1 /* Renesas R-Car CAN device driver
2  *
3  * Copyright (C) 2013 Cogent Embedded, Inc. <source@cogentembedded.com>
4  * Copyright (C) 2013 Renesas Solutions Corp.
5  *
6  * This program is free software; you can redistribute  it and/or modify it
7  * under  the terms of  the GNU General  Public License as published by the
8  * Free Software Foundation;  either version 2 of the  License, or (at your
9  * option) any later version.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/types.h>
15 #include <linux/interrupt.h>
16 #include <linux/errno.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/can/led.h>
20 #include <linux/can/dev.h>
21 #include <linux/clk.h>
22 #include <linux/can/platform/rcar_can.h>
23 #include <linux/of.h>
24 
25 #define RCAR_CAN_DRV_NAME	"rcar_can"
26 
27 /* Mailbox configuration:
28  * mailbox 60 - 63 - Rx FIFO mailboxes
29  * mailbox 56 - 59 - Tx FIFO mailboxes
30  * non-FIFO mailboxes are not used
31  */
32 #define RCAR_CAN_N_MBX		64 /* Number of mailboxes in non-FIFO mode */
33 #define RCAR_CAN_RX_FIFO_MBX	60 /* Mailbox - window to Rx FIFO */
34 #define RCAR_CAN_TX_FIFO_MBX	56 /* Mailbox - window to Tx FIFO */
35 #define RCAR_CAN_FIFO_DEPTH	4
36 
37 /* Mailbox registers structure */
38 struct rcar_can_mbox_regs {
39 	u32 id;		/* IDE and RTR bits, SID and EID */
40 	u8 stub;	/* Not used */
41 	u8 dlc;		/* Data Length Code - bits [0..3] */
42 	u8 data[8];	/* Data Bytes */
43 	u8 tsh;		/* Time Stamp Higher Byte */
44 	u8 tsl;		/* Time Stamp Lower Byte */
45 };
46 
47 struct rcar_can_regs {
48 	struct rcar_can_mbox_regs mb[RCAR_CAN_N_MBX]; /* Mailbox registers */
49 	u32 mkr_2_9[8];	/* Mask Registers 2-9 */
50 	u32 fidcr[2];	/* FIFO Received ID Compare Register */
51 	u32 mkivlr1;	/* Mask Invalid Register 1 */
52 	u32 mier1;	/* Mailbox Interrupt Enable Register 1 */
53 	u32 mkr_0_1[2];	/* Mask Registers 0-1 */
54 	u32 mkivlr0;    /* Mask Invalid Register 0*/
55 	u32 mier0;      /* Mailbox Interrupt Enable Register 0 */
56 	u8 pad_440[0x3c0];
57 	u8 mctl[64];	/* Message Control Registers */
58 	u16 ctlr;	/* Control Register */
59 	u16 str;	/* Status register */
60 	u8 bcr[3];	/* Bit Configuration Register */
61 	u8 clkr;	/* Clock Select Register */
62 	u8 rfcr;	/* Receive FIFO Control Register */
63 	u8 rfpcr;	/* Receive FIFO Pointer Control Register */
64 	u8 tfcr;	/* Transmit FIFO Control Register */
65 	u8 tfpcr;       /* Transmit FIFO Pointer Control Register */
66 	u8 eier;	/* Error Interrupt Enable Register */
67 	u8 eifr;	/* Error Interrupt Factor Judge Register */
68 	u8 recr;	/* Receive Error Count Register */
69 	u8 tecr;        /* Transmit Error Count Register */
70 	u8 ecsr;	/* Error Code Store Register */
71 	u8 cssr;	/* Channel Search Support Register */
72 	u8 mssr;	/* Mailbox Search Status Register */
73 	u8 msmr;	/* Mailbox Search Mode Register */
74 	u16 tsr;	/* Time Stamp Register */
75 	u8 afsr;	/* Acceptance Filter Support Register */
76 	u8 pad_857;
77 	u8 tcr;		/* Test Control Register */
78 	u8 pad_859[7];
79 	u8 ier;		/* Interrupt Enable Register */
80 	u8 isr;		/* Interrupt Status Register */
81 	u8 pad_862;
82 	u8 mbsmr;	/* Mailbox Search Mask Register */
83 };
84 
85 struct rcar_can_priv {
86 	struct can_priv can;	/* Must be the first member! */
87 	struct net_device *ndev;
88 	struct napi_struct napi;
89 	struct rcar_can_regs __iomem *regs;
90 	struct clk *clk;
91 	struct clk *can_clk;
92 	u8 tx_dlc[RCAR_CAN_FIFO_DEPTH];
93 	u32 tx_head;
94 	u32 tx_tail;
95 	u8 clock_select;
96 	u8 ier;
97 };
98 
99 static const struct can_bittiming_const rcar_can_bittiming_const = {
100 	.name = RCAR_CAN_DRV_NAME,
101 	.tseg1_min = 4,
102 	.tseg1_max = 16,
103 	.tseg2_min = 2,
104 	.tseg2_max = 8,
105 	.sjw_max = 4,
106 	.brp_min = 1,
107 	.brp_max = 1024,
108 	.brp_inc = 1,
109 };
110 
111 /* Control Register bits */
112 #define RCAR_CAN_CTLR_BOM	(3 << 11) /* Bus-Off Recovery Mode Bits */
113 #define RCAR_CAN_CTLR_BOM_ENT	(1 << 11) /* Entry to halt mode */
114 					/* at bus-off entry */
115 #define RCAR_CAN_CTLR_SLPM	(1 << 10)
