1 /*
2  * Cadence MACB/GEM Ethernet Controller driver
3  *
4  * Copyright (C) 2004-2006 Atmel Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/clk.h>
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/circ_buf.h>
18 #include <linux/slab.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/gpio.h>
22 #include <linux/interrupt.h>
23 #include <linux/netdevice.h>
24 #include <linux/etherdevice.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_data/macb.h>
27 #include <linux/platform_device.h>
28 #include <linux/phy.h>
29 #include <linux/of.h>
30 #include <linux/of_device.h>
31 #include <linux/of_mdio.h>
32 #include <linux/of_net.h>
33 
34 #include "macb.h"
35 
36 #define MACB_RX_BUFFER_SIZE	128
37 #define RX_BUFFER_MULTIPLE	64  /* bytes */
38 #define RX_RING_SIZE		512 /* must be power of 2 */
39 #define RX_RING_BYTES		(sizeof(struct macb_dma_desc) * RX_RING_SIZE)
40 
41 #define TX_RING_SIZE		128 /* must be power of 2 */
42 #define TX_RING_BYTES		(sizeof(struct macb_dma_desc) * TX_RING_SIZE)
43 
44 /* level of occupied TX descriptors under which we wake up TX process */
45 #define MACB_TX_WAKEUP_THRESH	(3 * TX_RING_SIZE / 4)
46 
47 #define MACB_RX_INT_FLAGS	(MACB_BIT(RCOMP) | MACB_BIT(RXUBR)	\
48 				 | MACB_BIT(ISR_ROVR))
49 #define MACB_TX_ERR_FLAGS	(MACB_BIT(ISR_TUND)			\
50 					| MACB_BIT(ISR_RLE)		\
51 					| MACB_BIT(TXERR))
52 #define MACB_TX_INT_FLAGS	(MACB_TX_ERR_FLAGS | MACB_BIT(TCOMP))
53 
54 #define MACB_MAX_TX_LEN		((unsigned int)((1 << MACB_TX_FRMLEN_SIZE) - 1))
55 #define GEM_MAX_TX_LEN		((unsigned int)((1 << GEM_TX_FRMLEN_SIZE) - 1))
56 
57 /*
58  * Graceful stop timeouts in us. We should allow up to
59  * 1 frame time (10 Mbits/s, full-duplex, ignoring collisions)
60  */
61 #define MACB_HALT_TIMEOUT	1230
62 
63 /* Ring buffer accessors */
macb_tx_ring_wrap(unsigned int index)64 static unsigned int macb_tx_ring_wrap(unsigned int index)
65 {
66 	return index & (TX_RING_SIZE - 1);
67 }
68 
macb_tx_desc(struct macb_queue * queue,unsigned int index)69 static struct macb_dma_desc *macb_tx_desc(struct macb_queue *queue,
70 					  unsigned int index)
71 {
72 	return &queue->tx_ring[macb_tx_ring_wrap(index)];
73 }
74 
macb_tx_skb(struct macb_queue * queue,unsigned int index)75 static struct macb_tx_skb *macb_tx_skb(struct macb_queue *queue,
76 				       unsigned int index)
77 {
78 	return &queue->tx_skb[macb_tx_ring_wrap(index)];
79 }
80 
macb_tx_dma(struct macb_queue * queue,unsigned int index)81 static dma_addr_t macb_tx_dma(struct macb_queue *queue, unsigned int index)
82 {
83 	dma_addr_t offset;
84 
85 	offset = macb_tx_ring_wrap(index) * sizeof(struct macb_dma_desc);
86 
87 	return queue->tx_ring_dma + offset;
88 }
89 
macb_rx_ring_wrap(unsigned int index)90 static unsigned int macb_rx_ring_wrap(unsigned int index)
91 {
92 	return index & (RX_RING_SIZE - 1);
93 }
94 
macb_rx_desc(struct macb * bp,unsigned int index)95 static struct macb_dma_desc *macb_rx_desc(struct macb *bp, unsigned int index)
96 {
97 	return &bp->rx_ring[macb_rx_ring_wrap(index)];
98 }
99 
macb_rx_buffer(struct macb * bp,unsigned int index)100 static void *macb_rx_buffer(struct macb *bp, unsigned int index)
101 {
102 	return bp->rx_buffers + bp->rx_buffer_size * macb_rx_ring_wrap(index);
103 }
104 
macb_set_hwaddr(struct macb * bp)105 static void macb_set_hwaddr(struct macb *bp)
106 {
107 	u32 bottom;
108 	u16 top;
109 
110 	bottom = cpu_to_le32(*((u32 *)bp->dev->dev_addr));
111 	macb_or_gem_writel(bp, SA1B, bottom);
112 	top = cpu_to_le16(*((u16 *)(bp->dev->dev_addr + 4)));
113 	macb_or_gem_writel(bp, SA1T, top);
114 
115 	/* Clear unused address register sets */
116 	macb_or_gem_writel(bp, SA2B, 0);
117 	macb_or_gem_writel(bp, SA2T, 0);
118 	macb_or_gem_writel(bp, SA3B, 0);
119 	macb_or_gem_writel(bp, SA3T, 0);
120 	macb_or_gem_writel(bp, SA4B, 0);
121 	macb_or_gem_writel(bp, SA4T, 0);
122 }
123 
macb_get_hwaddr(struct macb * bp)124 static void macb_get_hwaddr(struct macb *bp)
125 {
126 	struct macb_platform_data *pdata;
127 	u32 bottom;
128 	u16 top;
129 	u8 addr[6];
130 	int i;
131 
132 	pdata = dev_get_platdata(&bp->pdev->dev);
133 
134 	/* Check all 4 address register for vaild address */
135 	for (i = 0; i < 4; i++) {
136 		bottom = macb_or_gem_readl(bp, SA1B + i * 8);
137 		top = macb_or_gem_readl(bp, SA1T + i * 8);
138 
139 		if (pdata && pdata->rev_eth_addr) {
140 			addr[5] = bottom & 0xff;
141 			addr[4] = (bottom >> 8) & 0xff;
142 			addr[3] = (bottom >> 16) & 0xff;
143 			addr[2] = (bottom >> 24) & 0xff;
144 			addr[1] = top & 0xff;
145 			addr[0] = (top & 0xff00) >> 8;
146 		} else {
147 			addr[0] = bottom & 0xff;
148 			addr[1] = (bottom >> 8) & 0xff;
149 			addr[2] = (bottom >> 16) & 0xff;
150 			addr[3] = (bottom >> 24) & 0xff;
151 			addr[4] = top & 0xff;
152 			addr[5] = (top >> 8) & 0xff;
153 		}
154 
155 		if (is_valid_ether_addr(addr)) {
156 			memcpy(bp->dev->dev_addr, addr, sizeof(addr));
157 			return;
158 		}
159 	}
160 
161 	netdev_info(bp->dev, "invalid hw address, using random\n");
162 	eth_hw_addr_random(bp->dev);
163 }
164 
macb_mdio_read(struct mii_bus * bus,int mii_id,int regnum)165 static int macb_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
166 {
167 	struct macb *bp = bus->priv;
168 	int value;
169 
170 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
171 			      | MACB_BF(RW, MACB_MAN_READ)
172 			      | MACB_BF(PHYA, mii_id)
173 			      | MACB_BF(REGA, regnum)
174 			      | MACB_BF(CODE, MACB_MAN_CODE)));
175 
176 	/* wait for end of transfer */
177 	while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
178 		cpu_relax();
179 
180 	value = MACB_BFEXT(DATA, macb_readl(bp, MAN));
181 
182 	return value;
183 }
184 
macb_mdio_write(struct mii_bus * bus,int mii_id,int regnum,u16 value)185 static int macb_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
186 			   u16 value)
187 {
188 	struct macb *bp = bus->priv;
189 
190 	macb_writel(bp, MAN, (MACB_BF(SOF, MACB_MAN_SOF)
191 			      | MACB_BF(RW, MACB_MAN_WRITE)
192 			      | MACB_BF(PHYA, mii_id)
193 			      | MACB_BF(REGA, regnum)
194 			      | MACB_BF(CODE, MACB_MAN_CODE)
195 			      | MACB_BF(DATA, value)));
196 
197 	/* wait for end of transfer */
198 	while (!MACB_BFEXT(IDLE, macb_readl(bp, NSR)))
199 		cpu_relax();
200 
201 	return 0;
202 }
203 
204 /**
205  * macb_set_tx_clk() - Set a clock to a new frequency
206  * @clk		Pointer to the clock to change
207  * @rate	New frequency in Hz
208  * @dev		Pointer to the struct net_device
209  */
macb_set_tx_clk(struct clk * clk,int speed,struct net_device * dev)210 static void macb_set_tx_clk(struct clk *clk, int speed, struct net_device *dev)
211 {
212 	long ferr, rate, rate_rounded;
213 
214 	if (!clk)
215 		return;
216 
217 	switch (speed) {
218 	case SPEED_10:
219 		rate = 2500000;
220 		break;
221 	case SPEED_100:
222 		rate = 25000000;
223 		break;
224 	case SPEED_1000:
225 		rate = 125000000;
226 		break;
227 	default:
228 		return;
229 	}
230 
231 	rate_rounded = clk_round_rate(clk, rate);
232 	if (rate_rounded < 0)
233 		return;
234 
235 	/* RGMII allows 50 ppm frequency error. Test and warn if this limit
236 	 * is not satisfied.
237 	 */
238 	ferr = abs(rate_rounded - rate);
239 	ferr = DIV_ROUND_UP(ferr, rate / 100000);
240 	if (ferr > 5)
241 		netdev_warn(dev, "unable to generate target frequency: %ld Hz\n",
242 				rate);
243 
244 	if (clk_set_rate(clk, rate_rounded))
245 		netdev_err(dev, "adjusting tx_clk failed.\n");
246 }
247 
macb_handle_link_change(struct net_device * dev)248 static void macb_handle_link_change(struct net_device *dev)
249 {
250 	struct macb *bp = netdev_priv(dev);
251 	struct phy_device *phydev = bp->phy_dev;
252 	unsigned long flags;
253 
254 	int status_change = 0;
255 
256 	spin_lock_irqsave(&bp->lock, flags);
257 
258 	if (phydev->link) {
259 		if ((bp->speed != phydev->speed) ||
260 		    (bp->duplex != phydev->duplex)) {
261 			u32 reg;
262 
263 			reg = macb_readl(bp, NCFGR);
264 			reg &= ~(MACB_BIT(SPD) | MACB_BIT(FD));
265 			if (macb_is_gem(bp))
266 				reg &= ~GEM_BIT(GBE);
267 
268 			if (phydev->duplex)
269 				reg |= MACB_BIT(FD);
270 			if (phydev->speed == SPEED_100)
271 				reg |= MACB_BIT(SPD);
272 			if (phydev->speed == SPEED_1000 &&
273 			    bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
274 				reg |= GEM_BIT(GBE);
275 
276 			macb_or_gem_writel(bp, NCFGR, reg);
277 
278 			bp->speed = phydev->speed;
279 			bp->duplex = phydev->duplex;
280 			status_change = 1;
281 		}
282 	}
283 
284 	if (phydev->link != bp->link) {
285 		if (!phydev->link) {
286 			bp->speed = 0;
287 			bp->duplex = -1;
288 		}
289 		bp->link = phydev->link;
290 
291 		status_change = 1;
292 	}
293 
294 	spin_unlock_irqrestore(&bp->lock, flags);
295 
296 	if (status_change) {
297 		if (phydev->link) {
298 			/* Update the TX clock rate if and only if the link is
299 			 * up and there has been a link change.
300 			 */
301 			macb_set_tx_clk(bp->tx_clk, phydev->speed, dev);
302 
303 			netif_carrier_on(dev);
304 			netdev_info(dev, "link up (%d/%s)\n",
305 				    phydev->speed,
306 				    phydev->duplex == DUPLEX_FULL ?
