw->nvm.word_size * 2;
575
576 first_word = eeprom->offset >> 1;
577 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
578 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
579 if (!eeprom_buff)
580 return -ENOMEM;
581
582 ptr = (void *)eeprom_buff;
583
584 pm_runtime_get_sync(netdev->dev.parent);
585
586 if (eeprom->offset & 1) {
587 /* need read/modify/write of first changed EEPROM word */
588 /* only the second byte of the word is being modified */
589 ret_val = e1000_read_nvm(hw, first_word, 1, &eeprom_buff[0]);
590 ptr++;
591 }
592 if (((eeprom->offset + eeprom->len) & 1) && (!ret_val))
593 /* need read/modify/write of last changed EEPROM word */
594 /* only the first byte of the word is being modified */
595 ret_val = e1000_read_nvm(hw, last_word, 1,
596 &eeprom_buff[last_word - first_word]);
597
598 if (ret_val)
599 goto out;
600
601 /* Device's eeprom is always little-endian, word addressable */
602 for (i = 0; i < last_word - first_word + 1; i++)
603 le16_to_cpus(&eeprom_buff[i]);
604
605 memcpy(ptr, bytes, eeprom->len);
606
607 for (i = 0; i < last_word - first_word + 1; i++)
608 cpu_to_le16s(&eeprom_buff[i]);
609
610 ret_val = e1000_write_nvm(hw, first_word,
611 last_word - first_word + 1, eeprom_buff);
612
613 if (ret_val)
614 goto out;
615
616 /* Update the checksum over the first part of the EEPROM if needed
617 * and flush shadow RAM for applicable controllers
618 */
619 if ((first_word <= NVM_CHECKSUM_REG) ||
620 (hw->mac.type == e1000_82583) ||
621 (hw->mac.type == e1000_82574) ||
622 (hw->mac.type == e1000_82573))
623 ret_val = e1000e_update_nvm_checksum(hw);
624
625 out:
626 pm_runtime_put_sync(netdev->dev.parent);
627 kfree(eeprom_buff);
628 return ret_val;
629 }
630
e1000_get_drvinfo(struct net_device * netdev,struct ethtool_drvinfo * drvinfo)631 static void e1000_get_drvinfo(struct net_device *netdev,
632 struct ethtool_drvinfo *drvinfo)
633 {
634 struct e1000_adapter *adapter = netdev_priv(netdev);
635
636 strlcpy(drvinfo->driver, e1000e_driver_name, sizeof(drvinfo->driver));
637 strlcpy(drvinfo->version, e1000e_driver_version,
638 sizeof(drvinfo->version));
639
640 /* EEPROM image version # is reported as firmware version # for
641 * PCI-E controllers
642 */
643 snprintf(drvinfo->fw_version, sizeof(drvinfo->fw_version),
644 "%d.%d-%d",
645 (adapter->eeprom_vers & 0xF000) >> 12,
646 (adapter->eeprom_vers & 0x0FF0) >> 4,
647 (adapter->eeprom_vers & 0x000F));
648
649 strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
650 sizeof(drvinfo->bus_info));
651 drvinfo->regdump_len = e1000_get_regs_len(netdev);
652 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
653 }
654
e1000_get_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)655 static void e1000_get_ringparam(struct net_device *netdev,
656 struct ethtool_ringparam *ring)
657 {
658 struct e1000_adapter *adapter = netdev_priv(netdev);
659
660 ring->rx_max_pending = E1000_MAX_RXD;
661 ring->tx_max_pending = E1000_MAX_TXD;
662 ring->rx_pending = adapter->rx_ring_count;
663 ring->tx_pending = adapter->tx_ring_count;
664 }
665
e1000_set_ringparam(struct net_device * netdev,struct ethtool_ringparam * ring)666 static int e1000_set_ringparam(struct net_device *netdev,
667 struct ethtool_ringparam *ring)
668 {
669 struct e1000_adapter *adapter = netdev_priv(netdev);
670 struct e1000_ring *temp_tx = NULL, *temp_rx = NULL;
671 int err = 0, size = sizeof(struct e1000_ring);
672 bool set_tx = false, set_rx = false;
673 u16 new_rx_count, new_tx_count;
674
675 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
676 return -EINVAL;
677
678 new_rx_count = clamp_t(u32, ring->rx_pending, E1000_MIN_RXD,
679 E1000_MAX_RXD);
680 new_rx_count = ALIGN(new_rx_count, REQ_RX_DESCRIPTOR_MULTIPLE);
681
682 new_tx_count = clamp_t(u32, ring->tx_pending, E1000_MIN_TXD,
683 E1000_MAX_TXD);
684 new_tx_count = ALIGN(new_tx_count, REQ_TX_DESCRIPTOR_MULTIPLE);
685
686 if ((new_tx_count == adapter->tx_ring_count) &&
687 (new_rx_count == adapter->rx_ring_count))
688 /* nothing to do */
689 return 0;
690
691 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
692 usleep_range(1000, 2000);
693
694 if (!netif_running(adapter->netdev)) {
695 /* Set counts now and allocate resources during open() */
696 adapter->tx_ring->count = new_tx_count;
697 adapter->rx_ring->count = new_rx_count;
698 adapter->tx_ring_count = new_tx_count;
699 adapter->rx_ring_count = new_rx_count;
700 goto clear_reset;
701 }
702
703 set_tx = (new_tx_count != adapter->tx_ring_count);
704 set_rx = (new_rx_count != adapter->rx_ring_count);
705
706 /* Allocate temporary storage for ring updates */
707 if (set_tx) {
708 temp_tx = vmalloc(size);
709 if (!temp_tx) {
710 err = -ENOMEM;
711 goto free_temp;
712 }
713 }
714 if (set_rx) {
715 temp_rx = vmalloc(size);
716 if (!temp_rx) {
717 err = -ENOMEM;
718 goto free_temp;
719 }
720 }
721
722 pm_runtime_get_sync(netdev->dev.parent);
723
724 e1000e_down(adapter, true);
725
726 /* We can't just free everything and then setup again, because the
727 * ISRs in MSI-X mode get passed pointers to the Tx and Rx ring
728 * structs. First, attempt to allocate new resources...
729 */
730 if (set_tx) {
731 memcpy(temp_tx, adapter->tx_ring, size);
732 temp_tx->count = new_tx_count;
733 err = e1000e_setup_tx_resources(temp_tx);
734 if (err)
735 goto err_setup;
736 }
737 if (set_rx) {
738 memcpy(temp_rx, adapter->rx_ring, size);
739 temp_rx->count = new_rx_count;
740 err = e1000e_setup_rx_resources(temp_rx);
741 if (err)
742 goto err_setup_rx;
743 }
744
745 /* ...then free the old resources and copy back any new ring data */
746 if (set_tx) {
747 e1000e_free_tx_resources(adapter->tx_ring);
748 memcpy(adapter->tx_ring, temp_tx, size);
749 adapter->tx_ring_count = new_tx_count;
750 }
751 if (set_rx) {
752 e1000e_free_rx_resources(adapter->rx_ring);
753 memcpy(adapter->rx_ring, temp_rx, size);
754 adapter->rx_ring_count = new_rx_count;
755 }
756
757 err_setup_rx:
758 if (err && set_tx)
759 e1000e_free_tx_resources(temp_tx);
760 err_setup:
761 e1000e_up(adapter);
762 pm_runtime_put_sync(netdev->dev.parent);
763 free_temp:
764 vfree(temp_tx);
765 vfree(temp_rx);
766 clear_reset:
767 clear_bit(__E1000_RESETTING, &adapter->state);
768 return err;
769 }
770
reg_pattern_test(struct e1000_adapter * adapter,u64 * data,int reg,int offset,u32 mask,u32 write)771 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data,
772 int reg, int offset, u32 mask, u32 write)
773 {
774 u32 pat, val;
775 static const u32 test[] = {
776 0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF
777 };
778 for (pat = 0; pat < ARRAY_SIZE(test); pat++) {
779 E1000_WRITE_REG_ARRAY(&adapter->hw, reg, offset,
780 (test[pat] & write));
781 val = E1000_READ_REG_ARRAY(&adapter->hw, reg, offset);
782 if (val != (test[pat] & write & mask)) {
783 e_err("pattern test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
784 reg + (offset << 2), val,
785 (test[pat] & write & mask));
786 *data = reg;
787 return true;
788 }
789 }
790 return false;
791 }
792
reg_set_and_check(struct e1000_adapter * adapter,u64 * data,int reg,u32 mask,u32 write)793 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data,
794 int reg, u32 mask, u32 write)
795 {
796 u32 val;
797
798 __ew32(&adapter->hw, reg, write & mask);
799 val = __er32(&adapter->hw, reg);
800 if ((write & mask) != (val & mask)) {
801 e_err("set/check test failed (reg 0x%05X): got 0x%08X expected 0x%08X\n",
802 reg, (val & mask), (write & mask));
803 *data = reg;
804 return true;
805 }
806 return false;
807 }
808
809 #define REG_PATTERN_TEST_ARRAY(reg, offset, mask, write) \
810 do { \
811 if (reg_pattern_test(adapter, data, reg, offset, mask, write)) \
812 return 1; \
813 } while (0)
814 #define REG_PATTERN_TEST(reg, mask, write) \
815 REG_PATTERN_TEST_ARRAY(reg, 0, mask, write)
816
817 #define REG_SET_AND_CHECK(reg, mask, write) \
818 do { \
819 if (reg_set_and_check(adapter, data, reg, mask, write)) \
820 return 1; \
821 } while (0)
822
e1000_reg_test(struct e1000_adapter * adapter,u64 * data)823 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
824 {
825 struct e1000_hw *hw = &adapter->hw;
826 struct e1000_mac_info *mac = &adapter->hw.mac;
827 u32 value;
828 u32 before;
829 u32 after;
830 u32 i;
831 u32 toggle;
832 u32 mask;
833 u32 wlock_mac = 0;
834
835 /* The status register is Read Only, so a write should fail.