116 #define RCAR_CAN_CTLR_CANM	(3 << 8) /* Operating Mode Select Bit */
117 #define RCAR_CAN_CTLR_CANM_HALT	(1 << 9)
118 #define RCAR_CAN_CTLR_CANM_RESET (1 << 8)
119 #define RCAR_CAN_CTLR_CANM_FORCE_RESET (3 << 8)
120 #define RCAR_CAN_CTLR_MLM	(1 << 3) /* Message Lost Mode Select */
121 #define RCAR_CAN_CTLR_IDFM	(3 << 1) /* ID Format Mode Select Bits */
122 #define RCAR_CAN_CTLR_IDFM_MIXED (1 << 2) /* Mixed ID mode */
123 #define RCAR_CAN_CTLR_MBM	(1 << 0) /* Mailbox Mode select */
124 
125 /* Status Register bits */
126 #define RCAR_CAN_STR_RSTST	(1 << 8) /* Reset Status Bit */
127 
128 /* FIFO Received ID Compare Registers 0 and 1 bits */
129 #define RCAR_CAN_FIDCR_IDE	(1 << 31) /* ID Extension Bit */
130 #define RCAR_CAN_FIDCR_RTR	(1 << 30) /* Remote Transmission Request Bit */
131 
132 /* Receive FIFO Control Register bits */
133 #define RCAR_CAN_RFCR_RFEST	(1 << 7) /* Receive FIFO Empty Status Flag */
134 #define RCAR_CAN_RFCR_RFE	(1 << 0) /* Receive FIFO Enable */
135 
136 /* Transmit FIFO Control Register bits */
137 #define RCAR_CAN_TFCR_TFUST	(7 << 1) /* Transmit FIFO Unsent Message */
138 					/* Number Status Bits */
139 #define RCAR_CAN_TFCR_TFUST_SHIFT 1	/* Offset of Transmit FIFO Unsent */
140 					/* Message Number Status Bits */
141 #define RCAR_CAN_TFCR_TFE	(1 << 0) /* Transmit FIFO Enable */
142 
143 #define RCAR_CAN_N_RX_MKREGS1	2	/* Number of mask registers */
144 					/* for Rx mailboxes 0-31 */
145 #define RCAR_CAN_N_RX_MKREGS2	8
146 
147 /* Bit Configuration Register settings */
148 #define RCAR_CAN_BCR_TSEG1(x)	(((x) & 0x0f) << 20)
149 #define RCAR_CAN_BCR_BPR(x)	(((x) & 0x3ff) << 8)
150 #define RCAR_CAN_BCR_SJW(x)	(((x) & 0x3) << 4)
151 #define RCAR_CAN_BCR_TSEG2(x)	((x) & 0x07)
152 
153 /* Mailbox and Mask Registers bits */
154 #define RCAR_CAN_IDE		(1 << 31)
155 #define RCAR_CAN_RTR		(1 << 30)
156 #define RCAR_CAN_SID_SHIFT	18
157 
158 /* Mailbox Interrupt Enable Register 1 bits */
159 #define RCAR_CAN_MIER1_RXFIE	(1 << 28) /* Receive  FIFO Interrupt Enable */
160 #define RCAR_CAN_MIER1_TXFIE	(1 << 24) /* Transmit FIFO Interrupt Enable */
161 
162 /* Interrupt Enable Register bits */
163 #define RCAR_CAN_IER_ERSIE	(1 << 5) /* Error (ERS) Interrupt Enable Bit */
164 #define RCAR_CAN_IER_RXFIE	(1 << 4) /* Reception FIFO Interrupt */
165 					/* Enable Bit */
166 #define RCAR_CAN_IER_TXFIE	(1 << 3) /* Transmission FIFO Interrupt */
167 					/* Enable Bit */
168 /* Interrupt Status Register bits */
169 #define RCAR_CAN_ISR_ERSF	(1 << 5) /* Error (ERS) Interrupt Status Bit */
170 #define RCAR_CAN_ISR_RXFF	(1 << 4) /* Reception FIFO Interrupt */
171 					/* Status Bit */
172 #define RCAR_CAN_ISR_TXFF	(1 << 3) /* Transmission FIFO Interrupt */
173 					/* Status Bit */
174 
175 /* Error Interrupt Enable Register bits */
176 #define RCAR_CAN_EIER_BLIE	(1 << 7) /* Bus Lock Interrupt Enable */
177 #define RCAR_CAN_EIER_OLIE	(1 << 6) /* Overload Frame Transmit */
178 					/* Interrupt Enable */
179 #define RCAR_CAN_EIER_ORIE	(1 << 5) /* Receive Overrun  Interrupt Enable */
180 #define RCAR_CAN_EIER_BORIE	(1 << 4) /* Bus-Off Recovery Interrupt Enable */
181 #define RCAR_CAN_EIER_BOEIE	(1 << 3) /* Bus-Off Entry Interrupt Enable */
182 #define RCAR_CAN_EIER_EPIE	(1 << 2) /* Error Passive Interrupt Enable */
183 #define RCAR_CAN_EIER_EWIE	(1 << 1) /* Error Warning Interrupt Enable */
184 #define RCAR_CAN_EIER_BEIE	(1 << 0) /* Bus Error Interrupt Enable */
185 
186 /* Error Interrupt Factor Judge Register bits */
187 #define RCAR_CAN_EIFR_BLIF	(1 << 7) /* Bus Lock Detect Flag */
188 #define RCAR_CAN_EIFR_OLIF	(1 << 6) /* Overload Frame Transmission */
189 					 /* Detect Flag */
190 #define RCAR_CAN_EIFR_ORIF	(1 << 5) /* Receive Overrun Detect Flag */
191 #define RCAR_CAN_EIFR_BORIF	(1 << 4) /* Bus-Off Recovery Detect Flag */
192 #define RCAR_CAN_EIFR_BOEIF	(1 << 3) /* Bus-Off Entry Detect Flag */
193 #define RCAR_CAN_EIFR_EPIF	(1 << 2) /* Error Passive Detect Flag */
194 #define RCAR_CAN_EIFR_EWIF	(1 << 1) /* Error Warning Detect Flag */
195 #define RCAR_CAN_EIFR_BEIF	(1 << 0) /* Bus Error Detect Flag */
