1/*
2 * Copyright (C) 2005 Marc Kleine-Budde, Pengutronix
3 * Copyright (C) 2006 Andrey Volkov, Varma Electronics
4 * Copyright (C) 2008-2009 Wolfgang Grandegger <wg@grandegger.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the version 2 of the GNU General Public License
8 * as published by the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
19#include <linux/module.h>
20#include <linux/kernel.h>
21#include <linux/slab.h>
22#include <linux/netdevice.h>
23#include <linux/if_arp.h>
24#include <linux/can.h>
25#include <linux/can/dev.h>
26#include <linux/can/skb.h>
27#include <linux/can/netlink.h>
28#include <linux/can/led.h>
29#include <net/rtnetlink.h>
30
31#define MOD_DESC "CAN device driver interface"
32
33MODULE_DESCRIPTION(MOD_DESC);
34MODULE_LICENSE("GPL v2");
35MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
36
37/* CAN DLC to real data length conversion helpers */
38
39static const u8 dlc2len[] = {0, 1, 2, 3, 4, 5, 6, 7,
40			     8, 12, 16, 20, 24, 32, 48, 64};
41
42/* get data length from can_dlc with sanitized can_dlc */
43u8 can_dlc2len(u8 can_dlc)
44{
45	return dlc2len[can_dlc & 0x0F];
46}
47EXPORT_SYMBOL_GPL(can_dlc2len);
48
49static const u8 len2dlc[] = {0, 1, 2, 3, 4, 5, 6, 7, 8,		/* 0 - 8 */
50			     9, 9, 9, 9,			/* 9 - 12 */
51			     10, 10, 10, 10,			/* 13 - 16 */
52			     11, 11, 11, 11,			/* 17 - 20 */
53			     12, 12, 12, 12,			/* 21 - 24 */
54			     13, 13, 13, 13, 13, 13, 13, 13,	/* 25 - 32 */
55			     14, 14, 14, 14, 14, 14, 14, 14,	/* 33 - 40 */
56			     14, 14, 14, 14, 14, 14, 14, 14,	/* 41 - 48 */
57			     15, 15, 15, 15, 15, 15, 15, 15,	/* 49 - 56 */
58			     15, 15, 15, 15, 15, 15, 15, 15};	/* 57 - 64 */
59
60/* map the sanitized data length to an appropriate data length code */
61u8 can_len2dlc(u8 len)
62{
63	if (unlikely(len > 64))
64		return 0xF;
65
66	return len2dlc[len];
67}
68EXPORT_SYMBOL_GPL(can_len2dlc);
69
70#ifdef CONFIG_CAN_CALC_BITTIMING
71#define CAN_CALC_MAX_ERROR 50 /* in one-tenth of a percent */
72
73/*
74 * Bit-timing calculation derived from:
75 *
76 * Code based on LinCAN sources and H8S2638 project
77 * Copyright 2004-2006 Pavel Pisa - DCE FELK CVUT cz
78 * Copyright 2005      Stanislav Marek
79 * email: pisa@cmp.felk.cvut.cz
80 *
81 * Calculates proper bit-timing parameters for a specified bit-rate
82 * and sample-point, which can then be used to set the bit-timing
83 * registers of the CAN controller. You can find more information
84 * in the header file linux/can/netlink.h.
85 */
86static int can_update_spt(const struct can_bittiming_const *btc,
87			  int sampl_pt, int tseg, int *tseg1, int *tseg2)
88{
89	*tseg2 = tseg + 1 - (sampl_pt * (tseg + 1)) / 1000;
90	if (*tseg2 < btc->tseg2_min)
91		*tseg2 = btc->tseg2_min;
92	if (*tseg2 > btc->tseg2_max)
93		*tseg2 = btc->tseg2_max;
94	*tseg1 = tseg - *tseg2;
95	if (*tseg1 > btc->tseg1_max) {
96		*tseg1 = btc->tseg1_max;
97		*tseg2 = tseg - *tseg1;
98	}
99	return 1000 * (tseg + 1 - *tseg2) / (tseg + 1);
100}
101
102static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
103			      const struct can_bittiming_const *btc)
104{
105	struct can_priv *priv = netdev_priv(dev);
106	long best_error = 1000000000, error = 0;
107	int best_tseg = 0, best_brp = 0, brp = 0;
108	int tsegall, tseg = 0, tseg1 = 0, tseg2 = 0;
109	int spt_error = 1000, spt = 0, sampl_pt;
110	long rate;
111	u64 v64;
112
113	/* Use CiA recommended sample points */
114	if (bt->sample_point) {
115		sampl_pt = bt->sample_point;
116	} else {
117		if (bt->bitrate > 800000)
118			sampl_pt = 750;
119		else if (bt->bitrate > 500000)
120			sampl_pt = 800;
121		else
122			sampl_pt = 875;
123	}
124
125	/* tseg even = round down, odd = round up */
126	for (tseg = (btc->tseg1_max + btc->tseg2_max) * 2 + 1;
127	     tseg >= (btc->tseg1_min + btc->tseg2_min) * 2; tseg--) {
128		tsegall = 1 + tseg / 2;
129		/* Compute all possible tseg choices (tseg=tseg1+tseg2) */
130		brp = priv->clock.freq / (tsegall * bt->bitrate) + tseg % 2;
131		/* chose brp step which is possible in system */
132		brp = (brp / btc->brp_inc) * btc->brp_inc;