836 * Some bits that get toggled are ignored. There are several bits
837 * on newer hardware that are r/w.
838 */
839 switch (mac->type) {
840 case e1000_82571:
841 case e1000_82572:
842 case e1000_80003es2lan:
843 toggle = 0x7FFFF3FF;
844 break;
845 default:
846 toggle = 0x7FFFF033;
847 break;
848 }
849
850 before = er32(STATUS);
851 value = (er32(STATUS) & toggle);
852 ew32(STATUS, toggle);
853 after = er32(STATUS) & toggle;
854 if (value != after) {
855 e_err("failed STATUS register test got: 0x%08X expected: 0x%08X\n",
856 after, value);
857 *data = 1;
858 return 1;
859 }
860 /* restore previous status */
861 ew32(STATUS, before);
862
863 if (!(adapter->flags & FLAG_IS_ICH)) {
864 REG_PATTERN_TEST(E1000_FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
865 REG_PATTERN_TEST(E1000_FCAH, 0x0000FFFF, 0xFFFFFFFF);
866 REG_PATTERN_TEST(E1000_FCT, 0x0000FFFF, 0xFFFFFFFF);
867 REG_PATTERN_TEST(E1000_VET, 0x0000FFFF, 0xFFFFFFFF);
868 }
869
870 REG_PATTERN_TEST(E1000_RDTR, 0x0000FFFF, 0xFFFFFFFF);
871 REG_PATTERN_TEST(E1000_RDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
872 REG_PATTERN_TEST(E1000_RDLEN(0), 0x000FFF80, 0x000FFFFF);
873 REG_PATTERN_TEST(E1000_RDH(0), 0x0000FFFF, 0x0000FFFF);
874 REG_PATTERN_TEST(E1000_RDT(0), 0x0000FFFF, 0x0000FFFF);
875 REG_PATTERN_TEST(E1000_FCRTH, 0x0000FFF8, 0x0000FFF8);
876 REG_PATTERN_TEST(E1000_FCTTV, 0x0000FFFF, 0x0000FFFF);
877 REG_PATTERN_TEST(E1000_TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
878 REG_PATTERN_TEST(E1000_TDBAH(0), 0xFFFFFFFF, 0xFFFFFFFF);
879 REG_PATTERN_TEST(E1000_TDLEN(0), 0x000FFF80, 0x000FFFFF);
880
881 REG_SET_AND_CHECK(E1000_RCTL, 0xFFFFFFFF, 0x00000000);
882
883 before = ((adapter->flags & FLAG_IS_ICH) ? 0x06C3B33E : 0x06DFB3FE);
884 REG_SET_AND_CHECK(E1000_RCTL, before, 0x003FFFFB);
885 REG_SET_AND_CHECK(E1000_TCTL, 0xFFFFFFFF, 0x00000000);
886
887 REG_SET_AND_CHECK(E1000_RCTL, before, 0xFFFFFFFF);
888 REG_PATTERN_TEST(E1000_RDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
889 if (!(adapter->flags & FLAG_IS_ICH))
890 REG_PATTERN_TEST(E1000_TXCW, 0xC000FFFF, 0x0000FFFF);
891 REG_PATTERN_TEST(E1000_TDBAL(0), 0xFFFFFFF0, 0xFFFFFFFF);
892 REG_PATTERN_TEST(E1000_TIDV, 0x0000FFFF, 0x0000FFFF);
893 mask = 0x8003FFFF;
894 switch (mac->type) {
895 case e1000_ich10lan:
896 case e1000_pchlan:
897 case e1000_pch2lan:
898 case e1000_pch_lpt:
899 case e1000_pch_spt:
900 mask |= (1 << 18);
901 break;
902 default:
903 break;
904 }
905
906 if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt))
907 wlock_mac = (er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK) >>
908 E1000_FWSM_WLOCK_MAC_SHIFT;
909
910 for (i = 0; i < mac->rar_entry_count; i++) {
911 if ((mac->type == e1000_pch_lpt) ||
912 (mac->type == e1000_pch_spt)) {
913 /* Cannot test write-protected SHRAL[n] registers */
914 if ((wlock_mac == 1) || (wlock_mac && (i > wlock_mac)))
915 continue;
916
917 /* SHRAH[9] different than the others */
918 if (i == 10)
919 mask |= (1 << 30);
920 else
921 mask &= ~(1 << 30);
922 }
923 if (mac->type == e1000_pch2lan) {
924 /* SHRAH[0,1,2] different than previous */
925 if (i == 1)
926 mask &= 0xFFF4FFFF;
927 /* SHRAH[3] different than SHRAH[0,1,2] */
928 if (i == 4)
929 mask |= (1 << 30);
930 /* RAR[1-6] owned by management engine - skipping */
931 if (i > 0)
932 i += 6;
933 }
934
935 REG_PATTERN_TEST_ARRAY(E1000_RA, ((i << 1) + 1), mask,
936 0xFFFFFFFF);
937 /* reset index to actual value */
938 if ((mac->type == e1000_pch2lan) && (i > 6))
939 i -= 6;
940 }
941
942 for (i = 0; i < mac->mta_reg_count; i++)
943 REG_PATTERN_TEST_ARRAY(E1000_MTA, i, 0xFFFFFFFF, 0xFFFFFFFF);
944
945 *data = 0;
946
947 return 0;
948 }
949
e1000_eeprom_test(struct e1000_adapter * adapter,u64 * data)950 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
951 {
952 u16 temp;
953 u16 checksum = 0;
954 u16 i;
955
956 *data = 0;
957 /* Read and add up the contents of the EEPROM */
958 for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
959 if ((e1000_read_nvm(&adapter->hw, i, 1, &temp)) < 0) {
960 *data = 1;
961 return *data;
962 }
963 checksum += temp;
964 }
965
966 /* If Checksum is not Correct return error else test passed */
967 if ((checksum != (u16)NVM_SUM) && !(*data))
968 *data = 2;
969
970 return *data;
971 }
972
e1000_test_intr(int __always_unused irq,void * data)973 static irqreturn_t e1000_test_intr(int __always_unused irq, void *data)
974 {
975 struct net_device *netdev = (struct net_device *)data;
976 struct e1000_adapter *adapter = netdev_priv(netdev);
977 struct e1000_hw *hw = &adapter->hw;
978
979 adapter->test_icr |= er32(ICR);
980
981 return IRQ_HANDLED;
982 }
983
e1000_intr_test(struct e1000_adapter * adapter,u64 * data)984 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
985 {
986 struct net_device *netdev = adapter->netdev;
987 struct e1000_hw *hw = &adapter->hw;
988 u32 mask;
989 u32 shared_int = 1;
990 u32 irq = adapter->pdev->irq;
991 int i;
992 int ret_val = 0;
993 int int_mode = E1000E_INT_MODE_LEGACY;
994
995 *data = 0;
996
997 /* NOTE: we don't test MSI/MSI-X interrupts here, yet */
998 if (adapter->int_mode == E1000E_INT_MODE_MSIX) {
999 int_mode = adapter->int_mode;
1000 e1000e_reset_interrupt_capability(adapter);
1001 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1002 e1000e_set_interrupt_capability(adapter);
1003 }
1004 /* Hook up test interrupt handler just for this test */
1005 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
1006 netdev)) {
1007 shared_int = 0;
1008 } else if (request_irq(irq, e1000_test_intr, IRQF_SHARED, netdev->name,
1009 netdev)) {
1010 *data = 1;
1011 ret_val = -1;
1012 goto out;
1013 }
1014 e_info("testing %s interrupt\n", (shared_int ? "shared" : "unshared"));
1015
1016 /* Disable all the interrupts */
1017 ew32(IMC, 0xFFFFFFFF);
1018 e1e_flush();
1019 usleep_range(10000, 20000);
1020
1021 /* Test each interrupt */
1022 for (i = 0; i < 10; i++) {
1023 /* Interrupt to test */
1024 mask = 1 << i;
1025
1026 if (adapter->flags & FLAG_IS_ICH) {
1027 switch (mask) {
1028 case E1000_ICR_RXSEQ:
1029 continue;
1030 case 0x00000100:
1031 if (adapter->hw.mac.type == e1000_ich8lan ||
1032 adapter->hw.mac.type == e1000_ich9lan)
1033 continue;
1034 break;
1035 default:
1036 break;
1037 }
1038 }
1039
1040 if (!shared_int) {
1041 /* Disable the interrupt to be reported in
1042 * the cause register and then force the same
1043 * interrupt and see if one gets posted. If
1044 * an interrupt was posted to the bus, the
1045 * test failed.