196 
197 /* Error Code Store Register bits */
198 #define RCAR_CAN_ECSR_EDPM	(1 << 7) /* Error Display Mode Select Bit */
199 #define RCAR_CAN_ECSR_ADEF	(1 << 6) /* ACK Delimiter Error Flag */
200 #define RCAR_CAN_ECSR_BE0F	(1 << 5) /* Bit Error (dominant) Flag */
201 #define RCAR_CAN_ECSR_BE1F	(1 << 4) /* Bit Error (recessive) Flag */
202 #define RCAR_CAN_ECSR_CEF	(1 << 3) /* CRC Error Flag */
203 #define RCAR_CAN_ECSR_AEF	(1 << 2) /* ACK Error Flag */
204 #define RCAR_CAN_ECSR_FEF	(1 << 1) /* Form Error Flag */
205 #define RCAR_CAN_ECSR_SEF	(1 << 0) /* Stuff Error Flag */
206 
207 #define RCAR_CAN_NAPI_WEIGHT	4
208 #define MAX_STR_READS		0x100
209 
tx_failure_cleanup(struct net_device * ndev)210 static void tx_failure_cleanup(struct net_device *ndev)
211 {
212 	int i;
213 
214 	for (i = 0; i < RCAR_CAN_FIFO_DEPTH; i++)
215 		can_free_echo_skb(ndev, i);
216 }
217 
rcar_can_error(struct net_device * ndev)218 static void rcar_can_error(struct net_device *ndev)
219 {
220 	struct rcar_can_priv *priv = netdev_priv(ndev);
221 	struct net_device_stats *stats = &ndev->stats;
222 	struct can_frame *cf;
223 	struct sk_buff *skb;
224 	u8 eifr, txerr = 0, rxerr = 0;
225 
226 	/* Propagate the error condition to the CAN stack */
227 	skb = alloc_can_err_skb(ndev, &cf);
228 
229 	eifr = readb(&priv->regs->eifr);
230 	if (eifr & (RCAR_CAN_EIFR_EWIF | RCAR_CAN_EIFR_EPIF)) {
231 		txerr = readb(&priv->regs->tecr);
232 		rxerr = readb(&priv->regs->recr);
233 		if (skb) {
234 			cf->can_id |= CAN_ERR_CRTL;
235 			cf->data[6] = txerr;
236 			cf->data[7] = rxerr;
237 		}
238 	}
239 	if (eifr & RCAR_CAN_EIFR_BEIF) {
240 		int rx_errors = 0, tx_errors = 0;
241 		u8 ecsr;
242 
243 		netdev_dbg(priv->ndev, "Bus error interrupt:\n");
244 		if (skb) {
245 			cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
246 			cf->data[2] = CAN_ERR_PROT_UNSPEC;
247 		}
248 		ecsr = readb(&priv->regs->ecsr);
249 		if (ecsr & RCAR_CAN_ECSR_ADEF) {
250 			netdev_dbg(priv->ndev, "ACK Delimiter Error\n");
251 			tx_errors++;
252 			writeb(~RCAR_CAN_ECSR_ADEF, &priv->regs->ecsr);
253 			if (skb)
254 				cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
255 		}
256 		if (ecsr & RCAR_CAN_ECSR_BE0F) {
257 			netdev_dbg(priv->ndev, "Bit Error (dominant)\n");
258 			tx_errors++;
259 			writeb(~RCAR_CAN_ECSR_BE0F, &priv->regs->ecsr);
260 			if (skb)
261 				cf->data[2] |= CAN_ERR_PROT_BIT0;
262 		}
263 		if (ecsr & RCAR_CAN_ECSR_BE1F) {
264 			netdev_dbg(priv->ndev, "Bit Error (recessive)\n");
265 			tx_errors++;
266 			writeb(~RCAR_CAN_ECSR_BE1F, &priv->regs->ecsr);
267 			if (skb)
268 				cf->data[2] |= CAN_ERR_PROT_BIT1;
269 		}
270 		if (ecsr & RCAR_CAN_ECSR_CEF) {
271 			netdev_dbg(priv->ndev, "CRC Error\n");
272 			rx_errors++;
273 			writeb(~RCAR_CAN_ECSR_CEF, &priv->regs->ecsr);
274 			if (skb)
275 				cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
276 		}
277 		if (ecsr & RCAR_CAN_ECSR_AEF) {
278 			netdev_dbg(priv->ndev, "ACK Error\n");
279 			tx_errors++;
280 			writeb(~RCAR_CAN_ECSR_AEF, &priv->regs->ecsr);
281 			if (skb) {
282 				cf->can_id |= CAN_ERR_ACK;
283 				cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
284 			}
285 		}
286 		if (ecsr & RCAR_CAN_ECSR_FEF) {
287 			netdev_dbg(priv->ndev, "Form Error\n");
288 			rx_errors++;
289 			writeb(~RCAR_CAN_ECSR_FEF, &priv->regs->ecsr);
290 			if (skb)
291 				cf->data[2] |= CAN_ERR_PROT_FORM;
292 		}
293 		if (ecsr & RCAR_CAN_ECSR_SEF) {
294 			netdev_dbg(priv->ndev, "Stuff Error\n");
295 			rx_errors++;
296 			writeb(~RCAR_CAN_ECSR_SEF, &priv->regs->ecsr);
297 			if (skb)
298 				cf->data[2] |= CAN_ERR_PROT_STUFF;
299 		}
300 
301 		priv->can.can_stats.bus_error++;
302 		ndev->stats.rx_errors += rx_errors;
303 		ndev->stats.tx_errors += tx_errors;
304 		writeb(~RCAR_CAN_EIFR_BEIF, &priv->regs->eifr);
305 	}
306 	if (eifr & RCAR_CAN_EIFR_EWIF) {
307 		netdev_dbg(priv->ndev, "Error warning interrupt\n");
308 		priv->can.state = CAN_STATE_ERROR_WARNING;
309 		priv->can.can_stats.error_warning++;
310 		/* Clear interrupt condition */
