1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/bio.h>
16 #include <linux/blkdev.h>
17 #include <linux/mempool.h>
18 #include <linux/slab.h>
19 #include <linux/crypto.h>
20 #include <linux/workqueue.h>
21 #include <linux/kthread.h>
22 #include <linux/backing-dev.h>
23 #include <linux/atomic.h>
24 #include <linux/scatterlist.h>
25 #include <linux/rbtree.h>
26 #include <asm/page.h>
27 #include <asm/unaligned.h>
28 #include <crypto/hash.h>
29 #include <crypto/md5.h>
30 #include <crypto/algapi.h>
31
32 #include <linux/device-mapper.h>
33
34 #define DM_MSG_PREFIX "crypt"
35
36 /*
37 * context holding the current state of a multi-part conversion
38 */
39 struct convert_context {
40 struct completion restart;
41 struct bio *bio_in;
42 struct bio *bio_out;
43 struct bvec_iter iter_in;
44 struct bvec_iter iter_out;
45 sector_t cc_sector;
46 atomic_t cc_pending;
47 struct ablkcipher_request *req;
48 };
49
50 /*
51 * per bio private data
52 */
53 struct dm_crypt_io {
54 struct crypt_config *cc;
55 struct bio *base_bio;
56 struct work_struct work;
57
58 struct convert_context ctx;
59
60 atomic_t io_pending;
61 int error;
62 sector_t sector;
63
64 struct rb_node rb_node;
65 } CRYPTO_MINALIGN_ATTR;
66
67 struct dm_crypt_request {
68 struct convert_context *ctx;
69 struct scatterlist sg_in;
70 struct scatterlist sg_out;
71 sector_t iv_sector;
72 };
73
74 struct crypt_config;
75
76 struct crypt_iv_operations {
77 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
78 const char *opts);
79 void (*dtr)(struct crypt_config *cc);
80 int (*init)(struct crypt_config *cc);
81 int (*wipe)(struct crypt_config *cc);
82 int (*generator)(struct crypt_config *cc, u8 *iv,
83 struct dm_crypt_request *dmreq);
84 int (*post)(struct crypt_config *cc, u8 *iv,
85 struct dm_crypt_request *dmreq);
86 };
87
88 struct iv_essiv_private {
89 struct crypto_hash *hash_tfm;
90 u8 *salt;
91 };
92
93 struct iv_benbi_private {
94 int shift;
95 };
96
97 #define LMK_SEED_SIZE 64 /* hash + 0 */
98 struct iv_lmk_private {
99 struct crypto_shash *hash_tfm;
100 u8 *seed;
101 };
102
103 #define TCW_WHITENING_SIZE 16
104 struct iv_tcw_private {
105 struct crypto_shash *crc32_tfm;
106 u8 *iv_seed;
107 u8 *whitening;
108 };
109
110 /*
111 * Crypt: maps a linear range of a block device
112 * and encrypts / decrypts at the same time.
113 */
114 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
115 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD };
116
117 /*
118 * The fields in here must be read only after initialization.
119 */
120 struct crypt_config {
121 struct dm_dev *dev;
122 sector_t start;
123
124 /*
125 * pool for per bio private data, crypto requests and
126 * encryption requeusts/buffer pages
127 */
128 mempool_t *req_pool;
129 mempool_t *page_pool;
130 struct bio_set *bs;
131 struct mutex bio_alloc_lock;
132
133 struct workqueue_struct *io_queue;
134 struct workqueue_struct *crypt_queue;
135
136 struct task_struct *write_thread;
137 wait_queue_head_t write_thread_wait;
138 struct rb_root write_tree;
139
140 char *cipher;
141 char *cipher_string;
142
143 struct crypt_iv_operations *iv_gen_ops;
144 union {
145 struct iv_essiv_private essiv;
146 struct iv_benbi_private benbi;
147 struct iv_lmk_private lmk;
148 struct iv_tcw_private tcw;
149 } iv_gen_private;
150 sector_t iv_offset;
151 unsigned int iv_size;
152
153 /* ESSIV: struct crypto_cipher *essiv_tfm */
154 void *iv_private;
155 struct crypto_ablkcipher **tfms;
156 unsigned tfms_count;
157
158 /*
159 * Layout of each crypto request:
160 *
161 * struct ablkcipher_request
162 * context
163 * padding
164 * struct dm_crypt_request
165 * padding
166 * IV
167 *
168 * The padding is added so that dm_crypt_request and the IV are
169 * correctly aligned.