307 				    "Full" : "Half");
308 		} else {
309 			netif_carrier_off(dev);
310 			netdev_info(dev, "link down\n");
311 		}
312 	}
313 }
314 
315 /* based on au1000_eth. c*/
macb_mii_probe(struct net_device * dev)316 static int macb_mii_probe(struct net_device *dev)
317 {
318 	struct macb *bp = netdev_priv(dev);
319 	struct macb_platform_data *pdata;
320 	struct phy_device *phydev;
321 	int phy_irq;
322 	int ret;
323 
324 	phydev = phy_find_first(bp->mii_bus);
325 	if (!phydev) {
326 		netdev_err(dev, "no PHY found\n");
327 		return -ENXIO;
328 	}
329 
330 	pdata = dev_get_platdata(&bp->pdev->dev);
331 	if (pdata && gpio_is_valid(pdata->phy_irq_pin)) {
332 		ret = devm_gpio_request(&bp->pdev->dev, pdata->phy_irq_pin, "phy int");
333 		if (!ret) {
334 			phy_irq = gpio_to_irq(pdata->phy_irq_pin);
335 			phydev->irq = (phy_irq < 0) ? PHY_POLL : phy_irq;
336 		}
337 	}
338 
339 	/* attach the mac to the phy */
340 	ret = phy_connect_direct(dev, phydev, &macb_handle_link_change,
341 				 bp->phy_interface);
342 	if (ret) {
343 		netdev_err(dev, "Could not attach to PHY\n");
344 		return ret;
345 	}
346 
347 	/* mask with MAC supported features */
348 	if (macb_is_gem(bp) && bp->caps & MACB_CAPS_GIGABIT_MODE_AVAILABLE)
349 		phydev->supported &= PHY_GBIT_FEATURES;
350 	else
351 		phydev->supported &= PHY_BASIC_FEATURES;
352 
353 	if (bp->caps & MACB_CAPS_NO_GIGABIT_HALF)
354 		phydev->supported &= ~SUPPORTED_1000baseT_Half;
355 
356 	phydev->advertising = phydev->supported;
357 
358 	bp->link = 0;
359 	bp->speed = 0;
360 	bp->duplex = -1;
361 	bp->phy_dev = phydev;
362 
363 	return 0;
364 }
365 
macb_mii_init(struct macb * bp)366 static int macb_mii_init(struct macb *bp)
367 {
368 	struct macb_platform_data *pdata;
369 	struct device_node *np;
370 	int err = -ENXIO, i;
371 
372 	/* Enable management port */
373 	macb_writel(bp, NCR, MACB_BIT(MPE));
374 
375 	bp->mii_bus = mdiobus_alloc();
376 	if (bp->mii_bus == NULL) {
377 		err = -ENOMEM;
378 		goto err_out;
379 	}
380 
381 	bp->mii_bus->name = "MACB_mii_bus";
382 	bp->mii_bus->read = &macb_mdio_read;
383 	bp->mii_bus->write = &macb_mdio_write;
384 	snprintf(bp->mii_bus->id, MII_BUS_ID_SIZE, "%s-%x",
385 		bp->pdev->name, bp->pdev->id);
386 	bp->mii_bus->priv = bp;
387 	bp->mii_bus->parent = &bp->dev->dev;
388 	pdata = dev_get_platdata(&bp->pdev->dev);
389 
390 	bp->mii_bus->irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
391 	if (!bp->mii_bus->irq) {
392 		err = -ENOMEM;
393 		goto err_out_free_mdiobus;
394 	}
395 
396 	dev_set_drvdata(&bp->dev->dev, bp->mii_bus);
397 
398 	np = bp->pdev->dev.of_node;
399 	if (np) {
400 		/* try dt phy registration */
401 		err = of_mdiobus_register(bp->mii_bus, np);
402 
403 		/* fallback to standard phy registration if no phy were
404 		   found during dt phy registration */
405 		if (!err && !phy_find_first(bp->mii_bus)) {
406 			for (i = 0; i < PHY_MAX_ADDR; i++) {
407 				struct phy_device *phydev;
408 
409 				phydev = mdiobus_scan(bp->mii_bus, i);
410 				if (IS_ERR(phydev)) {
411 					err = PTR_ERR(phydev);
412 					break;
413 				}
414 			}
415 
416 			if (err)
417 				goto err_out_unregister_bus;
418 		}
419 	} else {
420 		for (i = 0; i < PHY_MAX_ADDR; i++)
421 			bp->mii_bus->irq[i] = PHY_POLL;
422 
423 		if (pdata)
424 			bp->mii_bus->phy_mask = pdata->phy_mask;
425 
426 		err = mdiobus_register(bp->mii_bus);
427 	}
428 
429 	if (err)
430 		goto err_out_free_mdio_irq;
431 
432 	err = macb_mii_probe(bp->dev);
433 	if (err)
434 		goto err_out_unregister_bus;
435 
436 	return 0;
437 
438 err_out_unregister_bus:
439 	mdiobus_unregister(bp->mii_bus);
440 err_out_free_mdio_irq:
441 	kfree(bp->mii_bus->irq);
442 err_out_free_mdiobus:
443 	mdiobus_free(bp->mii_bus);
444 err_out:
445 	return err;
446 }
447 
macb_update_stats(struct macb * bp)448 static void macb_update_stats(struct macb *bp)
449 {
450 	u32 __iomem *reg = bp->regs + MACB_PFR;
451 	u32 *p = &bp->hw_stats.macb.rx_pause_frames;
452 	u32 *end = &bp->hw_stats.macb.tx_pause_frames + 1;
453 
454 	WARN_ON((unsigned long)(end - p - 1) != (MACB_TPF - MACB_PFR) / 4);
455 
456 	for(; p < end; p++, reg++)
457 		*p += readl_relaxed(reg);
458 }
459 
macb_halt_tx(struct macb * bp)460 static int macb_halt_tx(struct macb *bp)
461 {
462 	unsigned long	halt_time, timeout;
463 	u32		status;
464 
465 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(THALT));
466 
467 	timeout = jiffies + usecs_to_jiffies(MACB_HALT_TIMEOUT);
468 	do {
469 		halt_time = jiffies;
470 		status = macb_readl(bp, TSR);
471 		if (!(status & MACB_BIT(TGO)))
472 			return 0;
473 
474 		usleep_range(10, 250);
475 	} while (time_before(halt_time, timeout));
476 
477 	return -ETIMEDOUT;
478 }
479 
macb_tx_unmap(struct macb * bp,struct macb_tx_skb * tx_skb)480 static void macb_tx_unmap(struct macb *bp, struct macb_tx_skb *tx_skb)
481 {
482 	if (tx_skb->mapping) {
483 		if (tx_skb->mapped_as_page)
484 			dma_unmap_page(&bp->pdev->dev, tx_skb->mapping,
485 				       tx_skb->size, DMA_TO_DEVICE);
486 		else
487 			dma_unmap_single(&bp->pdev->dev, tx_skb->mapping,
488 					 tx_skb->size, DMA_TO_DEVICE);
489 		tx_skb->mapping = 0;
490 	}
491 
492 	if (tx_skb->skb) {
493 		dev_kfree_skb_any(tx_skb->skb);
494 		tx_skb->skb = NULL;
495 	}
496 }
497 
macb_tx_error_task(struct work_struct * work)498 static void macb_tx_error_task(struct work_struct *work)
499 {
500 	struct macb_queue	*queue = container_of(work, struct macb_queue,
501 						      tx_error_task);
502 	struct macb		*bp = queue->bp;
503 	struct macb_tx_skb	*tx_skb;
504 	struct macb_dma_desc	*desc;
505 	struct sk_buff		*skb;
506 	unsigned int		tail;
507 	unsigned long		flags;
508 
509 	netdev_vdbg(bp->dev, "macb_tx_error_task: q = %u, t = %u, h = %u\n",
510 		    (unsigned int)(queue - bp->queues),
511 		    queue->tx_tail, queue->tx_head);
512 
513 	/* Prevent the queue IRQ handlers from running: each of them may call
514 	 * macb_tx_interrupt(), which in turn may call netif_wake_subqueue().
515 	 * As explained below, we have to halt the transmission before updating
516 	 * TBQP registers so we call netif_tx_stop_all_queues() to notify the
517 	 * network engine about the macb/gem being halted.
518 	 */
519 	spin_lock_irqsave(&bp->lock, flags);
520 
521 	/* Make sure nobody is trying to queue up new packets */
522 	netif_tx_stop_all_queues(bp->dev);
523 
524 	/*
525 	 * Stop transmission now
526 	 * (in case we have just queued new packets)
527 	 * macb/gem must be halted to write TBQP register
528 	 */
529 	if (macb_halt_tx(bp))
530 		/* Just complain for now, reinitializing TX path can be good */
531 		netdev_err(bp->dev, "BUG: halt tx timed out\n");
532 
533 	/*
534 	 * Treat frames in TX queue including the ones that caused the error.
535 	 * Free transmit buffers in upper layer.
536 	 */
537 	for (tail = queue->tx_tail; tail != queue->tx_head; tail++) {
538 		u32	ctrl;
539 
540 		desc = macb_tx_desc(queue, tail);
541 		ctrl = desc->ctrl;
542 		tx_skb = macb_tx_skb(queue, tail);
543 		skb = tx_skb->skb;
544 
545 		if (ctrl & MACB_BIT(TX_USED)) {
546 			/* skb is set for the last buffer of the frame */
547 			while (!skb) {
548 				macb_tx_unmap(bp, tx_skb);
549 				tail++;
550 				tx_skb = macb_tx_skb(queue, tail);
551 				skb = tx_skb->skb;
552 			}
553 
554 			/* ctrl still refers to the first buffer descriptor
555 			 * since it's the only one written back by the hardware
556 			 */
557 			if (!(ctrl & MACB_BIT(TX_BUF_EXHAUSTED))) {
558 				netdev_vdbg(bp->dev, "txerr skb %u (data %p) TX complete\n",
559 					    macb_tx_ring_wrap(tail), skb->data);
560 				bp->stats.tx_packets++;
561 				bp->stats.tx_bytes += skb->len;
562 			}
563 		} else {
564 			/*
565 			 * "Buffers exhausted mid-frame" errors may only happen
566 			 * if the driver is buggy, so complain loudly about those.
567 			 * Statistics are updated by hardware.
568 			 */
569 			if (ctrl & MACB_BIT(TX_BUF_EXHAUSTED))
570 				netdev_err(bp->dev,
571 					   "BUG: TX buffers exhausted mid-frame\n");
572 
573 			desc->ctrl = ctrl | MACB_BIT(TX_USED);
574 		}
575 
576 		macb_tx_unmap(bp, tx_skb);
577 	}
578 
579 	/* Set end of TX queue */
580 	desc = macb_tx_desc(queue, 0);
581 	desc->addr = 0;
582 	desc->ctrl = MACB_BIT(TX_USED);
583 
584 	/* Make descriptor updates visible to hardware */
585 	wmb();
586 
587 	/* Reinitialize the TX desc queue */
588 	queue_writel(queue, TBQP, queue->tx_ring_dma);
589 	/* Make TX ring reflect state of hardware */
590 	queue->tx_head = 0;
591 	queue->tx_tail = 0;
592 
593 	/* Housework before enabling TX IRQ */
594 	macb_writel(bp, TSR, macb_readl(bp, TSR));
595 	queue_writel(queue, IER, MACB_TX_INT_FLAGS);
596 
597 	/* Now we are ready to start transmission again */
598 	netif_tx_start_all_queues(bp->dev);
599 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
600 
601 	spin_unlock_irqrestore(&bp->lock, flags);
602 }
603 
macb_tx_interrupt(struct macb_queue * queue)604 static void macb_tx_interrupt(struct macb_queue *queue)
605 {
606 	unsigned int tail;
607 	unsigned int head;
608 	u32 status;
609 	struct macb *bp = queue->bp;
610 	u16 queue_index = queue - bp->queues;
611 
612 	status = macb_readl(bp, TSR);
613 	macb_writel(bp, TSR, status);
614 
615 	if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
616 		queue_writel(queue, ISR, MACB_BIT(TCOMP));
617 
618 	netdev_vdbg(bp->dev, "macb_tx_interrupt status = 0x%03lx\n",
619 		(unsigned long)status);
620 
621 	head = queue->tx_head;
622 	for (tail = queue->tx_tail; tail != head; tail++) {
623 		struct macb_tx_skb	*tx_skb;
624 		struct sk_buff		*skb;
625 		struct macb_dma_desc	*desc;
626 		u32			ctrl;
627 
628 		desc = macb_tx_desc(queue, tail);
629 
630 		/* Make hw descriptor updates visible to CPU */
631 		rmb();
632 
633 		ctrl = desc->ctrl;
634 
635 		/* TX_USED bit is only set by hardware on the very first buffer
636 		 * descriptor of the transmitted frame.
637 		 */
638 		if (!(ctrl & MACB_BIT(TX_USED)))
639 			break;
640 
641 		/* Process all buffers of the current transmitted frame */
642 		for (;; tail++) {
643 			tx_skb = macb_tx_skb(queue, tail);
644 			skb = tx_skb->skb;
645 
646 			/* First, update TX stats if needed */
647 			if (skb) {
648 				netdev_vdbg(bp->dev, "skb %u (data %p) TX complete\n",
649 					    macb_tx_ring_wrap(tail), skb->data);
650 				bp->stats.tx_packets++;
651 				bp->stats.tx_bytes += skb->len;
652 			}
653 
654 			/* Now we can safely release resources */
655 			macb_tx_unmap(bp, tx_skb);
656 
657 			/* skb is set only for the last buffer of the frame.
658 			 * WARNING: at this point skb has been freed by
659 			 * macb_tx_unmap().
660 			 */
661 			if (skb)
662 				break;
663 		}
664 	}
665 
666 	queue->tx_tail = tail;
667 	if (__netif_subqueue_stopped(bp->dev, queue_index) &&
668 	    CIRC_CNT(queue->tx_head, queue->tx_tail,
669 		     TX_RING_SIZE) <= MACB_TX_WAKEUP_THRESH)
670 		netif_wake_subqueue(bp->dev, queue_index);
671 }
672 
gem_rx_refill(struct macb * bp)673 static void gem_rx_refill(struct macb *bp)
674 {
675 	unsigned int		entry;
676 	struct sk_buff		*skb;
677 	dma_addr_t		paddr;
678 
679 	while (CIRC_SPACE(bp->rx_prepared_head, bp->rx_tail, RX_RING_SIZE) > 0) {
680 		entry = macb_rx_ring_wrap(bp->rx_prepared_head);
681 
682 		/* Make hw descriptor updates visible to CPU */
683 		rmb();
684 
685 		bp->rx_prepared_head++;
686 
687 		if (bp->rx_skbuff[entry] == NULL) {
688 			/* allocate sk_buff for this free entry in ring */
689 			skb = netdev_alloc_skb(bp->dev, bp->rx_buffer_size);
690 			if (unlikely(skb == NULL)) {
691 				netdev_err(bp->dev,
692 					   "Unable to allocate sk_buff\n");
693 				break;
694 			}
695 
696 			/* now fill corresponding descriptor entry */
697 			paddr = dma_map_single(&bp->pdev->dev, skb->data,
698 					       bp->rx_buffer_size, DMA_FROM_DEVICE);
699 			if (dma_mapping_error(&bp->pdev->dev, paddr)) {
700 				dev_kfree_skb(skb);
701 				break;
702 			}
703 
704 			bp->rx_skbuff[entry] = skb;
705 
706 			if (entry == RX_RING_SIZE - 1)
707 				paddr |= MACB_BIT(RX_WRAP);
708 			bp->rx_ring[entry].addr = paddr;
709 			bp->rx_ring[entry].ctrl = 0;
710 
711 			/* properly align Ethernet header */
712 			skb_reserve(skb, NET_IP_ALIGN);
713 		} else {
714 			bp->rx_ring[entry].addr &= ~MACB_BIT(RX_USED);
715 			bp->rx_ring[entry].ctrl = 0;
716 		}
717 	}
718 
719 	/* Make descriptor updates visible to hardware */
720 	wmb();
721 
722 	netdev_vdbg(bp->dev, "rx ring: prepared head %d, tail %d\n",
723 		   bp->rx_prepared_head, bp->rx_tail);
724 }
725 
726 /* Mark DMA descriptors from begin up to and not including end as unused */
discard_partial_frame(struct macb * bp,unsigned int begin,unsigned int end)727 static void discard_partial_frame(struct macb *bp, unsigned int begin,
728 				  unsigned int end)
729 {
730 	unsigned int frag;
731 
732 	for (frag = begin; frag != end; frag++) {
733 		struct macb_dma_desc *desc = macb_rx_desc(bp, frag);
734 		desc->addr &= ~MACB_BIT(RX_USED);
735 	}
736 
737 	/* Make descriptor updates visible to hardware */
738 	wmb();
739 
740 	/*
741 	 * When this happens, the hardware stats registers for
742 	 * whatever caused this is updated, so we don't have to record
743 	 * anything.