1046 */
1047 adapter->test_icr = 0;
1048 ew32(IMC, mask);
1049 ew32(ICS, mask);
1050 e1e_flush();
1051 usleep_range(10000, 20000);
1052
1053 if (adapter->test_icr & mask) {
1054 *data = 3;
1055 break;
1056 }
1057 }
1058
1059 /* Enable the interrupt to be reported in
1060 * the cause register and then force the same
1061 * interrupt and see if one gets posted. If
1062 * an interrupt was not posted to the bus, the
1063 * test failed.
1064 */
1065 adapter->test_icr = 0;
1066 ew32(IMS, mask);
1067 ew32(ICS, mask);
1068 e1e_flush();
1069 usleep_range(10000, 20000);
1070
1071 if (!(adapter->test_icr & mask)) {
1072 *data = 4;
1073 break;
1074 }
1075
1076 if (!shared_int) {
1077 /* Disable the other interrupts to be reported in
1078 * the cause register and then force the other
1079 * interrupts and see if any get posted. If
1080 * an interrupt was posted to the bus, the
1081 * test failed.
1082 */
1083 adapter->test_icr = 0;
1084 ew32(IMC, ~mask & 0x00007FFF);
1085 ew32(ICS, ~mask & 0x00007FFF);
1086 e1e_flush();
1087 usleep_range(10000, 20000);
1088
1089 if (adapter->test_icr) {
1090 *data = 5;
1091 break;
1092 }
1093 }
1094 }
1095
1096 /* Disable all the interrupts */
1097 ew32(IMC, 0xFFFFFFFF);
1098 e1e_flush();
1099 usleep_range(10000, 20000);
1100
1101 /* Unhook test interrupt handler */
1102 free_irq(irq, netdev);
1103
1104 out:
1105 if (int_mode == E1000E_INT_MODE_MSIX) {
1106 e1000e_reset_interrupt_capability(adapter);
1107 adapter->int_mode = int_mode;
1108 e1000e_set_interrupt_capability(adapter);
1109 }
1110
1111 return ret_val;
1112 }
1113
e1000_free_desc_rings(struct e1000_adapter * adapter)1114 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
1115 {
1116 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1117 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1118 struct pci_dev *pdev = adapter->pdev;
1119 struct e1000_buffer *buffer_info;
1120 int i;
1121
1122 if (tx_ring->desc && tx_ring->buffer_info) {
1123 for (i = 0; i < tx_ring->count; i++) {
1124 buffer_info = &tx_ring->buffer_info[i];
1125
1126 if (buffer_info->dma)
1127 dma_unmap_single(&pdev->dev,
1128 buffer_info->dma,
1129 buffer_info->length,
1130 DMA_TO_DEVICE);
1131 if (buffer_info->skb)
1132 dev_kfree_skb(buffer_info->skb);
1133 }
1134 }
1135
1136 if (rx_ring->desc && rx_ring->buffer_info) {
1137 for (i = 0; i < rx_ring->count; i++) {
1138 buffer_info = &rx_ring->buffer_info[i];
1139
1140 if (buffer_info->dma)
1141 dma_unmap_single(&pdev->dev,
1142 buffer_info->dma,
1143 2048, DMA_FROM_DEVICE);
1144 if (buffer_info->skb)
1145 dev_kfree_skb(buffer_info->skb);
1146 }
1147 }
1148
1149 if (tx_ring->desc) {
1150 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1151 tx_ring->dma);
1152 tx_ring->desc = NULL;
1153 }
1154 if (rx_ring->desc) {
1155 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1156 rx_ring->dma);
1157 rx_ring->desc = NULL;
1158 }
1159
1160 kfree(tx_ring->buffer_info);
1161 tx_ring->buffer_info = NULL;
1162 kfree(rx_ring->buffer_info);
1163 rx_ring->buffer_info = NULL;
1164 }
1165
e1000_setup_desc_rings(struct e1000_adapter * adapter)1166 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1167 {
1168 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1169 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1170 struct pci_dev *pdev = adapter->pdev;
1171 struct e1000_hw *hw = &adapter->hw;
1172 u32 rctl;
1173 int i;
1174 int ret_val;
1175
1176 /* Setup Tx descriptor ring and Tx buffers */
1177
1178 if (!tx_ring->count)
1179 tx_ring->count = E1000_DEFAULT_TXD;
1180
1181 tx_ring->buffer_info = kcalloc(tx_ring->count,
1182 sizeof(struct e1000_buffer), GFP_KERNEL);
1183 if (!tx_ring->buffer_info) {
1184 ret_val = 1;
1185 goto err_nomem;
1186 }
1187
1188 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1189 tx_ring->size = ALIGN(tx_ring->size, 4096);
1190 tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
1191 &tx_ring->dma, GFP_KERNEL);
1192 if (!tx_ring->desc) {
1193 ret_val = 2;
1194 goto err_nomem;
1195 }
1196 tx_ring->next_to_use = 0;
1197 tx_ring->next_to_clean = 0;
1198
1199 ew32(TDBAL(0), ((u64)tx_ring->dma & 0x00000000FFFFFFFF));
1200 ew32(TDBAH(0), ((u64)tx_ring->dma >> 32));
1201 ew32(TDLEN(0), tx_ring->count * sizeof(struct e1000_tx_desc));
1202 ew32(TDH(0), 0);
1203 ew32(TDT(0), 0);
1204 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN | E1000_TCTL_MULR |
1205 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1206 E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1207
1208 for (i = 0; i < tx_ring->count; i++) {
1209 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
1210 struct sk_buff *skb;
1211 unsigned int skb_size = 1024;
1212
1213 skb = alloc_skb(skb_size, GFP_KERNEL);
1214 if (!skb) {
1215 ret_val = 3;
1216 goto err_nomem;
1217 }
1218 skb_put(skb, skb_size);
1219 tx_ring->buffer_info[i].skb = skb;
1220 tx_ring->buffer_info[i].length = skb->len;
1221 tx_ring->buffer_info[i].dma =
1222 dma_map_single(&pdev->dev, skb->data, skb->len,
1223 DMA_TO_DEVICE);
1224 if (dma_mapping_error(&pdev->dev,
1225 tx_ring->buffer_info[i].dma)) {
1226 ret_val = 4;
1227 goto err_nomem;
1228 }
1229 tx_desc->buffer_addr = cpu_to_le64(tx_ring->buffer_info[i].dma);
1230 tx_desc->lower.data = cpu_to_le32(skb->len);
1231 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1232 E1000_TXD_CMD_IFCS |
1233 E1000_TXD_CMD_RS);
1234 tx_desc->upper.data = 0;
1235 }
1236
1237 /* Setup Rx descriptor ring and Rx buffers */
1238
1239 if (!rx_ring->count)
1240 rx_ring->count = E1000_DEFAULT_RXD;
1241
1242 rx_ring->buffer_info = kcalloc(rx_ring->count,
1243 sizeof(struct e1000_buffer), GFP_KERNEL);
1244 if (!rx_ring->buffer_info) {
1245 ret_val = 5;
1246 goto err_nomem;
1247 }
1248
1249 rx_ring->size = rx_ring->count * sizeof(union e1000_rx_desc_extended);
1250 rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