311 		writeb(~RCAR_CAN_EIFR_EWIF, &priv->regs->eifr);
312 		if (skb)
313 			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
314 					      CAN_ERR_CRTL_RX_WARNING;
315 	}
316 	if (eifr & RCAR_CAN_EIFR_EPIF) {
317 		netdev_dbg(priv->ndev, "Error passive interrupt\n");
318 		priv->can.state = CAN_STATE_ERROR_PASSIVE;
319 		priv->can.can_stats.error_passive++;
320 		/* Clear interrupt condition */
321 		writeb(~RCAR_CAN_EIFR_EPIF, &priv->regs->eifr);
322 		if (skb)
323 			cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
324 					      CAN_ERR_CRTL_RX_PASSIVE;
325 	}
326 	if (eifr & RCAR_CAN_EIFR_BOEIF) {
327 		netdev_dbg(priv->ndev, "Bus-off entry interrupt\n");
328 		tx_failure_cleanup(ndev);
329 		priv->ier = RCAR_CAN_IER_ERSIE;
330 		writeb(priv->ier, &priv->regs->ier);
331 		priv->can.state = CAN_STATE_BUS_OFF;
332 		/* Clear interrupt condition */
333 		writeb(~RCAR_CAN_EIFR_BOEIF, &priv->regs->eifr);
334 		priv->can.can_stats.bus_off++;
335 		can_bus_off(ndev);
336 		if (skb)
337 			cf->can_id |= CAN_ERR_BUSOFF;
338 	}
339 	if (eifr & RCAR_CAN_EIFR_ORIF) {
340 		netdev_dbg(priv->ndev, "Receive overrun error interrupt\n");
341 		ndev->stats.rx_over_errors++;
342 		ndev->stats.rx_errors++;
343 		writeb(~RCAR_CAN_EIFR_ORIF, &priv->regs->eifr);
344 		if (skb) {
345 			cf->can_id |= CAN_ERR_CRTL;
346 			cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
347 		}
348 	}
349 	if (eifr & RCAR_CAN_EIFR_OLIF) {
350 		netdev_dbg(priv->ndev,
351 			   "Overload Frame Transmission error interrupt\n");
352 		ndev->stats.rx_over_errors++;
353 		ndev->stats.rx_errors++;
354 		writeb(~RCAR_CAN_EIFR_OLIF, &priv->regs->eifr);
355 		if (skb) {
356 			cf->can_id |= CAN_ERR_PROT;
357 			cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
358 		}
359 	}
360 
361 	if (skb) {
362 		stats->rx_packets++;
363 		stats->rx_bytes += cf->can_dlc;
364 		netif_rx(skb);
365 	}
366 }
367 
rcar_can_tx_done(struct net_device * ndev)368 static void rcar_can_tx_done(struct net_device *ndev)
369 {
370 	struct rcar_can_priv *priv = netdev_priv(ndev);
371 	struct net_device_stats *stats = &ndev->stats;
372 	u8 isr;
373 
374 	while (1) {
375 		u8 unsent = readb(&priv->regs->tfcr);
376 
377 		unsent = (unsent & RCAR_CAN_TFCR_TFUST) >>
378 			  RCAR_CAN_TFCR_TFUST_SHIFT;
379 		if (priv->tx_head - priv->tx_tail <= unsent)
380 			break;
381 		stats->tx_packets++;
382 		stats->tx_bytes += priv->tx_dlc[priv->tx_tail %
383 						RCAR_CAN_FIFO_DEPTH];
384 		priv->tx_dlc[priv->tx_tail % RCAR_CAN_FIFO_DEPTH] = 0;
385 		can_get_echo_skb(ndev, priv->tx_tail % RCAR_CAN_FIFO_DEPTH);
386 		priv->tx_tail++;
387 		netif_wake_queue(ndev);
388 	}
389 	/* Clear interrupt */
390 	isr = readb(&priv->regs->isr);
391 	writeb(isr & ~RCAR_CAN_ISR_TXFF, &priv->regs->isr);
392 	can_led_event(ndev, CAN_LED_EVENT_TX);
393 }
394 
rcar_can_interrupt(int irq,void * dev_id)395 static irqreturn_t rcar_can_interrupt(int irq, void *dev_id)
396 {
397 	struct net_device *ndev = dev_id;
398 	struct rcar_can_priv *priv = netdev_priv(ndev);
399 	u8 isr;
400 
401 	isr = readb(&priv->regs->isr);
402 	if (!(isr & priv->ier))
403 		return IRQ_NONE;
404 
405 	if (isr & RCAR_CAN_ISR_ERSF)
406 		rcar_can_error(ndev);
407 
408 	if (isr & RCAR_CAN_ISR_TXFF)
409 		rcar_can_tx_done(ndev);
410 
411 	if (isr & RCAR_CAN_ISR_RXFF) {
412 		if (napi_schedule_prep(&priv->napi)) {
413 			/* Disable Rx FIFO interrupts */
414 			priv->ier &= ~RCAR_CAN_IER_RXFIE;
415 			writeb(priv->ier, &priv->regs->ier);
416 			__napi_schedule(&priv->napi);
417 		}
418 	}
419 
420 	return IRQ_HANDLED;
421 }
422 
rcar_can_set_bittiming(struct net_device * dev)423 static void rcar_can_set_bittiming(struct net_device *dev)
424 {
425 	struct rcar_can_priv *priv = netdev_priv(dev);
426 	struct can_bittiming *bt = &priv->can.bittiming;
427 	u32 bcr;
428 
429 	bcr = RCAR_CAN_BCR_TSEG1(bt->phase_seg1 + bt->prop_seg - 1) |
430 	      RCAR_CAN_BCR_BPR(bt->brp - 1) | RCAR_CAN_BCR_SJW(bt->sjw - 1) |
431 	      RCAR_CAN_BCR_TSEG2(bt->phase_seg2 - 1);
432 	/* Don't overwrite CLKR with 32-bit BCR access; CLKR has 8-bit access.