170 */
171 unsigned int dmreq_start;
172
173 unsigned int per_bio_data_size;
174
175 unsigned long flags;
176 unsigned int key_size;
177 unsigned int key_parts; /* independent parts in key buffer */
178 unsigned int key_extra_size; /* additional keys length */
179 u8 key[0];
180 };
181
182 #define MIN_IOS 16
183
184 static void clone_init(struct dm_crypt_io *, struct bio *);
185 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
186 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
187
188 /*
189 * Use this to access cipher attributes that are the same for each CPU.
190 */
any_tfm(struct crypt_config * cc)191 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
192 {
193 return cc->tfms[0];
194 }
195
196 /*
197 * Different IV generation algorithms:
198 *
199 * plain: the initial vector is the 32-bit little-endian version of the sector
200 * number, padded with zeros if necessary.
201 *
202 * plain64: the initial vector is the 64-bit little-endian version of the sector
203 * number, padded with zeros if necessary.
204 *
205 * essiv: "encrypted sector|salt initial vector", the sector number is
206 * encrypted with the bulk cipher using a salt as key. The salt
207 * should be derived from the bulk cipher's key via hashing.
208 *
209 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
210 * (needed for LRW-32-AES and possible other narrow block modes)
211 *
212 * null: the initial vector is always zero. Provides compatibility with
213 * obsolete loop_fish2 devices. Do not use for new devices.
214 *
215 * lmk: Compatible implementation of the block chaining mode used
216 * by the Loop-AES block device encryption system
217 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
218 * It operates on full 512 byte sectors and uses CBC
219 * with an IV derived from the sector number, the data and
220 * optionally extra IV seed.
221 * This means that after decryption the first block
222 * of sector must be tweaked according to decrypted data.
223 * Loop-AES can use three encryption schemes:
224 * version 1: is plain aes-cbc mode
225 * version 2: uses 64 multikey scheme with lmk IV generator
226 * version 3: the same as version 2 with additional IV seed
227 * (it uses 65 keys, last key is used as IV seed)
228 *
229 * tcw: Compatible implementation of the block chaining mode used
230 * by the TrueCrypt device encryption system (prior to version 4.1).
231 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
232 * It operates on full 512 byte sectors and uses CBC
233 * with an IV derived from initial key and the sector number.
234 * In addition, whitening value is applied on every sector, whitening
235 * is calculated from initial key, sector number and mixed using CRC32.
236 * Note that this encryption scheme is vulnerable to watermarking attacks
237 * and should be used for old compatible containers access only.