744 	 */
745 }
746 
gem_rx(struct macb * bp,int budget)747 static int gem_rx(struct macb *bp, int budget)
748 {
749 	unsigned int		len;
750 	unsigned int		entry;
751 	struct sk_buff		*skb;
752 	struct macb_dma_desc	*desc;
753 	int			count = 0;
754 
755 	while (count < budget) {
756 		u32 addr, ctrl;
757 
758 		entry = macb_rx_ring_wrap(bp->rx_tail);
759 		desc = &bp->rx_ring[entry];
760 
761 		/* Make hw descriptor updates visible to CPU */
762 		rmb();
763 
764 		addr = desc->addr;
765 		ctrl = desc->ctrl;
766 
767 		if (!(addr & MACB_BIT(RX_USED)))
768 			break;
769 
770 		bp->rx_tail++;
771 		count++;
772 
773 		if (!(ctrl & MACB_BIT(RX_SOF) && ctrl & MACB_BIT(RX_EOF))) {
774 			netdev_err(bp->dev,
775 				   "not whole frame pointed by descriptor\n");
776 			bp->stats.rx_dropped++;
777 			break;
778 		}
779 		skb = bp->rx_skbuff[entry];
780 		if (unlikely(!skb)) {
781 			netdev_err(bp->dev,
782 				   "inconsistent Rx descriptor chain\n");
783 			bp->stats.rx_dropped++;
784 			break;
785 		}
786 		/* now everything is ready for receiving packet */
787 		bp->rx_skbuff[entry] = NULL;
788 		len = MACB_BFEXT(RX_FRMLEN, ctrl);
789 
790 		netdev_vdbg(bp->dev, "gem_rx %u (len %u)\n", entry, len);
791 
792 		skb_put(skb, len);
793 		addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, addr));
794 		dma_unmap_single(&bp->pdev->dev, addr,
795 				 bp->rx_buffer_size, DMA_FROM_DEVICE);
796 
797 		skb->protocol = eth_type_trans(skb, bp->dev);
798 		skb_checksum_none_assert(skb);
799 		if (bp->dev->features & NETIF_F_RXCSUM &&
800 		    !(bp->dev->flags & IFF_PROMISC) &&
801 		    GEM_BFEXT(RX_CSUM, ctrl) & GEM_RX_CSUM_CHECKED_MASK)
802 			skb->ip_summed = CHECKSUM_UNNECESSARY;
803 
804 		bp->stats.rx_packets++;
805 		bp->stats.rx_bytes += skb->len;
806 
807 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
808 		netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
809 			    skb->len, skb->csum);
810 		print_hex_dump(KERN_DEBUG, " mac: ", DUMP_PREFIX_ADDRESS, 16, 1,
811 			       skb_mac_header(skb), 16, true);
812 		print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_ADDRESS, 16, 1,
813 			       skb->data, 32, true);
814 #endif
815 
816 		netif_receive_skb(skb);
817 	}
818 
819 	gem_rx_refill(bp);
820 
821 	return count;
822 }
823 
macb_rx_frame(struct macb * bp,unsigned int first_frag,unsigned int last_frag)824 static int macb_rx_frame(struct macb *bp, unsigned int first_frag,
825 			 unsigned int last_frag)
826 {
827 	unsigned int len;
828 	unsigned int frag;
829 	unsigned int offset;
830 	struct sk_buff *skb;
831 	struct macb_dma_desc *desc;
832 
833 	desc = macb_rx_desc(bp, last_frag);
834 	len = MACB_BFEXT(RX_FRMLEN, desc->ctrl);
835 
836 	netdev_vdbg(bp->dev, "macb_rx_frame frags %u - %u (len %u)\n",
837 		macb_rx_ring_wrap(first_frag),
838 		macb_rx_ring_wrap(last_frag), len);
839 
840 	/*
841 	 * The ethernet header starts NET_IP_ALIGN bytes into the
842 	 * first buffer. Since the header is 14 bytes, this makes the
843 	 * payload word-aligned.
844 	 *
845 	 * Instead of calling skb_reserve(NET_IP_ALIGN), we just copy
846 	 * the two padding bytes into the skb so that we avoid hitting
847 	 * the slowpath in memcpy(), and pull them off afterwards.
848 	 */
849 	skb = netdev_alloc_skb(bp->dev, len + NET_IP_ALIGN);
850 	if (!skb) {
851 		bp->stats.rx_dropped++;
852 		for (frag = first_frag; ; frag++) {
853 			desc = macb_rx_desc(bp, frag);
854 			desc->addr &= ~MACB_BIT(RX_USED);
855 			if (frag == last_frag)
856 				break;
857 		}
858 
859 		/* Make descriptor updates visible to hardware */
860 		wmb();
861 
862 		return 1;
863 	}
864 
865 	offset = 0;
866 	len += NET_IP_ALIGN;
867 	skb_checksum_none_assert(skb);
868 	skb_put(skb, len);
869 
870 	for (frag = first_frag; ; frag++) {
871 		unsigned int frag_len = bp->rx_buffer_size;
872 
873 		if (offset + frag_len > len) {
874 			BUG_ON(frag != last_frag);
875 			frag_len = len - offset;
876 		}
877 		skb_copy_to_linear_data_offset(skb, offset,
878 				macb_rx_buffer(bp, frag), frag_len);
879 		offset += bp->rx_buffer_size;
880 		desc = macb_rx_desc(bp, frag);
881 		desc->addr &= ~MACB_BIT(RX_USED);
882 
883 		if (frag == last_frag)
884 			break;
885 	}
886 
887 	/* Make descriptor updates visible to hardware */
888 	wmb();
889 
890 	__skb_pull(skb, NET_IP_ALIGN);
891 	skb->protocol = eth_type_trans(skb, bp->dev);
892 
893 	bp->stats.rx_packets++;
894 	bp->stats.rx_bytes += skb->len;
895 	netdev_vdbg(bp->dev, "received skb of length %u, csum: %08x\n",
896 		   skb->len, skb->csum);
897 	netif_receive_skb(skb);
898 
899 	return 0;
900 }
901 
macb_rx(struct macb * bp,int budget)902 static int macb_rx(struct macb *bp, int budget)
903 {
904 	int received = 0;
905 	unsigned int tail;
906 	int first_frag = -1;
907 
908 	for (tail = bp->rx_tail; budget > 0; tail++) {
909 		struct macb_dma_desc *desc = macb_rx_desc(bp, tail);
910 		u32 addr, ctrl;
911 
912 		/* Make hw descriptor updates visible to CPU */
913 		rmb();
914 
915 		addr = desc->addr;
916 		ctrl = desc->ctrl;
917 
918 		if (!(addr & MACB_BIT(RX_USED)))
919 			break;
920 
921 		if (ctrl & MACB_BIT(RX_SOF)) {
922 			if (first_frag != -1)
923 				discard_partial_frame(bp, first_frag, tail);
924 			first_frag = tail;
925 		}
926 
927 		if (ctrl & MACB_BIT(RX_EOF)) {
928 			int dropped;
929 			BUG_ON(first_frag == -1);
930 
931 			dropped = macb_rx_frame(bp, first_frag, tail);
932 			first_frag = -1;
933 			if (!dropped) {
934 				received++;
935 				budget--;
936 			}
937 		}
938 	}
939 
940 	if (first_frag != -1)
941 		bp->rx_tail = first_frag;
942 	else
943 		bp->rx_tail = tail;
944 
945 	return received;
946 }
947 
macb_poll(struct napi_struct * napi,int budget)948 static int macb_poll(struct napi_struct *napi, int budget)
949 {
950 	struct macb *bp = container_of(napi, struct macb, napi);
951 	int work_done;
952 	u32 status;
953 
954 	status = macb_readl(bp, RSR);
955 	macb_writel(bp, RSR, status);
956 
957 	work_done = 0;
958 
959 	netdev_vdbg(bp->dev, "poll: status = %08lx, budget = %d\n",
960 		   (unsigned long)status, budget);
961 
962 	work_done = bp->macbgem_ops.mog_rx(bp, budget);
963 	if (work_done < budget) {
964 		napi_complete(napi);
965 
966 		/* Packets received while interrupts were disabled */
967 		status = macb_readl(bp, RSR);
968 		if (status) {
969 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
970 				macb_writel(bp, ISR, MACB_BIT(RCOMP));
971 			napi_reschedule(napi);
972 		} else {
973 			macb_writel(bp, IER, MACB_RX_INT_FLAGS);
974 		}
975 	}
976 
977 	/* TODO: Handle errors */
978 
979 	return work_done;
980 }
981 
macb_interrupt(int irq,void * dev_id)982 static irqreturn_t macb_interrupt(int irq, void *dev_id)
983 {
984 	struct macb_queue *queue = dev_id;
985 	struct macb *bp = queue->bp;
986 	struct net_device *dev = bp->dev;
987 	u32 status, ctrl;
988 
989 	status = queue_readl(queue, ISR);
990 
991 	if (unlikely(!status))
992 		return IRQ_NONE;
993 
994 	spin_lock(&bp->lock);
995 
996 	while (status) {
997 		/* close possible race with dev_close */
998 		if (unlikely(!netif_running(dev))) {
999 			queue_writel(queue, IDR, -1);
1000 			break;
1001 		}
1002 
1003 		netdev_vdbg(bp->dev, "queue = %u, isr = 0x%08lx\n",
1004 			    (unsigned int)(queue - bp->queues),
1005 			    (unsigned long)status);
1006 
1007 		if (status & MACB_RX_INT_FLAGS) {
1008 			/*
1009 			 * There's no point taking any more interrupts
1010 			 * until we have processed the buffers. The
1011 			 * scheduling call may fail if the poll routine
1012 			 * is already scheduled, so disable interrupts
1013 			 * now.
1014 			 */
1015 			queue_writel(queue, IDR, MACB_RX_INT_FLAGS);
1016 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1017 				queue_writel(queue, ISR, MACB_BIT(RCOMP));
1018 
1019 			if (napi_schedule_prep(&bp->napi)) {
1020 				netdev_vdbg(bp->dev, "scheduling RX softirq\n");
1021 				__napi_schedule(&bp->napi);
1022 			}
1023 		}
1024 
1025 		if (unlikely(status & (MACB_TX_ERR_FLAGS))) {
1026 			queue_writel(queue, IDR, MACB_TX_INT_FLAGS);
1027 			schedule_work(&queue->tx_error_task);
1028 
1029 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1030 				queue_writel(queue, ISR, MACB_TX_ERR_FLAGS);
1031 
1032 			break;
1033 		}
1034 
1035 		if (status & MACB_BIT(TCOMP))
1036 			macb_tx_interrupt(queue);
1037 
1038 		/*
1039 		 * Link change detection isn't possible with RMII, so we'll
1040 		 * add that if/when we get our hands on a full-blown MII PHY.
1041 		 */
1042 
1043 		/* There is a hardware issue under heavy load where DMA can
1044 		 * stop, this causes endless "used buffer descriptor read"
1045 		 * interrupts but it can be cleared by re-enabling RX. See
1046 		 * the at91 manual, section 41.3.1 or the Zynq manual
1047 		 * section 16.7.4 for details.
1048 		 */
1049 		if (status & MACB_BIT(RXUBR)) {
1050 			ctrl = macb_readl(bp, NCR);
1051 			macb_writel(bp, NCR, ctrl & ~MACB_BIT(RE));
1052 			macb_writel(bp, NCR, ctrl | MACB_BIT(RE));
1053 
1054 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1055 				macb_writel(bp, ISR, MACB_BIT(RXUBR));
1056 		}
1057 
1058 		if (status & MACB_BIT(ISR_ROVR)) {
1059 			/* We missed at least one packet */
1060 			if (macb_is_gem(bp))
1061 				bp->hw_stats.gem.rx_overruns++;
1062 			else
1063 				bp->hw_stats.macb.rx_overruns++;
1064 
1065 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1066 				queue_writel(queue, ISR, MACB_BIT(ISR_ROVR));
1067 		}
1068 
1069 		if (status & MACB_BIT(HRESP)) {
1070 			/*
1071 			 * TODO: Reset the hardware, and maybe move the
1072 			 * netdev_err to a lower-priority context as well
1073 			 * (work queue?)
1074 			 */
1075 			netdev_err(dev, "DMA bus error: HRESP not OK\n");
1076 
1077 			if (bp->caps & MACB_CAPS_ISR_CLEAR_ON_WRITE)
1078 				queue_writel(queue, ISR, MACB_BIT(HRESP));
1079 		}
1080 
1081 		status = queue_readl(queue, ISR);
1082 	}
1083 
1084 	spin_unlock(&bp->lock);
1085 
1086 	return IRQ_HANDLED;
1087 }
1088 
1089 #ifdef CONFIG_NET_POLL_CONTROLLER
1090 /*
1091  * Polling receive - used by netconsole and other diagnostic tools
1092  * to allow network i/o with interrupts disabled.
1093  */
macb_poll_controller(struct net_device * dev)1094 static void macb_poll_controller(struct net_device *dev)
1095 {
1096 	struct macb *bp = netdev_priv(dev);
1097 	struct macb_queue *queue;
1098 	unsigned long flags;
1099 	unsigned int q;
1100 
1101 	local_irq_save(flags);
1102 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue)
1103 		macb_interrupt(dev->irq, queue);
1104 	local_irq_restore(flags);
1105 }
1106 #endif
1107 
macb_count_tx_descriptors(struct macb * bp,unsigned int len)1108 static inline unsigned int macb_count_tx_descriptors(struct macb *bp,
1109 						     unsigned int len)
1110 {
1111 	return (len + bp->max_tx_length - 1) / bp->max_tx_length;
1112 }
1113 
macb_tx_map(struct macb * bp,struct macb_queue * queue,struct sk_buff * skb)1114 static unsigned int macb_tx_map(struct macb *bp,
1115 				struct macb_queue *queue,
1116 				struct sk_buff *skb)
1117 {
1118 	dma_addr_t mapping;
1119 	unsigned int len, entry, i, tx_head = queue->tx_head;
1120 	struct macb_tx_skb *tx_skb = NULL;
1121 	struct macb_dma_desc *desc;
1122 	unsigned int offset, size, count = 0;
1123 	unsigned int f, nr_frags = skb_shinfo(skb)->nr_frags;
1124 	unsigned int eof = 1;
1125 	u32 ctrl;
1126 
1127 	/* First, map non-paged data */
1128 	len = skb_headlen(skb);
1129 	offset = 0;
1130 	while (len) {
1131 		size = min(len, bp->max_tx_length);
1132 		entry = macb_tx_ring_wrap(tx_head);
1133 		tx_skb = &queue->tx_skb[entry];
1134 
1135 		mapping = dma_map_single(&bp->pdev->dev,
1136 					 skb->data + offset,
1137 					 size, DMA_TO_DEVICE);
1138 		if (dma_mapping_error(&bp->pdev->dev, mapping))
1139 			goto dma_error;
1140 
1141 		/* Save info to properly release resources */
1142 		tx_skb->skb = NULL;
1143 		tx_skb->mapping = mapping;
1144 		tx_skb->size = size;
1145 		tx_skb->mapped_as_page = false;
1146 
1147 		len -= size;
1148 		offset += size;
1149 		count++;
1150 		tx_head++;
1151 	}
1152 
1153 	/* Then, map paged data from fragments */
1154 	for (f = 0; f < nr_frags; f++) {
1155 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
1156 
1157 		len = skb_frag_size(frag);
1158 		offset = 0;
1159 		while (len) {
1160 			size = min(len, bp->max_tx_length);
1161 			entry = macb_tx_ring_wrap(tx_head);
1162 			tx_skb = &queue->tx_skb[entry];
1163 
1164 			mapping = skb_frag_dma_map(&bp->pdev->dev, frag,
1165 						   offset, size, DMA_TO_DEVICE);
1166 			if (dma_mapping_error(&bp->pdev->dev, mapping))
1167 				goto dma_error;
1168 
1169 			/* Save info to properly release resources */
1170 			tx_skb->skb = NULL;
1171 			tx_skb->mapping = mapping;
1172 			tx_skb->size = size;
1173 			tx_skb->mapped_as_page = true;
1174 
1175 			len -= size;
1176 			offset += size;
1177 			count++;
1178 			tx_head++;
1179 		}
1180 	}
1181 
1182 	/* Should never happen */
1183 	if (unlikely(tx_skb == NULL)) {
1184 		netdev_err(bp->dev, "BUG! empty skb!\n");
1185 		return 0;
1186 	}
1187 
1188 	/* This is the last buffer of the frame: save socket buffer */
1189 	tx_skb->skb = skb;
1190 
1191 	/* Update TX ring: update buffer descriptors in reverse order
1192 	 * to avoid race condition
1193 	 */
1194 
1195 	/* Set 'TX_USED' bit in buffer descriptor at tx_head position
1196 	 * to set the end of TX queue
1197 	 */
1198 	i = tx_head;
1199 	entry = macb_tx_ring_wrap(i);
1200 	ctrl = MACB_BIT(TX_USED);
1201 	desc = &queue->tx_ring[entry];
1202 	desc->ctrl = ctrl;
1203 
1204 	do {
1205 		i--;
1206 		entry = macb_tx_ring_wrap(i);
1207 		tx_skb = &queue->tx_skb[entry];
1208 		desc = &queue->tx_ring[entry];
1209 
1210 		ctrl = (u32)tx_skb->size;
1211 		if (eof) {
1212 			ctrl |= MACB_BIT(TX_LAST);
1213 			eof = 0;
1214 		}
1215 		if (unlikely(entry == (TX_RING_SIZE - 1)))
1216 			ctrl |= MACB_BIT(TX_WRAP);
1217 
1218 		/* Set TX buffer descriptor */
1219 		desc->addr = tx_skb->mapping;
1220 		/* desc->addr must be visible to hardware before clearing
1221 		 * 'TX_USED' bit in desc->ctrl.