433 	 * All the registers are big-endian but they get byte-swapped on 32-bit
434 	 * read/write (but not on 8-bit, contrary to the manuals)...
435 	 */
436 	writel((bcr << 8) | priv->clock_select, &priv->regs->bcr);
437 }
438 
rcar_can_start(struct net_device * ndev)439 static void rcar_can_start(struct net_device *ndev)
440 {
441 	struct rcar_can_priv *priv = netdev_priv(ndev);
442 	u16 ctlr;
443 	int i;
444 
445 	/* Set controller to known mode:
446 	 * - FIFO mailbox mode
447 	 * - accept all messages
448 	 * - overrun mode
449 	 * CAN is in sleep mode after MCU hardware or software reset.
450 	 */
451 	ctlr = readw(&priv->regs->ctlr);
452 	ctlr &= ~RCAR_CAN_CTLR_SLPM;
453 	writew(ctlr, &priv->regs->ctlr);
454 	/* Go to reset mode */
455 	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
456 	writew(ctlr, &priv->regs->ctlr);
457 	for (i = 0; i < MAX_STR_READS; i++) {
458 		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
459 			break;
460 	}
461 	rcar_can_set_bittiming(ndev);
462 	ctlr |= RCAR_CAN_CTLR_IDFM_MIXED; /* Select mixed ID mode */
463 	ctlr |= RCAR_CAN_CTLR_BOM_ENT;	/* Entry to halt mode automatically */
464 					/* at bus-off */
465 	ctlr |= RCAR_CAN_CTLR_MBM;	/* Select FIFO mailbox mode */
466 	ctlr |= RCAR_CAN_CTLR_MLM;	/* Overrun mode */
467 	writew(ctlr, &priv->regs->ctlr);
468 
469 	/* Accept all SID and EID */
470 	writel(0, &priv->regs->mkr_2_9[6]);
471 	writel(0, &priv->regs->mkr_2_9[7]);
472 	/* In FIFO mailbox mode, write "0" to bits 24 to 31 */
473 	writel(0, &priv->regs->mkivlr1);
474 	/* Accept all frames */
475 	writel(0, &priv->regs->fidcr[0]);
476 	writel(RCAR_CAN_FIDCR_IDE | RCAR_CAN_FIDCR_RTR, &priv->regs->fidcr[1]);
477 	/* Enable and configure FIFO mailbox interrupts */
478 	writel(RCAR_CAN_MIER1_RXFIE | RCAR_CAN_MIER1_TXFIE, &priv->regs->mier1);
479 
480 	priv->ier = RCAR_CAN_IER_ERSIE | RCAR_CAN_IER_RXFIE |
481 		    RCAR_CAN_IER_TXFIE;
482 	writeb(priv->ier, &priv->regs->ier);
483 
484 	/* Accumulate error codes */
485 	writeb(RCAR_CAN_ECSR_EDPM, &priv->regs->ecsr);
486 	/* Enable error interrupts */
487 	writeb(RCAR_CAN_EIER_EWIE | RCAR_CAN_EIER_EPIE | RCAR_CAN_EIER_BOEIE |
488 	       (priv->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING ?
