1 /*
2  * Copyright (C) 2003 Jana Saout <jana@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6  *
7  * This file is released under the GPL.
8  */
9 
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31 
32 #include <linux/device-mapper.h>
33 
34 #define DM_MSG_PREFIX "crypt"
35 
36 /*
37  * context holding the current state of a multi-part conversion
38  */
39 struct convert_context {
40 	struct completion restart;
41 	struct bio *bio_in;
42 	struct bio *bio_out;
43 	struct bvec_iter iter_in;
44 	struct bvec_iter iter_out;
45 	sector_t cc_sector;
46 	atomic_t cc_pending;
47 	struct ablkcipher_request *req;
48 };
49 
50 /*
51  * per bio private data
52  */
53 struct dm_crypt_io {
54 	struct crypt_config *cc;
55 	struct bio *base_bio;
56 	struct work_struct work;
57 
58 	struct convert_context ctx;
59 
60 	atomic_t io_pending;
61 	int error;
62 	sector_t sector;
63 
64 	struct rb_node rb_node;
65 } CRYPTO_MINALIGN_ATTR;
66 
67 struct dm_crypt_request {
68 	struct convert_context *ctx;
69 	struct scatterlist sg_in;
70 	struct scatterlist sg_out;
71 	sector_t iv_sector;
72 };
73 
74 struct crypt_config;
75 
76 struct crypt_iv_operations {
77 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78 		   const char *opts);
79 	void (*dtr)(struct crypt_config *cc);
80 	int (*init)(struct crypt_config *cc);
81 	int (*wipe)(struct crypt_config *cc);
82 	int (*generator)(struct crypt_config *cc, u8 *iv,
83 			 struct dm_crypt_request *dmreq);
84 	int (*post)(struct crypt_config *cc, u8 *iv,
85 		    struct dm_crypt_request *dmreq);
86 };
87 
88 struct iv_essiv_private {
89 	struct crypto_hash *hash_tfm;
90 	u8 *salt;
91 };
92 
93 struct iv_benbi_private {
94 	int shift;
95 };
96 
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private {
99 	struct crypto_shash *hash_tfm;
100 	u8 *seed;
101 };
102 
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private {
105 	struct crypto_shash *crc32_tfm;
106 	u8 *iv_seed;
107 	u8 *whitening;
108 };
109 
110 /*
111  * Crypt: maps a linear range of a block device
112  * and encrypts / decrypts at the same time.
113  */
114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115 	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
116 
117 /*
118  * The fields in here must be read only after initialization.
119  */
120 struct crypt_config {
121 	struct dm_dev *dev;
122 	sector_t start;
123 
124 	/*
125 	 * pool for per bio private data, crypto requests and
126 	 * encryption requeusts/buffer pages
127 	 */
128 	mempool_t *req_pool;
129 	mempool_t *page_pool;
130 	struct bio_set *bs;
131 	struct mutex bio_alloc_lock;
132 
133 	struct workqueue_struct *io_queue;
134 	struct workqueue_struct *crypt_queue;
135 
136 	struct task_struct *write_thread;
137 	wait_queue_head_t write_thread_wait;
138 	struct rb_root write_tree;
139 
140 	char *cipher;
141 	char *cipher_string;
142 
143 	struct crypt_iv_operations *iv_gen_ops;
144 	union {
145 		struct iv_essiv_private essiv;
146 		struct iv_benbi_private benbi;
147 		struct iv_lmk_private lmk;
148 		struct iv_tcw_private tcw;
149 	} iv_gen_private;
150 	sector_t iv_offset;
151 	unsigned int iv_size;
152 
153 	/* ESSIV: struct crypto_cipher *essiv_tfm */
154 	void *iv_private;
155 	struct crypto_ablkcipher **tfms;
156 	unsigned tfms_count;
157 
158 	/*
159 	 * Layout of each crypto request:
160 	 *
161 	 *   struct ablkcipher_request
162 	 *      context
163 	 *      padding
164 	 *   struct dm_crypt_request
165 	 *      padding
166 	 *   IV
167 	 *
168 	 * The padding is added so that dm_crypt_request and the IV are
169 	 * correctly aligned.
170 	 */
171 	unsigned int dmreq_start;
172 
173 	unsigned int per_bio_data_size;
174 
175 	unsigned long flags;
176 	unsigned int key_size;
177 	unsigned int key_parts;      /* independent parts in key buffer */
178 	unsigned int key_extra_size; /* additional keys length */
179 	u8 key[0];
180 };
181 
182 #define MIN_IOS        16
183 
184 static void clone_init(struct dm_crypt_io *, struct bio *);
185 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
186 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187 
188 /*
189  * Use this to access cipher attributes that are the same for each CPU.
190  */
any_tfm(struct crypt_config * cc)191 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
192 {
193 	return cc->tfms[0];
194 }
195 
196 /*
197  * Different IV generation algorithms:
198  *
199  * plain: the initial vector is the 32-bit little-endian version of the sector
200  *        number, padded with zeros if necessary.
201  *
202  * plain64: the initial vector is the 64-bit little-endian version of the sector
203  *        number, padded with zeros if necessary.
204  *
205  * essiv: "encrypted sector|salt initial vector", the sector number is
206  *        encrypted with the bulk cipher using a salt as key. The salt
207  *        should be derived from the bulk cipher's key via hashing.
208  *
209  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
210  *        (needed for LRW-32-AES and possible other narrow block modes)
211  *
212  * null: the initial vector is always zero.  Provides compatibility with
213  *       obsolete loop_fish2 devices.  Do not use for new devices.
214  *
215  * lmk:  Compatible implementation of the block chaining mode used
216  *       by the Loop-AES block device encryption system
217  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
218  *       It operates on full 512 byte sectors and uses CBC
219  *       with an IV derived from the sector number, the data and
220  *       optionally extra IV seed.
221  *       This means that after decryption the first block
222  *       of sector must be tweaked according to decrypted data.
223  *       Loop-AES can use three encryption schemes:
224  *         version 1: is plain aes-cbc mode
225  *         version 2: uses 64 multikey scheme with lmk IV generator
226  *         version 3: the same as version 2 with additional IV seed
227  *                   (it uses 65 keys, last key is used as IV seed)
228  *
229  * tcw:  Compatible implementation of the block chaining mode used
230  *       by the TrueCrypt device encryption system (prior to version 4.1).
231  *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
232  *       It operates on full 512 byte sectors and uses CBC
233  *       with an IV derived from initial key and the sector number.
234  *       In addition, whitening value is applied on every sector, whitening
235  *       is calculated from initial key, sector number and mixed using CRC32.
236  *       Note that this encryption scheme is vulnerable to watermarking attacks
237  *       and should be used for old compatible containers access only.