133		if ((brp < btc->brp_min) || (brp > btc->brp_max))
134			continue;
135		rate = priv->clock.freq / (brp * tsegall);
136		error = bt->bitrate - rate;
137		/* tseg brp biterror */
138		if (error < 0)
139			error = -error;
140		if (error > best_error)
141			continue;
142		best_error = error;
143		if (error == 0) {
144			spt = can_update_spt(btc, sampl_pt, tseg / 2,
145					     &tseg1, &tseg2);
146			error = sampl_pt - spt;
147			if (error < 0)
148				error = -error;
149			if (error > spt_error)
150				continue;
151			spt_error = error;
152		}
153		best_tseg = tseg / 2;
154		best_brp = brp;
155		if (error == 0)
156			break;
157	}
158
159	if (best_error) {
160		/* Error in one-tenth of a percent */
161		error = (best_error * 1000) / bt->bitrate;
162		if (error > CAN_CALC_MAX_ERROR) {
163			netdev_err(dev,
164				   "bitrate error %ld.%ld%% too high\n",
165				   error / 10, error % 10);
166			return -EDOM;
167		} else {
168			netdev_warn(dev, "bitrate error %ld.%ld%%\n",
169				    error / 10, error % 10);
170		}
171	}
172
173	/* real sample point */
174	bt->sample_point = can_update_spt(btc, sampl_pt, best_tseg,
175					  &tseg1, &tseg2);
176
177	v64 = (u64)best_brp * 1000000000UL;
178	do_div(v64, priv->clock.freq);
179	bt->tq = (u32)v64;
180	bt->prop_seg = tseg1 / 2;
181	bt->phase_seg1 = tseg1 - bt->prop_seg;
182	bt->phase_seg2 = tseg2;
183
184	/* check for sjw user settings */
185	if (!bt->sjw || !btc->sjw_max)
186		bt->sjw = 1;
187	else {
188		/* bt->sjw is at least 1 -> sanitize upper bound to sjw_max */
189		if (bt->sjw > btc->sjw_max)
190			bt->sjw = btc->sjw_max;
191		/* bt->sjw must not be higher than tseg2 */
192		if (tseg2 < bt->sjw)
193			bt->sjw = tseg2;
194	}
195
196	bt->brp = best_brp;
197	/* real bit-rate */
198	bt->bitrate = priv->clock.freq / (bt->brp * (tseg1 + tseg2 + 1));
199
200	return 0;
201}
202#else /* !CONFIG_CAN_CALC_BITTIMING */
203static int can_calc_bittiming(struct net_device *dev, struct can_bittiming *bt,
204			      const struct can_bittiming_const *btc)
205{
206	netdev_err(dev, "bit-timing calculation not available\n");
207	return -EINVAL;
208}
209#endif /* CONFIG_CAN_CALC_BITTIMING */
210
211/*
212 * Checks the validity of the specified bit-timing parameters prop_seg,
213 * phase_seg1, phase_seg2 and sjw and tries to determine the bitrate
214 * prescaler value brp. You can find more information in the header
215 * file linux/can/netlink.h.
216 */
217static int can_fixup_bittiming(struct net_device *dev, struct can_bittiming *bt,
218			       const struct can_bittiming_const *btc)
219{
220	struct can_priv *priv = netdev_priv(dev);
221	int tseg1, alltseg;
222	u64 brp64;
223
224	tseg1 = bt->prop_seg + bt->phase_seg1;
225	if (!bt->sjw)
226		bt->sjw = 1;
227	if (bt->sjw > btc->sjw_max ||
228	    tseg1 < btc->tseg1_min || tseg1 > btc->tseg1_max ||
229	    bt->phase_seg2 < btc->tseg2_min || bt->phase_seg2 > btc->tseg2_max)
230		return -ERANGE;
231
232	brp64 = (u64)priv->clock.freq * (u64)bt->tq;
233	if (btc->brp_inc > 1)
234		do_div(brp64, btc->brp_inc);
235	brp64 += 500000000UL - 1;
236	do_div(brp64, 1000000000UL); /* the practicable BRP */
237	if (btc->brp_inc > 1)
238		brp64 *= btc->brp_inc;
239	bt->brp = (u32)brp64;
240
241	if (bt->brp < btc->brp_min || bt->brp > btc->brp_max)
242		return -EINVAL;
243
244	alltseg = bt->prop_seg + bt->phase_seg1 + bt->phase_seg2 + 1;
245	bt->bitrate = priv->clock.freq / (bt->brp * alltseg);
246	bt->sample_point = ((tseg1 + 1) * 1000) / alltseg;
247
248	return 0;
249}
250
251static int can_get_bittiming(struct net_device *dev, struct can_bittiming *bt,
252			     const struct can_bittiming_const *btc)
253{
254	int err;
255
256	/* Check if the CAN device has bit-timing parameters */
257	if (!btc)
258		return -EOPNOTSUPP;
259
260	/*
261	 * Depending on the given can_bittiming parameter structure the CAN
262	 * timing parameters are calculated based on the provided bitrate OR
263	 * alternatively the CAN timing parameters (tq, prop_seg, etc.) are
264	 * provided directly which are then checked and fixed up.