1222 		 */
1223 		wmb();
1224 		desc->ctrl = ctrl;
1225 	} while (i != queue->tx_head);
1226 
1227 	queue->tx_head = tx_head;
1228 
1229 	return count;
1230 
1231 dma_error:
1232 	netdev_err(bp->dev, "TX DMA map failed\n");
1233 
1234 	for (i = queue->tx_head; i != tx_head; i++) {
1235 		tx_skb = macb_tx_skb(queue, i);
1236 
1237 		macb_tx_unmap(bp, tx_skb);
1238 	}
1239 
1240 	return 0;
1241 }
1242 
macb_start_xmit(struct sk_buff * skb,struct net_device * dev)1243 static int macb_start_xmit(struct sk_buff *skb, struct net_device *dev)
1244 {
1245 	u16 queue_index = skb_get_queue_mapping(skb);
1246 	struct macb *bp = netdev_priv(dev);
1247 	struct macb_queue *queue = &bp->queues[queue_index];
1248 	unsigned long flags;
1249 	unsigned int count, nr_frags, frag_size, f;
1250 
1251 #if defined(DEBUG) && defined(VERBOSE_DEBUG)
1252 	netdev_vdbg(bp->dev,
1253 		   "start_xmit: queue %hu len %u head %p data %p tail %p end %p\n",
1254 		   queue_index, skb->len, skb->head, skb->data,
1255 		   skb_tail_pointer(skb), skb_end_pointer(skb));
1256 	print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_OFFSET, 16, 1,
1257 		       skb->data, 16, true);
1258 #endif
1259 
1260 	/* Count how many TX buffer descriptors are needed to send this
1261 	 * socket buffer: skb fragments of jumbo frames may need to be
1262 	 * splitted into many buffer descriptors.
1263 	 */
1264 	count = macb_count_tx_descriptors(bp, skb_headlen(skb));
1265 	nr_frags = skb_shinfo(skb)->nr_frags;
1266 	for (f = 0; f < nr_frags; f++) {
1267 		frag_size = skb_frag_size(&skb_shinfo(skb)->frags[f]);
1268 		count += macb_count_tx_descriptors(bp, frag_size);
1269 	}
1270 
1271 	spin_lock_irqsave(&bp->lock, flags);
1272 
1273 	/* This is a hard error, log it. */
1274 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < count) {
1275 		netif_stop_subqueue(dev, queue_index);
1276 		spin_unlock_irqrestore(&bp->lock, flags);
1277 		netdev_dbg(bp->dev, "tx_head = %u, tx_tail = %u\n",
1278 			   queue->tx_head, queue->tx_tail);
1279 		return NETDEV_TX_BUSY;
1280 	}
1281 
1282 	/* Map socket buffer for DMA transfer */
1283 	if (!macb_tx_map(bp, queue, skb)) {
1284 		dev_kfree_skb_any(skb);
1285 		goto unlock;
1286 	}
1287 
1288 	/* Make newly initialized descriptor visible to hardware */
1289 	wmb();
1290 
1291 	skb_tx_timestamp(skb);
1292 
1293 	macb_writel(bp, NCR, macb_readl(bp, NCR) | MACB_BIT(TSTART));
1294 
1295 	if (CIRC_SPACE(queue->tx_head, queue->tx_tail, TX_RING_SIZE) < 1)
1296 		netif_stop_subqueue(dev, queue_index);
1297 
1298 unlock:
1299 	spin_unlock_irqrestore(&bp->lock, flags);
1300 
1301 	return NETDEV_TX_OK;
1302 }
1303 
macb_init_rx_buffer_size(struct macb * bp,size_t size)1304 static void macb_init_rx_buffer_size(struct macb *bp, size_t size)
1305 {
1306 	if (!macb_is_gem(bp)) {
1307 		bp->rx_buffer_size = MACB_RX_BUFFER_SIZE;
1308 	} else {
1309 		bp->rx_buffer_size = size;
1310 
1311 		if (bp->rx_buffer_size % RX_BUFFER_MULTIPLE) {
1312 			netdev_dbg(bp->dev,
1313 				    "RX buffer must be multiple of %d bytes, expanding\n",
1314 				    RX_BUFFER_MULTIPLE);
1315 			bp->rx_buffer_size =
1316 				roundup(bp->rx_buffer_size, RX_BUFFER_MULTIPLE);
1317 		}
1318 	}
1319 
1320 	netdev_dbg(bp->dev, "mtu [%u] rx_buffer_size [%Zu]\n",
1321 		   bp->dev->mtu, bp->rx_buffer_size);
1322 }
1323 
gem_free_rx_buffers(struct macb * bp)1324 static void gem_free_rx_buffers(struct macb *bp)
1325 {
1326 	struct sk_buff		*skb;
1327 	struct macb_dma_desc	*desc;
1328 	dma_addr_t		addr;
1329 	int i;
1330 
1331 	if (!bp->rx_skbuff)
1332 		return;
1333 
1334 	for (i = 0; i < RX_RING_SIZE; i++) {
1335 		skb = bp->rx_skbuff[i];
1336 
1337 		if (skb == NULL)
1338 			continue;
1339 
1340 		desc = &bp->rx_ring[i];
1341 		addr = MACB_BF(RX_WADDR, MACB_BFEXT(RX_WADDR, desc->addr));
1342 		dma_unmap_single(&bp->pdev->dev, addr, bp->rx_buffer_size,
1343 				 DMA_FROM_DEVICE);
1344 		dev_kfree_skb_any(skb);
1345 		skb = NULL;
1346 	}
1347 
1348 	kfree(bp->rx_skbuff);
1349 	bp->rx_skbuff = NULL;
1350 }
1351 
macb_free_rx_buffers(struct macb * bp)1352 static void macb_free_rx_buffers(struct macb *bp)
1353 {
1354 	if (bp->rx_buffers) {
1355 		dma_free_coherent(&bp->pdev->dev,
1356 				  RX_RING_SIZE * bp->rx_buffer_size,
1357 				  bp->rx_buffers, bp->rx_buffers_dma);
1358 		bp->rx_buffers = NULL;
1359 	}
1360 }
1361 
macb_free_consistent(struct macb * bp)1362 static void macb_free_consistent(struct macb *bp)
1363 {
1364 	struct macb_queue *queue;
1365 	unsigned int q;
1366 
1367 	bp->macbgem_ops.mog_free_rx_buffers(bp);
1368 	if (bp->rx_ring) {
1369 		dma_free_coherent(&bp->pdev->dev, RX_RING_BYTES,
1370 				  bp->rx_ring, bp->rx_ring_dma);
1371 		bp->rx_ring = NULL;
1372 	}
1373 
1374 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1375 		kfree(queue->tx_skb);
1376 		queue->tx_skb = NULL;
1377 		if (queue->tx_ring) {
1378 			dma_free_coherent(&bp->pdev->dev, TX_RING_BYTES,
1379 					  queue->tx_ring, queue->tx_ring_dma);
1380 			queue->tx_ring = NULL;
1381 		}
1382 	}
1383 }
1384 
gem_alloc_rx_buffers(struct macb * bp)1385 static int gem_alloc_rx_buffers(struct macb *bp)
1386 {
1387 	int size;
1388 
1389 	size = RX_RING_SIZE * sizeof(struct sk_buff *);
1390 	bp->rx_skbuff = kzalloc(size, GFP_KERNEL);
1391 	if (!bp->rx_skbuff)
1392 		return -ENOMEM;
1393 	else
1394 		netdev_dbg(bp->dev,
1395 			   "Allocated %d RX struct sk_buff entries at %p\n",
1396 			   RX_RING_SIZE, bp->rx_skbuff);
1397 	return 0;
1398 }
1399 
macb_alloc_rx_buffers(struct macb * bp)1400 static int macb_alloc_rx_buffers(struct macb *bp)
1401 {
1402 	int size;
1403 
1404 	size = RX_RING_SIZE * bp->rx_buffer_size;
1405 	bp->rx_buffers = dma_alloc_coherent(&bp->pdev->dev, size,
1406 					    &bp->rx_buffers_dma, GFP_KERNEL);
1407 	if (!bp->rx_buffers)
1408 		return -ENOMEM;
1409 	else
1410 		netdev_dbg(bp->dev,
1411 			   "Allocated RX buffers of %d bytes at %08lx (mapped %p)\n",
1412 			   size, (unsigned long)bp->rx_buffers_dma, bp->rx_buffers);
1413 	return 0;
1414 }
1415 
macb_alloc_consistent(struct macb * bp)1416 static int macb_alloc_consistent(struct macb *bp)
1417 {
1418 	struct macb_queue *queue;
1419 	unsigned int q;
1420 	int size;
1421 
1422 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1423 		size = TX_RING_BYTES;
1424 		queue->tx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1425 						    &queue->tx_ring_dma,
1426 						    GFP_KERNEL);
1427 		if (!queue->tx_ring)
1428 			goto out_err;
1429 		netdev_dbg(bp->dev,
1430 			   "Allocated TX ring for queue %u of %d bytes at %08lx (mapped %p)\n",
1431 			   q, size, (unsigned long)queue->tx_ring_dma,
1432 			   queue->tx_ring);
1433 
1434 		size = TX_RING_SIZE * sizeof(struct macb_tx_skb);
1435 		queue->tx_skb = kmalloc(size, GFP_KERNEL);
1436 		if (!queue->tx_skb)
1437 			goto out_err;
1438 	}
1439 
1440 	size = RX_RING_BYTES;
1441 	bp->rx_ring = dma_alloc_coherent(&bp->pdev->dev, size,
1442 					 &bp->rx_ring_dma, GFP_KERNEL);
1443 	if (!bp->rx_ring)
1444 		goto out_err;
1445 	netdev_dbg(bp->dev,
1446 		   "Allocated RX ring of %d bytes at %08lx (mapped %p)\n",
1447 		   size, (unsigned long)bp->rx_ring_dma, bp->rx_ring);
1448 
1449 	if (bp->macbgem_ops.mog_alloc_rx_buffers(bp))
1450 		goto out_err;
1451 
1452 	return 0;
1453 
1454 out_err:
1455 	macb_free_consistent(bp);
1456 	return -ENOMEM;
1457 }
1458 
gem_init_rings(struct macb * bp)1459 static void gem_init_rings(struct macb *bp)
1460 {
1461 	struct macb_queue *queue;
1462 	unsigned int q;
1463 	int i;
1464 
1465 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1466 		for (i = 0; i < TX_RING_SIZE; i++) {
1467 			queue->tx_ring[i].addr = 0;
1468 			queue->tx_ring[i].ctrl = MACB_BIT(TX_USED);
1469 		}
1470 		queue->tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1471 		queue->tx_head = 0;
1472 		queue->tx_tail = 0;
1473 	}
1474 
1475 	bp->rx_tail = 0;
1476 	bp->rx_prepared_head = 0;
1477 
1478 	gem_rx_refill(bp);
1479 }
1480 
macb_init_rings(struct macb * bp)1481 static void macb_init_rings(struct macb *bp)
1482 {
1483 	int i;
1484 	dma_addr_t addr;
1485 
1486 	addr = bp->rx_buffers_dma;
1487 	for (i = 0; i < RX_RING_SIZE; i++) {
1488 		bp->rx_ring[i].addr = addr;
1489 		bp->rx_ring[i].ctrl = 0;
1490 		addr += bp->rx_buffer_size;
1491 	}
1492 	bp->rx_ring[RX_RING_SIZE - 1].addr |= MACB_BIT(RX_WRAP);
1493 
1494 	for (i = 0; i < TX_RING_SIZE; i++) {
1495 		bp->queues[0].tx_ring[i].addr = 0;
1496 		bp->queues[0].tx_ring[i].ctrl = MACB_BIT(TX_USED);
1497 	}
1498 	bp->queues[0].tx_head = 0;
1499 	bp->queues[0].tx_tail = 0;
1500 	bp->queues[0].tx_ring[TX_RING_SIZE - 1].ctrl |= MACB_BIT(TX_WRAP);
1501 
1502 	bp->rx_tail = 0;
1503 }
1504 
macb_reset_hw(struct macb * bp)1505 static void macb_reset_hw(struct macb *bp)
1506 {
1507 	struct macb_queue *queue;
1508 	unsigned int q;
1509 
1510 	/*
1511 	 * Disable RX and TX (XXX: Should we halt the transmission
1512 	 * more gracefully?)
1513 	 */
1514 	macb_writel(bp, NCR, 0);
1515 
1516 	/* Clear the stats registers (XXX: Update stats first?) */
1517 	macb_writel(bp, NCR, MACB_BIT(CLRSTAT));
1518 
1519 	/* Clear all status flags */
1520 	macb_writel(bp, TSR, -1);
1521 	macb_writel(bp, RSR, -1);
1522 
1523 	/* Disable all interrupts */
1524 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1525 		queue_writel(queue, IDR, -1);
1526 		queue_readl(queue, ISR);
1527 	}
1528 }
1529 
gem_mdc_clk_div(struct macb * bp)1530 static u32 gem_mdc_clk_div(struct macb *bp)
1531 {
1532 	u32 config;
1533 	unsigned long pclk_hz = clk_get_rate(bp->pclk);
1534 
1535 	if (pclk_hz <= 20000000)
1536 		config = GEM_BF(CLK, GEM_CLK_DIV8);
1537 	else if (pclk_hz <= 40000000)
1538 		config = GEM_BF(CLK, GEM_CLK_DIV16);
1539 	else if (pclk_hz <= 80000000)
1540 		config = GEM_BF(CLK, GEM_CLK_DIV32);
1541 	else if (pclk_hz <= 120000000)
1542 		config = GEM_BF(CLK, GEM_CLK_DIV48);
1543 	else if (pclk_hz <= 160000000)
1544 		config = GEM_BF(CLK, GEM_CLK_DIV64);
1545 	else
1546 		config = GEM_BF(CLK, GEM_CLK_DIV96);
1547 
1548 	return config;
1549 }
1550 
macb_mdc_clk_div(struct macb * bp)1551 static u32 macb_mdc_clk_div(struct macb *bp)
1552 {
1553 	u32 config;
1554 	unsigned long pclk_hz;
1555 
1556 	if (macb_is_gem(bp))
1557 		return gem_mdc_clk_div(bp);
1558 
1559 	pclk_hz = clk_get_rate(bp->pclk);
1560 	if (pclk_hz <= 20000000)
1561 		config = MACB_BF(CLK, MACB_CLK_DIV8);
1562 	else if (pclk_hz <= 40000000)
1563 		config = MACB_BF(CLK, MACB_CLK_DIV16);
1564 	else if (pclk_hz <= 80000000)
1565 		config = MACB_BF(CLK, MACB_CLK_DIV32);
1566 	else
1567 		config = MACB_BF(CLK, MACB_CLK_DIV64);
1568 
1569 	return config;
1570 }
1571 
1572 /*
1573  * Get the DMA bus width field of the network configuration register that we
1574  * should program.  We find the width from decoding the design configuration
1575  * register to find the maximum supported data bus width.