238 *
239 * plumb: unimplemented, see:
240 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
241 */
242
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)243 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
244 struct dm_crypt_request *dmreq)
245 {
246 memset(iv, 0, cc->iv_size);
247 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
248
249 return 0;
250 }
251
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)252 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
253 struct dm_crypt_request *dmreq)
254 {
255 memset(iv, 0, cc->iv_size);
256 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
257
258 return 0;
259 }
260
261 /* Initialise ESSIV - compute salt but no local memory allocations */
crypt_iv_essiv_init(struct crypt_config * cc)262 static int crypt_iv_essiv_init(struct crypt_config *cc)
263 {
264 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
265 struct hash_desc desc;
266 struct scatterlist sg;
267 struct crypto_cipher *essiv_tfm;
268 int err;
269
270 sg_init_one(&sg, cc->key, cc->key_size);
271 desc.tfm = essiv->hash_tfm;
272 desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
273
274 err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
275 if (err)
276 return err;
277
278 essiv_tfm = cc->iv_private;
279
280 err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
281 crypto_hash_digestsize(essiv->hash_tfm));
282 if (err)
283 return err;
284
285 return 0;
286 }
287
288 /* Wipe salt and reset key derived from volume key */
crypt_iv_essiv_wipe(struct crypt_config * cc)289 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
290 {
291 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
292 unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
293 struct crypto_cipher *essiv_tfm;
294 int r, err = 0;
295
296 memset(essiv->salt, 0, salt_size);
297
298 essiv_tfm = cc->iv_private;
299 r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
300 if (r)
301 err = r;
302
303 return err;
304 }
305
306 /* Set up per cpu cipher state */
setup_essiv_cpu(struct crypt_config * cc,struct dm_target * ti,u8 * salt,unsigned saltsize)307 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
308 struct dm_target *ti,
309 u8 *salt, unsigned saltsize)
310 {
311 struct crypto_cipher *essiv_tfm;
312 int err;
313
314 /* Setup the essiv_tfm with the given salt */
315 essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
316 if (IS_ERR(essiv_tfm)) {
317 ti->error = "Error allocating crypto tfm for ESSIV";
318 return essiv_tfm;
319 }
320
321 if (crypto_cipher_blocksize(essiv_tfm) !=
322 crypto_ablkcipher_ivsize(any_tfm(cc))) {
323 ti->error = "Block size of ESSIV cipher does "
324 "not match IV size of block cipher";
325 crypto_free_cipher(essiv_tfm);
326 return ERR_PTR(-EINVAL);
327 }
328
329 err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
330 if (err) {
331 ti->error = "Failed to set key for ESSIV cipher";
332 crypto_free_cipher(essiv_tfm);
333 return ERR_PTR(err);
334 }
335
336 return essiv_tfm;
337 }
338
crypt_iv_essiv_dtr(struct crypt_config * cc)339 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
340 {
341 struct crypto_cipher *essiv_tfm;
342 struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
343
344 crypto_free_hash(essiv->hash_tfm);
345 essiv->hash_tfm = NULL;
346
347 kzfree(essiv->salt);
348 essiv->salt = NULL;
349
350 essiv_tfm = cc->iv_private;
351
352 if (essiv_tfm)
353 crypto_free_cipher(essiv_tfm);
354
355 cc->iv_private = NULL;
356 }
357
crypt_iv_essiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)358 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
359 const char *opts)
360 {
361 struct crypto_cipher *essiv_tfm = NULL;
362 struct crypto_hash *hash_tfm = NULL;
363 u8 *salt = NULL;
364 int err;
365
366 if (!opts) {
367 ti->error = "Digest algorithm missing for ESSIV mode";
368 return -EINVAL;
369 }
370
371 /* Allocate hash algorithm */
372 hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
373 if (IS_ERR(hash_tfm)) {
374 ti->error = "Error initializing ESSIV hash";
375 err = PTR_ERR(hash_tfm);
376 goto bad;
377 }
378
379 salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
380 if (!salt) {
381 ti->error = "Error kmallocing salt storage in ESSIV";
382 err = -ENOMEM;
383 goto bad;
384 }
385
386 cc->iv_gen_private.essiv.salt = salt;
387 cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
388
389 essiv_tfm = setup_essiv_cpu(cc, ti, salt,
390 crypto_hash_digestsize(hash_tfm));