489 	       RCAR_CAN_EIER_BEIE : 0) | RCAR_CAN_EIER_ORIE |
490 	       RCAR_CAN_EIER_OLIE, &priv->regs->eier);
491 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
492 
493 	/* Go to operation mode */
494 	writew(ctlr & ~RCAR_CAN_CTLR_CANM, &priv->regs->ctlr);
495 	for (i = 0; i < MAX_STR_READS; i++) {
496 		if (!(readw(&priv->regs->str) & RCAR_CAN_STR_RSTST))
497 			break;
498 	}
499 	/* Enable Rx and Tx FIFO */
500 	writeb(RCAR_CAN_RFCR_RFE, &priv->regs->rfcr);
501 	writeb(RCAR_CAN_TFCR_TFE, &priv->regs->tfcr);
502 }
503 
rcar_can_open(struct net_device * ndev)504 static int rcar_can_open(struct net_device *ndev)
505 {
506 	struct rcar_can_priv *priv = netdev_priv(ndev);
507 	int err;
508 
509 	err = clk_prepare_enable(priv->clk);
510 	if (err) {
511 		netdev_err(ndev, "failed to enable periperal clock, error %d\n",
512 			   err);
513 		goto out;
514 	}
515 	err = clk_prepare_enable(priv->can_clk);
516 	if (err) {
517 		netdev_err(ndev, "failed to enable CAN clock, error %d\n",
518 			   err);
519 		goto out_clock;
520 	}
521 	err = open_candev(ndev);
522 	if (err) {
523 		netdev_err(ndev, "open_candev() failed, error %d\n", err);
524 		goto out_can_clock;
525 	}
526 	napi_enable(&priv->napi);
527 	err = request_irq(ndev->irq, rcar_can_interrupt, 0, ndev->name, ndev);
528 	if (err) {
529 		netdev_err(ndev, "error requesting interrupt %d\n", ndev->irq);
530 		goto out_close;
531 	}
532 	can_led_event(ndev, CAN_LED_EVENT_OPEN);
533 	rcar_can_start(ndev);
534 	netif_start_queue(ndev);
535 	return 0;
536 out_close:
537 	napi_disable(&priv->napi);
538 	close_candev(ndev);
539 out_can_clock:
540 	clk_disable_unprepare(priv->can_clk);
541 out_clock:
542 	clk_disable_unprepare(priv->clk);
543 out:
544 	return err;
545 }
546 
rcar_can_stop(struct net_device * ndev)547 static void rcar_can_stop(struct net_device *ndev)
548 {
549 	struct rcar_can_priv *priv = netdev_priv(ndev);
550 	u16 ctlr;
551 	int i;
552 
553 	/* Go to (force) reset mode */
554 	ctlr = readw(&priv->regs->ctlr);
555 	ctlr |= RCAR_CAN_CTLR_CANM_FORCE_RESET;
556 	writew(ctlr, &priv->regs->ctlr);
557 	for (i = 0; i < MAX_STR_READS; i++) {
558 		if (readw(&priv->regs->str) & RCAR_CAN_STR_RSTST)
559 			break;
560 	}
561 	writel(0, &priv->regs->mier0);
562 	writel(0, &priv->regs->mier1);
563 	writeb(0, &priv->regs->ier);
564 	writeb(0, &priv->regs->eier);
565 	/* Go to sleep mode */
566 	ctlr |= RCAR_CAN_CTLR_SLPM;
567 	writew(ctlr, &priv->regs->ctlr);
568 	priv->can.state = CAN_STATE_STOPPED;
569 }
570 
rcar_can_close(struct net_device * ndev)571 static int rcar_can_close(struct net_device *ndev)
572 {
573 	struct rcar_can_priv *priv = netdev_priv(ndev);
574 
575 	netif_stop_queue(ndev);
576 	rcar_can_stop(ndev);
577 	free_irq(ndev->irq, ndev);
578 	napi_disable(&priv->napi);
579 	clk_disable_unprepare(priv->can_clk);
580 	clk_disable_unprepare(priv->clk);
581 	close_candev(ndev);
582 	can_led_event(ndev, CAN_LED_EVENT_STOP);
583 	return 0;
584 }
585 
rcar_can_start_xmit(struct sk_buff * skb,struct net_device * ndev)586 static netdev_tx_t rcar_can_start_xmit(struct sk_buff *skb,
587 				       struct net_device *ndev)
588 {
589 	struct rcar_can_priv *priv = netdev_priv(ndev);
590 	struct can_frame *cf = (struct can_frame *)skb->data;
591 	u32 data, i;
592 
593 	if (can_dropped_invalid_skb(ndev, skb))
594 		return NETDEV_TX_OK;
595 
596 	if (cf->can_id & CAN_EFF_FLAG)	/* Extended frame format */
597 		data = (cf->can_id & CAN_EFF_MASK) | RCAR_CAN_IDE;
598 	else				/* Standard frame format */
599 		data = (cf->can_id & CAN_SFF_MASK) << RCAR_CAN_SID_SHIFT;
600 
601 	if (cf->can_id & CAN_RTR_FLAG) { /* Remote transmission request */
602 		data |= RCAR_CAN_RTR;
603 	} else {
604 		for (i = 0; i < cf->can_dlc; i++)
605 			writeb(cf->data[i],
606 			       &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].data[i]);
607 	}
608 
609 	writel(data, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].id);
610 
611 	writeb(cf->can_dlc, &priv->regs->mb[RCAR_CAN_TX_FIFO_MBX].dlc);
612 
613 	priv->tx_dlc[priv->tx_head % RCAR_CAN_FIFO_DEPTH] = cf->can_dlc;
614 	can_put_echo_skb(skb, ndev, priv->tx_head % RCAR_CAN_FIFO_DEPTH);
615 	priv->tx_head++;
616 	/* Start Tx: write 0xff to the TFPCR register to increment
617 	 * the CPU-side pointer for the transmit FIFO to the next
618 	 * mailbox location
619 	 */
620 	writeb(0xff, &priv->regs->tfpcr);
621 	/* Stop the queue if we've filled all FIFO entries */
622 	if (priv->tx_head - priv->tx_tail >= RCAR_CAN_FIFO_DEPTH)