1576  */
macb_dbw(struct macb * bp)1577 static u32 macb_dbw(struct macb *bp)
1578 {
1579 	if (!macb_is_gem(bp))
1580 		return 0;
1581 
1582 	switch (GEM_BFEXT(DBWDEF, gem_readl(bp, DCFG1))) {
1583 	case 4:
1584 		return GEM_BF(DBW, GEM_DBW128);
1585 	case 2:
1586 		return GEM_BF(DBW, GEM_DBW64);
1587 	case 1:
1588 	default:
1589 		return GEM_BF(DBW, GEM_DBW32);
1590 	}
1591 }
1592 
1593 /*
1594  * Configure the receive DMA engine
1595  * - use the correct receive buffer size
1596  * - set best burst length for DMA operations
1597  *   (if not supported by FIFO, it will fallback to default)
1598  * - set both rx/tx packet buffers to full memory size
1599  * These are configurable parameters for GEM.
1600  */
macb_configure_dma(struct macb * bp)1601 static void macb_configure_dma(struct macb *bp)
1602 {
1603 	u32 dmacfg;
1604 	u32 tmp, ncr;
1605 
1606 	if (macb_is_gem(bp)) {
1607 		dmacfg = gem_readl(bp, DMACFG) & ~GEM_BF(RXBS, -1L);
1608 		dmacfg |= GEM_BF(RXBS, bp->rx_buffer_size / RX_BUFFER_MULTIPLE);
1609 		if (bp->dma_burst_length)
1610 			dmacfg = GEM_BFINS(FBLDO, bp->dma_burst_length, dmacfg);
1611 		dmacfg |= GEM_BIT(TXPBMS) | GEM_BF(RXBMS, -1L);
1612 		dmacfg &= ~GEM_BIT(ENDIA_PKT);
1613 
1614 		/* Find the CPU endianness by using the loopback bit of net_ctrl
1615 		 * register. save it first. When the CPU is in big endian we
1616 		 * need to program swaped mode for management descriptor access.
1617 		 */
1618 		ncr = macb_readl(bp, NCR);
1619 		__raw_writel(MACB_BIT(LLB), bp->regs + MACB_NCR);
1620 		tmp =  __raw_readl(bp->regs + MACB_NCR);
1621 
1622 		if (tmp == MACB_BIT(LLB))
1623 			dmacfg &= ~GEM_BIT(ENDIA_DESC);
1624 		else
1625 			dmacfg |= GEM_BIT(ENDIA_DESC); /* CPU in big endian */
1626 
1627 		/* Restore net_ctrl */
1628 		macb_writel(bp, NCR, ncr);
1629 
1630 		if (bp->dev->features & NETIF_F_HW_CSUM)
1631 			dmacfg |= GEM_BIT(TXCOEN);
1632 		else
1633 			dmacfg &= ~GEM_BIT(TXCOEN);
1634 		netdev_dbg(bp->dev, "Cadence configure DMA with 0x%08x\n",
1635 			   dmacfg);
1636 		gem_writel(bp, DMACFG, dmacfg);
1637 	}
1638 }
1639 
macb_init_hw(struct macb * bp)1640 static void macb_init_hw(struct macb *bp)
1641 {
1642 	struct macb_queue *queue;
1643 	unsigned int q;
1644 
1645 	u32 config;
1646 
1647 	macb_reset_hw(bp);
1648 	macb_set_hwaddr(bp);
1649 
1650 	config = macb_mdc_clk_div(bp);
1651 	config |= MACB_BF(RBOF, NET_IP_ALIGN);	/* Make eth data aligned */
1652 	config |= MACB_BIT(PAE);		/* PAuse Enable */
1653 	config |= MACB_BIT(DRFCS);		/* Discard Rx FCS */
1654 	config |= MACB_BIT(BIG);		/* Receive oversized frames */
1655 	if (bp->dev->flags & IFF_PROMISC)
1656 		config |= MACB_BIT(CAF);	/* Copy All Frames */
1657 	else if (macb_is_gem(bp) && bp->dev->features & NETIF_F_RXCSUM)
1658 		config |= GEM_BIT(RXCOEN);
1659 	if (!(bp->dev->flags & IFF_BROADCAST))
1660 		config |= MACB_BIT(NBC);	/* No BroadCast */
1661 	config |= macb_dbw(bp);
1662 	macb_writel(bp, NCFGR, config);
1663 	bp->speed = SPEED_10;
1664 	bp->duplex = DUPLEX_HALF;
1665 
1666 	macb_configure_dma(bp);
1667 
1668 	/* Initialize TX and RX buffers */
1669 	macb_writel(bp, RBQP, bp->rx_ring_dma);
1670 	for (q = 0, queue = bp->queues; q < bp->num_queues; ++q, ++queue) {
1671 		queue_writel(queue, TBQP, queue->tx_ring_dma);
1672 
1673 		/* Enable interrupts */
1674 		queue_writel(queue, IER,
1675 			     MACB_RX_INT_FLAGS |
1676 			     MACB_TX_INT_FLAGS |
1677 			     MACB_BIT(HRESP));
1678 	}
1679 
1680 	/* Enable TX and RX */
1681 	macb_writel(bp, NCR, MACB_BIT(RE) | MACB_BIT(TE) | MACB_BIT(MPE));
1682 }
1683 
1684 /*
1685  * The hash address register is 64 bits long and takes up two
1686  * locations in the memory map.  The least significant bits are stored
1687  * in EMAC_HSL and the most significant bits in EMAC_HSH.
1688  *
1689  * The unicast hash enable and the multicast hash enable bits in the
1690  * network configuration register enable the reception of hash matched
1691  * frames. The destination address is reduced to a 6 bit index into
1692  * the 64 bit hash register using the following hash function.  The
1693  * hash function is an exclusive or of every sixth bit of the
1694  * destination address.
1695  *
1696  * hi[5] = da[5] ^ da[11] ^ da[17] ^ da[23] ^ da[29] ^ da[35] ^ da[41] ^ da[47]
1697  * hi[4] = da[4] ^ da[10] ^ da[16] ^ da[22] ^ da[28] ^ da[34] ^ da[40] ^ da[46]
1698  * hi[3] = da[3] ^ da[09] ^ da[15] ^ da[21] ^ da[27] ^ da[33] ^ da[39] ^ da[45]
1699  * hi[2] = da[2] ^ da[08] ^ da[14] ^ da[20] ^ da[26] ^ da[32] ^ da[38] ^ da[44]
1700  * hi[1] = da[1] ^ da[07] ^ da[13] ^ da[19] ^ da[25] ^ da[31] ^ da[37] ^ da[43]
1701  * hi[0] = da[0] ^ da[06] ^ da[12] ^ da[18] ^ da[24] ^ da[30] ^ da[36] ^ da[42]
1702  *
1703  * da[0] represents the least significant bit of the first byte
1704  * received, that is, the multicast/unicast indicator, and da[47]
1705  * represents the most significant bit of the last byte received.  If
1706  * the hash index, hi[n], points to a bit that is set in the hash
1707  * register then the frame will be matched according to whether the
1708  * frame is multicast or unicast.  A multicast match will be signalled
1709  * if the multicast hash enable bit is set, da[0] is 1 and the hash
1710  * index points to a bit set in the hash register.  A unicast match
1711  * will be signalled if the unicast hash enable bit is set, da[0] is 0
1712  * and the hash index points to a bit set in the hash register.  To
1713  * receive all multicast frames, the hash register should be set with
1714  * all ones and the multicast hash enable bit should be set in the
1715  * network configuration register.
1716  */
1717 
hash_bit_value(int bitnr,__u8 * addr)1718 static inline int hash_bit_value(int bitnr, __u8 *addr)
1719 {
1720 	if (addr[bitnr / 8] & (1 << (bitnr % 8)))
1721 		return 1;
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Return the hash index value for the specified address.
1727  */
hash_get_index(__u8 * addr)1728 static int hash_get_index(__u8 *addr)
1729 {
1730 	int i, j, bitval;
1731 	int hash_index = 0;
1732 
1733 	for (j = 0; j < 6; j++) {
1734 		for (i = 0, bitval = 0; i < 8; i++)
1735 			bitval ^= hash_bit_value(i * 6 + j, addr);
1736 
1737 		hash_index |= (bitval << j);
1738 	}
1739 
1740 	return hash_index;
1741 }
1742 
1743 /*
1744  * Add multicast addresses to the internal multicast-hash table.
1745  */
macb_sethashtable(struct net_device * dev)1746 static void macb_sethashtable(struct net_device *dev)
1747 {
1748 	struct netdev_hw_addr *ha;
1749 	unsigned long mc_filter[2];
1750 	unsigned int bitnr;
1751 	struct macb *bp = netdev_priv(dev);
1752 
1753 	mc_filter[0] = mc_filter[1] = 0;
1754 
1755 	netdev_for_each_mc_addr(ha, dev) {
1756 		bitnr = hash_get_index(ha->addr);
1757 		mc_filter[bitnr >> 5] |= 1 << (bitnr & 31);
1758 	}
1759 
1760 	macb_or_gem_writel(bp, HRB, mc_filter[0]);
1761 	macb_or_gem_writel(bp, HRT, mc_filter[1]);
1762 }
1763 
1764 /*
1765  * Enable/Disable promiscuous and multicast modes.
1766  */
macb_set_rx_mode(struct net_device * dev)1767 static void macb_set_rx_mode(struct net_device *dev)
1768 {
1769 	unsigned long cfg;
1770 	struct macb *bp = netdev_priv(dev);
1771 
1772 	cfg = macb_readl(bp, NCFGR);
1773 
1774 	if (dev->flags & IFF_PROMISC) {
1775 		/* Enable promiscuous mode */
1776 		cfg |= MACB_BIT(CAF);
1777 
1778 		/* Disable RX checksum offload */
1779 		if (macb_is_gem(bp))
1780 			cfg &= ~GEM_BIT(RXCOEN);
1781 	} else {
1782 		/* Disable promiscuous mode */
1783 		cfg &= ~MACB_BIT(CAF);
1784 
1785 		/* Enable RX checksum offload only if requested */
1786 		if (macb_is_gem(bp) && dev->features & NETIF_F_RXCSUM)
1787 			cfg |= GEM_BIT(RXCOEN);
1788 	}
1789 
1790 	if (dev->flags & IFF_ALLMULTI) {
1791 		/* Enable all multicast mode */
1792 		macb_or_gem_writel(bp, HRB, -1);
1793 		macb_or_gem_writel(bp, HRT, -1);
1794 		cfg |= MACB_BIT(NCFGR_MTI);
1795 	} else if (!netdev_mc_empty(dev)) {
1796 		/* Enable specific multicasts */
1797 		macb_sethashtable(dev);
1798 		cfg |= MACB_BIT(NCFGR_MTI);
1799 	} else if (dev->flags & (~IFF_ALLMULTI)) {
1800 		/* Disable all multicast mode */
1801 		macb_or_gem_writel(bp, HRB, 0);
1802 		macb_or_gem_writel(bp, HRT, 0);
1803 		cfg &= ~MACB_BIT(NCFGR_MTI);
1804 	}
1805 
1806 	macb_writel(bp, NCFGR, cfg);
1807 }
1808 
macb_open(struct net_device * dev)1809 static int macb_open(struct net_device *dev)
1810 {
1811 	struct macb *bp = netdev_priv(dev);
1812 	size_t bufsz = dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN;
1813 	int err;
1814 
1815 	netdev_dbg(bp->dev, "open\n");
1816 
1817 	/* carrier starts down */
1818 	netif_carrier_off(dev);
1819 
1820 	/* if the phy is not yet register, retry later*/
1821 	if (!bp->phy_dev)
1822 		return -EAGAIN;
1823 
1824 	/* RX buffers initialization */
1825 	macb_init_rx_buffer_size(bp, bufsz);
1826 
1827 	err = macb_alloc_consistent(bp);
1828 	if (err) {
1829 		netdev_err(dev, "Unable to allocate DMA memory (error %d)\n",
1830 			   err);
1831 		return err;
1832 	}
1833 
1834 	napi_enable(&bp->napi);
1835 
1836 	bp->macbgem_ops.mog_init_rings(bp);
1837 	macb_init_hw(bp);
1838 
1839 	/* schedule a link state check */
1840 	phy_start(bp->phy_dev);
1841 
1842 	netif_tx_start_all_queues(dev);
1843 
1844 	return 0;
1845 }
1846 
macb_close(struct net_device * dev)1847 static int macb_close(struct net_device *dev)
1848 {
1849 	struct macb *bp = netdev_priv(dev);
1850 	unsigned long flags;
1851 
1852 	netif_tx_stop_all_queues(dev);
1853 	napi_disable(&bp->napi);
1854 
1855 	if (bp->phy_dev)
1856 		phy_stop(bp->phy_dev);
1857 
1858 	spin_lock_irqsave(&bp->lock, flags);
1859 	macb_reset_hw(bp);
1860 	netif_carrier_off(dev);
1861 	spin_unlock_irqrestore(&bp->lock, flags);
1862 
1863 	macb_free_consistent(bp);
1864 
1865 	return 0;
1866 }
1867 
gem_update_stats(struct macb * bp)1868 static void gem_update_stats(struct macb *bp)
1869 {
1870 	int i;
1871 	u32 *p = &bp->hw_stats.gem.tx_octets_31_0;
1872 
1873 	for (i = 0; i < GEM_STATS_LEN; ++i, ++p) {
1874 		u32 offset = gem_statistics[i].offset;
1875 		u64 val = readl_relaxed(bp->regs + offset);
1876 
1877 		bp->ethtool_stats[i] += val;
1878 		*p += val;
1879 
1880 		if (offset == GEM_OCTTXL || offset == GEM_OCTRXL) {
1881 			/* Add GEM_OCTTXH, GEM_OCTRXH */
1882 			val = readl_relaxed(bp->regs + offset + 4);
1883 			bp->ethtool_stats[i] += ((u64)val) << 32;
1884 			*(++p) += val;
1885 		}
1886 	}
1887 }
1888 
gem_get_stats(struct macb * bp)1889 static struct net_device_stats *gem_get_stats(struct macb *bp)