238  *
239  * plumb: unimplemented, see:
240  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
241  */
242 
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)243 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
244 			      struct dm_crypt_request *dmreq)
245 {
246 	memset(iv, 0, cc->iv_size);
247 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
248 
249 	return 0;
250 }
251 
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)252 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
253 				struct dm_crypt_request *dmreq)
254 {
255 	memset(iv, 0, cc->iv_size);
256 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
257 
258 	return 0;
259 }
260 
261 /* Initialise ESSIV - compute salt but no local memory allocations */
crypt_iv_essiv_init(struct crypt_config * cc)262 static int crypt_iv_essiv_init(struct crypt_config *cc)
263 {
264 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
265 	struct hash_desc desc;
266 	struct scatterlist sg;
267 	struct crypto_cipher *essiv_tfm;
268 	int err;
269 
270 	sg_init_one(&sg, cc->key, cc->key_size);
271 	desc.tfm = essiv->hash_tfm;
272 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
273 
274 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
275 	if (err)
276 		return err;
277 
278 	essiv_tfm = cc->iv_private;
279 
280 	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
281 			    crypto_hash_digestsize(essiv->hash_tfm));
282 	if (err)
283 		return err;
284 
285 	return 0;
286 }
287 
288 /* Wipe salt and reset key derived from volume key */
crypt_iv_essiv_wipe(struct crypt_config * cc)289 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
290 {
291 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
292 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
293 	struct crypto_cipher *essiv_tfm;
294 	int r, err = 0;
295 
296 	memset(essiv->salt, 0, salt_size);
297 
298 	essiv_tfm = cc->iv_private;
299 	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
300 	if (r)
301 		err = r;
302 
303 	return err;
304 }
305 
306 /* Set up per cpu cipher state */
setup_essiv_cpu(struct crypt_config * cc,struct dm_target * ti,u8 * salt,unsigned saltsize)307 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
308 					     struct dm_target *ti,
309 					     u8 *salt, unsigned saltsize)
310 {
311 	struct crypto_cipher *essiv_tfm;
312 	int err;
313 
314 	/* Setup the essiv_tfm with the given salt */
315 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
316 	if (IS_ERR(essiv_tfm)) {
317 		ti->error = "Error allocating crypto tfm for ESSIV";
318 		return essiv_tfm;
319 	}
320 
321 	if (crypto_cipher_blocksize(essiv_tfm) !=
322 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
323 		ti->error = "Block size of ESSIV cipher does "
324 			    "not match IV size of block cipher";
325 		crypto_free_cipher(essiv_tfm);
326 		return ERR_PTR(-EINVAL);
327 	}
328 
329 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
330 	if (err) {
331 		ti->error = "Failed to set key for ESSIV cipher";
332 		crypto_free_cipher(essiv_tfm);
333 		return ERR_PTR(err);
334 	}
335 
336 	return essiv_tfm;
337 }
338 
crypt_iv_essiv_dtr(struct crypt_config * cc)339 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
340 {
341 	struct crypto_cipher *essiv_tfm;
342 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343 
344 	crypto_free_hash(essiv->hash_tfm);
345 	essiv->hash_tfm = NULL;
346 
347 	kzfree(essiv->salt);
348 	essiv->salt = NULL;
349 
350 	essiv_tfm = cc->iv_private;
351 
352 	if (essiv_tfm)
353 		crypto_free_cipher(essiv_tfm);
354 
355 	cc->iv_private = NULL;
356 }
357 
crypt_iv_essiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)358 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
359 			      const char *opts)
360 {
361 	struct crypto_cipher *essiv_tfm = NULL;
362 	struct crypto_hash *hash_tfm = NULL;
363 	u8 *salt = NULL;
364 	int err;
365 
366 	if (!opts) {
367 		ti->error = "Digest algorithm missing for ESSIV mode";
368 		return -EINVAL;
369 	}
370 
371 	/* Allocate hash algorithm */
372 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
373 	if (IS_ERR(hash_tfm)) {
374 		ti->error = "Error initializing ESSIV hash";
375 		err = PTR_ERR(hash_tfm);
376 		goto bad;
377 	}
378 
379 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
380 	if (!salt) {
381 		ti->error = "Error kmallocing salt storage in ESSIV";
382 		err = -ENOMEM;
383 		goto bad;
384 	}
385 
386 	cc->iv_gen_private.essiv.salt = salt;
387 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
388 
389 	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
390 				crypto_hash_digestsize(hash_tfm));
391 	if (IS_ERR(essiv_tfm)) {
392 		crypt_iv_essiv_dtr(cc);
393 		return PTR_ERR(essiv_tfm);
394 	}
395 	cc->iv_private = essiv_tfm;
396 
397 	return 0;
398 
399 bad:
400 	if (hash_tfm && !IS_ERR(hash_tfm))
401 		crypto_free_hash(hash_tfm);
402 	kfree(salt);
403 	return err;
404 }
405 
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)406 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
407 			      struct dm_crypt_request *dmreq)
408 {
409 	struct crypto_cipher *essiv_tfm = cc->iv_private;
410 
411 	memset(iv, 0, cc->iv_size);
412 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
413 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
414 
415 	return 0;
416 }
417 
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)418 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
419 			      const char *opts)
420 {
421 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
422 	int log = ilog2(bs);
423 
424 	/* we need to calculate how far we must shift the sector count
425 	 * to get the cipher block count, we use this shift in _gen */
426 
427 	if (1 << log != bs) {
428 		ti->error = "cypher blocksize is not a power of 2";
429 		return -EINVAL;
430 	}
431 
432 	if (log > 9) {
433 		ti->error = "cypher blocksize is > 512";
434 		return -EINVAL;
435 	}
436 
437 	cc->iv_gen_private.benbi.shift = 9 - log;
438 
439 	return 0;
440 }
441 
crypt_iv_benbi_dtr(struct crypt_config * cc)442 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
443 {
444 }
445 
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)446 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
447 			      struct dm_crypt_request *dmreq)
448 {
449 	__be64 val;
450 
451 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
452 
453 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
454 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
455 
456 	return 0;
457 }
458 
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)459 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
460 			     struct dm_crypt_request *dmreq)
461 {
462 	memset(iv, 0, cc->iv_size);
463 
464 	return 0;
465 }
466 
crypt_iv_lmk_dtr(struct crypt_config * cc)467 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
468 {
469 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470 
471 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
472 		crypto_free_shash(lmk->hash_tfm);
473 	lmk->hash_tfm = NULL;
474 
475 	kzfree(lmk->seed);
476 	lmk->seed = NULL;
477 }
478 
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)479 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
480 			    const char *opts)
481 {
482 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
483 
484 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
485 	if (IS_ERR(lmk->hash_tfm)) {
486 		ti->error = "Error initializing LMK hash";
487 		return PTR_ERR(lmk->hash_tfm);
488 	}
489 
490 	/* No seed in LMK version 2 */
491 	if (cc->key_parts == cc->tfms_count) {
492 		lmk->seed = NULL;
493 		return 0;
494 	}
495 
496 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
497 	if (!lmk->seed) {
498 		crypt_iv_lmk_dtr(cc);
499 		ti->error = "Error kmallocing seed storage in LMK";
500 		return -ENOMEM;
501 	}
502 
503 	return 0;
504 }
505 
crypt_iv_lmk_init(struct crypt_config * cc)506 static int crypt_iv_lmk_init(struct crypt_config *cc)
507 {
508 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
509 	int subkey_size = cc->key_size / cc->key_parts;
510 
511 	/* LMK seed is on the position of LMK_KEYS + 1 key */
512 	if (lmk->seed)
513 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
514 		       crypto_shash_digestsize(lmk->hash_tfm));
515 
516 	return 0;
517 }
518 
crypt_iv_lmk_wipe(struct crypt_config * cc)519 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
520 {
521 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
522 
523 	if (lmk->seed)
524 		memset(lmk->seed, 0, LMK_SEED_SIZE);
525 
526 	return 0;
527 }
528 
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)529 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