623 		netif_stop_queue(ndev);
624 
625 	return NETDEV_TX_OK;
626 }
627 
628 static const struct net_device_ops rcar_can_netdev_ops = {
629 	.ndo_open = rcar_can_open,
630 	.ndo_stop = rcar_can_close,
631 	.ndo_start_xmit = rcar_can_start_xmit,
632 	.ndo_change_mtu = can_change_mtu,
633 };
634 
rcar_can_rx_pkt(struct rcar_can_priv * priv)635 static void rcar_can_rx_pkt(struct rcar_can_priv *priv)
636 {
637 	struct net_device_stats *stats = &priv->ndev->stats;
638 	struct can_frame *cf;
639 	struct sk_buff *skb;
640 	u32 data;
641 	u8 dlc;
642 
643 	skb = alloc_can_skb(priv->ndev, &cf);
644 	if (!skb) {
645 		stats->rx_dropped++;
646 		return;
647 	}
648 
649 	data = readl(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].id);
650 	if (data & RCAR_CAN_IDE)
651 		cf->can_id = (data & CAN_EFF_MASK) | CAN_EFF_FLAG;
652 	else
653 		cf->can_id = (data >> RCAR_CAN_SID_SHIFT) & CAN_SFF_MASK;
654 
655 	dlc = readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].dlc);
656 	cf->can_dlc = get_can_dlc(dlc);
657 	if (data & RCAR_CAN_RTR) {
658 		cf->can_id |= CAN_RTR_FLAG;
659 	} else {
660 		for (dlc = 0; dlc < cf->can_dlc; dlc++)
661 			cf->data[dlc] =
662 			readb(&priv->regs->mb[RCAR_CAN_RX_FIFO_MBX].data[dlc]);
663 	}
664 
665 	can_led_event(priv->ndev, CAN_LED_EVENT_RX);
666 
667 	stats->rx_bytes += cf->can_dlc;
668 	stats->rx_packets++;
669 	netif_receive_skb(skb);
670 }
671 
rcar_can_rx_poll(struct napi_struct * napi,int quota)672 static int rcar_can_rx_poll(struct napi_struct *napi, int quota)
673 {
674 	struct rcar_can_priv *priv = container_of(napi,
675 						  struct rcar_can_priv, napi);
676 	int num_pkts;
677 
678 	for (num_pkts = 0; num_pkts < quota; num_pkts++) {
679 		u8 rfcr, isr;
680 
681 		isr = readb(&priv->regs->isr);
682 		/* Clear interrupt bit */
683 		if (isr & RCAR_CAN_ISR_RXFF)
684 			writeb(isr & ~RCAR_CAN_ISR_RXFF, &priv->regs->isr);
685 		rfcr = readb(&priv->regs->rfcr);
686 		if (rfcr & RCAR_CAN_RFCR_RFEST)
687 			break;
688 		rcar_can_rx_pkt(priv);
689 		/* Write 0xff to the RFPCR register to increment
690 		 * the CPU-side pointer for the receive FIFO
691 		 * to the next mailbox location
692 		 */
693 		writeb(0xff, &priv->regs->rfpcr);
694 	}
695 	/* All packets processed */
696 	if (num_pkts < quota) {
697 		napi_complete(napi);
698 		priv->ier |= RCAR_CAN_IER_RXFIE;
699 		writeb(priv->ier, &priv->regs->ier);
700 	}
701 	return num_pkts;
702 }
703 
rcar_can_do_set_mode(struct net_device * ndev,enum can_mode mode)704 static int rcar_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
705 {
706 	switch (mode) {
707 	case CAN_MODE_START:
708 		rcar_can_start(ndev);
709 		netif_wake_queue(ndev);
710 		return 0;
711 	default:
712 		return -EOPNOTSUPP;
713 	}
714 }
715 
rcar_can_get_berr_counter(const struct net_device * dev,struct can_berr_counter * bec)716 static int rcar_can_get_berr_counter(const struct net_device *dev,
717 				     struct can_berr_counter *bec)
718 {
719 	struct rcar_can_priv *priv = netdev_priv(dev);
720 	int err;
721 
722 	err = clk_prepare_enable(priv->clk);
723 	if (err)
724 		return err;
725 	bec->txerr = readb(&priv->regs->tecr);
726 	bec->rxerr = readb(&priv->regs->recr);
727 	clk_disable_unprepare(priv->clk);
728 	return 0;
729 }
730 
731 static const char * const clock_names[] = {
732 	[CLKR_CLKP1]	= "clkp1",
733 	[CLKR_CLKP2]	= "clkp2",
734 	[CLKR_CLKEXT]	= "can_clk",
735 };
736 
rcar_can_probe(struct platform_device * pdev)737 static int rcar_can_probe(struct platform_device *pdev)
738 {
739 	struct rcar_can_platform_data *pdata;
740 	struct rcar_can_priv *priv;
741 	struct net_device *ndev;
742 	struct resource *mem;
743 	void __iomem *addr;
744 	u32 clock_select = CLKR_CLKP1;
745 	int err = -ENODEV;
746 	int irq;
747 
748 	if (pdev->dev.of_node) {
749 		of_property_read_u32(pdev->dev.of_node,
750 				     "renesas,can-clock-select", &clock_select);
751 	} else {
752 		pdata = dev_get_platdata(&pdev->dev);
753 		if (!pdata) {
754 			dev_err(&pdev->dev, "No platform data provided!\n");
755 			goto fail;
756 		}
757 		clock_select = pdata->clock_select;
758 	}
759 
760 	irq = platform_get_irq(pdev, 0);
761 	if (irq < 0) {
762 		dev_err(&pdev->dev, "No IRQ resource\n");
763 		err = irq;
764 		goto fail;
765 	}
766 
767 	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
768 	addr = devm_ioremap_resource(&pdev->dev, mem);
769 	if (IS_ERR(addr)) {
770 		err = PTR_ERR(addr);
771 		goto fail;
772 	}
773 
774 	ndev = alloc_candev(sizeof(struct rcar_can_priv), RCAR_CAN_FIFO_DEPTH);