1251 &rx_ring->dma, GFP_KERNEL);
1252 if (!rx_ring->desc) {
1253 ret_val = 6;
1254 goto err_nomem;
1255 }
1256 rx_ring->next_to_use = 0;
1257 rx_ring->next_to_clean = 0;
1258
1259 rctl = er32(RCTL);
1260 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
1261 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1262 ew32(RDBAL(0), ((u64)rx_ring->dma & 0xFFFFFFFF));
1263 ew32(RDBAH(0), ((u64)rx_ring->dma >> 32));
1264 ew32(RDLEN(0), rx_ring->size);
1265 ew32(RDH(0), 0);
1266 ew32(RDT(0), 0);
1267 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1268 E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_LPE |
1269 E1000_RCTL_SBP | E1000_RCTL_SECRC |
1270 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1271 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
1272 ew32(RCTL, rctl);
1273
1274 for (i = 0; i < rx_ring->count; i++) {
1275 union e1000_rx_desc_extended *rx_desc;
1276 struct sk_buff *skb;
1277
1278 skb = alloc_skb(2048 + NET_IP_ALIGN, GFP_KERNEL);
1279 if (!skb) {
1280 ret_val = 7;
1281 goto err_nomem;
1282 }
1283 skb_reserve(skb, NET_IP_ALIGN);
1284 rx_ring->buffer_info[i].skb = skb;
1285 rx_ring->buffer_info[i].dma =
1286 dma_map_single(&pdev->dev, skb->data, 2048,
1287 DMA_FROM_DEVICE);
1288 if (dma_mapping_error(&pdev->dev,
1289 rx_ring->buffer_info[i].dma)) {
1290 ret_val = 8;
1291 goto err_nomem;
1292 }
1293 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1294 rx_desc->read.buffer_addr =
1295 cpu_to_le64(rx_ring->buffer_info[i].dma);
1296 memset(skb->data, 0x00, skb->len);
1297 }
1298
1299 return 0;
1300
1301 err_nomem:
1302 e1000_free_desc_rings(adapter);
1303 return ret_val;
1304 }
1305
e1000_phy_disable_receiver(struct e1000_adapter * adapter)1306 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1307 {
1308 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1309 e1e_wphy(&adapter->hw, 29, 0x001F);
1310 e1e_wphy(&adapter->hw, 30, 0x8FFC);
1311 e1e_wphy(&adapter->hw, 29, 0x001A);
1312 e1e_wphy(&adapter->hw, 30, 0x8FF0);
1313 }
1314
e1000_integrated_phy_loopback(struct e1000_adapter * adapter)1315 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1316 {
1317 struct e1000_hw *hw = &adapter->hw;
1318 u32 ctrl_reg = 0;
1319 u16 phy_reg = 0;
1320 s32 ret_val = 0;
1321
1322 hw->mac.autoneg = 0;
1323
1324 if (hw->phy.type == e1000_phy_ife) {
1325 /* force 100, set loopback */
1326 e1e_wphy(hw, MII_BMCR, 0x6100);
1327
1328 /* Now set up the MAC to the same speed/duplex as the PHY. */
1329 ctrl_reg = er32(CTRL);
1330 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1331 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1332 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1333 E1000_CTRL_SPD_100 |/* Force Speed to 100 */
1334 E1000_CTRL_FD); /* Force Duplex to FULL */
1335
1336 ew32(CTRL, ctrl_reg);
1337 e1e_flush();
1338 usleep_range(500, 1000);
1339
1340 return 0;
1341 }
1342
1343 /* Specific PHY configuration for loopback */
1344 switch (hw->phy.type) {
1345 case e1000_phy_m88:
1346 /* Auto-MDI/MDIX Off */
1347 e1e_wphy(hw, M88E1000_PHY_SPEC_CTRL, 0x0808);
1348 /* reset to update Auto-MDI/MDIX */
1349 e1e_wphy(hw, MII_BMCR, 0x9140);
1350 /* autoneg off */
1351 e1e_wphy(hw, MII_BMCR, 0x8140);
1352 break;
1353 case e1000_phy_gg82563:
1354 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x1CC);
1355 break;
1356 case e1000_phy_bm:
1357 /* Set Default MAC Interface speed to 1GB */
1358 e1e_rphy(hw, PHY_REG(2, 21), &phy_reg);
1359 phy_reg &= ~0x0007;
1360 phy_reg |= 0x006;
1361 e1e_wphy(hw, PHY_REG(2, 21), phy_reg);
1362 /* Assert SW reset for above settings to take effect */
1363 hw->phy.ops.commit(hw);
1364 usleep_range(1000, 2000);
1365 /* Force Full Duplex */
1366 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1367 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x000C);
1368 /* Set Link Up (in force link) */
1369 e1e_rphy(hw, PHY_REG(776, 16), &phy_reg);
1370 e1e_wphy(hw, PHY_REG(776, 16), phy_reg | 0x0040);
1371 /* Force Link */
1372 e1e_rphy(hw, PHY_REG(769, 16), &phy_reg);
1373 e1e_wphy(hw, PHY_REG(769, 16), phy_reg | 0x0040);
1374 /* Set Early Link Enable */
1375 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1376 e1e_wphy(hw, PHY_REG(769, 20), phy_reg | 0x0400);
1377 break;
1378 case e1000_phy_82577:
1379 case e1000_phy_82578:
1380 /* Workaround: K1 must be disabled for stable 1Gbps operation */
1381 ret_val = hw->phy.ops.acquire(hw);
1382 if (ret_val) {
1383 e_err("Cannot setup 1Gbps loopback.\n");
1384 return ret_val;
1385 }
1386 e1000_configure_k1_ich8lan(hw, false);
1387 hw->phy.ops.release(hw);
1388 break;
1389 case e1000_phy_82579:
1390 /* Disable PHY energy detect power down */
1391 e1e_rphy(hw, PHY_REG(0, 21), &phy_reg);
1392 e1e_wphy(hw, PHY_REG(0, 21), phy_reg & ~(1 << 3));
1393 /* Disable full chip energy detect */
1394 e1e_rphy(hw, PHY_REG(776, 18), &phy_reg);
1395 e1e_wphy(hw, PHY_REG(776, 18), phy_reg | 1);
1396 /* Enable loopback on the PHY */
1397 e1e_wphy(hw, I82577_PHY_LBK_CTRL, 0x8001);
1398 break;
1399 default:
1400 break;
1401 }
1402
1403 /* force 1000, set loopback */
1404 e1e_wphy(hw, MII_BMCR, 0x4140);
1405 msleep(250);
1406
1407 /* Now set up the MAC to the same speed/duplex as the PHY. */
1408 ctrl_reg = er32(CTRL);
1409 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1410 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1411 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1412 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1413 E1000_CTRL_FD); /* Force Duplex to FULL */
1414
1415 if (adapter->flags & FLAG_IS_ICH)
1416 ctrl_reg |= E1000_CTRL_SLU; /* Set Link Up */
1417
1418 if (hw->phy.media_type == e1000_media_type_copper &&
1419 hw->phy.type == e1000_phy_m88) {
1420 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1421 } else {
1422 /* Set the ILOS bit on the fiber Nic if half duplex link is
1423 * detected.