265	 */
266	if (!bt->tq && bt->bitrate)
267		err = can_calc_bittiming(dev, bt, btc);
268	else if (bt->tq && !bt->bitrate)
269		err = can_fixup_bittiming(dev, bt, btc);
270	else
271		err = -EINVAL;
272
273	return err;
274}
275
276static void can_update_state_error_stats(struct net_device *dev,
277					 enum can_state new_state)
278{
279	struct can_priv *priv = netdev_priv(dev);
280
281	if (new_state <= priv->state)
282		return;
283
284	switch (new_state) {
285	case CAN_STATE_ERROR_WARNING:
286		priv->can_stats.error_warning++;
287		break;
288	case CAN_STATE_ERROR_PASSIVE:
289		priv->can_stats.error_passive++;
290		break;
291	case CAN_STATE_BUS_OFF:
292		priv->can_stats.bus_off++;
293		break;
294	default:
295		break;
296	}
297}
298
299static int can_tx_state_to_frame(struct net_device *dev, enum can_state state)
300{
301	switch (state) {
302	case CAN_STATE_ERROR_ACTIVE:
303		return CAN_ERR_CRTL_ACTIVE;
304	case CAN_STATE_ERROR_WARNING:
305		return CAN_ERR_CRTL_TX_WARNING;
306	case CAN_STATE_ERROR_PASSIVE:
307		return CAN_ERR_CRTL_TX_PASSIVE;
308	default:
309		return 0;
310	}
311}
312
313static int can_rx_state_to_frame(struct net_device *dev, enum can_state state)
314{
315	switch (state) {
316	case CAN_STATE_ERROR_ACTIVE:
317		return CAN_ERR_CRTL_ACTIVE;
318	case CAN_STATE_ERROR_WARNING:
319		return CAN_ERR_CRTL_RX_WARNING;
320	case CAN_STATE_ERROR_PASSIVE:
321		return CAN_ERR_CRTL_RX_PASSIVE;
322	default:
323		return 0;
324	}
325}
326
327void can_change_state(struct net_device *dev, struct can_frame *cf,
328		      enum can_state tx_state, enum can_state rx_state)
329{
330	struct can_priv *priv = netdev_priv(dev);
331	enum can_state new_state = max(tx_state, rx_state);
332
333	if (unlikely(new_state == priv->state)) {
334		netdev_warn(dev, "%s: oops, state did not change", __func__);
335		return;
336	}
337
338	netdev_dbg(dev, "New error state: %d\n", new_state);
339
340	can_update_state_error_stats(dev, new_state);
341	priv->state = new_state;
342
343	if (unlikely(new_state == CAN_STATE_BUS_OFF)) {
344		cf->can_id |= CAN_ERR_BUSOFF;
345		return;
346	}
347
348	cf->can_id |= CAN_ERR_CRTL;
349	cf->data[1] |= tx_state >= rx_state ?
350		       can_tx_state_to_frame(dev, tx_state) : 0;
351	cf->data[1] |= tx_state <= rx_state ?
352		       can_rx_state_to_frame(dev, rx_state) : 0;
353}
354EXPORT_SYMBOL_GPL(can_change_state);
355
356/*
357 * Local echo of CAN messages
358 *
359 * CAN network devices *should* support a local echo functionality
360 * (see Documentation/networking/can.txt). To test the handling of CAN
361 * interfaces that do not support the local echo both driver types are
362 * implemented. In the case that the driver does not support the echo
363 * the IFF_ECHO remains clear in dev->flags. This causes the PF_CAN core
364 * to perform the echo as a fallback solution.
365 */
366static void can_flush_echo_skb(struct net_device *dev)
367{
368	struct can_priv *priv = netdev_priv(dev);
369	struct net_device_stats *stats = &dev->stats;
370	int i;
371
372	for (i = 0; i < priv->echo_skb_max; i++) {
373		if (priv->echo_skb[i]) {
374			kfree_skb(priv->echo_skb[i]);
375			priv->echo_skb[i] = NULL;
376			stats->tx_dropped++;
377			stats->tx_aborted_errors++;
378		}
379	}
380}
381
382/*
383 * Put the skb on the stack to be looped backed locally lateron
384 *
385 * The function is typically called in the start_xmit function
386 * of the device driver. The driver must protect access to
387 * priv->echo_skb, if necessary.