530 			    struct dm_crypt_request *dmreq,
531 			    u8 *data)
532 {
533 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534 	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
535 	struct md5_state md5state;
536 	__le32 buf[4];
537 	int i, r;
538 
539 	desc->tfm = lmk->hash_tfm;
540 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
541 
542 	r = crypto_shash_init(desc);
543 	if (r)
544 		return r;
545 
546 	if (lmk->seed) {
547 		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
548 		if (r)
549 			return r;
550 	}
551 
552 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
553 	r = crypto_shash_update(desc, data + 16, 16 * 31);
554 	if (r)
555 		return r;
556 
557 	/* Sector is cropped to 56 bits here */
558 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
559 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
560 	buf[2] = cpu_to_le32(4024);
561 	buf[3] = 0;
562 	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
563 	if (r)
564 		return r;
565 
566 	/* No MD5 padding here */
567 	r = crypto_shash_export(desc, &md5state);
568 	if (r)
569 		return r;
570 
571 	for (i = 0; i < MD5_HASH_WORDS; i++)
572 		__cpu_to_le32s(&md5state.hash[i]);
573 	memcpy(iv, &md5state.hash, cc->iv_size);
574 
575 	return 0;
576 }
577 
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)578 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
579 			    struct dm_crypt_request *dmreq)
580 {
581 	u8 *src;
582 	int r = 0;
583 
584 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
585 		src = kmap_atomic(sg_page(&dmreq->sg_in));
586 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
587 		kunmap_atomic(src);
588 	} else
589 		memset(iv, 0, cc->iv_size);
590 
591 	return r;
592 }
593 
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)594 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
595 			     struct dm_crypt_request *dmreq)
596 {
597 	u8 *dst;
598 	int r;
599 
600 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
601 		return 0;
602 
603 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
604 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
605 
606 	/* Tweak the first block of plaintext sector */
607 	if (!r)
608 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
609 
610 	kunmap_atomic(dst);
611 	return r;
612 }
613 
crypt_iv_tcw_dtr(struct crypt_config * cc)614 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
615 {
616 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617 
618 	kzfree(tcw->iv_seed);
619 	tcw->iv_seed = NULL;
620 	kzfree(tcw->whitening);
621 	tcw->whitening = NULL;
622 
623 	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
624 		crypto_free_shash(tcw->crc32_tfm);
625 	tcw->crc32_tfm = NULL;
626 }
627 
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)628 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
629 			    const char *opts)
630 {
631 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
632 
633 	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
634 		ti->error = "Wrong key size for TCW";
635 		return -EINVAL;
636 	}
637 
638 	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
639 	if (IS_ERR(tcw->crc32_tfm)) {
640 		ti->error = "Error initializing CRC32 in TCW";
641 		return PTR_ERR(tcw->crc32_tfm);
642 	}
643 
644 	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
645 	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
646 	if (!tcw->iv_seed || !tcw->whitening) {
647 		crypt_iv_tcw_dtr(cc);
648 		ti->error = "Error allocating seed storage in TCW";
649 		return -ENOMEM;
650 	}
651 
652 	return 0;
653 }
654 
crypt_iv_tcw_init(struct crypt_config * cc)655 static int crypt_iv_tcw_init(struct crypt_config *cc)
656 {
657 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
658 	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
659 
660 	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
661 	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
662 	       TCW_WHITENING_SIZE);
663 
664 	return 0;
665 }
666 
crypt_iv_tcw_wipe(struct crypt_config * cc)667 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
668 {
669 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
670 
671 	memset(tcw->iv_seed, 0, cc->iv_size);
672 	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
673 
674 	return 0;
675 }
676 
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)677 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
678 				  struct dm_crypt_request *dmreq,
679 				  u8 *data)
680 {
681 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
682 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
683 	u8 buf[TCW_WHITENING_SIZE];
684 	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
685 	int i, r;
686 
687 	/* xor whitening with sector number */
688 	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
689 	crypto_xor(buf, (u8 *)&sector, 8);
690 	crypto_xor(&buf[8], (u8 *)&sector, 8);
691 
692 	/* calculate crc32 for every 32bit part and xor it */
693 	desc->tfm = tcw->crc32_tfm;
694 	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
695 	for (i = 0; i < 4; i++) {
696 		r = crypto_shash_init(desc);
697 		if (r)
698 			goto out;
699 		r = crypto_shash_update(desc, &buf[i * 4], 4);
700 		if (r)
701 			goto out;
702 		r = crypto_shash_final(desc, &buf[i * 4]);
703 		if (r)
704 			goto out;
705 	}
706 	crypto_xor(&buf[0], &buf[12], 4);
707 	crypto_xor(&buf[4], &buf[8], 4);
708 
709 	/* apply whitening (8 bytes) to whole sector */
710 	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
711 		crypto_xor(data + i * 8, buf, 8);
712 out:
713 	memzero_explicit(buf, sizeof(buf));
714 	return r;
715 }
716 
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)717 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
718 			    struct dm_crypt_request *dmreq)
719 {
720 	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
721 	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
722 	u8 *src;
723 	int r = 0;
724 
725 	/* Remove whitening from ciphertext */
726 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
727 		src = kmap_atomic(sg_page(&dmreq->sg_in));
728 		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
729 		kunmap_atomic(src);
730 	}
731 
732 	/* Calculate IV */
733 	memcpy(iv, tcw->iv_seed, cc->iv_size);
734 	crypto_xor(iv, (u8 *)&sector, 8);
735 	if (cc->iv_size > 8)
736 		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
737 
738 	return r;
739 }
740 
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)741 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
742 			     struct dm_crypt_request *dmreq)
743 {
744 	u8 *dst;
745 	int r;
746 
747 	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
748 		return 0;
749 
750 	/* Apply whitening on ciphertext */
751 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
752 	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
753 	kunmap_atomic(dst);
754 
755 	return r;
756 }
757 
758 static struct crypt_iv_operations crypt_iv_plain_ops = {
759 	.generator = crypt_iv_plain_gen
760 };
761 
762 static struct crypt_iv_operations crypt_iv_plain64_ops = {
763 	.generator = crypt_iv_plain64_gen
764 };
765 
766 static struct crypt_iv_operations crypt_iv_essiv_ops = {
767 	.ctr       = crypt_iv_essiv_ctr,
768 	.dtr       = crypt_iv_essiv_dtr,
769 	.init      = crypt_iv_essiv_init,
770 	.wipe      = crypt_iv_essiv_wipe,
771 	.generator = crypt_iv_essiv_gen
772 };
773 
774 static struct crypt_iv_operations crypt_iv_benbi_ops = {
775 	.ctr	   = crypt_iv_benbi_ctr,
776 	.dtr	   = crypt_iv_benbi_dtr,
777 	.generator = crypt_iv_benbi_gen
778 };
779 
780 static struct crypt_iv_operations crypt_iv_null_ops = {
781 	.generator = crypt_iv_null_gen
782 };
783 
784 static struct crypt_iv_operations crypt_iv_lmk_ops = {
785 	.ctr	   = crypt_iv_lmk_ctr,
786 	.dtr	   = crypt_iv_lmk_dtr,
787 	.init	   = crypt_iv_lmk_init,
788 	.wipe	   = crypt_iv_lmk_wipe,
789 	.generator = crypt_iv_lmk_gen,
790 	.post	   = crypt_iv_lmk_post
791 };
792 
793 static struct crypt_iv_operations crypt_iv_tcw_ops = {
794 	.ctr	   = crypt_iv_tcw_ctr,
795 	.dtr	   = crypt_iv_tcw_dtr,
796 	.init	   = crypt_iv_tcw_init,
797 	.wipe	   = crypt_iv_tcw_wipe,
798 	.generator = crypt_iv_tcw_gen,
799 	.post	   = crypt_iv_tcw_post
800 };
801 
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)802 static void crypt_convert_init(struct crypt_config *cc,
803 			       struct convert_context *ctx,
804 			       struct bio *bio_out, struct bio *bio_in,
805 			       sector_t sector)
806 {
807 	ctx->bio_in = bio_in;
808 	ctx->bio_out = bio_out;
809 	if (bio_in)
810 		ctx->iter_in = bio_in->bi_iter;
811 	if (bio_out)
812 		ctx->iter_out = bio_out->bi_iter;
813 	ctx->cc_sector = sector + cc->iv_offset;