1890 {
1891 	struct gem_stats *hwstat = &bp->hw_stats.gem;
1892 	struct net_device_stats *nstat = &bp->stats;
1893 
1894 	gem_update_stats(bp);
1895 
1896 	nstat->rx_errors = (hwstat->rx_frame_check_sequence_errors +
1897 			    hwstat->rx_alignment_errors +
1898 			    hwstat->rx_resource_errors +
1899 			    hwstat->rx_overruns +
1900 			    hwstat->rx_oversize_frames +
1901 			    hwstat->rx_jabbers +
1902 			    hwstat->rx_undersized_frames +
1903 			    hwstat->rx_length_field_frame_errors);
1904 	nstat->tx_errors = (hwstat->tx_late_collisions +
1905 			    hwstat->tx_excessive_collisions +
1906 			    hwstat->tx_underrun +
1907 			    hwstat->tx_carrier_sense_errors);
1908 	nstat->multicast = hwstat->rx_multicast_frames;
1909 	nstat->collisions = (hwstat->tx_single_collision_frames +
1910 			     hwstat->tx_multiple_collision_frames +
1911 			     hwstat->tx_excessive_collisions);
1912 	nstat->rx_length_errors = (hwstat->rx_oversize_frames +
1913 				   hwstat->rx_jabbers +
1914 				   hwstat->rx_undersized_frames +
1915 				   hwstat->rx_length_field_frame_errors);
1916 	nstat->rx_over_errors = hwstat->rx_resource_errors;
1917 	nstat->rx_crc_errors = hwstat->rx_frame_check_sequence_errors;
1918 	nstat->rx_frame_errors = hwstat->rx_alignment_errors;
1919 	nstat->rx_fifo_errors = hwstat->rx_overruns;
1920 	nstat->tx_aborted_errors = hwstat->tx_excessive_collisions;
1921 	nstat->tx_carrier_errors = hwstat->tx_carrier_sense_errors;
1922 	nstat->tx_fifo_errors = hwstat->tx_underrun;
1923 
1924 	return nstat;
1925 }
1926 
gem_get_ethtool_stats(struct net_device * dev,struct ethtool_stats * stats,u64 * data)1927 static void gem_get_ethtool_stats(struct net_device *dev,
1928 				  struct ethtool_stats *stats, u64 *data)
1929 {
1930 	struct macb *bp;
1931 
1932 	bp = netdev_priv(dev);
1933 	gem_update_stats(bp);
1934 	memcpy(data, &bp->ethtool_stats, sizeof(u64) * GEM_STATS_LEN);
1935 }
1936 
gem_get_sset_count(struct net_device * dev,int sset)1937 static int gem_get_sset_count(struct net_device *dev, int sset)
1938 {
1939 	switch (sset) {
1940 	case ETH_SS_STATS:
1941 		return GEM_STATS_LEN;
1942 	default:
1943 		return -EOPNOTSUPP;
1944 	}
1945 }
1946 
gem_get_ethtool_strings(struct net_device * dev,u32 sset,u8 * p)1947 static void gem_get_ethtool_strings(struct net_device *dev, u32 sset, u8 *p)
1948 {
1949 	int i;
1950 
1951 	switch (sset) {
1952 	case ETH_SS_STATS:
1953 		for (i = 0; i < GEM_STATS_LEN; i++, p += ETH_GSTRING_LEN)
1954 			memcpy(p, gem_statistics[i].stat_string,
1955 			       ETH_GSTRING_LEN);
1956 		break;
1957 	}
1958 }
1959 
macb_get_stats(struct net_device * dev)1960 static struct net_device_stats *macb_get_stats(struct net_device *dev)
1961 {
1962 	struct macb *bp = netdev_priv(dev);
1963 	struct net_device_stats *nstat = &bp->stats;
1964 	struct macb_stats *hwstat = &bp->hw_stats.macb;
1965 
1966 	if (macb_is_gem(bp))
1967 		return gem_get_stats(bp);
1968 
1969 	/* read stats from hardware */
1970 	macb_update_stats(bp);
1971 
1972 	/* Convert HW stats into netdevice stats */
1973 	nstat->rx_errors = (hwstat->rx_fcs_errors +
1974 			    hwstat->rx_align_errors +
1975 			    hwstat->rx_resource_errors +
1976 			    hwstat->rx_overruns +
1977 			    hwstat->rx_oversize_pkts +
1978 			    hwstat->rx_jabbers +
1979 			    hwstat->rx_undersize_pkts +
1980 			    hwstat->rx_length_mismatch);
1981 	nstat->tx_errors = (hwstat->tx_late_cols +
1982 			    hwstat->tx_excessive_cols +
1983 			    hwstat->tx_underruns +
1984 			    hwstat->tx_carrier_errors +
1985 			    hwstat->sqe_test_errors);
1986 	nstat->collisions = (hwstat->tx_single_cols +
1987 			     hwstat->tx_multiple_cols +
1988 			     hwstat->tx_excessive_cols);
1989 	nstat->rx_length_errors = (hwstat->rx_oversize_pkts +
1990 				   hwstat->rx_jabbers +
1991 				   hwstat->rx_undersize_pkts +
1992 				   hwstat->rx_length_mismatch);
1993 	nstat->rx_over_errors = hwstat->rx_resource_errors +
1994 				   hwstat->rx_overruns;
1995 	nstat->rx_crc_errors = hwstat->rx_fcs_errors;
1996 	nstat->rx_frame_errors = hwstat->rx_align_errors;
1997 	nstat->rx_fifo_errors = hwstat->rx_overruns;
1998 	/* XXX: What does "missed" mean? */
1999 	nstat->tx_aborted_errors = hwstat->tx_excessive_cols;
2000 	nstat->tx_carrier_errors = hwstat->tx_carrier_errors;
2001 	nstat->tx_fifo_errors = hwstat->tx_underruns;
2002 	/* Don't know about heartbeat or window errors... */
2003 
2004 	return nstat;
2005 }
2006 
macb_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)2007 static int macb_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2008 {
2009 	struct macb *bp = netdev_priv(dev);
2010 	struct phy_device *phydev = bp->phy_dev;
2011 
2012 	if (!phydev)
2013 		return -ENODEV;
2014 
2015 	return phy_ethtool_gset(phydev, cmd);
2016 }
2017 
macb_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)2018 static int macb_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2019 {
2020 	struct macb *bp = netdev_priv(dev);
2021 	struct phy_device *phydev = bp->phy_dev;
2022 
2023 	if (!phydev)
2024 		return -ENODEV;
2025 
2026 	return phy_ethtool_sset(phydev, cmd);
2027 }
2028 
macb_get_regs_len(struct net_device * netdev)2029 static int macb_get_regs_len(struct net_device *netdev)
2030 {
2031 	return MACB_GREGS_NBR * sizeof(u32);
2032 }
2033 
macb_get_regs(struct net_device * dev,struct ethtool_regs * regs,void * p)2034 static void macb_get_regs(struct net_device *dev, struct ethtool_regs *regs,
2035 			  void *p)
2036 {
2037 	struct macb *bp = netdev_priv(dev);
2038 	unsigned int tail, head;
2039 	u32 *regs_buff = p;
2040 
2041 	regs->version = (macb_readl(bp, MID) & ((1 << MACB_REV_SIZE) - 1))
2042 			| MACB_GREGS_VERSION;
2043 
2044 	tail = macb_tx_ring_wrap(bp->queues[0].tx_tail);
2045 	head = macb_tx_ring_wrap(bp->queues[0].tx_head);
2046 
2047 	regs_buff[0]  = macb_readl(bp, NCR);
2048 	regs_buff[1]  = macb_or_gem_readl(bp, NCFGR);
2049 	regs_buff[2]  = macb_readl(bp, NSR);
2050 	regs_buff[3]  = macb_readl(bp, TSR);
2051 	regs_buff[4]  = macb_readl(bp, RBQP);
2052 	regs_buff[5]  = macb_readl(bp, TBQP);
2053 	regs_buff[6]  = macb_readl(bp, RSR);
2054 	regs_buff[7]  = macb_readl(bp, IMR);
2055 
2056 	regs_buff[8]  = tail;
2057 	regs_buff[9]  = head;
2058 	regs_buff[10] = macb_tx_dma(&bp->queues[0], tail);
2059 	regs_buff[11] = macb_tx_dma(&bp->queues[0], head);
2060 
2061 	regs_buff[12] = macb_or_gem_readl(bp, USRIO);
2062 	if (macb_is_gem(bp)) {
2063 		regs_buff[13] = gem_readl(bp, DMACFG);
2064 	}
2065 }
2066 
2067 static const struct ethtool_ops macb_ethtool_ops = {
2068 	.get_settings		= macb_get_settings,
2069 	.set_settings		= macb_set_settings,
2070 	.get_regs_len		= macb_get_regs_len,
2071 	.get_regs		= macb_get_regs,
2072 	.get_link		= ethtool_op_get_link,
2073 	.get_ts_info		= ethtool_op_get_ts_info,
2074 };
2075 
2076 static const struct ethtool_ops gem_ethtool_ops = {
2077 	.get_settings		= macb_get_settings,
2078 	.set_settings		= macb_set_settings,
2079 	.get_regs_len		= macb_get_regs_len,
2080 	.get_regs		= macb_get_regs,
2081 	.get_link		= ethtool_op_get_link,
2082 	.get_ts_info		= ethtool_op_get_ts_info,
2083 	.get_ethtool_stats	= gem_get_ethtool_stats,
2084 	.get_strings		= gem_get_ethtool_strings,
2085 	.get_sset_count		= gem_get_sset_count,
2086 };
2087 
macb_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)2088 static int macb_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2089 {
2090 	struct macb *bp = netdev_priv(dev);
2091 	struct phy_device *phydev = bp->phy_dev;
2092 
2093 	if (!netif_running(dev))
2094 		return -EINVAL;
2095 
2096 	if (!phydev)
2097 		return -ENODEV;
2098 
2099 	return phy_mii_ioctl(phydev, rq, cmd);
2100 }
2101 
macb_set_features(struct net_device * netdev,netdev_features_t features)2102 static int macb_set_features(struct net_device *netdev,
2103 			     netdev_features_t features)
2104 {
2105 	struct macb *bp = netdev_priv(netdev);
2106 	netdev_features_t changed = features ^ netdev->features;
2107 
2108 	/* TX checksum offload */
2109 	if ((changed & NETIF_F_HW_CSUM) && macb_is_gem(bp)) {
2110 		u32 dmacfg;
2111 
2112 		dmacfg = gem_readl(bp, DMACFG);
2113 		if (features & NETIF_F_HW_CSUM)
2114 			dmacfg |= GEM_BIT(TXCOEN);
2115 		else
2116 			dmacfg &= ~GEM_BIT(TXCOEN);
2117 		gem_writel(bp, DMACFG, dmacfg);
2118 	}
2119 
2120 	/* RX checksum offload */
2121 	if ((changed & NETIF_F_RXCSUM) && macb_is_gem(bp)) {
2122 		u32 netcfg;
2123 
2124 		netcfg = gem_readl(bp, NCFGR);
2125 		if (features & NETIF_F_RXCSUM &&
2126 		    !(netdev->flags & IFF_PROMISC))
2127 			netcfg |= GEM_BIT(RXCOEN);
2128 		else
2129 			netcfg &= ~GEM_BIT(RXCOEN);
2130 		gem_writel(bp, NCFGR, netcfg);
2131 	}
2132 
2133 	return 0;
2134 }
2135 
2136 static const struct net_device_ops macb_netdev_ops = {
2137 	.ndo_open		= macb_open,
2138 	.ndo_stop		= macb_close,
2139 	.ndo_start_xmit		= macb_start_xmit,
2140 	.ndo_set_rx_mode	= macb_set_rx_mode,
2141 	.ndo_get_stats		= macb_get_stats,
2142 	.ndo_do_ioctl		= macb_ioctl,
2143 	.ndo_validate_addr	= eth_validate_addr,
2144 	.ndo_change_mtu		= eth_change_mtu,
2145 	.ndo_set_mac_address	= eth_mac_addr,
2146 #ifdef CONFIG_NET_POLL_CONTROLLER
2147 	.ndo_poll_controller	= macb_poll_controller,
2148 #endif
2149 	.ndo_set_features	= macb_set_features,
2150 };
2151 
2152 /*
2153  * Configure peripheral capabilities according to device tree
2154  * and integration options used
2155  */
macb_configure_caps(struct macb * bp,const struct macb_config * dt_conf)2156 static void macb_configure_caps(struct macb *bp, const struct macb_config *dt_conf)
2157 {
2158 	u32 dcfg;
2159 
2160 	if (dt_conf)
2161 		bp->caps = dt_conf->caps;
2162 
2163 	if (macb_is_gem_hw(bp->regs)) {
2164 		bp->caps |= MACB_CAPS_MACB_IS_GEM;
2165 
2166 		dcfg = gem_readl(bp, DCFG1);
2167 		if (GEM_BFEXT(IRQCOR, dcfg) == 0)
2168 			bp->caps |= MACB_CAPS_ISR_CLEAR_ON_WRITE;
2169 		dcfg = gem_readl(bp, DCFG2);
2170 		if ((dcfg & (GEM_BIT(RX_PKT_BUFF) | GEM_BIT(TX_PKT_BUFF))) == 0)
2171 			bp->caps |= MACB_CAPS_FIFO_MODE;
2172 	}
2173 
2174 	netdev_dbg(bp->dev, "Cadence caps 0x%08x\n", bp->caps);
2175 }
2176 
macb_probe_queues(void __iomem * mem,unsigned int * queue_mask,unsigned int * num_queues)2177 static void macb_probe_queues(void __iomem *mem,
2178 			      unsigned int *queue_mask,
2179 			      unsigned int *num_queues)
2180 {
2181 	unsigned int hw_q;
2182 
2183 	*queue_mask = 0x1;
2184 	*num_queues = 1;
2185 
2186 	/* is it macb or gem ?