388 */
389void can_put_echo_skb(struct sk_buff *skb, struct net_device *dev,
390		      unsigned int idx)
391{
392	struct can_priv *priv = netdev_priv(dev);
393
394	BUG_ON(idx >= priv->echo_skb_max);
395
396	/* check flag whether this packet has to be looped back */
397	if (!(dev->flags & IFF_ECHO) || skb->pkt_type != PACKET_LOOPBACK ||
398	    (skb->protocol != htons(ETH_P_CAN) &&
399	     skb->protocol != htons(ETH_P_CANFD))) {
400		kfree_skb(skb);
401		return;
402	}
403
404	if (!priv->echo_skb[idx]) {
405
406		skb = can_create_echo_skb(skb);
407		if (!skb)
408			return;
409
410		/* make settings for echo to reduce code in irq context */
411		skb->pkt_type = PACKET_BROADCAST;
412		skb->ip_summed = CHECKSUM_UNNECESSARY;
413		skb->dev = dev;
414
415		/* save this skb for tx interrupt echo handling */
416		priv->echo_skb[idx] = skb;
417	} else {
418		/* locking problem with netif_stop_queue() ?? */
419		netdev_err(dev, "%s: BUG! echo_skb is occupied!\n", __func__);
420		kfree_skb(skb);
421	}
422}
423EXPORT_SYMBOL_GPL(can_put_echo_skb);
424
425/*
426 * Get the skb from the stack and loop it back locally
427 *
428 * The function is typically called when the TX done interrupt
429 * is handled in the device driver. The driver must protect
430 * access to priv->echo_skb, if necessary.
431 */
432unsigned int can_get_echo_skb(struct net_device *dev, unsigned int idx)
433{
434	struct can_priv *priv = netdev_priv(dev);
435
436	BUG_ON(idx >= priv->echo_skb_max);
437
438	if (priv->echo_skb[idx]) {
439		struct sk_buff *skb = priv->echo_skb[idx];
440		struct can_frame *cf = (struct can_frame *)skb->data;
441		u8 dlc = cf->can_dlc;
442
443		netif_rx(priv->echo_skb[idx]);
444		priv->echo_skb[idx] = NULL;
445
446		return dlc;
447	}
448
449	return 0;
450}
451EXPORT_SYMBOL_GPL(can_get_echo_skb);
452
453/*
454  * Remove the skb from the stack and free it.
455  *
456  * The function is typically called when TX failed.
457  */
458void can_free_echo_skb(struct net_device *dev, unsigned int idx)
459{
460	struct can_priv *priv = netdev_priv(dev);
461
462	BUG_ON(idx >= priv->echo_skb_max);
463
464	if (priv->echo_skb[idx]) {
465		dev_kfree_skb_any(priv->echo_skb[idx]);
466		priv->echo_skb[idx] = NULL;
467	}
468}
469EXPORT_SYMBOL_GPL(can_free_echo_skb);
470
471/*
472 * CAN device restart for bus-off recovery
473 */
474static void can_restart(unsigned long data)
475{
476	struct net_device *dev = (struct net_device *)data;
477	struct can_priv *priv = netdev_priv(dev);
478	struct net_device_stats *stats = &dev->stats;
479	struct sk_buff *skb;
480	struct can_frame *cf;
481	int err;
482
483	BUG_ON(netif_carrier_ok(dev));
484
485	/*
486	 * No synchronization needed because the device is bus-off and
487	 * no messages can come in or go out.
488	 */
489	can_flush_echo_skb(dev);
490
491	/* send restart message upstream */
492	skb = alloc_can_err_skb(dev, &cf);
493	if (skb == NULL) {
494		err = -ENOMEM;
495		goto restart;
496	}
497	cf->can_id |= CAN_ERR_RESTARTED;
498
499	netif_rx(skb);
500
501	stats->rx_packets++;
502	stats->rx_bytes += cf->can_dlc;
503
504restart:
505	netdev_dbg(dev, "restarted\n");
506	priv->can_stats.restarts++;
507
508	/* Now restart the device */
509	err = priv->do_set_mode(dev, CAN_MODE_START);
510
511	netif_carrier_on(dev);
512	if (err)
513		netdev_err(dev, "Error %d during restart", err);
514}
515
516int can_restart_now(struct net_device *dev)
517{
518	struct can_priv *priv = netdev_priv(dev);
519
520	/*
521	 * A manual restart is only permitted if automatic restart is
522	 * disabled and the device is in the bus-off state
523	 */
524	if (priv->restart_ms)
525		return -EINVAL;
526	if (priv->state != CAN_STATE_BUS_OFF)
527		return -EBUSY;
528
529	/* Runs as soon as possible in the timer context */
530	mod_timer(&priv->restart_timer, jiffies);
531
532	return 0;
533}
534
535/*
536 * CAN bus-off
537 *
538 * This functions should be called when the device goes bus-off to
539 * tell the netif layer that no more packets can be sent or received.
540 * If enabled, a timer is started to trigger bus-off recovery.