1424 */
1425 if ((er32(STATUS) & E1000_STATUS_FD) == 0)
1426 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1427 }
1428
1429 ew32(CTRL, ctrl_reg);
1430
1431 /* Disable the receiver on the PHY so when a cable is plugged in, the
1432 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1433 */
1434 if (hw->phy.type == e1000_phy_m88)
1435 e1000_phy_disable_receiver(adapter);
1436
1437 usleep_range(500, 1000);
1438
1439 return 0;
1440 }
1441
e1000_set_82571_fiber_loopback(struct e1000_adapter * adapter)1442 static int e1000_set_82571_fiber_loopback(struct e1000_adapter *adapter)
1443 {
1444 struct e1000_hw *hw = &adapter->hw;
1445 u32 ctrl = er32(CTRL);
1446 int link;
1447
1448 /* special requirements for 82571/82572 fiber adapters */
1449
1450 /* jump through hoops to make sure link is up because serdes
1451 * link is hardwired up
1452 */
1453 ctrl |= E1000_CTRL_SLU;
1454 ew32(CTRL, ctrl);
1455
1456 /* disable autoneg */
1457 ctrl = er32(TXCW);
1458 ctrl &= ~(1 << 31);
1459 ew32(TXCW, ctrl);
1460
1461 link = (er32(STATUS) & E1000_STATUS_LU);
1462
1463 if (!link) {
1464 /* set invert loss of signal */
1465 ctrl = er32(CTRL);
1466 ctrl |= E1000_CTRL_ILOS;
1467 ew32(CTRL, ctrl);
1468 }
1469
1470 /* special write to serdes control register to enable SerDes analog
1471 * loopback
1472 */
1473 ew32(SCTL, E1000_SCTL_ENABLE_SERDES_LOOPBACK);
1474 e1e_flush();
1475 usleep_range(10000, 20000);
1476
1477 return 0;
1478 }
1479
1480 /* only call this for fiber/serdes connections to es2lan */
e1000_set_es2lan_mac_loopback(struct e1000_adapter * adapter)1481 static int e1000_set_es2lan_mac_loopback(struct e1000_adapter *adapter)
1482 {
1483 struct e1000_hw *hw = &adapter->hw;
1484 u32 ctrlext = er32(CTRL_EXT);
1485 u32 ctrl = er32(CTRL);
1486
1487 /* save CTRL_EXT to restore later, reuse an empty variable (unused
1488 * on mac_type 80003es2lan)
1489 */
1490 adapter->tx_fifo_head = ctrlext;
1491
1492 /* clear the serdes mode bits, putting the device into mac loopback */
1493 ctrlext &= ~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
1494 ew32(CTRL_EXT, ctrlext);
1495
1496 /* force speed to 1000/FD, link up */
1497 ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1498 ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX |
1499 E1000_CTRL_SPD_1000 | E1000_CTRL_FD);
1500 ew32(CTRL, ctrl);
1501
1502 /* set mac loopback */
1503 ctrl = er32(RCTL);
1504 ctrl |= E1000_RCTL_LBM_MAC;
1505 ew32(RCTL, ctrl);
1506
1507 /* set testing mode parameters (no need to reset later) */
1508 #define KMRNCTRLSTA_OPMODE (0x1F << 16)
1509 #define KMRNCTRLSTA_OPMODE_1GB_FD_GMII 0x0582
1510 ew32(KMRNCTRLSTA,
1511 (KMRNCTRLSTA_OPMODE | KMRNCTRLSTA_OPMODE_1GB_FD_GMII));
1512
1513 return 0;
1514 }
1515
e1000_setup_loopback_test(struct e1000_adapter * adapter)1516 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1517 {
1518 struct e1000_hw *hw = &adapter->hw;
1519 u32 rctl;
1520
1521 if (hw->phy.media_type == e1000_media_type_fiber ||
1522 hw->phy.media_type == e1000_media_type_internal_serdes) {
1523 switch (hw->mac.type) {
1524 case e1000_80003es2lan:
1525 return e1000_set_es2lan_mac_loopback(adapter);
1526 case e1000_82571:
1527 case e1000_82572:
1528 return e1000_set_82571_fiber_loopback(adapter);
1529 default:
1530 rctl = er32(RCTL);
1531 rctl |= E1000_RCTL_LBM_TCVR;
1532 ew32(RCTL, rctl);
1533 return 0;
1534 }
1535 } else if (hw->phy.media_type == e1000_media_type_copper) {
1536 return e1000_integrated_phy_loopback(adapter);
1537 }
1538
1539 return 7;
1540 }
1541
e1000_loopback_cleanup(struct e1000_adapter * adapter)1542 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1543 {
1544 struct e1000_hw *hw = &adapter->hw;
1545 u32 rctl;
1546 u16 phy_reg;
1547
1548 rctl = er32(RCTL);
1549 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1550 ew32(RCTL, rctl);
1551
1552 switch (hw->mac.type) {
1553 case e1000_80003es2lan:
1554 if (hw->phy.media_type == e1000_media_type_fiber ||
1555 hw->phy.media_type == e1000_media_type_internal_serdes) {
1556 /* restore CTRL_EXT, stealing space from tx_fifo_head */
1557 ew32(CTRL_EXT, adapter->tx_fifo_head);
1558 adapter->tx_fifo_head = 0;
1559 }
1560 /* fall through */
1561 case e1000_82571:
1562 case e1000_82572:
1563 if (hw->phy.media_type == e1000_media_type_fiber ||
1564 hw->phy.media_type == e1000_media_type_internal_serdes) {
1565 ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1566 e1e_flush();
1567 usleep_range(10000, 20000);
1568 break;
1569 }
1570 /* Fall Through */
1571 default:
1572 hw->mac.autoneg = 1;
1573 if (hw->phy.type == e1000_phy_gg82563)
1574 e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, 0x180);
1575 e1e_rphy(hw, MII_BMCR, &phy_reg);
1576 if (phy_reg & BMCR_LOOPBACK) {
1577 phy_reg &= ~BMCR_LOOPBACK;
1578 e1e_wphy(hw, MII_BMCR, phy_reg);
1579 if (hw->phy.ops.commit)
1580 hw->phy.ops.commit(hw);
1581 }
1582 break;
1583 }
1584 }
1585
e1000_create_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1586 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1587 unsigned int frame_size)
1588 {
1589 memset(skb->data, 0xFF, frame_size);
1590 frame_size &= ~1;
1591 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1592 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1593 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1594 }
1595
e1000_check_lbtest_frame(struct sk_buff * skb,unsigned int frame_size)1596 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1597 unsigned int frame_size)
1598 {
1599 frame_size &= ~1;
1600 if (*(skb->data + 3) == 0xFF)
1601 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1602 (*(skb->data + frame_size / 2 + 12) == 0xAF))
1603 return 0;
1604 return 13;
1605 }
1606
e1000_run_loopback_test(struct e1000_adapter * adapter)1607 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1608 {
1609 struct e1000_ring *tx_ring = &adapter->test_tx_ring;
1610 struct e1000_ring *rx_ring = &adapter->test_rx_ring;
1611 struct pci_dev *pdev = adapter->pdev;
1612 struct e1000_hw *hw = &adapter->hw;
1613 struct e1000_buffer *buffer_info;
1614 int i, j, k, l;
1615 int lc;
1616 int good_cnt;
1617 int ret_val = 0;
1618 unsigned long time;
1619
1620 ew32(RDT(0), rx_ring->count - 1);
1621
1622 /* Calculate the loop count based on the largest descriptor ring
1623 * The idea is to wrap the largest ring a number of times using 64
1624 * send/receive pairs during each loop
1625 */
1626
1627 if (rx_ring->count <= tx_ring->count)
1628 lc = ((tx_ring->count / 64) * 2) + 1;
1629 else
1630 lc = ((rx_ring->count / 64) * 2) + 1;
1631
1632 k = 0;
1633 l = 0;
1634 /* loop count loop */
1635 for (j = 0; j <= lc; j++) {
1636 /* send the packets */
1637 for (i = 0; i < 64; i++) {
1638 buffer_info = &tx_ring->buffer_info[k];
1639
1640 e1000_create_lbtest_frame(buffer_info->skb, 1024);
1641 dma_sync_single_for_device(&pdev->dev,
1642 buffer_info->dma,
1643 buffer_info->length,
1644 DMA_TO_DEVICE);
1645 k++;
1646 if (k == tx_ring->count)
1647 k = 0;
1648 }
1649 ew32(TDT(0), k);
1650 e1e_flush();
1651 msleep(200);
1652 time = jiffies; /* set the start time for the receive */
1653 good_cnt = 0;
1654 /* receive the sent packets */
1655 do {
1656 buffer_info = &rx_ring->buffer_info[l];
1657
1658 dma_sync_single_for_cpu(&pdev->dev,
1659 buffer_info->dma, 2048,
1660 DMA_FROM_DEVICE);
1661
1662 ret_val = e1000_check_lbtest_frame(buffer_info->skb,
1663 1024);
1664 if (!ret_val)
1665 good_cnt++;
1666 l++;
1667 if (l == rx_ring->count)
1668 l = 0;
1669 /* time + 20 msecs (200 msecs on 2.4) is more than
1670 * enough time to complete the receives, if it's
1671 * exceeded, break and error off
1672 */
1673 } while ((good_cnt < 64) && !time_after(jiffies, time + 20));
1674 if (good_cnt != 64) {
1675 ret_val = 13; /* ret_val is the same as mis-compare */
1676 break;
1677 }
1678 if (time_after(jiffies, time + 20)) {
1679 ret_val = 14; /* error code for time out error */
1680 break;
1681 }
1682 }
1683 return ret_val;
1684 }
1685
e1000_loopback_test(struct e1000_adapter * adapter,u64 * data)1686 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1687 {
1688 struct e1000_hw *hw = &adapter->hw;
1689
1690 /* PHY loopback cannot be performed if SoL/IDER sessions are active */
1691 if (hw->phy.ops.check_reset_block &&
1692 hw->phy.ops.check_reset_block(hw)) {
1693 e_err("Cannot do PHY loopback test when SoL/IDER is active.\n");
1694 *data = 0;
1695 goto out;
1696 }
1697
1698 *data = e1000_setup_desc_rings(adapter);
1699 if (*data)
1700 goto out;
1701
1702 *data = e1000_setup_loopback_test(adapter);
1703 if (*data)
1704 goto err_loopback;
1705
1706 *data = e1000_run_loopback_test(adapter);
1707 e1000_loopback_cleanup(adapter);
1708
1709 err_loopback:
1710 e1000_free_desc_rings(adapter);
1711 out:
1712 return *data;
1713 }
1714
e1000_link_test(struct e1000_adapter * adapter,u64 * data)1715 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1716 {
1717 struct e1000_hw *hw = &adapter->hw;
1718
1719 *data = 0;
1720 if (hw->phy.media_type == e1000_media_type_internal_serdes) {
1721 int i = 0;
1722
1723 hw->mac.serdes_has_link = false;
1724
1725 /* On some blade server designs, link establishment
1726 * could take as long as 2-3 minutes
1727 */
1728 do {
1729 hw->mac.ops.check_for_link(hw);
1730 if (hw->mac.serdes_has_link)
1731 return *data;
1732 msleep(20);
1733 } while (i++ < 3750);
1734
1735 *data = 1;
1736 } else {
1737 hw->mac.ops.check_for_link(hw);
1738 if (hw->mac.autoneg)
1739 /* On some Phy/switch combinations, link establishment
1740 * can take a few seconds more than expected.