391 if (IS_ERR(essiv_tfm)) {
392 crypt_iv_essiv_dtr(cc);
393 return PTR_ERR(essiv_tfm);
394 }
395 cc->iv_private = essiv_tfm;
396
397 return 0;
398
399 bad:
400 if (hash_tfm && !IS_ERR(hash_tfm))
401 crypto_free_hash(hash_tfm);
402 kfree(salt);
403 return err;
404 }
405
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)406 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
407 struct dm_crypt_request *dmreq)
408 {
409 struct crypto_cipher *essiv_tfm = cc->iv_private;
410
411 memset(iv, 0, cc->iv_size);
412 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
413 crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
414
415 return 0;
416 }
417
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)418 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
419 const char *opts)
420 {
421 unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
422 int log = ilog2(bs);
423
424 /* we need to calculate how far we must shift the sector count
425 * to get the cipher block count, we use this shift in _gen */
426
427 if (1 << log != bs) {
428 ti->error = "cypher blocksize is not a power of 2";
429 return -EINVAL;
430 }
431
432 if (log > 9) {
433 ti->error = "cypher blocksize is > 512";
434 return -EINVAL;
435 }
436
437 cc->iv_gen_private.benbi.shift = 9 - log;
438
439 return 0;
440 }
441
crypt_iv_benbi_dtr(struct crypt_config * cc)442 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
443 {
444 }
445
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)446 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
447 struct dm_crypt_request *dmreq)
448 {
449 __be64 val;
450
451 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
452
453 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
454 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
455
456 return 0;
457 }
458
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)459 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
460 struct dm_crypt_request *dmreq)
461 {
462 memset(iv, 0, cc->iv_size);
463
464 return 0;
465 }
466
crypt_iv_lmk_dtr(struct crypt_config * cc)467 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
468 {
469 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
470
471 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
472 crypto_free_shash(lmk->hash_tfm);
473 lmk->hash_tfm = NULL;
474
475 kzfree(lmk->seed);
476 lmk->seed = NULL;
477 }
478
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)479 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
480 const char *opts)
481 {
482 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
483
484 lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
485 if (IS_ERR(lmk->hash_tfm)) {
486 ti->error = "Error initializing LMK hash";
487 return PTR_ERR(lmk->hash_tfm);
488 }
489
490 /* No seed in LMK version 2 */
491 if (cc->key_parts == cc->tfms_count) {
492 lmk->seed = NULL;
493 return 0;
494 }
495
496 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
497 if (!lmk->seed) {
498 crypt_iv_lmk_dtr(cc);
499 ti->error = "Error kmallocing seed storage in LMK";
500 return -ENOMEM;
501 }
502
503 return 0;
504 }
505
crypt_iv_lmk_init(struct crypt_config * cc)506 static int crypt_iv_lmk_init(struct crypt_config *cc)
507 {
508 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
509 int subkey_size = cc->key_size / cc->key_parts;
510
511 /* LMK seed is on the position of LMK_KEYS + 1 key */
512 if (lmk->seed)
513 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
514 crypto_shash_digestsize(lmk->hash_tfm));
515
516 return 0;
517 }
518
crypt_iv_lmk_wipe(struct crypt_config * cc)519 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
520 {
521 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
522
523 if (lmk->seed)
524 memset(lmk->seed, 0, LMK_SEED_SIZE);
525
526 return 0;
527 }
528
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)529 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
530 struct dm_crypt_request *dmreq,
531 u8 *data)
532 {
533 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
534 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
535 struct md5_state md5state;
536 __le32 buf[4];
537 int i, r;
538
539 desc->tfm = lmk->hash_tfm;
540 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
541
542 r = crypto_shash_init(desc);
543 if (r)
544 return r;
545
546 if (lmk->seed) {
547 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
548 if (r)
549 return r;
550 }
551
552 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