541 */
542void can_bus_off(struct net_device *dev)
543{
544	struct can_priv *priv = netdev_priv(dev);
545
546	netdev_dbg(dev, "bus-off\n");
547
548	netif_carrier_off(dev);
549
550	if (priv->restart_ms)
551		mod_timer(&priv->restart_timer,
552			  jiffies + (priv->restart_ms * HZ) / 1000);
553}
554EXPORT_SYMBOL_GPL(can_bus_off);
555
556static void can_setup(struct net_device *dev)
557{
558	dev->type = ARPHRD_CAN;
559	dev->mtu = CAN_MTU;
560	dev->hard_header_len = 0;
561	dev->addr_len = 0;
562	dev->tx_queue_len = 10;
563
564	/* New-style flags. */
565	dev->flags = IFF_NOARP;
566	dev->features = NETIF_F_HW_CSUM;
567}
568
569struct sk_buff *alloc_can_skb(struct net_device *dev, struct can_frame **cf)
570{
571	struct sk_buff *skb;
572
573	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
574			       sizeof(struct can_frame));
575	if (unlikely(!skb))
576		return NULL;
577
578	skb->protocol = htons(ETH_P_CAN);
579	skb->pkt_type = PACKET_BROADCAST;
580	skb->ip_summed = CHECKSUM_UNNECESSARY;
581
582	skb_reset_mac_header(skb);
583	skb_reset_network_header(skb);
584	skb_reset_transport_header(skb);
585
586	can_skb_reserve(skb);
587	can_skb_prv(skb)->ifindex = dev->ifindex;
588	can_skb_prv(skb)->skbcnt = 0;
589
590	*cf = (struct can_frame *)skb_put(skb, sizeof(struct can_frame));
591	memset(*cf, 0, sizeof(struct can_frame));
592
593	return skb;
594}
595EXPORT_SYMBOL_GPL(alloc_can_skb);
596
597struct sk_buff *alloc_canfd_skb(struct net_device *dev,
598				struct canfd_frame **cfd)
599{
600	struct sk_buff *skb;
601
602	skb = netdev_alloc_skb(dev, sizeof(struct can_skb_priv) +
603			       sizeof(struct canfd_frame));
604	if (unlikely(!skb))
605		return NULL;
606
607	skb->protocol = htons(ETH_P_CANFD);
608	skb->pkt_type = PACKET_BROADCAST;
609	skb->ip_summed = CHECKSUM_UNNECESSARY;
610
611	skb_reset_mac_header(skb);
612	skb_reset_network_header(skb);
613	skb_reset_transport_header(skb);
614
615	can_skb_reserve(skb);
616	can_skb_prv(skb)->ifindex = dev->ifindex;
617	can_skb_prv(skb)->skbcnt = 0;
618
619	*cfd = (struct canfd_frame *)skb_put(skb, sizeof(struct canfd_frame));
620	memset(*cfd, 0, sizeof(struct canfd_frame));
621
622	return skb;
623}
624EXPORT_SYMBOL_GPL(alloc_canfd_skb);
625
626struct sk_buff *alloc_can_err_skb(struct net_device *dev, struct can_frame **cf)
627{
628	struct sk_buff *skb;
629
630	skb = alloc_can_skb(dev, cf);
631	if (unlikely(!skb))
632		return NULL;
633
634	(*cf)->can_id = CAN_ERR_FLAG;
635	(*cf)->can_dlc = CAN_ERR_DLC;
636
637	return skb;
638}
639EXPORT_SYMBOL_GPL(alloc_can_err_skb);
640
641/*
642 * Allocate and setup space for the CAN network device
643 */
644struct net_device *alloc_candev(int sizeof_priv, unsigned int echo_skb_max)
645{
646	struct net_device *dev;
647	struct can_priv *priv;
648	int size;
649
650	if (echo_skb_max)
651		size = ALIGN(sizeof_priv, sizeof(struct sk_buff *)) +
652			echo_skb_max * sizeof(struct sk_buff *);
653	else
654		size = sizeof_priv;
655
656	dev = alloc_netdev(size, "can%d", NET_NAME_UNKNOWN, can_setup);
657	if (!dev)
658		return NULL;
659
660	priv = netdev_priv(dev);
661
662	if (echo_skb_max) {
663		priv->echo_skb_max = echo_skb_max;
664		priv->echo_skb = (void *)priv +
665			ALIGN(sizeof_priv, sizeof(struct sk_buff *));
666	}
667
668	priv->state = CAN_STATE_STOPPED;
669
670	init_timer(&priv->restart_timer);
671
672	return dev;
673}
674EXPORT_SYMBOL_GPL(alloc_candev);
675
676/*
677 * Free space of the CAN network device
678 */
679void free_candev(struct net_device *dev)
680{
681	free_netdev(dev);
682}
683EXPORT_SYMBOL_GPL(free_candev);
684
685/*
686 * changing MTU and control mode for CAN/CANFD devices
687 */
688int can_change_mtu(struct net_device *dev, int new_mtu)
689{
690	struct can_priv *priv = netdev_priv(dev);
691
692	/* Do not allow changing the MTU while running */
693	if (dev->flags & IFF_UP)
694		return -EBUSY;
695
696	/* allow change of MTU according to the CANFD ability of the device */
697	switch (new_mtu) {
698	case CAN_MTU:
699		/* 'CANFD-only' controllers can not switch to CAN_MTU */
700		if (priv->ctrlmode_static & CAN_CTRLMODE_FD)
701			return -EINVAL;
702
703		priv->ctrlmode &= ~CAN_CTRLMODE_FD;
704		break;
705
706	case CANFD_MTU:
707		/* check for potential CANFD ability */
708		if (!(priv->ctrlmode_supported & CAN_CTRLMODE_FD) &&
709		    !(priv->ctrlmode_static & CAN_CTRLMODE_FD))
710			return -EINVAL;
711
712		priv->ctrlmode |= CAN_CTRLMODE_FD;
713		break;
714
715	default:
716		return -EINVAL;
717	}
718
719	dev->mtu = new_mtu;
720	return 0;
721}
722EXPORT_SYMBOL_GPL(can_change_mtu);
723
724/*
725 * Common open function when the device gets opened.