814 	init_completion(&ctx->restart);
815 }
816 
dmreq_of_req(struct crypt_config * cc,struct ablkcipher_request * req)817 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
818 					     struct ablkcipher_request *req)
819 {
820 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
821 }
822 
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)823 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
824 					       struct dm_crypt_request *dmreq)
825 {
826 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
827 }
828 
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)829 static u8 *iv_of_dmreq(struct crypt_config *cc,
830 		       struct dm_crypt_request *dmreq)
831 {
832 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
833 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
834 }
835 
crypt_convert_block(struct crypt_config * cc,struct convert_context * ctx,struct ablkcipher_request * req)836 static int crypt_convert_block(struct crypt_config *cc,
837 			       struct convert_context *ctx,
838 			       struct ablkcipher_request *req)
839 {
840 	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
841 	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
842 	struct dm_crypt_request *dmreq;
843 	u8 *iv;
844 	int r;
845 
846 	dmreq = dmreq_of_req(cc, req);
847 	iv = iv_of_dmreq(cc, dmreq);
848 
849 	dmreq->iv_sector = ctx->cc_sector;
850 	dmreq->ctx = ctx;
851 	sg_init_table(&dmreq->sg_in, 1);
852 	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
853 		    bv_in.bv_offset);
854 
855 	sg_init_table(&dmreq->sg_out, 1);
856 	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
857 		    bv_out.bv_offset);
858 
859 	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
860 	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
861 
862 	if (cc->iv_gen_ops) {
863 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
864 		if (r < 0)
865 			return r;
866 	}
867 
868 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
869 				     1 << SECTOR_SHIFT, iv);
870 
871 	if (bio_data_dir(ctx->bio_in) == WRITE)
872 		r = crypto_ablkcipher_encrypt(req);
873 	else
874 		r = crypto_ablkcipher_decrypt(req);
875 
876 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
877 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
878 
879 	return r;
880 }
881 
882 static void kcryptd_async_done(struct crypto_async_request *async_req,
883 			       int error);
884 
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)885 static void crypt_alloc_req(struct crypt_config *cc,
886 			    struct convert_context *ctx)
887 {
888 	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
889 
890 	if (!ctx->req)
891 		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
892 
893 	ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
894 	ablkcipher_request_set_callback(ctx->req,
895 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
896 	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
897 }
898 
crypt_free_req(struct crypt_config * cc,struct ablkcipher_request * req,struct bio * base_bio)899 static void crypt_free_req(struct crypt_config *cc,
900 			   struct ablkcipher_request *req, struct bio *base_bio)
901 {
902 	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
903 
904 	if ((struct ablkcipher_request *)(io + 1) != req)
905 		mempool_free(req, cc->req_pool);
906 }
907 
908 /*
909  * Encrypt / decrypt data from one bio to another one (can be the same one)
910  */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx)911 static int crypt_convert(struct crypt_config *cc,
912 			 struct convert_context *ctx)
913 {
914 	int r;
915 
916 	atomic_set(&ctx->cc_pending, 1);
917 
918 	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
919 
920 		crypt_alloc_req(cc, ctx);
921 
922 		atomic_inc(&ctx->cc_pending);
923 
924 		r = crypt_convert_block(cc, ctx, ctx->req);
925 
926 		switch (r) {
927 		/* async */
928 		case -EBUSY:
929 			wait_for_completion(&ctx->restart);
930 			reinit_completion(&ctx->restart);
931 			/* fall through*/
932 		case -EINPROGRESS:
933 			ctx->req = NULL;
934 			ctx->cc_sector++;
935 			continue;
936 
937 		/* sync */
938 		case 0:
939 			atomic_dec(&ctx->cc_pending);
940 			ctx->cc_sector++;
941 			cond_resched();
942 			continue;
943 
944 		/* error */
945 		default:
946 			atomic_dec(&ctx->cc_pending);
947 			return r;
948 		}
949 	}
950 
951 	return 0;
952 }
953 
954 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
955 
956 /*
957  * Generate a new unfragmented bio with the given size
958  * This should never violate the device limitations (but only because
959  * max_segment_size is being constrained to PAGE_SIZE).
960  *
961  * This function may be called concurrently. If we allocate from the mempool
962  * concurrently, there is a possibility of deadlock. For example, if we have
963  * mempool of 256 pages, two processes, each wanting 256, pages allocate from
964  * the mempool concurrently, it may deadlock in a situation where both processes
965  * have allocated 128 pages and the mempool is exhausted.
966  *
967  * In order to avoid this scenario we allocate the pages under a mutex.
968  *
969  * In order to not degrade performance with excessive locking, we try
970  * non-blocking allocations without a mutex first but on failure we fallback
971  * to blocking allocations with a mutex.
972  */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned size)973 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
974 {
975 	struct crypt_config *cc = io->cc;
976 	struct bio *clone;
977 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
978 	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
979 	unsigned i, len, remaining_size;
980 	struct page *page;
981 	struct bio_vec *bvec;
982 
983 retry:
984 	if (unlikely(gfp_mask & __GFP_WAIT))
985 		mutex_lock(&cc->bio_alloc_lock);
986 
987 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
988 	if (!clone)
989 		goto return_clone;
990 
991 	clone_init(io, clone);
992 
993 	remaining_size = size;
994 
995 	for (i = 0; i < nr_iovecs; i++) {
996 		page = mempool_alloc(cc->page_pool, gfp_mask);
997 		if (!page) {
998 			crypt_free_buffer_pages(cc, clone);
999 			bio_put(clone);
1000 			gfp_mask |= __GFP_WAIT;
1001 			goto retry;
1002 		}
1003 
1004 		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1005 
1006 		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1007 		bvec->bv_page = page;
1008 		bvec->bv_len = len;
1009 		bvec->bv_offset = 0;
1010 
1011 		clone->bi_iter.bi_size += len;
1012 
1013 		remaining_size -= len;
1014 	}
1015 
1016 return_clone:
1017 	if (unlikely(gfp_mask & __GFP_WAIT))
1018 		mutex_unlock(&cc->bio_alloc_lock);
1019 
1020 	return clone;
1021 }
1022 
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1023 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1024 {
1025 	unsigned int i;
1026 	struct bio_vec *bv;
1027 
1028 	bio_for_each_segment_all(bv, clone, i) {
1029 		BUG_ON(!bv->bv_page);
1030 		mempool_free(bv->bv_page, cc->page_pool);
1031 		bv->bv_page = NULL;
1032 	}
1033 }
1034 
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1035 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1036 			  struct bio *bio, sector_t sector)
1037 {
1038 	io->cc = cc;
1039 	io->base_bio = bio;
1040 	io->sector = sector;
1041 	io->error = 0;
1042 	io->ctx.req = NULL;
1043 	atomic_set(&io->io_pending, 0);
1044 }
1045 
crypt_inc_pending(struct dm_crypt_io * io)1046 static void crypt_inc_pending(struct dm_crypt_io *io)
1047 {
1048 	atomic_inc(&io->io_pending);
1049 }
1050 
1051 /*
1052  * One of the bios was finished. Check for completion of
1053  * the whole request and correctly clean up the buffer.
1054  */
crypt_dec_pending(struct dm_crypt_io * io)1055 static void crypt_dec_pending(struct dm_crypt_io *io)
1056 {
1057 	struct crypt_config *cc = io->cc;
1058 	struct bio *base_bio = io->base_bio;
1059 	int error = io->error;
1060 
1061 	if (!atomic_dec_and_test(&io->io_pending))
1062 		return;
1063 
1064 	if (io->ctx.req)
1065 		crypt_free_req(cc, io->ctx.req, base_bio);
1066 
1067 	bio_endio(base_bio, error);
1068 }
1069 
1070 /*
1071  * kcryptd/kcryptd_io:
1072  *
1073  * Needed because it would be very unwise to do decryption in an
1074  * interrupt context.
1075  *
1076  * kcryptd performs the actual encryption or decryption.
1077  *
1078  * kcryptd_io performs the IO submission.
1079  *
1080  * They must be separated as otherwise the final stages could be
1081  * starved by new requests which can block in the first stages due
1082  * to memory allocation.
1083  *
1084  * The work is done per CPU global for all dm-crypt instances.
1085  * They should not depend on each other and do not block.