1741 */
1742 msleep_interruptible(5000);
1743
1744 if (!(er32(STATUS) & E1000_STATUS_LU))
1745 *data = 1;
1746 }
1747 return *data;
1748 }
1749
e1000e_get_sset_count(struct net_device __always_unused * netdev,int sset)1750 static int e1000e_get_sset_count(struct net_device __always_unused *netdev,
1751 int sset)
1752 {
1753 switch (sset) {
1754 case ETH_SS_TEST:
1755 return E1000_TEST_LEN;
1756 case ETH_SS_STATS:
1757 return E1000_STATS_LEN;
1758 default:
1759 return -EOPNOTSUPP;
1760 }
1761 }
1762
e1000_diag_test(struct net_device * netdev,struct ethtool_test * eth_test,u64 * data)1763 static void e1000_diag_test(struct net_device *netdev,
1764 struct ethtool_test *eth_test, u64 *data)
1765 {
1766 struct e1000_adapter *adapter = netdev_priv(netdev);
1767 u16 autoneg_advertised;
1768 u8 forced_speed_duplex;
1769 u8 autoneg;
1770 bool if_running = netif_running(netdev);
1771
1772 pm_runtime_get_sync(netdev->dev.parent);
1773
1774 set_bit(__E1000_TESTING, &adapter->state);
1775
1776 if (!if_running) {
1777 /* Get control of and reset hardware */
1778 if (adapter->flags & FLAG_HAS_AMT)
1779 e1000e_get_hw_control(adapter);
1780
1781 e1000e_power_up_phy(adapter);
1782
1783 adapter->hw.phy.autoneg_wait_to_complete = 1;
1784 e1000e_reset(adapter);
1785 adapter->hw.phy.autoneg_wait_to_complete = 0;
1786 }
1787
1788 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1789 /* Offline tests */
1790
1791 /* save speed, duplex, autoneg settings */
1792 autoneg_advertised = adapter->hw.phy.autoneg_advertised;
1793 forced_speed_duplex = adapter->hw.mac.forced_speed_duplex;
1794 autoneg = adapter->hw.mac.autoneg;
1795
1796 e_info("offline testing starting\n");
1797
1798 if (if_running)
1799 /* indicate we're in test mode */
1800 dev_close(netdev);
1801
1802 if (e1000_reg_test(adapter, &data[0]))
1803 eth_test->flags |= ETH_TEST_FL_FAILED;
1804
1805 e1000e_reset(adapter);
1806 if (e1000_eeprom_test(adapter, &data[1]))
1807 eth_test->flags |= ETH_TEST_FL_FAILED;
1808
1809 e1000e_reset(adapter);
1810 if (e1000_intr_test(adapter, &data[2]))
1811 eth_test->flags |= ETH_TEST_FL_FAILED;
1812
1813 e1000e_reset(adapter);
1814 if (e1000_loopback_test(adapter, &data[3]))
1815 eth_test->flags |= ETH_TEST_FL_FAILED;
1816
1817 /* force this routine to wait until autoneg complete/timeout */
1818 adapter->hw.phy.autoneg_wait_to_complete = 1;
1819 e1000e_reset(adapter);
1820 adapter->hw.phy.autoneg_wait_to_complete = 0;
1821
1822 if (e1000_link_test(adapter, &data[4]))
1823 eth_test->flags |= ETH_TEST_FL_FAILED;
1824
1825 /* restore speed, duplex, autoneg settings */
1826 adapter->hw.phy.autoneg_advertised = autoneg_advertised;
1827 adapter->hw.mac.forced_speed_duplex = forced_speed_duplex;
1828 adapter->hw.mac.autoneg = autoneg;
1829 e1000e_reset(adapter);
1830
1831 clear_bit(__E1000_TESTING, &adapter->state);
1832 if (if_running)
1833 dev_open(netdev);
1834 } else {
1835 /* Online tests */
1836
1837 e_info("online testing starting\n");
1838
1839 /* register, eeprom, intr and loopback tests not run online */
1840 data[0] = 0;
1841 data[1] = 0;
1842 data[2] = 0;
1843 data[3] = 0;
1844
1845 if (e1000_link_test(adapter, &data[4]))
1846 eth_test->flags |= ETH_TEST_FL_FAILED;
1847
1848 clear_bit(__E1000_TESTING, &adapter->state);
1849 }
1850
1851 if (!if_running) {
1852 e1000e_reset(adapter);
1853
1854 if (adapter->flags & FLAG_HAS_AMT)
1855 e1000e_release_hw_control(adapter);
1856 }
1857
1858 msleep_interruptible(4 * 1000);
1859
1860 pm_runtime_put_sync(netdev->dev.parent);
1861 }
1862
e1000_get_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1863 static void e1000_get_wol(struct net_device *netdev,
1864 struct ethtool_wolinfo *wol)
1865 {
1866 struct e1000_adapter *adapter = netdev_priv(netdev);
1867
1868 wol->supported = 0;
1869 wol->wolopts = 0;
1870
1871 if (!(adapter->flags & FLAG_HAS_WOL) ||
1872 !device_can_wakeup(&adapter->pdev->dev))
1873 return;
1874
1875 wol->supported = WAKE_UCAST | WAKE_MCAST |
1876 WAKE_BCAST | WAKE_MAGIC | WAKE_PHY;
1877
1878 /* apply any specific unsupported masks here */
1879 if (adapter->flags & FLAG_NO_WAKE_UCAST) {
1880 wol->supported &= ~WAKE_UCAST;
1881
1882 if (adapter->wol & E1000_WUFC_EX)
1883 e_err("Interface does not support directed (unicast) frame wake-up packets\n");
1884 }
1885
1886 if (adapter->wol & E1000_WUFC_EX)
1887 wol->wolopts |= WAKE_UCAST;
1888 if (adapter->wol & E1000_WUFC_MC)
1889 wol->wolopts |= WAKE_MCAST;
1890 if (adapter->wol & E1000_WUFC_BC)
1891 wol->wolopts |= WAKE_BCAST;
1892 if (adapter->wol & E1000_WUFC_MAG)
1893 wol->wolopts |= WAKE_MAGIC;
1894 if (adapter->wol & E1000_WUFC_LNKC)
1895 wol->wolopts |= WAKE_PHY;
1896 }
1897
e1000_set_wol(struct net_device * netdev,struct ethtool_wolinfo * wol)1898 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1899 {
1900 struct e1000_adapter *adapter = netdev_priv(netdev);
1901
1902 if (!(adapter->flags & FLAG_HAS_WOL) ||
1903 !device_can_wakeup(&adapter->pdev->dev) ||
1904 (wol->wolopts & ~(WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
1905 WAKE_MAGIC | WAKE_PHY)))
1906 return -EOPNOTSUPP;
1907
1908 /* these settings will always override what we currently have */
1909 adapter->wol = 0;
1910
1911 if (wol->wolopts & WAKE_UCAST)
1912 adapter->wol |= E1000_WUFC_EX;
1913 if (wol->wolopts & WAKE_MCAST)
1914 adapter->wol |= E1000_WUFC_MC;
1915 if (wol->wolopts & WAKE_BCAST)
1916 adapter->wol |= E1000_WUFC_BC;
1917 if (wol->wolopts & WAKE_MAGIC)
1918 adapter->wol |= E1000_WUFC_MAG;
1919 if (wol->wolopts & WAKE_PHY)
1920 adapter->wol |= E1000_WUFC_LNKC;
1921
1922 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1923
1924 return 0;
1925 }
1926
e1000_set_phys_id(struct net_device * netdev,enum ethtool_phys_id_state state)1927 static int e1000_set_phys_id(struct net_device *netdev,
1928 enum ethtool_phys_id_state state)
1929 {
1930 struct e1000_adapter *adapter = netdev_priv(netdev);
1931 struct e1000_hw *hw = &adapter->hw;
1932
1933 switch (state) {
1934 case ETHTOOL_ID_ACTIVE:
1935 pm_runtime_get_sync(netdev->dev.parent);
1936
1937 if (!hw->mac.ops.blink_led)
1938 return 2; /* cycle on/off twice per second */
1939
1940 hw->mac.ops.blink_led(hw);
1941 break;
1942
1943 case ETHTOOL_ID_INACTIVE:
1944 if (hw->phy.type == e1000_phy_ife)
1945 e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
1946 hw->mac.ops.led_off(hw);
1947 hw->mac.ops.cleanup_led(hw);
1948 pm_runtime_put_sync(netdev->dev.parent);
1949 break;
1950
1951 case ETHTOOL_ID_ON:
1952 hw->mac.ops.led_on(hw);
1953 break;
1954
1955 case ETHTOOL_ID_OFF:
1956 hw->mac.ops.led_off(hw);
1957 break;
1958 }
1959
1960 return 0;
1961 }
1962
e1000_get_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1963 static int e1000_get_coalesce(struct net_device *netdev,
1964 struct ethtool_coalesce *ec)
1965 {
1966 struct e1000_adapter *adapter = netdev_priv(netdev);