726 *
727 * This function should be called in the open function of the device
728 * driver.
729 */
730int open_candev(struct net_device *dev)
731{
732	struct can_priv *priv = netdev_priv(dev);
733
734	if (!priv->bittiming.bitrate) {
735		netdev_err(dev, "bit-timing not yet defined\n");
736		return -EINVAL;
737	}
738
739	/* For CAN FD the data bitrate has to be >= the arbitration bitrate */
740	if ((priv->ctrlmode & CAN_CTRLMODE_FD) &&
741	    (!priv->data_bittiming.bitrate ||
742	     (priv->data_bittiming.bitrate < priv->bittiming.bitrate))) {
743		netdev_err(dev, "incorrect/missing data bit-timing\n");
744		return -EINVAL;
745	}
746
747	/* Switch carrier on if device was stopped while in bus-off state */
748	if (!netif_carrier_ok(dev))
749		netif_carrier_on(dev);
750
751	setup_timer(&priv->restart_timer, can_restart, (unsigned long)dev);
752
753	return 0;
754}
755EXPORT_SYMBOL_GPL(open_candev);
756
757/*
758 * Common close function for cleanup before the device gets closed.
759 *
760 * This function should be called in the close function of the device
761 * driver.
762 */
763void close_candev(struct net_device *dev)
764{
765	struct can_priv *priv = netdev_priv(dev);
766
767	del_timer_sync(&priv->restart_timer);
768	can_flush_echo_skb(dev);
769}
770EXPORT_SYMBOL_GPL(close_candev);
771
772/*
773 * CAN netlink interface
774 */
775static const struct nla_policy can_policy[IFLA_CAN_MAX + 1] = {
776	[IFLA_CAN_STATE]	= { .type = NLA_U32 },
777	[IFLA_CAN_CTRLMODE]	= { .len = sizeof(struct can_ctrlmode) },
778	[IFLA_CAN_RESTART_MS]	= { .type = NLA_U32 },
779	[IFLA_CAN_RESTART]	= { .type = NLA_U32 },
780	[IFLA_CAN_BITTIMING]	= { .len = sizeof(struct can_bittiming) },
781	[IFLA_CAN_BITTIMING_CONST]
782				= { .len = sizeof(struct can_bittiming_const) },
783	[IFLA_CAN_CLOCK]	= { .len = sizeof(struct can_clock) },
784	[IFLA_CAN_BERR_COUNTER]	= { .len = sizeof(struct can_berr_counter) },
785	[IFLA_CAN_DATA_BITTIMING]
786				= { .len = sizeof(struct can_bittiming) },
787	[IFLA_CAN_DATA_BITTIMING_CONST]
788				= { .len = sizeof(struct can_bittiming_const) },
789};
790
791static int can_validate(struct nlattr *tb[], struct nlattr *data[])
792{
793	bool is_can_fd = false;
794
795	/* Make sure that valid CAN FD configurations always consist of
796	 * - nominal/arbitration bittiming
797	 * - data bittiming
798	 * - control mode with CAN_CTRLMODE_FD set
799	 */
800
801	if (data[IFLA_CAN_CTRLMODE]) {
802		struct can_ctrlmode *cm = nla_data(data[IFLA_CAN_CTRLMODE]);
803
804		is_can_fd = cm->flags & cm->mask & CAN_CTRLMODE_FD;
805	}
806
807	if (is_can_fd) {
808		if (!data[IFLA_CAN_BITTIMING] || !data[IFLA_CAN_DATA_BITTIMING])
809			return -EOPNOTSUPP;
810	}
811
812	if (data[IFLA_CAN_DATA_BITTIMING]) {
813		if (!is_can_fd || !data[IFLA_CAN_BITTIMING])
814			return -EOPNOTSUPP;
815	}
816
817	return 0;
818}
819
820static int can_changelink(struct net_device *dev,
821			  struct nlattr *tb[], struct nlattr *data[])
822{
823	struct can_priv *priv = netdev_priv(dev);
824	int err;
825
826	/* We need synchronization with dev->stop() */
827	ASSERT_RTNL();
828
829	if (data[IFLA_CAN_BITTIMING]) {
830		struct can_bittiming bt;
831
832		/* Do not allow changing bittiming while running */
833		if (dev->flags & IFF_UP)
834			return -EBUSY;
835		memcpy(&bt, nla_data(data[IFLA_CAN_BITTIMING]), sizeof(bt));
836		err = can_get_bittiming(dev, &bt, priv->bittiming_const);
837		if (err)
838			return err;
839		memcpy(&priv->bittiming, &bt, sizeof(bt));
840
841		if (priv->do_set_bittiming) {
842			/* Finally, set the bit-timing registers */