1086  */
crypt_endio(struct bio * clone,int error)1087 static void crypt_endio(struct bio *clone, int error)
1088 {
1089 	struct dm_crypt_io *io = clone->bi_private;
1090 	struct crypt_config *cc = io->cc;
1091 	unsigned rw = bio_data_dir(clone);
1092 
1093 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1094 		error = -EIO;
1095 
1096 	/*
1097 	 * free the processed pages
1098 	 */
1099 	if (rw == WRITE)
1100 		crypt_free_buffer_pages(cc, clone);
1101 
1102 	bio_put(clone);
1103 
1104 	if (rw == READ && !error) {
1105 		kcryptd_queue_crypt(io);
1106 		return;
1107 	}
1108 
1109 	if (unlikely(error))
1110 		io->error = error;
1111 
1112 	crypt_dec_pending(io);
1113 }
1114 
clone_init(struct dm_crypt_io * io,struct bio * clone)1115 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1116 {
1117 	struct crypt_config *cc = io->cc;
1118 
1119 	clone->bi_private = io;
1120 	clone->bi_end_io  = crypt_endio;
1121 	clone->bi_bdev    = cc->dev->bdev;
1122 	clone->bi_rw      = io->base_bio->bi_rw;
1123 }
1124 
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1125 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1126 {
1127 	struct crypt_config *cc = io->cc;
1128 	struct bio *clone;
1129 
1130 	/*
1131 	 * We need the original biovec array in order to decrypt
1132 	 * the whole bio data *afterwards* -- thanks to immutable
1133 	 * biovecs we don't need to worry about the block layer
1134 	 * modifying the biovec array; so leverage bio_clone_fast().
1135 	 */
1136 	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1137 	if (!clone)
1138 		return 1;
1139 
1140 	crypt_inc_pending(io);
1141 
1142 	clone_init(io, clone);
1143 	clone->bi_iter.bi_sector = cc->start + io->sector;
1144 
1145 	generic_make_request(clone);
1146 	return 0;
1147 }
1148 
kcryptd_io_read_work(struct work_struct * work)1149 static void kcryptd_io_read_work(struct work_struct *work)
1150 {
1151 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1152 
1153 	crypt_inc_pending(io);
1154 	if (kcryptd_io_read(io, GFP_NOIO))
1155 		io->error = -ENOMEM;
1156 	crypt_dec_pending(io);
1157 }
1158 
kcryptd_queue_read(struct dm_crypt_io * io)1159 static void kcryptd_queue_read(struct dm_crypt_io *io)
1160 {
1161 	struct crypt_config *cc = io->cc;
1162 
1163 	INIT_WORK(&io->work, kcryptd_io_read_work);
1164 	queue_work(cc->io_queue, &io->work);
1165 }
1166 
kcryptd_io_write(struct dm_crypt_io * io)1167 static void kcryptd_io_write(struct dm_crypt_io *io)
1168 {
1169 	struct bio *clone = io->ctx.bio_out;
1170 
1171 	generic_make_request(clone);
1172 }
1173 
1174 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1175 
dmcrypt_write(void * data)1176 static int dmcrypt_write(void *data)
1177 {
1178 	struct crypt_config *cc = data;
1179 	struct dm_crypt_io *io;
1180 
1181 	while (1) {
1182 		struct rb_root write_tree;
1183 		struct blk_plug plug;
1184 
1185 		DECLARE_WAITQUEUE(wait, current);
1186 
1187 		spin_lock_irq(&cc->write_thread_wait.lock);
1188 continue_locked:
1189 
1190 		if (!RB_EMPTY_ROOT(&cc->write_tree))
1191 			goto pop_from_list;
1192 
1193 		__set_current_state(TASK_INTERRUPTIBLE);
1194 		__add_wait_queue(&cc->write_thread_wait, &wait);
1195 
1196 		spin_unlock_irq(&cc->write_thread_wait.lock);
1197 
1198 		if (unlikely(kthread_should_stop())) {
1199 			set_task_state(current, TASK_RUNNING);
1200 			remove_wait_queue(&cc->write_thread_wait, &wait);
1201 			break;
1202 		}
1203 
1204 		schedule();
1205 
1206 		set_task_state(current, TASK_RUNNING);
1207 		spin_lock_irq(&cc->write_thread_wait.lock);
1208 		__remove_wait_queue(&cc->write_thread_wait, &wait);
1209 		goto continue_locked;
1210 
1211 pop_from_list:
1212 		write_tree = cc->write_tree;
1213 		cc->write_tree = RB_ROOT;
1214 		spin_unlock_irq(&cc->write_thread_wait.lock);
1215 
1216 		BUG_ON(rb_parent(write_tree.rb_node));
1217 
1218 		/*
1219 		 * Note: we cannot walk the tree here with rb_next because
1220 		 * the structures may be freed when kcryptd_io_write is called.
1221 		 */
1222 		blk_start_plug(&plug);
1223 		do {
1224 			io = crypt_io_from_node(rb_first(&write_tree));
1225 			rb_erase(&io->rb_node, &write_tree);
1226 			kcryptd_io_write(io);
1227 		} while (!RB_EMPTY_ROOT(&write_tree));
1228 		blk_finish_plug(&plug);
1229 	}
1230 	return 0;
1231 }
1232 
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1233 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1234 {
1235 	struct bio *clone = io->ctx.bio_out;
1236 	struct crypt_config *cc = io->cc;
1237 	unsigned long flags;
1238 	sector_t sector;
1239 	struct rb_node **rbp, *parent;
1240 
1241 	if (unlikely(io->error < 0)) {
1242 		crypt_free_buffer_pages(cc, clone);
1243 		bio_put(clone);
1244 		crypt_dec_pending(io);
1245 		return;
1246 	}
1247 
1248 	/* crypt_convert should have filled the clone bio */
1249 	BUG_ON(io->ctx.iter_out.bi_size);
1250 
1251 	clone->bi_iter.bi_sector = cc->start + io->sector;
1252 
1253 	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1254 		generic_make_request(clone);
1255 		return;
1256 	}
1257 
1258 	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1259 	rbp = &cc->write_tree.rb_node;
1260 	parent = NULL;
1261 	sector = io->sector;
1262 	while (*rbp) {
1263 		parent = *rbp;
1264 		if (sector < crypt_io_from_node(parent)->sector)
1265 			rbp = &(*rbp)->rb_left;
1266 		else
1267 			rbp = &(*rbp)->rb_right;
1268 	}
1269 	rb_link_node(&io->rb_node, parent, rbp);
1270 	rb_insert_color(&io->rb_node, &cc->write_tree);
1271 
1272 	wake_up_locked(&cc->write_thread_wait);
1273 	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1274 }
1275 
kcryptd_crypt_write_convert(struct dm_crypt_io * io)1276 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1277 {
1278 	struct crypt_config *cc = io->cc;
1279 	struct bio *clone;
1280 	int crypt_finished;
1281 	sector_t sector = io->sector;
1282 	int r;
1283 
1284 	/*
1285 	 * Prevent io from disappearing until this function completes.