553 r = crypto_shash_update(desc, data + 16, 16 * 31);
554 if (r)
555 return r;
556
557 /* Sector is cropped to 56 bits here */
558 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
559 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
560 buf[2] = cpu_to_le32(4024);
561 buf[3] = 0;
562 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
563 if (r)
564 return r;
565
566 /* No MD5 padding here */
567 r = crypto_shash_export(desc, &md5state);
568 if (r)
569 return r;
570
571 for (i = 0; i < MD5_HASH_WORDS; i++)
572 __cpu_to_le32s(&md5state.hash[i]);
573 memcpy(iv, &md5state.hash, cc->iv_size);
574
575 return 0;
576 }
577
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)578 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
579 struct dm_crypt_request *dmreq)
580 {
581 u8 *src;
582 int r = 0;
583
584 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
585 src = kmap_atomic(sg_page(&dmreq->sg_in));
586 r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
587 kunmap_atomic(src);
588 } else
589 memset(iv, 0, cc->iv_size);
590
591 return r;
592 }
593
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)594 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
595 struct dm_crypt_request *dmreq)
596 {
597 u8 *dst;
598 int r;
599
600 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
601 return 0;
602
603 dst = kmap_atomic(sg_page(&dmreq->sg_out));
604 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
605
606 /* Tweak the first block of plaintext sector */
607 if (!r)
608 crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
609
610 kunmap_atomic(dst);
611 return r;
612 }
613
crypt_iv_tcw_dtr(struct crypt_config * cc)614 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
615 {
616 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
617
618 kzfree(tcw->iv_seed);
619 tcw->iv_seed = NULL;
620 kzfree(tcw->whitening);
621 tcw->whitening = NULL;
622
623 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
624 crypto_free_shash(tcw->crc32_tfm);
625 tcw->crc32_tfm = NULL;
626 }
627
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)628 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
629 const char *opts)
630 {
631 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
632
633 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
634 ti->error = "Wrong key size for TCW";
635 return -EINVAL;
636 }
637
638 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
639 if (IS_ERR(tcw->crc32_tfm)) {
640 ti->error = "Error initializing CRC32 in TCW";
641 return PTR_ERR(tcw->crc32_tfm);
642 }
643
644 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
645 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
646 if (!tcw->iv_seed || !tcw->whitening) {
647 crypt_iv_tcw_dtr(cc);
648 ti->error = "Error allocating seed storage in TCW";
649 return -ENOMEM;
650 }
651
652 return 0;
653 }
654
crypt_iv_tcw_init(struct crypt_config * cc)655 static int crypt_iv_tcw_init(struct crypt_config *cc)
656 {
657 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
658 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
659
660 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
661 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
662 TCW_WHITENING_SIZE);
663
664 return 0;
665 }
666
crypt_iv_tcw_wipe(struct crypt_config * cc)667 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
668 {
669 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
670
671 memset(tcw->iv_seed, 0, cc->iv_size);
672 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
673
674 return 0;
675 }
676
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)677 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
678 struct dm_crypt_request *dmreq,
679 u8 *data)
680 {
681 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
682 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
683 u8 buf[TCW_WHITENING_SIZE];
684 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
685 int i, r;
686
687 /* xor whitening with sector number */
688 memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
689 crypto_xor(buf, (u8 *)§or, 8);
690 crypto_xor(&buf[8], (u8 *)§or, 8);
691
692 /* calculate crc32 for every 32bit part and xor it */
693 desc->tfm = tcw->crc32_tfm;
694 desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
695 for (i = 0; i < 4; i++) {
696 r = crypto_shash_init(desc);
697 if (r)
698 goto out;
699 r = crypto_shash_update(desc, &buf[i * 4], 4);