2187 	 *
2188 	 * We need to read directly from the hardware here because
2189 	 * we are early in the probe process and don't have the
2190 	 * MACB_CAPS_MACB_IS_GEM flag positioned
2191 	 */
2192 	if (!macb_is_gem_hw(mem))
2193 		return;
2194 
2195 	/* bit 0 is never set but queue 0 always exists */
2196 	*queue_mask = readl_relaxed(mem + GEM_DCFG6) & 0xff;
2197 
2198 	*queue_mask |= 0x1;
2199 
2200 	for (hw_q = 1; hw_q < MACB_MAX_QUEUES; ++hw_q)
2201 		if (*queue_mask & (1 << hw_q))
2202 			(*num_queues)++;
2203 }
2204 
macb_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk)2205 static int macb_clk_init(struct platform_device *pdev, struct clk **pclk,
2206 			 struct clk **hclk, struct clk **tx_clk)
2207 {
2208 	int err;
2209 
2210 	*pclk = devm_clk_get(&pdev->dev, "pclk");
2211 	if (IS_ERR(*pclk)) {
2212 		err = PTR_ERR(*pclk);
2213 		dev_err(&pdev->dev, "failed to get macb_clk (%u)\n", err);
2214 		return err;
2215 	}
2216 
2217 	*hclk = devm_clk_get(&pdev->dev, "hclk");
2218 	if (IS_ERR(*hclk)) {
2219 		err = PTR_ERR(*hclk);
2220 		dev_err(&pdev->dev, "failed to get hclk (%u)\n", err);
2221 		return err;
2222 	}
2223 
2224 	*tx_clk = devm_clk_get(&pdev->dev, "tx_clk");
2225 	if (IS_ERR(*tx_clk))
2226 		*tx_clk = NULL;
2227 
2228 	err = clk_prepare_enable(*pclk);
2229 	if (err) {
2230 		dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2231 		return err;
2232 	}
2233 
2234 	err = clk_prepare_enable(*hclk);
2235 	if (err) {
2236 		dev_err(&pdev->dev, "failed to enable hclk (%u)\n", err);
2237 		goto err_disable_pclk;
2238 	}
2239 
2240 	err = clk_prepare_enable(*tx_clk);
2241 	if (err) {
2242 		dev_err(&pdev->dev, "failed to enable tx_clk (%u)\n", err);
2243 		goto err_disable_hclk;
2244 	}
2245 
2246 	return 0;
2247 
2248 err_disable_hclk:
2249 	clk_disable_unprepare(*hclk);
2250 
2251 err_disable_pclk:
2252 	clk_disable_unprepare(*pclk);
2253 
2254 	return err;
2255 }
2256 
macb_init(struct platform_device * pdev)2257 static int macb_init(struct platform_device *pdev)
2258 {
2259 	struct net_device *dev = platform_get_drvdata(pdev);
2260 	unsigned int hw_q, q;
2261 	struct macb *bp = netdev_priv(dev);
2262 	struct macb_queue *queue;
2263 	int err;
2264 	u32 val;
2265 
2266 	/* set the queue register mapping once for all: queue0 has a special
2267 	 * register mapping but we don't want to test the queue index then
2268 	 * compute the corresponding register offset at run time.
2269 	 */
2270 	for (hw_q = 0, q = 0; hw_q < MACB_MAX_QUEUES; ++hw_q) {
2271 		if (!(bp->queue_mask & (1 << hw_q)))
2272 			continue;
2273 
2274 		queue = &bp->queues[q];
2275 		queue->bp = bp;
2276 		if (hw_q) {
2277 			queue->ISR  = GEM_ISR(hw_q - 1);
2278 			queue->IER  = GEM_IER(hw_q - 1);
2279 			queue->IDR  = GEM_IDR(hw_q - 1);
2280 			queue->IMR  = GEM_IMR(hw_q - 1);
2281 			queue->TBQP = GEM_TBQP(hw_q - 1);
2282 		} else {
2283 			/* queue0 uses legacy registers */
2284 			queue->ISR  = MACB_ISR;
2285 			queue->IER  = MACB_IER;
2286 			queue->IDR  = MACB_IDR;
2287 			queue->IMR  = MACB_IMR;
2288 			queue->TBQP = MACB_TBQP;
2289 		}
2290 
2291 		/* get irq: here we use the linux queue index, not the hardware
2292 		 * queue index. the queue irq definitions in the device tree
2293 		 * must remove the optional gaps that could exist in the
2294 		 * hardware queue mask.
2295 		 */
2296 		queue->irq = platform_get_irq(pdev, q);
2297 		err = devm_request_irq(&pdev->dev, queue->irq, macb_interrupt,
2298 				       IRQF_SHARED, dev->name, queue);
2299 		if (err) {
2300 			dev_err(&pdev->dev,
2301 				"Unable to request IRQ %d (error %d)\n",
2302 				queue->irq, err);
2303 			return err;
2304 		}
2305 
2306 		INIT_WORK(&queue->tx_error_task, macb_tx_error_task);
2307 		q++;
2308 	}
2309 
2310 	dev->netdev_ops = &macb_netdev_ops;
2311 	netif_napi_add(dev, &bp->napi, macb_poll, 64);
2312 
2313 	/* setup appropriated routines according to adapter type */
2314 	if (macb_is_gem(bp)) {
2315 		bp->max_tx_length = GEM_MAX_TX_LEN;
2316 		bp->macbgem_ops.mog_alloc_rx_buffers = gem_alloc_rx_buffers;
2317 		bp->macbgem_ops.mog_free_rx_buffers = gem_free_rx_buffers;
2318 		bp->macbgem_ops.mog_init_rings = gem_init_rings;
2319 		bp->macbgem_ops.mog_rx = gem_rx;
2320 		dev->ethtool_ops = &gem_ethtool_ops;
2321 	} else {
2322 		bp->max_tx_length = MACB_MAX_TX_LEN;
2323 		bp->macbgem_ops.mog_alloc_rx_buffers = macb_alloc_rx_buffers;
2324 		bp->macbgem_ops.mog_free_rx_buffers = macb_free_rx_buffers;
2325 		bp->macbgem_ops.mog_init_rings = macb_init_rings;
2326 		bp->macbgem_ops.mog_rx = macb_rx;
2327 		dev->ethtool_ops = &macb_ethtool_ops;
2328 	}
2329 
2330 	/* Set features */
2331 	dev->hw_features = NETIF_F_SG;
2332 	/* Checksum offload is only available on gem with packet buffer */
2333 	if (macb_is_gem(bp) && !(bp->caps & MACB_CAPS_FIFO_MODE))
2334 		dev->hw_features |= NETIF_F_HW_CSUM | NETIF_F_RXCSUM;
2335 	if (bp->caps & MACB_CAPS_SG_DISABLED)
2336 		dev->hw_features &= ~NETIF_F_SG;
2337 	dev->features = dev->hw_features;
2338 
2339 	val = 0;
2340 	if (bp->phy_interface == PHY_INTERFACE_MODE_RGMII)
2341 		val = GEM_BIT(RGMII);
2342 	else if (bp->phy_interface == PHY_INTERFACE_MODE_RMII &&
2343 		 (bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII))
2344 		val = MACB_BIT(RMII);
2345 	else if (!(bp->caps & MACB_CAPS_USRIO_DEFAULT_IS_MII))
2346 		val = MACB_BIT(MII);
2347 
2348 	if (bp->caps & MACB_CAPS_USRIO_HAS_CLKEN)
2349 		val |= MACB_BIT(CLKEN);
2350 
2351 	macb_or_gem_writel(bp, USRIO, val);
2352 
2353 	/* Set MII management clock divider */
2354 	val = macb_mdc_clk_div(bp);
2355 	val |= macb_dbw(bp);
2356 	macb_writel(bp, NCFGR, val);
2357 
2358 	return 0;
2359 }
2360 
2361 #if defined(CONFIG_OF)
2362 /* 1518 rounded up */
2363 #define AT91ETHER_MAX_RBUFF_SZ	0x600
2364 /* max number of receive buffers */
2365 #define AT91ETHER_MAX_RX_DESCR	9
2366 
2367 /* Initialize and start the Receiver and Transmit subsystems */
at91ether_start(struct net_device * dev)2368 static int at91ether_start(struct net_device *dev)
2369 {
2370 	struct macb *lp = netdev_priv(dev);
2371 	dma_addr_t addr;
2372 	u32 ctl;
2373 	int i;
2374 
2375 	lp->rx_ring = dma_alloc_coherent(&lp->pdev->dev,
2376 					 (AT91ETHER_MAX_RX_DESCR *
2377 					  sizeof(struct macb_dma_desc)),
2378 					 &lp->rx_ring_dma, GFP_KERNEL);
2379 	if (!lp->rx_ring)
2380 		return -ENOMEM;
2381 
2382 	lp->rx_buffers = dma_alloc_coherent(&lp->pdev->dev,
2383 					    AT91ETHER_MAX_RX_DESCR *
2384 					    AT91ETHER_MAX_RBUFF_SZ,
2385 					    &lp->rx_buffers_dma, GFP_KERNEL);
2386 	if (!lp->rx_buffers) {
2387 		dma_free_coherent(&lp->pdev->dev,
2388 				  AT91ETHER_MAX_RX_DESCR *
2389 				  sizeof(struct macb_dma_desc),
2390 				  lp->rx_ring, lp->rx_ring_dma);
2391 		lp->rx_ring = NULL;
2392 		return -ENOMEM;
2393 	}
2394 
2395 	addr = lp->rx_buffers_dma;
2396 	for (i = 0; i < AT91ETHER_MAX_RX_DESCR; i++) {
2397 		lp->rx_ring[i].addr = addr;
2398 		lp->rx_ring[i].ctrl = 0;
2399 		addr += AT91ETHER_MAX_RBUFF_SZ;
2400 	}
2401 
2402 	/* Set the Wrap bit on the last descriptor */
2403 	lp->rx_ring[AT91ETHER_MAX_RX_DESCR - 1].addr |= MACB_BIT(RX_WRAP);
2404 
2405 	/* Reset buffer index */
2406 	lp->rx_tail = 0;
2407 
2408 	/* Program address of descriptor list in Rx Buffer Queue register */
2409 	macb_writel(lp, RBQP, lp->rx_ring_dma);
2410 
2411 	/* Enable Receive and Transmit */
2412 	ctl = macb_readl(lp, NCR);
2413 	macb_writel(lp, NCR, ctl | MACB_BIT(RE) | MACB_BIT(TE));
2414 
2415 	return 0;
2416 }
2417 
2418 /* Open the ethernet interface */
at91ether_open(struct net_device * dev)2419 static int at91ether_open(struct net_device *dev)
2420 {
2421 	struct macb *lp = netdev_priv(dev);
2422 	u32 ctl;
2423 	int ret;
2424 
2425 	/* Clear internal statistics */
2426 	ctl = macb_readl(lp, NCR);
2427 	macb_writel(lp, NCR, ctl | MACB_BIT(CLRSTAT));
2428 
2429 	macb_set_hwaddr(lp);
2430 
2431 	ret = at91ether_start(dev);
2432 	if (ret)
2433 		return ret;
2434 
2435 	/* Enable MAC interrupts */
2436 	macb_writel(lp, IER, MACB_BIT(RCOMP)	|
2437 			     MACB_BIT(RXUBR)	|
2438 			     MACB_BIT(ISR_TUND)	|
2439 			     MACB_BIT(ISR_RLE)	|
2440 			     MACB_BIT(TCOMP)	|
2441 			     MACB_BIT(ISR_ROVR)	|
2442 			     MACB_BIT(HRESP));
2443 
2444 	/* schedule a link state check */
2445 	phy_start(lp->phy_dev);
2446 
2447 	netif_start_queue(dev);
2448 
2449 	return 0;
2450 }
2451 
2452 /* Close the interface */
at91ether_close(struct net_device * dev)2453 static int at91ether_close(struct net_device *dev)
2454 {
2455 	struct macb *lp = netdev_priv(dev);
2456 	u32 ctl;
2457 
2458 	/* Disable Receiver and Transmitter */
2459 	ctl = macb_readl(lp, NCR);
2460 	macb_writel(lp, NCR, ctl & ~(MACB_BIT(TE) | MACB_BIT(RE)));
2461 
2462 	/* Disable MAC interrupts */
2463 	macb_writel(lp, IDR, MACB_BIT(RCOMP)	|
2464 			     MACB_BIT(RXUBR)	|
2465 			     MACB_BIT(ISR_TUND)	|
2466 			     MACB_BIT(ISR_RLE)	|
2467 			     MACB_BIT(TCOMP)	|
2468 			     MACB_BIT(ISR_ROVR) |
2469 			     MACB_BIT(HRESP));
2470 
2471 	netif_stop_queue(dev);
2472 
2473 	dma_free_coherent(&lp->pdev->dev,
2474 			  AT91ETHER_MAX_RX_DESCR *
2475 			  sizeof(struct macb_dma_desc),
2476 			  lp->rx_ring, lp->rx_ring_dma);
2477 	lp->rx_ring = NULL;
2478 
2479 	dma_free_coherent(&lp->pdev->dev,
2480 			  AT91ETHER_MAX_RX_DESCR * AT91ETHER_MAX_RBUFF_SZ,
2481 			  lp->rx_buffers, lp->rx_buffers_dma);
2482 	lp->rx_buffers = NULL;
2483 
2484 	return 0;
2485 }
2486 
2487 /* Transmit packet */
at91ether_start_xmit(struct sk_buff * skb,struct net_device * dev)2488 static int at91ether_start_xmit(struct sk_buff *skb, struct net_device *dev)
2489 {
2490 	struct macb *lp = netdev_priv(dev);
2491 
2492 	if (macb_readl(lp, TSR) & MACB_BIT(RM9200_BNQ)) {
2493 		netif_stop_queue(dev);
2494 
2495 		/* Store packet information (to free when Tx completed) */
2496 		lp->skb = skb;
2497 		lp->skb_length = skb->len;
2498 		lp->skb_physaddr = dma_map_single(NULL, skb->data, skb->len,
2499 							DMA_TO_DEVICE);
2500 
2501 		/* Set address of the data in the Transmit Address register */
2502 		macb_writel(lp, TAR, lp->skb_physaddr);
2503 		/* Set length of the packet in the Transmit Control register */
2504 		macb_writel(lp, TCR, skb->len);
2505 
2506 	} else {
2507 		netdev_err(dev, "%s called, but device is busy!\n", __func__);
2508 		return NETDEV_TX_BUSY;
2509 	}
2510 
2511 	return NETDEV_TX_OK;
2512 }
2513 
2514 /* Extract received frame from buffer descriptors and sent to upper layers.
2515  * (Called from interrupt context)
2516  */
at91ether_rx(struct net_device * dev)2517 static void at91ether_rx(struct net_device *dev)
2518 {
2519 	struct macb *lp = netdev_priv(dev);
2520 	unsigned char *p_recv;
2521 	struct sk_buff *skb;
2522 	unsigned int pktlen;
2523 
2524 	while (lp->rx_ring[lp->rx_tail].addr & MACB_BIT(RX_USED)) {
2525 		p_recv = lp->rx_buffers + lp->rx_tail * AT91ETHER_MAX_RBUFF_SZ;
2526 		pktlen = MACB_BF(RX_FRMLEN, lp->rx_ring[lp->rx_tail].ctrl);
2527 		skb = netdev_alloc_skb(dev, pktlen + 2);
2528 		if (skb) {
2529 			skb_reserve(skb, 2);
2530 			memcpy(skb_put(skb, pktlen), p_recv, pktlen);
2531 
2532 			skb->protocol = eth_type_trans(skb, dev);
2533 			lp->stats.rx_packets++;
2534 			lp->stats.rx_bytes += pktlen;
2535 			netif_rx(skb);
2536 		} else {
2537 			lp->stats.rx_dropped++;
2538 		}
2539 
2540 		if (lp->rx_ring[lp->rx_tail].ctrl & MACB_BIT(RX_MHASH_MATCH))
2541 			lp->stats.multicast++;
2542 
2543 		/* reset ownership bit */
2544 		lp->rx_ring[lp->rx_tail].addr &= ~MACB_BIT(RX_USED);
2545 
2546 		/* wrap after last buffer */
2547 		if (lp->rx_tail == AT91ETHER_MAX_RX_DESCR - 1)
2548 			lp->rx_tail = 0;
2549 		else
2550 			lp->rx_tail++;
2551 	}
2552 }
2553 
2554 /* MAC interrupt handler */
at91ether_interrupt(int irq,void * dev_id)2555 static irqreturn_t at91ether_interrupt(int irq, void *dev_id)
2556 {
2557 	struct net_device *dev = dev_id;
2558 	struct macb *lp = netdev_priv(dev);
2559 	u32 intstatus, ctl;
2560 
2561 	/* MAC Interrupt Status register indicates what interrupts are pending.