1967
1968 if (adapter->itr_setting <= 4)
1969 ec->rx_coalesce_usecs = adapter->itr_setting;
1970 else
1971 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1972
1973 return 0;
1974 }
1975
e1000_set_coalesce(struct net_device * netdev,struct ethtool_coalesce * ec)1976 static int e1000_set_coalesce(struct net_device *netdev,
1977 struct ethtool_coalesce *ec)
1978 {
1979 struct e1000_adapter *adapter = netdev_priv(netdev);
1980
1981 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1982 ((ec->rx_coalesce_usecs > 4) &&
1983 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1984 (ec->rx_coalesce_usecs == 2))
1985 return -EINVAL;
1986
1987 if (ec->rx_coalesce_usecs == 4) {
1988 adapter->itr_setting = 4;
1989 adapter->itr = adapter->itr_setting;
1990 } else if (ec->rx_coalesce_usecs <= 3) {
1991 adapter->itr = 20000;
1992 adapter->itr_setting = ec->rx_coalesce_usecs;
1993 } else {
1994 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1995 adapter->itr_setting = adapter->itr & ~3;
1996 }
1997
1998 pm_runtime_get_sync(netdev->dev.parent);
1999
2000 if (adapter->itr_setting != 0)
2001 e1000e_write_itr(adapter, adapter->itr);
2002 else
2003 e1000e_write_itr(adapter, 0);
2004
2005 pm_runtime_put_sync(netdev->dev.parent);
2006
2007 return 0;
2008 }
2009
e1000_nway_reset(struct net_device * netdev)2010 static int e1000_nway_reset(struct net_device *netdev)
2011 {
2012 struct e1000_adapter *adapter = netdev_priv(netdev);
2013
2014 if (!netif_running(netdev))
2015 return -EAGAIN;
2016
2017 if (!adapter->hw.mac.autoneg)
2018 return -EINVAL;
2019
2020 pm_runtime_get_sync(netdev->dev.parent);
2021 e1000e_reinit_locked(adapter);
2022 pm_runtime_put_sync(netdev->dev.parent);
2023
2024 return 0;
2025 }
2026
e1000_get_ethtool_stats(struct net_device * netdev,struct ethtool_stats __always_unused * stats,u64 * data)2027 static void e1000_get_ethtool_stats(struct net_device *netdev,
2028 struct ethtool_stats __always_unused *stats,
2029 u64 *data)
2030 {
2031 struct e1000_adapter *adapter = netdev_priv(netdev);
2032 struct rtnl_link_stats64 net_stats;
2033 int i;
2034 char *p = NULL;
2035
2036 pm_runtime_get_sync(netdev->dev.parent);
2037
2038 e1000e_get_stats64(netdev, &net_stats);
2039
2040 pm_runtime_put_sync(netdev->dev.parent);
2041
2042 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2043 switch (e1000_gstrings_stats[i].type) {
2044 case NETDEV_STATS:
2045 p = (char *)&net_stats +
2046 e1000_gstrings_stats[i].stat_offset;
2047 break;
2048 case E1000_STATS:
2049 p = (char *)adapter +
2050 e1000_gstrings_stats[i].stat_offset;
2051 break;
2052 default:
2053 data[i] = 0;
2054 continue;
2055 }
2056
2057 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
2058 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
2059 }
2060 }
2061
e1000_get_strings(struct net_device __always_unused * netdev,u32 stringset,u8 * data)2062 static void e1000_get_strings(struct net_device __always_unused *netdev,
2063 u32 stringset, u8 *data)
2064 {
2065 u8 *p = data;
2066 int i;
2067
2068 switch (stringset) {
2069 case ETH_SS_TEST:
2070 memcpy(data, e1000_gstrings_test, sizeof(e1000_gstrings_test));
2071 break;
2072 case ETH_SS_STATS:
2073 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
2074 memcpy(p, e1000_gstrings_stats[i].stat_string,
2075 ETH_GSTRING_LEN);
2076 p += ETH_GSTRING_LEN;
2077 }
2078 break;
2079 }
2080 }
2081
e1000_get_rxnfc(struct net_device * netdev,struct ethtool_rxnfc * info,u32 __always_unused * rule_locs)2082 static int e1000_get_rxnfc(struct net_device *netdev,
2083 struct ethtool_rxnfc *info,
2084 u32 __always_unused *rule_locs)
2085 {
2086 info->data = 0;
2087
2088 switch (info->cmd) {
2089 case ETHTOOL_GRXFH: {
2090 struct e1000_adapter *adapter = netdev_priv(netdev);
2091 struct e1000_hw *hw = &adapter->hw;
2092 u32 mrqc;
2093
2094 pm_runtime_get_sync(netdev->dev.parent);
2095 mrqc = er32(MRQC);
2096 pm_runtime_put_sync(netdev->dev.parent);
2097
2098 if (!(mrqc & E1000_MRQC_RSS_FIELD_MASK))
2099 return 0;
2100
2101 switch (info->flow_type) {
2102 case TCP_V4_FLOW:
2103 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4_TCP)
2104 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2105 /* fall through */
2106 case UDP_V4_FLOW:
2107 case SCTP_V4_FLOW:
2108 case AH_ESP_V4_FLOW:
2109 case IPV4_FLOW:
2110 if (mrqc & E1000_MRQC_RSS_FIELD_IPV4)
2111 info->data |= RXH_IP_SRC | RXH_IP_DST;
2112 break;
2113 case TCP_V6_FLOW:
2114 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6_TCP)
2115 info->data |= RXH_L4_B_0_1 | RXH_L4_B_2_3;
2116 /* fall through */
2117 case UDP_V6_FLOW:
2118 case SCTP_V6_FLOW:
2119 case AH_ESP_V6_FLOW:
2120 case IPV6_FLOW:
2121 if (mrqc & E1000_MRQC_RSS_FIELD_IPV6)
2122 info->data |= RXH_IP_SRC | RXH_IP_DST;
2123 break;
2124 default:
2125 break;
2126 }
2127 return 0;
2128 }
2129 default:
2130 return -EOPNOTSUPP;
2131 }
2132 }
2133
e1000e_get_eee(struct net_device * netdev,struct ethtool_eee * edata)2134 static int e1000e_get_eee(struct net_device *netdev, struct ethtool_eee *edata)
2135 {
2136 struct e1000_adapter *adapter = netdev_priv(netdev);
2137 struct e1000_hw *hw = &adapter->hw;
2138 u16 cap_addr, lpa_addr, pcs_stat_addr, phy_data;
2139 u32 ret_val;
2140
2141 if (!(adapter->flags2 & FLAG2_HAS_EEE))
2142 return -EOPNOTSUPP;
2143
2144 switch (hw->phy.type) {
2145 case e1000_phy_82579:
2146 cap_addr = I82579_EEE_CAPABILITY;
2147 lpa_addr = I82579_EEE_LP_ABILITY;
2148 pcs_stat_addr = I82579_EEE_PCS_STATUS;
2149 break;
2150 case e1000_phy_i217:
2151 cap_addr = I217_EEE_CAPABILITY;
2152 lpa_addr = I217_EEE_LP_ABILITY;
2153 pcs_stat_addr = I217_EEE_PCS_STATUS;
2154 break;
2155 default:
2156 return -EOPNOTSUPP;
2157 }
2158
2159 pm_runtime_get_sync(netdev->dev.parent);
2160
2161 ret_val = hw->phy.ops.acquire(hw);
2162 if (ret_val) {
2163 pm_runtime_put_sync(netdev->dev.parent);
2164 return -EBUSY;
2165 }
2166
2167 /* EEE Capability */
2168 ret_val = e1000_read_emi_reg_locked(hw, cap_addr, &phy_data);
2169 if (ret_val)
2170 goto release;
2171 edata->supported = mmd_eee_cap_to_ethtool_sup_t(phy_data);
2172
2173 /* EEE Advertised */
2174 edata->advertised = mmd_eee_adv_to_ethtool_adv_t(adapter->eee_advert);
2175
2176 /* EEE Link Partner Advertised */
2177 ret_val = e1000_read_emi_reg_locked(hw, lpa_addr, &phy_data);
2178 if (ret_val)
2179 goto release;
2180 edata->lp_advertised = mmd_eee_adv_to_ethtool_adv_t(phy_data);
2181
2182 /* EEE PCS Status */
2183 ret_val = e1000_read_emi_reg_locked(hw, pcs_stat_addr, &phy_data);
2184 if (ret_val)
2185 goto release;
2186 if (hw->phy.type == e1000_phy_82579)
2187 phy_data <<= 8;
2188
2189 /* Result of the EEE auto negotiation - there is no register that
2190 * has the status of the EEE negotiation so do a best-guess based
2191 * on whether Tx or Rx LPI indications have been received.