700 if (r)
701 goto out;
702 r = crypto_shash_final(desc, &buf[i * 4]);
703 if (r)
704 goto out;
705 }
706 crypto_xor(&buf[0], &buf[12], 4);
707 crypto_xor(&buf[4], &buf[8], 4);
708
709 /* apply whitening (8 bytes) to whole sector */
710 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
711 crypto_xor(data + i * 8, buf, 8);
712 out:
713 memzero_explicit(buf, sizeof(buf));
714 return r;
715 }
716
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)717 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
718 struct dm_crypt_request *dmreq)
719 {
720 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
721 u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
722 u8 *src;
723 int r = 0;
724
725 /* Remove whitening from ciphertext */
726 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
727 src = kmap_atomic(sg_page(&dmreq->sg_in));
728 r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
729 kunmap_atomic(src);
730 }
731
732 /* Calculate IV */
733 memcpy(iv, tcw->iv_seed, cc->iv_size);
734 crypto_xor(iv, (u8 *)§or, 8);
735 if (cc->iv_size > 8)
736 crypto_xor(&iv[8], (u8 *)§or, cc->iv_size - 8);
737
738 return r;
739 }
740
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)741 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
742 struct dm_crypt_request *dmreq)
743 {
744 u8 *dst;
745 int r;
746
747 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
748 return 0;
749
750 /* Apply whitening on ciphertext */
751 dst = kmap_atomic(sg_page(&dmreq->sg_out));
752 r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
753 kunmap_atomic(dst);
754
755 return r;
756 }
757
758 static struct crypt_iv_operations crypt_iv_plain_ops = {
759 .generator = crypt_iv_plain_gen
760 };
761
762 static struct crypt_iv_operations crypt_iv_plain64_ops = {
763 .generator = crypt_iv_plain64_gen
764 };
765
766 static struct crypt_iv_operations crypt_iv_essiv_ops = {
767 .ctr = crypt_iv_essiv_ctr,
768 .dtr = crypt_iv_essiv_dtr,
769 .init = crypt_iv_essiv_init,
770 .wipe = crypt_iv_essiv_wipe,
771 .generator = crypt_iv_essiv_gen
772 };
773
774 static struct crypt_iv_operations crypt_iv_benbi_ops = {
775 .ctr = crypt_iv_benbi_ctr,
776 .dtr = crypt_iv_benbi_dtr,
777 .generator = crypt_iv_benbi_gen
778 };
779
780 static struct crypt_iv_operations crypt_iv_null_ops = {
781 .generator = crypt_iv_null_gen
782 };
783
784 static struct crypt_iv_operations crypt_iv_lmk_ops = {
785 .ctr = crypt_iv_lmk_ctr,
786 .dtr = crypt_iv_lmk_dtr,
787 .init = crypt_iv_lmk_init,
788 .wipe = crypt_iv_lmk_wipe,
789 .generator = crypt_iv_lmk_gen,
790 .post = crypt_iv_lmk_post
791 };
792
793 static struct crypt_iv_operations crypt_iv_tcw_ops = {
794 .ctr = crypt_iv_tcw_ctr,
795 .dtr = crypt_iv_tcw_dtr,
796 .init = crypt_iv_tcw_init,
797 .wipe = crypt_iv_tcw_wipe,
798 .generator = crypt_iv_tcw_gen,
799 .post = crypt_iv_tcw_post
800 };
801
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)802 static void crypt_convert_init(struct crypt_config *cc,
803 struct convert_context *ctx,
804 struct bio *bio_out, struct bio *bio_in,
805 sector_t sector)
806 {
807 ctx->bio_in = bio_in;
808 ctx->bio_out = bio_out;
809 if (bio_in)
810 ctx->iter_in = bio_in->bi_iter;
811 if (bio_out)
812 ctx->iter_out = bio_out->bi_iter;
813 ctx->cc_sector = sector + cc->iv_offset;
814 init_completion(&ctx->restart);
815 }
816
dmreq_of_req(struct crypt_config * cc,struct ablkcipher_request * req)817 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
818 struct ablkcipher_request *req)
819 {
820 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
821 }
822
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)823 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
824 struct dm_crypt_request *dmreq)
825 {
826 return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
827 }
828
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)829 static u8 *iv_of_dmreq(struct crypt_config *cc,
830 struct dm_crypt_request *dmreq)
831 {
832 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
833 crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
834 }
835
crypt_convert_block(struct crypt_config * cc,struct convert_context * ctx,struct ablkcipher_request * req)836 static int crypt_convert_block(struct crypt_config *cc,
837 struct convert_context *ctx,
838 struct ablkcipher_request *req)
839 {
840 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
841 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
842 struct dm_crypt_request *dmreq;