2562 	 * It is automatically cleared once read.
2563 	 */
2564 	intstatus = macb_readl(lp, ISR);
2565 
2566 	/* Receive complete */
2567 	if (intstatus & MACB_BIT(RCOMP))
2568 		at91ether_rx(dev);
2569 
2570 	/* Transmit complete */
2571 	if (intstatus & MACB_BIT(TCOMP)) {
2572 		/* The TCOM bit is set even if the transmission failed */
2573 		if (intstatus & (MACB_BIT(ISR_TUND) | MACB_BIT(ISR_RLE)))
2574 			lp->stats.tx_errors++;
2575 
2576 		if (lp->skb) {
2577 			dev_kfree_skb_irq(lp->skb);
2578 			lp->skb = NULL;
2579 			dma_unmap_single(NULL, lp->skb_physaddr,
2580 					 lp->skb_length, DMA_TO_DEVICE);
2581 			lp->stats.tx_packets++;
2582 			lp->stats.tx_bytes += lp->skb_length;
2583 		}
2584 		netif_wake_queue(dev);
2585 	}
2586 
2587 	/* Work-around for EMAC Errata section 41.3.1 */
2588 	if (intstatus & MACB_BIT(RXUBR)) {
2589 		ctl = macb_readl(lp, NCR);
2590 		macb_writel(lp, NCR, ctl & ~MACB_BIT(RE));
2591 		macb_writel(lp, NCR, ctl | MACB_BIT(RE));
2592 	}
2593 
2594 	if (intstatus & MACB_BIT(ISR_ROVR))
2595 		netdev_err(dev, "ROVR error\n");
2596 
2597 	return IRQ_HANDLED;
2598 }
2599 
2600 #ifdef CONFIG_NET_POLL_CONTROLLER
at91ether_poll_controller(struct net_device * dev)2601 static void at91ether_poll_controller(struct net_device *dev)
2602 {
2603 	unsigned long flags;
2604 
2605 	local_irq_save(flags);
2606 	at91ether_interrupt(dev->irq, dev);
2607 	local_irq_restore(flags);
2608 }
2609 #endif
2610 
2611 static const struct net_device_ops at91ether_netdev_ops = {
2612 	.ndo_open		= at91ether_open,
2613 	.ndo_stop		= at91ether_close,
2614 	.ndo_start_xmit		= at91ether_start_xmit,
2615 	.ndo_get_stats		= macb_get_stats,
2616 	.ndo_set_rx_mode	= macb_set_rx_mode,
2617 	.ndo_set_mac_address	= eth_mac_addr,
2618 	.ndo_do_ioctl		= macb_ioctl,
2619 	.ndo_validate_addr	= eth_validate_addr,
2620 	.ndo_change_mtu		= eth_change_mtu,
2621 #ifdef CONFIG_NET_POLL_CONTROLLER
2622 	.ndo_poll_controller	= at91ether_poll_controller,
2623 #endif
2624 };
2625 
at91ether_clk_init(struct platform_device * pdev,struct clk ** pclk,struct clk ** hclk,struct clk ** tx_clk)2626 static int at91ether_clk_init(struct platform_device *pdev, struct clk **pclk,
2627 			      struct clk **hclk, struct clk **tx_clk)
2628 {
2629 	int err;
2630 
2631 	*hclk = NULL;
2632 	*tx_clk = NULL;
2633 
2634 	*pclk = devm_clk_get(&pdev->dev, "ether_clk");
2635 	if (IS_ERR(*pclk))
2636 		return PTR_ERR(*pclk);
2637 
2638 	err = clk_prepare_enable(*pclk);
2639 	if (err) {
2640 		dev_err(&pdev->dev, "failed to enable pclk (%u)\n", err);
2641 		return err;
2642 	}
2643 
2644 	return 0;
2645 }
2646 
at91ether_init(struct platform_device * pdev)2647 static int at91ether_init(struct platform_device *pdev)
2648 {
2649 	struct net_device *dev = platform_get_drvdata(pdev);
2650 	struct macb *bp = netdev_priv(dev);
2651 	int err;
2652 	u32 reg;
2653 
2654 	dev->netdev_ops = &at91ether_netdev_ops;
2655 	dev->ethtool_ops = &macb_ethtool_ops;
2656 
2657 	err = devm_request_irq(&pdev->dev, dev->irq, at91ether_interrupt,
2658 			       0, dev->name, dev);
2659 	if (err)
2660 		return err;
2661 
2662 	macb_writel(bp, NCR, 0);
2663 
2664 	reg = MACB_BF(CLK, MACB_CLK_DIV32) | MACB_BIT(BIG);
2665 	if (bp->phy_interface == PHY_INTERFACE_MODE_RMII)
2666 		reg |= MACB_BIT(RM9200_RMII);
2667 
2668 	macb_writel(bp, NCFGR, reg);
2669 
2670 	return 0;
2671 }
2672 
2673 static const struct macb_config at91sam9260_config = {
2674 	.caps = MACB_CAPS_USRIO_HAS_CLKEN | MACB_CAPS_USRIO_DEFAULT_IS_MII,
2675 	.clk_init = macb_clk_init,
2676 	.init = macb_init,
2677 };
2678 
2679 static const struct macb_config pc302gem_config = {
2680 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2681 	.dma_burst_length = 16,
2682 	.clk_init = macb_clk_init,
2683 	.init = macb_init,
2684 };
2685 
2686 static const struct macb_config sama5d3_config = {
2687 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE,
2688 	.dma_burst_length = 16,
2689 	.clk_init = macb_clk_init,
2690 	.init = macb_init,
2691 };
2692 
2693 static const struct macb_config sama5d4_config = {
2694 	.caps = 0,
2695 	.dma_burst_length = 4,
2696 	.clk_init = macb_clk_init,
2697 	.init = macb_init,
2698 };
2699 
2700 static const struct macb_config emac_config = {
2701 	.clk_init = at91ether_clk_init,
2702 	.init = at91ether_init,
2703 };
2704 
2705 static const struct macb_config zynq_config = {
2706 	.caps = MACB_CAPS_SG_DISABLED | MACB_CAPS_GIGABIT_MODE_AVAILABLE |
2707 		MACB_CAPS_NO_GIGABIT_HALF,
2708 	.dma_burst_length = 16,
2709 	.clk_init = macb_clk_init,
2710 	.init = macb_init,
2711 };
2712 
2713 static const struct of_device_id macb_dt_ids[] = {
2714 	{ .compatible = "cdns,at32ap7000-macb" },
2715 	{ .compatible = "cdns,at91sam9260-macb", .data = &at91sam9260_config },
2716 	{ .compatible = "cdns,macb" },
2717 	{ .compatible = "cdns,pc302-gem", .data = &pc302gem_config },
2718 	{ .compatible = "cdns,gem", .data = &pc302gem_config },
2719 	{ .compatible = "atmel,sama5d3-gem", .data = &sama5d3_config },
2720 	{ .compatible = "atmel,sama5d4-gem", .data = &sama5d4_config },
2721 	{ .compatible = "cdns,at91rm9200-emac", .data = &emac_config },
2722 	{ .compatible = "cdns,emac", .data = &emac_config },
2723 	{ .compatible = "cdns,zynq-gem", .data = &zynq_config },
2724 	{ /* sentinel */ }
2725 };
2726 MODULE_DEVICE_TABLE(of, macb_dt_ids);
2727 #endif /* CONFIG_OF */
2728 
macb_probe(struct platform_device * pdev)2729 static int macb_probe(struct platform_device *pdev)
2730 {
2731 	int (*clk_init)(struct platform_device *, struct clk **,
2732 			struct clk **, struct clk **)
2733 					      = macb_clk_init;
2734 	int (*init)(struct platform_device *) = macb_init;
2735 	struct device_node *np = pdev->dev.of_node;
2736 	const struct macb_config *macb_config = NULL;
2737 	struct clk *pclk, *hclk, *tx_clk;
2738 	unsigned int queue_mask, num_queues;
2739 	struct macb_platform_data *pdata;
2740 	struct phy_device *phydev;
2741 	struct net_device *dev;
2742 	struct resource *regs;
2743 	void __iomem *mem;
2744 	const char *mac;
2745 	struct macb *bp;
2746 	int err;
2747 
2748 	if (np) {
2749 		const struct of_device_id *match;
2750 
2751 		match = of_match_node(macb_dt_ids, np);
2752 		if (match && match->data) {
2753 			macb_config = match->data;
2754 			clk_init = macb_config->clk_init;
2755 			init = macb_config->init;
2756 		}
2757 	}
2758 
2759 	err = clk_init(pdev, &pclk, &hclk, &tx_clk);
2760 	if (err)
2761 		return err;
2762 
2763 	regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2764 	mem = devm_ioremap_resource(&pdev->dev, regs);
2765 	if (IS_ERR(mem)) {
2766 		err = PTR_ERR(mem);
2767 		goto err_disable_clocks;
2768 	}
2769 
2770 	macb_probe_queues(mem, &queue_mask, &num_queues);
2771 	dev = alloc_etherdev_mq(sizeof(*bp), num_queues);
2772 	if (!dev) {
2773 		err = -ENOMEM;
2774 		goto err_disable_clocks;
2775 	}
2776 
2777 	dev->base_addr = regs->start;
2778 
2779 	SET_NETDEV_DEV(dev, &pdev->dev);
2780 
2781 	bp = netdev_priv(dev);
2782 	bp->pdev = pdev;
2783 	bp->dev = dev;
2784 	bp->regs = mem;
2785 	bp->num_queues = num_queues;
2786 	bp->queue_mask = queue_mask;
2787 	if (macb_config)
2788 		bp->dma_burst_length = macb_config->dma_burst_length;
2789 	bp->pclk = pclk;
2790 	bp->hclk = hclk;
2791 	bp->tx_clk = tx_clk;
2792 	spin_lock_init(&bp->lock);
2793 
2794 	/* setup capabilities */
2795 	macb_configure_caps(bp, macb_config);
2796 
2797 	platform_set_drvdata(pdev, dev);
2798 
2799 	dev->irq = platform_get_irq(pdev, 0);
2800 	if (dev->irq < 0) {
2801 		err = dev->irq;
2802 		goto err_disable_clocks;
2803 	}
2804 
2805 	mac = of_get_mac_address(np);
2806 	if (mac)
2807 		memcpy(bp->dev->dev_addr, mac, ETH_ALEN);
2808 	else
2809 		macb_get_hwaddr(bp);
2810 
2811 	err = of_get_phy_mode(np);
2812 	if (err < 0) {
2813 		pdata = dev_get_platdata(&pdev->dev);
2814 		if (pdata && pdata->is_rmii)
2815 			bp->phy_interface = PHY_INTERFACE_MODE_RMII;
2816 		else
2817 			bp->phy_interface = PHY_INTERFACE_MODE_MII;
2818 	} else {
2819 		bp->phy_interface = err;
2820 	}
2821 
2822 	/* IP specific init */
2823 	err = init(pdev);
2824 	if (err)
2825 		goto err_out_free_netdev;
2826 
2827 	err = register_netdev(dev);
2828 	if (err) {
2829 		dev_err(&pdev->dev, "Cannot register net device, aborting.\n");
2830 		goto err_out_unregister_netdev;
2831 	}
2832 
2833 	err = macb_mii_init(bp);
2834 	if (err)
2835 		goto err_out_unregister_netdev;
2836 
2837 	netif_carrier_off(dev);
2838 
2839 	netdev_info(dev, "Cadence %s rev 0x%08x at 0x%08lx irq %d (%pM)\n",
2840 		    macb_is_gem(bp) ? "GEM" : "MACB", macb_readl(bp, MID),
2841 		    dev->base_addr, dev->irq, dev->dev_addr);
2842 
2843 	phydev = bp->phy_dev;
2844 	netdev_info(dev, "attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2845 		    phydev->drv->name, dev_name(&phydev->dev), phydev->irq);
2846 
2847 	return 0;
2848 
2849 err_out_unregister_netdev:
2850 	unregister_netdev(dev);
2851 
2852 err_out_free_netdev:
2853 	free_netdev(dev);
2854 
2855 err_disable_clocks:
2856 	clk_disable_unprepare(tx_clk);
2857 	clk_disable_unprepare(hclk);
2858 	clk_disable_unprepare(pclk);
2859 
2860 	return err;
2861 }
2862 
macb_remove(struct platform_device * pdev)2863 static int macb_remove(struct platform_device *pdev)
2864 {
2865 	struct net_device *dev;
2866 	struct macb *bp;
2867 
2868 	dev = platform_get_drvdata(pdev);
2869 
2870 	if (dev) {
2871 		bp = netdev_priv(dev);
2872 		if (bp->phy_dev)
2873 			phy_disconnect(bp->phy_dev);
2874 		mdiobus_unregister(bp->mii_bus);
2875 		kfree(bp->mii_bus->irq);
2876 		mdiobus_free(bp->mii_bus);
2877 		unregister_netdev(dev);
2878 		clk_disable_unprepare(bp->tx_clk);
2879 		clk_disable_unprepare(bp->hclk);
2880 		clk_disable_unprepare(bp->pclk);
2881 		free_netdev(dev);
2882 	}
2883 
2884 	return 0;
2885 }
2886 
macb_suspend(struct device * dev)2887 static int __maybe_unused macb_suspend(struct device *dev)
2888 {
2889 	struct platform_device *pdev = to_platform_device(dev);
2890 	struct net_device *netdev = platform_get_drvdata(pdev);
2891 	struct macb *bp = netdev_priv(netdev);
2892 
2893 	netif_carrier_off(netdev);
2894 	netif_device_detach(netdev);
2895 
2896 	clk_disable_unprepare(bp->tx_clk);
2897 	clk_disable_unprepare(bp->hclk);
2898 	clk_disable_unprepare(bp->pclk);
2899 
2900 	return 0;
2901 }
2902 
macb_resume(struct device * dev)2903 static int __maybe_unused macb_resume(struct device *dev)
2904 {
2905 	struct platform_device *pdev = to_platform_device(dev);
2906 	struct net_device *netdev = platform_get_drvdata(pdev);
2907 	struct macb *bp = netdev_priv(netdev);
2908 
2909 	clk_prepare_enable(bp->pclk);
2910 	clk_prepare_enable(bp->hclk);
2911 	clk_prepare_enable(bp->tx_clk);
2912 
2913 	netif_device_attach(netdev);
2914 
2915 	return 0;
2916 }
2917 
2918 static SIMPLE_DEV_PM_OPS(macb_pm_ops, macb_suspend, macb_resume);
2919 
2920 static struct platform_driver macb_driver = {
2921 	.probe		= macb_probe,
2922 	.remove		= macb_remove,
2923 	.driver		= {
2924 		.name		= "macb",
2925 		.of_match_table	= of_match_ptr(macb_dt_ids),
2926 		.pm	= &macb_pm_ops,
2927 	},
2928 };
2929 
2930 module_platform_driver(macb_driver);
2931 
2932 MODULE_LICENSE("GPL");
2933 MODULE_DESCRIPTION("Cadence MACB/GEM Ethernet driver");
2934 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
2935 MODULE_ALIAS("platform:macb");
2936