843			err = priv->do_set_bittiming(dev);
844			if (err)
845				return err;
846		}
847	}
848
849	if (data[IFLA_CAN_CTRLMODE]) {
850		struct can_ctrlmode *cm;
851		u32 ctrlstatic;
852		u32 maskedflags;
853
854		/* Do not allow changing controller mode while running */
855		if (dev->flags & IFF_UP)
856			return -EBUSY;
857		cm = nla_data(data[IFLA_CAN_CTRLMODE]);
858		ctrlstatic = priv->ctrlmode_static;
859		maskedflags = cm->flags & cm->mask;
860
861		/* check whether provided bits are allowed to be passed */
862		if (cm->mask & ~(priv->ctrlmode_supported | ctrlstatic))
863			return -EOPNOTSUPP;
864
865		/* do not check for static fd-non-iso if 'fd' is disabled */
866		if (!(maskedflags & CAN_CTRLMODE_FD))
867			ctrlstatic &= ~CAN_CTRLMODE_FD_NON_ISO;
868
869		/* make sure static options are provided by configuration */
870		if ((maskedflags & ctrlstatic) != ctrlstatic)
871			return -EOPNOTSUPP;
872
873		/* clear bits to be modified and copy the flag values */
874		priv->ctrlmode &= ~cm->mask;
875		priv->ctrlmode |= maskedflags;
876
877		/* CAN_CTRLMODE_FD can only be set when driver supports FD */
878		if (priv->ctrlmode & CAN_CTRLMODE_FD)
879			dev->mtu = CANFD_MTU;
880		else
881			dev->mtu = CAN_MTU;
882	}
883
884	if (data[IFLA_CAN_RESTART_MS]) {
885		/* Do not allow changing restart delay while running */
886		if (dev->flags & IFF_UP)
887			return -EBUSY;
888		priv->restart_ms = nla_get_u32(data[IFLA_CAN_RESTART_MS]);
889	}
890
891	if (data[IFLA_CAN_RESTART]) {
892		/* Do not allow a restart while not running */
893		if (!(dev->flags & IFF_UP))
894			return -EINVAL;
895		err = can_restart_now(dev);
896		if (err)
897			return err;
898	}
899
900	if (data[IFLA_CAN_DATA_BITTIMING]) {
901		struct can_bittiming dbt;
902
903		/* Do not allow changing bittiming while running */
904		if (dev->flags & IFF_UP)
905			return -EBUSY;
906		memcpy(&dbt, nla_data(data[IFLA_CAN_DATA_BITTIMING]),
907		       sizeof(dbt));
908		err = can_get_bittiming(dev, &dbt, priv->data_bittiming_const);
909		if (err)
910			return err;
911		memcpy(&priv->data_bittiming, &dbt, sizeof(dbt));
912
913		if (priv->do_set_data_bittiming) {
914			/* Finally, set the bit-timing registers */
915			err = priv->do_set_data_bittiming(dev);
916			if (err)
917				return err;
918		}
919	}
920
921	return 0;
922}
923
924static size_t can_get_size(const struct net_device *dev)
925{
926	struct can_priv *priv = netdev_priv(dev);
927	size_t size = 0;
928
929	if (priv->bittiming.bitrate)				/* IFLA_CAN_BITTIMING */
930		size += nla_total_size(sizeof(struct can_bittiming));
931	if (priv->bittiming_const)				/* IFLA_CAN_BITTIMING_CONST */
932		size += nla_total_size(sizeof(struct can_bittiming_const));
933	size += nla_total_size(sizeof(struct can_clock));	/* IFLA_CAN_CLOCK */
934	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_STATE */
935	size += nla_total_size(sizeof(struct can_ctrlmode));	/* IFLA_CAN_CTRLMODE */
936	size += nla_total_size(sizeof(u32));			/* IFLA_CAN_RESTART_MS */
937	if (priv->do_get_berr_counter)				/* IFLA_CAN_BERR_COUNTER */
938		size += nla_total_size(sizeof(struct can_berr_counter));
939	if (priv->data_bittiming.bitrate)			/* IFLA_CAN_DATA_BITTIMING */
940		size += nla_total_size(sizeof(struct can_bittiming));
941	if (priv->data_bittiming_const)				/* IFLA_CAN_DATA_BITTIMING_CONST */
942		size += nla_total_size(sizeof(struct can_bittiming_const));
943
944	return size;
945}
946
947static int can_fill_info(struct sk_buff *skb, const struct net_device *dev)
948{
949	struct can_priv *priv = netdev_priv(dev);
950	struct can_ctrlmode cm = {.flags = priv->ctrlmode};