1286 	 */
1287 	crypt_inc_pending(io);
1288 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1289 
1290 	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1291 	if (unlikely(!clone)) {
1292 		io->error = -EIO;
1293 		goto dec;
1294 	}
1295 
1296 	io->ctx.bio_out = clone;
1297 	io->ctx.iter_out = clone->bi_iter;
1298 
1299 	sector += bio_sectors(clone);
1300 
1301 	crypt_inc_pending(io);
1302 	r = crypt_convert(cc, &io->ctx);
1303 	if (r)
1304 		io->error = -EIO;
1305 	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1306 
1307 	/* Encryption was already finished, submit io now */
1308 	if (crypt_finished) {
1309 		kcryptd_crypt_write_io_submit(io, 0);
1310 		io->sector = sector;
1311 	}
1312 
1313 dec:
1314 	crypt_dec_pending(io);
1315 }
1316 
kcryptd_crypt_read_done(struct dm_crypt_io * io)1317 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1318 {
1319 	crypt_dec_pending(io);
1320 }
1321 
kcryptd_crypt_read_convert(struct dm_crypt_io * io)1322 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1323 {
1324 	struct crypt_config *cc = io->cc;
1325 	int r = 0;
1326 
1327 	crypt_inc_pending(io);
1328 
1329 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1330 			   io->sector);
1331 
1332 	r = crypt_convert(cc, &io->ctx);
1333 	if (r < 0)
1334 		io->error = -EIO;
1335 
1336 	if (atomic_dec_and_test(&io->ctx.cc_pending))
1337 		kcryptd_crypt_read_done(io);
1338 
1339 	crypt_dec_pending(io);
1340 }
1341 
kcryptd_async_done(struct crypto_async_request * async_req,int error)1342 static void kcryptd_async_done(struct crypto_async_request *async_req,
1343 			       int error)
1344 {
1345 	struct dm_crypt_request *dmreq = async_req->data;
1346 	struct convert_context *ctx = dmreq->ctx;
1347 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1348 	struct crypt_config *cc = io->cc;
1349 
1350 	if (error == -EINPROGRESS) {
1351 		complete(&ctx->restart);
1352 		return;
1353 	}
1354 
1355 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1356 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1357 
1358 	if (error < 0)
1359 		io->error = -EIO;
1360 
1361 	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1362 
1363 	if (!atomic_dec_and_test(&ctx->cc_pending))
1364 		return;
1365 
1366 	if (bio_data_dir(io->base_bio) == READ)
1367 		kcryptd_crypt_read_done(io);
1368 	else
1369 		kcryptd_crypt_write_io_submit(io, 1);
1370 }
1371 
kcryptd_crypt(struct work_struct * work)1372 static void kcryptd_crypt(struct work_struct *work)
1373 {
1374 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1375 
1376 	if (bio_data_dir(io->base_bio) == READ)
1377 		kcryptd_crypt_read_convert(io);
1378 	else
1379 		kcryptd_crypt_write_convert(io);
1380 }
1381 
kcryptd_queue_crypt(struct dm_crypt_io * io)1382 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1383 {
1384 	struct crypt_config *cc = io->cc;
1385 
1386 	INIT_WORK(&io->work, kcryptd_crypt);
1387 	queue_work(cc->crypt_queue, &io->work);
1388 }
1389 
1390 /*
1391  * Decode key from its hex representation
1392  */
crypt_decode_key(u8 * key,char * hex,unsigned int size)1393 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1394 {
1395 	char buffer[3];
1396 	unsigned int i;
1397 
1398 	buffer[2] = '\0';
1399 
1400 	for (i = 0; i < size; i++) {
1401 		buffer[0] = *hex++;
1402 		buffer[1] = *hex++;
1403 
1404 		if (kstrtou8(buffer, 16, &key[i]))
1405 			return -EINVAL;
1406 	}
1407 
1408 	if (*hex != '\0')
1409 		return -EINVAL;
1410 
1411 	return 0;
1412 }
1413 
crypt_free_tfms(struct crypt_config * cc)1414 static void crypt_free_tfms(struct crypt_config *cc)
1415 {
1416 	unsigned i;
1417 
1418 	if (!cc->tfms)
1419 		return;
1420 
1421 	for (i = 0; i < cc->tfms_count; i++)
1422 		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1423 			crypto_free_ablkcipher(cc->tfms[i]);
1424 			cc->tfms[i] = NULL;
1425 		}
1426 
1427 	kfree(cc->tfms);
1428 	cc->tfms = NULL;
1429 }
1430 
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)1431 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1432 {
1433 	unsigned i;
1434 	int err;
1435 
1436 	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1437 			   GFP_KERNEL);
1438 	if (!cc->tfms)
1439 		return -ENOMEM;
1440 
1441 	for (i = 0; i < cc->tfms_count; i++) {
1442 		cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1443 		if (IS_ERR(cc->tfms[i])) {
1444 			err = PTR_ERR(cc->tfms[i]);
1445 			crypt_free_tfms(cc);
1446 			return err;
1447 		}
1448 	}
1449 
1450 	return 0;
1451 }
1452 
crypt_setkey_allcpus(struct crypt_config * cc)1453 static int crypt_setkey_allcpus(struct crypt_config *cc)
1454 {
1455 	unsigned subkey_size;
1456 	int err = 0, i, r;
1457 
1458 	/* Ignore extra keys (which are used for IV etc) */
1459 	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1460 
1461 	for (i = 0; i < cc->tfms_count; i++) {
1462 		r = crypto_ablkcipher_setkey(cc->tfms[i],
1463 					     cc->key + (i * subkey_size),
1464 					     subkey_size);
1465 		if (r)
1466 			err = r;
1467 	}
1468 
1469 	return err;
1470 }
1471 
crypt_set_key(struct crypt_config * cc,char * key)1472 static int crypt_set_key(struct crypt_config *cc, char *key)
1473 {
1474 	int r = -EINVAL;
1475 	int key_string_len = strlen(key);
1476 
1477 	/* The key size may not be changed. */
1478 	if (cc->key_size != (key_string_len >> 1))
1479 		goto out;
1480 
1481 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1482 	if (!cc->key_size && strcmp(key, "-"))
1483 		goto out;
1484 
1485 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1486 		goto out;
1487 
1488 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1489 
1490 	r = crypt_setkey_allcpus(cc);
1491 
1492 out:
1493 	/* Hex key string not needed after here, so wipe it. */
1494 	memset(key, '0', key_string_len);
1495 
1496 	return r;
1497 }
1498 
crypt_wipe_key(struct crypt_config * cc)1499 static int crypt_wipe_key(struct crypt_config *cc)
1500 {
1501 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1502 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1503 
1504 	return crypt_setkey_allcpus(cc);
1505 }
1506 
crypt_dtr(struct dm_target * ti)1507 static void crypt_dtr(struct dm_target *ti)
1508 {
1509 	struct crypt_config *cc = ti->private;
1510 
1511 	ti->private = NULL;
1512 
1513 	if (!cc)
1514 		return;
1515 
1516 	if (cc->write_thread)
1517 		kthread_stop(cc->write_thread);
1518 
1519 	if (cc->io_queue)
1520 		destroy_workqueue(cc->io_queue);
1521 	if (cc->crypt_queue)
1522 		destroy_workqueue(cc->crypt_queue);
1523 
1524 	crypt_free_tfms(cc);
1525 
1526 	if (cc->bs)
1527 		bioset_free(cc->bs);
1528 
1529 	if (cc->page_pool)
1530 		mempool_destroy(cc->page_pool);
1531 	if (cc->req_pool)
1532 		mempool_destroy(cc->req_pool);
1533 
1534 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1535 		cc->iv_gen_ops->dtr(cc);
1536 
1537 	if (cc->dev)
1538 		dm_put_device(ti, cc->dev);
1539 
1540 	kzfree(cc->cipher);
1541 	kzfree(cc->cipher_string);
1542 
1543 	/* Must zero key material before freeing */
1544 	kzfree(cc);
1545 }
1546 
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)1547 static int crypt_ctr_cipher(struct dm_target *ti,
1548 			    char *cipher_in, char *key)
1549 {
1550 	struct crypt_config *cc = ti->private;
1551 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1552 	char *cipher_api = NULL;
1553 	int ret = -EINVAL;
1554 	char dummy;
1555 
1556 	/* Convert to crypto api definition? */
1557 	if (strchr(cipher_in, '(')) {
1558 		ti->error = "Bad cipher specification";
1559 		return -EINVAL;
1560 	}
1561 
1562 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1563 	if (!cc->cipher_string)
1564 		goto bad_mem;
1565 
1566 	/*
1567 	 * Legacy dm-crypt cipher specification
1568 	 * cipher[:keycount]-mode-iv:ivopts
1569 	 */
1570 	tmp = cipher_in;
1571 	keycount = strsep(&tmp, "-");
1572 	cipher = strsep(&keycount, ":");
1573 
1574 	if (!keycount)
1575 		cc->tfms_count = 1;
1576 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1577 		 !is_power_of_2(cc->tfms_count)) {
1578 		ti->error = "Bad cipher key count specification";
1579 		return -EINVAL;
1580 	}
1581 	cc->key_parts = cc->tfms_count;
1582 	cc->key_extra_size = 0;
1583 
1584 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1585 	if (!cc->cipher)
1586 		goto bad_mem;
1587 
1588 	chainmode = strsep(&tmp, "-");
1589 	ivopts = strsep(&tmp, "-");
1590 	ivmode = strsep(&ivopts, ":");
1591 
1592 	if (tmp)
1593 		DMWARN("Ignoring unexpected additional cipher options");
1594 
1595 	/*
1596 	 * For compatibility with the original dm-crypt mapping format, if
1597 	 * only the cipher name is supplied, use cbc-plain.