2192 */
2193 if (phy_data & (E1000_EEE_TX_LPI_RCVD | E1000_EEE_RX_LPI_RCVD))
2194 edata->eee_active = true;
2195
2196 edata->eee_enabled = !hw->dev_spec.ich8lan.eee_disable;
2197 edata->tx_lpi_enabled = true;
2198 edata->tx_lpi_timer = er32(LPIC) >> E1000_LPIC_LPIET_SHIFT;
2199
2200 release:
2201 hw->phy.ops.release(hw);
2202 if (ret_val)
2203 ret_val = -ENODATA;
2204
2205 pm_runtime_put_sync(netdev->dev.parent);
2206
2207 return ret_val;
2208 }
2209
e1000e_set_eee(struct net_device * netdev,struct ethtool_eee * edata)2210 static int e1000e_set_eee(struct net_device *netdev, struct ethtool_eee *edata)
2211 {
2212 struct e1000_adapter *adapter = netdev_priv(netdev);
2213 struct e1000_hw *hw = &adapter->hw;
2214 struct ethtool_eee eee_curr;
2215 s32 ret_val;
2216
2217 ret_val = e1000e_get_eee(netdev, &eee_curr);
2218 if (ret_val)
2219 return ret_val;
2220
2221 if (eee_curr.tx_lpi_enabled != edata->tx_lpi_enabled) {
2222 e_err("Setting EEE tx-lpi is not supported\n");
2223 return -EINVAL;
2224 }
2225
2226 if (eee_curr.tx_lpi_timer != edata->tx_lpi_timer) {
2227 e_err("Setting EEE Tx LPI timer is not supported\n");
2228 return -EINVAL;
2229 }
2230
2231 if (edata->advertised & ~(ADVERTISE_100_FULL | ADVERTISE_1000_FULL)) {
2232 e_err("EEE advertisement supports only 100TX and/or 1000T full-duplex\n");
2233 return -EINVAL;
2234 }
2235
2236 adapter->eee_advert = ethtool_adv_to_mmd_eee_adv_t(edata->advertised);
2237
2238 hw->dev_spec.ich8lan.eee_disable = !edata->eee_enabled;
2239
2240 pm_runtime_get_sync(netdev->dev.parent);
2241
2242 /* reset the link */
2243 if (netif_running(netdev))
2244 e1000e_reinit_locked(adapter);
2245 else
2246 e1000e_reset(adapter);
2247
2248 pm_runtime_put_sync(netdev->dev.parent);
2249
2250 return 0;
2251 }
2252
e1000e_get_ts_info(struct net_device * netdev,struct ethtool_ts_info * info)2253 static int e1000e_get_ts_info(struct net_device *netdev,
2254 struct ethtool_ts_info *info)
2255 {
2256 struct e1000_adapter *adapter = netdev_priv(netdev);
2257
2258 ethtool_op_get_ts_info(netdev, info);
2259
2260 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
2261 return 0;
2262
2263 info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
2264 SOF_TIMESTAMPING_RX_HARDWARE |
2265 SOF_TIMESTAMPING_RAW_HARDWARE);
2266
2267 info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON);
2268
2269 info->rx_filters = ((1 << HWTSTAMP_FILTER_NONE) |
2270 (1 << HWTSTAMP_FILTER_PTP_V1_L4_SYNC) |
2271 (1 << HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ) |
2272 (1 << HWTSTAMP_FILTER_PTP_V2_L4_SYNC) |
2273 (1 << HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ) |
2274 (1 << HWTSTAMP_FILTER_PTP_V2_L2_SYNC) |
2275 (1 << HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ) |
2276 (1 << HWTSTAMP_FILTER_PTP_V2_EVENT) |
2277 (1 << HWTSTAMP_FILTER_PTP_V2_SYNC) |
2278 (1 << HWTSTAMP_FILTER_PTP_V2_DELAY_REQ) |
2279 (1 << HWTSTAMP_FILTER_ALL));
2280
2281 if (adapter->ptp_clock)
2282 info->phc_index = ptp_clock_index(adapter->ptp_clock);
2283
2284 return 0;
2285 }
2286
2287 static const struct ethtool_ops e1000_ethtool_ops = {
2288 .get_settings = e1000_get_settings,
2289 .set_settings = e1000_set_settings,
2290 .get_drvinfo = e1000_get_drvinfo,
2291 .get_regs_len = e1000_get_regs_len,
2292 .get_regs = e1000_get_regs,
2293 .get_wol = e1000_get_wol,
2294 .set_wol = e1000_set_wol,
2295 .get_msglevel = e1000_get_msglevel,
2296 .set_msglevel = e1000_set_msglevel,
2297 .nway_reset = e1000_nway_reset,
2298 .get_link = ethtool_op_get_link,
2299 .get_eeprom_len = e1000_get_eeprom_len,
2300 .get_eeprom = e1000_get_eeprom,
2301 .set_eeprom = e1000_set_eeprom,
2302 .get_ringparam = e1000_get_ringparam,
2303 .set_ringparam = e1000_set_ringparam,
2304 .get_pauseparam = e1000_get_pauseparam,
2305 .set_pauseparam = e1000_set_pauseparam,
2306 .self_test = e1000_diag_test,
2307 .get_strings = e1000_get_strings,
2308 .set_phys_id = e1000_set_phys_id,
2309 .get_ethtool_stats = e1000_get_ethtool_stats,
2310 .get_sset_count = e1000e_get_sset_count,
2311 .get_coalesce = e1000_get_coalesce,
2312 .set_coalesce = e1000_set_coalesce,
2313 .get_rxnfc = e1000_get_rxnfc,
2314 .get_ts_info = e1000e_get_ts_info,
2315 .get_eee = e1000e_get_eee,
2316 .set_eee = e1000e_set_eee,
2317 };
2318
e1000e_set_ethtool_ops(struct net_device * netdev)2319 void e1000e_set_ethtool_ops(struct net_device *netdev)
2320 {
2321 netdev->ethtool_ops = &e1000_ethtool_ops;
2322 }
2323