951	struct can_berr_counter bec;
952	enum can_state state = priv->state;
953
954	if (priv->do_get_state)
955		priv->do_get_state(dev, &state);
956
957	if ((priv->bittiming.bitrate &&
958	     nla_put(skb, IFLA_CAN_BITTIMING,
959		     sizeof(priv->bittiming), &priv->bittiming)) ||
960
961	    (priv->bittiming_const &&
962	     nla_put(skb, IFLA_CAN_BITTIMING_CONST,
963		     sizeof(*priv->bittiming_const), priv->bittiming_const)) ||
964
965	    nla_put(skb, IFLA_CAN_CLOCK, sizeof(priv->clock), &priv->clock) ||
966	    nla_put_u32(skb, IFLA_CAN_STATE, state) ||
967	    nla_put(skb, IFLA_CAN_CTRLMODE, sizeof(cm), &cm) ||
968	    nla_put_u32(skb, IFLA_CAN_RESTART_MS, priv->restart_ms) ||
969
970	    (priv->do_get_berr_counter &&
971	     !priv->do_get_berr_counter(dev, &bec) &&
972	     nla_put(skb, IFLA_CAN_BERR_COUNTER, sizeof(bec), &bec)) ||
973
974	    (priv->data_bittiming.bitrate &&
975	     nla_put(skb, IFLA_CAN_DATA_BITTIMING,
976		     sizeof(priv->data_bittiming), &priv->data_bittiming)) ||
977
978	    (priv->data_bittiming_const &&
979	     nla_put(skb, IFLA_CAN_DATA_BITTIMING_CONST,
980		     sizeof(*priv->data_bittiming_const),
981		     priv->data_bittiming_const)))
982		return -EMSGSIZE;
983
984	return 0;
985}
986
987static size_t can_get_xstats_size(const struct net_device *dev)
988{
989	return sizeof(struct can_device_stats);
990}
991
992static int can_fill_xstats(struct sk_buff *skb, const struct net_device *dev)
993{
994	struct can_priv *priv = netdev_priv(dev);
995
996	if (nla_put(skb, IFLA_INFO_XSTATS,
997		    sizeof(priv->can_stats), &priv->can_stats))
998		goto nla_put_failure;
999	return 0;
1000
1001nla_put_failure:
1002	return -EMSGSIZE;
1003}
1004
1005static int can_newlink(struct net *src_net, struct net_device *dev,
1006		       struct nlattr *tb[], struct nlattr *data[])
1007{
1008	return -EOPNOTSUPP;
1009}
1010
1011static struct rtnl_link_ops can_link_ops __read_mostly = {
1012	.kind		= "can",
1013	.maxtype	= IFLA_CAN_MAX,
1014	.policy		= can_policy,
1015	.setup		= can_setup,
1016	.validate	= can_validate,
1017	.newlink	= can_newlink,
1018	.changelink	= can_changelink,
1019	.get_size	= can_get_size,
1020	.fill_info	= can_fill_info,
1021	.get_xstats_size = can_get_xstats_size,
1022	.fill_xstats	= can_fill_xstats,
1023};
1024
1025/*
1026 * Register the CAN network device
1027 */
1028int register_candev(struct net_device *dev)
1029{
1030	dev->rtnl_link_ops = &can_link_ops;
1031	return register_netdev(dev);
1032}
1033EXPORT_SYMBOL_GPL(register_candev);
1034
1035/*
1036 * Unregister the CAN network device
1037 */
1038void unregister_candev(struct net_device *dev)
1039{
1040	unregister_netdev(dev);
1041}
1042EXPORT_SYMBOL_GPL(unregister_candev);
1043
1044/*
1045 * Test if a network device is a candev based device
1046 * and return the can_priv* if so.
1047 */
1048struct can_priv *safe_candev_priv(struct net_device *dev)
1049{
1050	if ((dev->type != ARPHRD_CAN) || (dev->rtnl_link_ops != &can_link_ops))
1051		return NULL;
1052
1053	return netdev_priv(dev);
1054}
1055EXPORT_SYMBOL_GPL(safe_candev_priv);
1056
1057static __init int can_dev_init(void)
1058{
1059	int err;
1060
1061	can_led_notifier_init();
1062
1063	err = rtnl_link_register(&can_link_ops);
1064	if (!err)
1065		printk(KERN_INFO MOD_DESC "\n");
1066
1067	return err;
1068}
1069module_init(can_dev_init);
1070
1071static __exit void can_dev_exit(void)
1072{
1073	rtnl_link_unregister(&can_link_ops);
1074
1075	can_led_notifier_exit();
1076}
1077module_exit(can_dev_exit);
1078
1079MODULE_ALIAS_RTNL_LINK("can");
1080