1598 	 */
1599 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1600 		chainmode = "cbc";
1601 		ivmode = "plain";
1602 	}
1603 
1604 	if (strcmp(chainmode, "ecb") && !ivmode) {
1605 		ti->error = "IV mechanism required";
1606 		return -EINVAL;
1607 	}
1608 
1609 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1610 	if (!cipher_api)
1611 		goto bad_mem;
1612 
1613 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1614 		       "%s(%s)", chainmode, cipher);
1615 	if (ret < 0) {
1616 		kfree(cipher_api);
1617 		goto bad_mem;
1618 	}
1619 
1620 	/* Allocate cipher */
1621 	ret = crypt_alloc_tfms(cc, cipher_api);
1622 	if (ret < 0) {
1623 		ti->error = "Error allocating crypto tfm";
1624 		goto bad;
1625 	}
1626 
1627 	/* Initialize IV */
1628 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1629 	if (cc->iv_size)
1630 		/* at least a 64 bit sector number should fit in our buffer */
1631 		cc->iv_size = max(cc->iv_size,
1632 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1633 	else if (ivmode) {
1634 		DMWARN("Selected cipher does not support IVs");
1635 		ivmode = NULL;
1636 	}
1637 
1638 	/* Choose ivmode, see comments at iv code. */
1639 	if (ivmode == NULL)
1640 		cc->iv_gen_ops = NULL;
1641 	else if (strcmp(ivmode, "plain") == 0)
1642 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1643 	else if (strcmp(ivmode, "plain64") == 0)
1644 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1645 	else if (strcmp(ivmode, "essiv") == 0)
1646 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1647 	else if (strcmp(ivmode, "benbi") == 0)
1648 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1649 	else if (strcmp(ivmode, "null") == 0)
1650 		cc->iv_gen_ops = &crypt_iv_null_ops;
1651 	else if (strcmp(ivmode, "lmk") == 0) {
1652 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1653 		/*
1654 		 * Version 2 and 3 is recognised according
1655 		 * to length of provided multi-key string.
1656 		 * If present (version 3), last key is used as IV seed.
1657 		 * All keys (including IV seed) are always the same size.
1658 		 */
1659 		if (cc->key_size % cc->key_parts) {
1660 			cc->key_parts++;
1661 			cc->key_extra_size = cc->key_size / cc->key_parts;
1662 		}
1663 	} else if (strcmp(ivmode, "tcw") == 0) {
1664 		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1665 		cc->key_parts += 2; /* IV + whitening */
1666 		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1667 	} else {
1668 		ret = -EINVAL;
1669 		ti->error = "Invalid IV mode";
1670 		goto bad;
1671 	}
1672 
1673 	/* Initialize and set key */
1674 	ret = crypt_set_key(cc, key);
1675 	if (ret < 0) {
1676 		ti->error = "Error decoding and setting key";
1677 		goto bad;
1678 	}
1679 
1680 	/* Allocate IV */
1681 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1682 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1683 		if (ret < 0) {
1684 			ti->error = "Error creating IV";
1685 			goto bad;
1686 		}
1687 	}
1688 
1689 	/* Initialize IV (set keys for ESSIV etc) */
1690 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1691 		ret = cc->iv_gen_ops->init(cc);
1692 		if (ret < 0) {
1693 			ti->error = "Error initialising IV";
1694 			goto bad;
1695 		}
1696 	}
1697 
1698 	ret = 0;
1699 bad:
1700 	kfree(cipher_api);
1701 	return ret;
1702 
1703 bad_mem:
1704 	ti->error = "Cannot allocate cipher strings";
1705 	return -ENOMEM;
1706 }
1707 
1708 /*
1709  * Construct an encryption mapping:
1710  * <cipher> <key> <iv_offset> <dev_path> <start>
1711  */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1712 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1713 {
1714 	struct crypt_config *cc;
1715 	unsigned int key_size, opt_params;
1716 	unsigned long long tmpll;
1717 	int ret;
1718 	size_t iv_size_padding;
1719 	struct dm_arg_set as;
1720 	const char *opt_string;
1721 	char dummy;
1722 
1723 	static struct dm_arg _args[] = {
1724 		{0, 3, "Invalid number of feature args"},
1725 	};
1726 
1727 	if (argc < 5) {
1728 		ti->error = "Not enough arguments";
1729 		return -EINVAL;
1730 	}
1731 
1732 	key_size = strlen(argv[1]) >> 1;
1733 
1734 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1735 	if (!cc) {
1736 		ti->error = "Cannot allocate encryption context";
1737 		return -ENOMEM;
1738 	}
1739 	cc->key_size = key_size;
1740 
1741 	ti->private = cc;
1742 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1743 	if (ret < 0)
1744 		goto bad;
1745 
1746 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1747 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1748 	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1749 
1750 	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1751 		/* Allocate the padding exactly */
1752 		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1753 				& crypto_ablkcipher_alignmask(any_tfm(cc));
1754 	} else {
1755 		/*
1756 		 * If the cipher requires greater alignment than kmalloc
1757 		 * alignment, we don't know the exact position of the
1758 		 * initialization vector. We must assume worst case.