775 	if (!ndev) {
776 		dev_err(&pdev->dev, "alloc_candev() failed\n");
777 		err = -ENOMEM;
778 		goto fail;
779 	}
780 
781 	priv = netdev_priv(ndev);
782 
783 	priv->clk = devm_clk_get(&pdev->dev, "clkp1");
784 	if (IS_ERR(priv->clk)) {
785 		err = PTR_ERR(priv->clk);
786 		dev_err(&pdev->dev, "cannot get peripheral clock: %d\n", err);
787 		goto fail_clk;
788 	}
789 
790 	if (clock_select >= ARRAY_SIZE(clock_names)) {
791 		err = -EINVAL;
792 		dev_err(&pdev->dev, "invalid CAN clock selected\n");
793 		goto fail_clk;
794 	}
795 	priv->can_clk = devm_clk_get(&pdev->dev, clock_names[clock_select]);
796 	if (IS_ERR(priv->can_clk)) {
797 		err = PTR_ERR(priv->can_clk);
798 		dev_err(&pdev->dev, "cannot get CAN clock: %d\n", err);
799 		goto fail_clk;
800 	}
801 
802 	ndev->netdev_ops = &rcar_can_netdev_ops;
803 	ndev->irq = irq;
804 	ndev->flags |= IFF_ECHO;
805 	priv->ndev = ndev;
806 	priv->regs = addr;
807 	priv->clock_select = clock_select;
808 	priv->can.clock.freq = clk_get_rate(priv->can_clk);
809 	priv->can.bittiming_const = &rcar_can_bittiming_const;
810 	priv->can.do_set_mode = rcar_can_do_set_mode;
811 	priv->can.do_get_berr_counter = rcar_can_get_berr_counter;
812 	priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
813 	platform_set_drvdata(pdev, ndev);
814 	SET_NETDEV_DEV(ndev, &pdev->dev);
815 
816 	netif_napi_add(ndev, &priv->napi, rcar_can_rx_poll,
817 		       RCAR_CAN_NAPI_WEIGHT);
818 	err = register_candev(ndev);
819 	if (err) {
820 		dev_err(&pdev->dev, "register_candev() failed, error %d\n",
821 			err);
822 		goto fail_candev;
823 	}
824 
825 	devm_can_led_init(ndev);
826 
827 	dev_info(&pdev->dev, "device registered (regs @ %p, IRQ%d)\n",
828 		 priv->regs, ndev->irq);
829 
830 	return 0;
831 fail_candev:
832 	netif_napi_del(&priv->napi);
833 fail_clk:
834 	free_candev(ndev);
835 fail:
836 	return err;
837 }
838 
rcar_can_remove(struct platform_device * pdev)839 static int rcar_can_remove(struct platform_device *pdev)
840 {
841 	struct net_device *ndev = platform_get_drvdata(pdev);
842 	struct rcar_can_priv *priv = netdev_priv(ndev);
843 
844 	unregister_candev(ndev);
845 	netif_napi_del(&priv->napi);
846 	free_candev(ndev);
847 	return 0;
848 }
849 
rcar_can_suspend(struct device * dev)850 static int __maybe_unused rcar_can_suspend(struct device *dev)
851 {
852 	struct net_device *ndev = dev_get_drvdata(dev);
853 	struct rcar_can_priv *priv = netdev_priv(ndev);
854 	u16 ctlr;
855 
856 	if (netif_running(ndev)) {
857 		netif_stop_queue(ndev);
858 		netif_device_detach(ndev);
859 	}
860 	ctlr = readw(&priv->regs->ctlr);
861 	ctlr |= RCAR_CAN_CTLR_CANM_HALT;
862 	writew(ctlr, &priv->regs->ctlr);
863 	ctlr |= RCAR_CAN_CTLR_SLPM;
864 	writew(ctlr, &priv->regs->ctlr);
865 	priv->can.state = CAN_STATE_SLEEPING;
866 
867 	clk_disable(priv->clk);
868 	return 0;
869 }
870 
rcar_can_resume(struct device * dev)871 static int __maybe_unused rcar_can_resume(struct device *dev)
872 {
873 	struct net_device *ndev = dev_get_drvdata(dev);
874 	struct rcar_can_priv *priv = netdev_priv(ndev);
875 	u16 ctlr;
876 	int err;
877 
878 	err = clk_enable(priv->clk);
879 	if (err) {
880 		netdev_err(ndev, "clk_enable() failed, error %d\n", err);
881 		return err;
882 	}
883 
884 	ctlr = readw(&priv->regs->ctlr);
885 	ctlr &= ~RCAR_CAN_CTLR_SLPM;
886 	writew(ctlr, &priv->regs->ctlr);
887 	ctlr &= ~RCAR_CAN_CTLR_CANM;
888 	writew(ctlr, &priv->regs->ctlr);
889 	priv->can.state = CAN_STATE_ERROR_ACTIVE;
890 
891 	if (netif_running(ndev)) {
892 		netif_device_attach(ndev);
893 		netif_start_queue(ndev);
894 	}
895 	return 0;
896 }
897 
898 static SIMPLE_DEV_PM_OPS(rcar_can_pm_ops, rcar_can_suspend, rcar_can_resume);
899 
900 static const struct of_device_id rcar_can_of_table[] __maybe_unused = {
901 	{ .compatible = "renesas,can-r8a7778" },
902 	{ .compatible = "renesas,can-r8a7779" },
903 	{ .compatible = "renesas,can-r8a7790" },
904 	{ .compatible = "renesas,can-r8a7791" },
905 	{ }
906 };
907 MODULE_DEVICE_TABLE(of, rcar_can_of_table);
908 
909 static struct platform_driver rcar_can_driver = {
910 	.driver = {
911 		.name = RCAR_CAN_DRV_NAME,
912 		.of_match_table = of_match_ptr(rcar_can_of_table),
913 		.pm = &rcar_can_pm_ops,
914 	},
915 	.probe = rcar_can_probe,
916 	.remove = rcar_can_remove,
917 };
918 
919 module_platform_driver(rcar_can_driver);
920 
921 MODULE_AUTHOR("Cogent Embedded, Inc.");
922 MODULE_LICENSE("GPL");
923 MODULE_DESCRIPTION("CAN driver for Renesas R-Car SoC");
924 MODULE_ALIAS("platform:" RCAR_CAN_DRV_NAME);
925