1759 		 */
1760 		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1761 	}
1762 
1763 	ret = -ENOMEM;
1764 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1765 			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1766 	if (!cc->req_pool) {
1767 		ti->error = "Cannot allocate crypt request mempool";
1768 		goto bad;
1769 	}
1770 
1771 	cc->per_bio_data_size = ti->per_bio_data_size =
1772 		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1773 		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1774 		      ARCH_KMALLOC_MINALIGN);
1775 
1776 	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1777 	if (!cc->page_pool) {
1778 		ti->error = "Cannot allocate page mempool";
1779 		goto bad;
1780 	}
1781 
1782 	cc->bs = bioset_create(MIN_IOS, 0);
1783 	if (!cc->bs) {
1784 		ti->error = "Cannot allocate crypt bioset";
1785 		goto bad;
1786 	}
1787 
1788 	mutex_init(&cc->bio_alloc_lock);
1789 
1790 	ret = -EINVAL;
1791 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1792 		ti->error = "Invalid iv_offset sector";
1793 		goto bad;
1794 	}
1795 	cc->iv_offset = tmpll;
1796 
1797 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1798 		ti->error = "Device lookup failed";
1799 		goto bad;
1800 	}
1801 
1802 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1803 		ti->error = "Invalid device sector";
1804 		goto bad;
1805 	}
1806 	cc->start = tmpll;
1807 
1808 	argv += 5;
1809 	argc -= 5;
1810 
1811 	/* Optional parameters */
1812 	if (argc) {
1813 		as.argc = argc;
1814 		as.argv = argv;
1815 
1816 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1817 		if (ret)
1818 			goto bad;
1819 
1820 		ret = -EINVAL;
1821 		while (opt_params--) {
1822 			opt_string = dm_shift_arg(&as);
1823 			if (!opt_string) {
1824 				ti->error = "Not enough feature arguments";
1825 				goto bad;
1826 			}
1827 
1828 			if (!strcasecmp(opt_string, "allow_discards"))
1829 				ti->num_discard_bios = 1;
1830 
1831 			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1832 				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1833 
1834 			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1835 				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1836 
1837 			else {
1838 				ti->error = "Invalid feature arguments";
1839 				goto bad;
1840 			}
1841 		}
1842 	}
1843 
1844 	ret = -ENOMEM;
1845 	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1846 	if (!cc->io_queue) {
1847 		ti->error = "Couldn't create kcryptd io queue";
1848 		goto bad;
1849 	}
1850 
1851 	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1852 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1853 	else
1854 		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1855 						  num_online_cpus());
1856 	if (!cc->crypt_queue) {
1857 		ti->error = "Couldn't create kcryptd queue";
1858 		goto bad;
1859 	}
1860 
1861 	init_waitqueue_head(&cc->write_thread_wait);
1862 	cc->write_tree = RB_ROOT;
1863 
1864 	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1865 	if (IS_ERR(cc->write_thread)) {
1866 		ret = PTR_ERR(cc->write_thread);
1867 		cc->write_thread = NULL;
1868 		ti->error = "Couldn't spawn write thread";
1869 		goto bad;
1870 	}
1871 	wake_up_process(cc->write_thread);
1872 
1873 	ti->num_flush_bios = 1;
1874 	ti->discard_zeroes_data_unsupported = true;
1875 
1876 	return 0;
1877 
1878 bad:
1879 	crypt_dtr(ti);
1880 	return ret;
1881 }
1882 
crypt_map(struct dm_target * ti,struct bio * bio)1883 static int crypt_map(struct dm_target *ti, struct bio *bio)
1884 {
1885 	struct dm_crypt_io *io;
1886 	struct crypt_config *cc = ti->private;
1887 
1888 	/*
1889 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1890 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1891 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1892 	 */
1893 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1894 		bio->bi_bdev = cc->dev->bdev;
1895 		if (bio_sectors(bio))
1896 			bio->bi_iter.bi_sector = cc->start +
1897 				dm_target_offset(ti, bio->bi_iter.bi_sector);
1898 		return DM_MAPIO_REMAPPED;
1899 	}
1900 
1901 	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1902 	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1903 	io->ctx.req = (struct ablkcipher_request *)(io + 1);
1904 
1905 	if (bio_data_dir(io->base_bio) == READ) {
1906 		if (kcryptd_io_read(io, GFP_NOWAIT))
1907 			kcryptd_queue_read(io);
1908 	} else
1909 		kcryptd_queue_crypt(io);
1910 
1911 	return DM_MAPIO_SUBMITTED;
1912 }
1913 
crypt_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)1914 static void crypt_status(struct dm_target *ti, status_type_t type,
1915 			 unsigned status_flags, char *result, unsigned maxlen)
1916 {
1917 	struct crypt_config *cc = ti->private;
1918 	unsigned i, sz = 0;
1919 	int num_feature_args = 0;
1920 
1921 	switch (type) {
1922 	case STATUSTYPE_INFO:
1923 		result[0] = '\0';
1924 		break;
1925 
1926 	case STATUSTYPE_TABLE:
1927 		DMEMIT("%s ", cc->cipher_string);
1928 
1929 		if (cc->key_size > 0)
1930 			for (i = 0; i < cc->key_size; i++)
1931 				DMEMIT("%02x", cc->key[i]);
1932 		else
1933 			DMEMIT("-");
1934 
1935 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1936 				cc->dev->name, (unsigned long long)cc->start);
1937 
1938 		num_feature_args += !!ti->num_discard_bios;
1939 		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1940 		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1941 		if (num_feature_args) {
1942 			DMEMIT(" %d", num_feature_args);
1943 			if (ti->num_discard_bios)
1944 				DMEMIT(" allow_discards");
1945 			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1946 				DMEMIT(" same_cpu_crypt");
1947 			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1948 				DMEMIT(" submit_from_crypt_cpus");
1949 		}
1950 
1951 		break;
1952 	}
1953 }
1954 
crypt_postsuspend(struct dm_target * ti)1955 static void crypt_postsuspend(struct dm_target *ti)
1956 {
1957 	struct crypt_config *cc = ti->private;
1958 
1959 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1960 }
1961 
crypt_preresume(struct dm_target * ti)1962 static int crypt_preresume(struct dm_target *ti)
1963 {
1964 	struct crypt_config *cc = ti->private;
1965 
1966 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1967 		DMERR("aborting resume - crypt key is not set.");
1968 		return -EAGAIN;
1969 	}
1970 
1971 	return 0;
1972 }
1973 
crypt_resume(struct dm_target * ti)1974 static void crypt_resume(struct dm_target *ti)
1975 {
1976 	struct crypt_config *cc = ti->private;
1977 
1978 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1979 }
1980 
1981 /* Message interface
1982  *	key set <key>
1983  *	key wipe
1984  */
crypt_message(struct dm_target * ti,unsigned argc,char ** argv)1985 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1986 {
1987 	struct crypt_config *cc = ti->private;
1988 	int ret = -EINVAL;
1989 
1990 	if (argc < 2)
1991 		goto error;
1992 
1993 	if (!strcasecmp(argv[0], "key")) {
1994 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1995 			DMWARN("not suspended during key manipulation.");
1996 			return -EINVAL;
1997 		}
1998 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1999 			ret = crypt_set_key(cc, argv[2]);
2000 			if (ret)
2001 				return ret;
2002 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2003 				ret = cc->iv_gen_ops->init(cc);
2004 			return ret;
2005 		}
2006 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2007 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2008 				ret = cc->iv_gen_ops->wipe(cc);
2009 				if (ret)
2010 					return ret;
2011 			}
2012 			return crypt_wipe_key(cc);
2013 		}
2014 	}
2015 
2016 error:
2017 	DMWARN("unrecognised message received.");
2018 	return -EINVAL;
2019 }
2020 
crypt_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)2021 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2022 		       struct bio_vec *biovec, int max_size)
2023 {
2024 	struct crypt_config *cc = ti->private;
2025 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
2026 
2027 	if (!q->merge_bvec_fn)
2028 		return max_size;
2029 
2030 	bvm->bi_bdev = cc->dev->bdev;
2031 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
2032 
2033 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2034 }
2035 
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2036 static int crypt_iterate_devices(struct dm_target *ti,
2037 				 iterate_devices_callout_fn fn, void *data)
2038 {
2039 	struct crypt_config *cc = ti->private;
2040 
2041 	return fn(ti, cc->dev, cc->start, ti->len, data);
2042 }
2043 
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)2044 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2045 {
2046 	/*
2047 	 * Unfortunate constraint that is required to avoid the potential
2048 	 * for exceeding underlying device's max_segments limits -- due to
2049 	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2050 	 * bio that are not as physically contiguous as the original bio.
2051 	 */
2052 	limits->max_segment_size = PAGE_SIZE;
2053 }
2054 
2055 static struct target_type crypt_target = {
2056 	.name   = "crypt",
2057 	.version = {1, 14, 1},
2058 	.module = THIS_MODULE,
2059 	.ctr    = crypt_ctr,
2060 	.dtr    = crypt_dtr,
2061 	.map    = crypt_map,
2062 	.status = crypt_status,
2063 	.postsuspend = crypt_postsuspend,
2064 	.preresume = crypt_preresume,
2065 	.resume = crypt_resume,
2066 	.message = crypt_message,
2067 	.merge  = crypt_merge,
2068 	.iterate_devices = crypt_iterate_devices,
2069 	.io_hints = crypt_io_hints,
2070 };
2071 
dm_crypt_init(void)2072 static int __init dm_crypt_init(void)
2073 {
2074 	int r;
2075 
2076 	r = dm_register_target(&crypt_target);
2077 	if (r < 0)
2078 		DMERR("register failed %d", r);
2079 
2080 	return r;
2081 }
2082 
dm_crypt_exit(void)2083 static void __exit dm_crypt_exit(void)
2084 {
2085 	dm_unregister_target(&crypt_target);
2086 }
2087 
2088 module_init(dm_crypt_init);
2089 module_exit(dm_crypt_exit);
2090 
2091 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2092 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2093 MODULE_LICENSE("GPL");
2094