843 u8 *iv;
844 int r;
845
846 dmreq = dmreq_of_req(cc, req);
847 iv = iv_of_dmreq(cc, dmreq);
848
849 dmreq->iv_sector = ctx->cc_sector;
850 dmreq->ctx = ctx;
851 sg_init_table(&dmreq->sg_in, 1);
852 sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
853 bv_in.bv_offset);
854
855 sg_init_table(&dmreq->sg_out, 1);
856 sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
857 bv_out.bv_offset);
858
859 bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
860 bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
861
862 if (cc->iv_gen_ops) {
863 r = cc->iv_gen_ops->generator(cc, iv, dmreq);
864 if (r < 0)
865 return r;
866 }
867
868 ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
869 1 << SECTOR_SHIFT, iv);
870
871 if (bio_data_dir(ctx->bio_in) == WRITE)
872 r = crypto_ablkcipher_encrypt(req);
873 else
874 r = crypto_ablkcipher_decrypt(req);
875
876 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
877 r = cc->iv_gen_ops->post(cc, iv, dmreq);
878
879 return r;
880 }
881
882 static void kcryptd_async_done(struct crypto_async_request *async_req,
883 int error);
884
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)885 static void crypt_alloc_req(struct crypt_config *cc,
886 struct convert_context *ctx)
887 {
888 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
889
890 if (!ctx->req)
891 ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
892
893 ablkcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
894 ablkcipher_request_set_callback(ctx->req,
895 CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
896 kcryptd_async_done, dmreq_of_req(cc, ctx->req));
897 }
898
crypt_free_req(struct crypt_config * cc,struct ablkcipher_request * req,struct bio * base_bio)899 static void crypt_free_req(struct crypt_config *cc,
900 struct ablkcipher_request *req, struct bio *base_bio)
901 {
902 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
903
904 if ((struct ablkcipher_request *)(io + 1) != req)
905 mempool_free(req, cc->req_pool);
906 }
907
908 /*
909 * Encrypt / decrypt data from one bio to another one (can be the same one)
910 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx)911 static int crypt_convert(struct crypt_config *cc,
912 struct convert_context *ctx)
913 {
914 int r;
915
916 atomic_set(&ctx->cc_pending, 1);
917
918 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
919
920 crypt_alloc_req(cc, ctx);
921
922 atomic_inc(&ctx->cc_pending);
923
924 r = crypt_convert_block(cc, ctx, ctx->req);
925
926 switch (r) {
927 /* async */
928 case -EBUSY:
929 wait_for_completion(&ctx->restart);
930 reinit_completion(&ctx->restart);
931 /* fall through*/
932 case -EINPROGRESS:
933 ctx->req = NULL;
934 ctx->cc_sector++;
935 continue;
936
937 /* sync */
938 case 0:
939 atomic_dec(&ctx->cc_pending);
940 ctx->cc_sector++;
941 cond_resched();
942 continue;
943
944 /* error */
945 default:
946 atomic_dec(&ctx->cc_pending);
947 return r;
948 }
949 }
950
951 return 0;
952 }
953
954 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
955
956 /*
957 * Generate a new unfragmented bio with the given size
958 * This should never violate the device limitations (but only because
959 * max_segment_size is being constrained to PAGE_SIZE).
960 *
961 * This function may be called concurrently. If we allocate from the mempool
962 * concurrently, there is a possibility of deadlock. For example, if we have
963 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
964 * the mempool concurrently, it may deadlock in a situation where both processes
965 * have allocated 128 pages and the mempool is exhausted.
966 *
967 * In order to avoid this scenario we allocate the pages under a mutex.
968 *
969 * In order to not degrade performance with excessive locking, we try
970 * non-blocking allocations without a mutex first but on failure we fallback
971 * to blocking allocations with a mutex.
972 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned size)973 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
974 {
975 struct crypt_config *cc = io->cc;
976 struct bio *clone;
977 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
978 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
979 unsigned i, len, remaining_size;
980 struct page *page;
981 struct bio_vec *bvec;
982
983 retry:
984 if (unlikely(gfp_mask & __GFP_WAIT))
985 mutex_lock(&cc->bio_alloc_lock);
986
987 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
988 if (!clone)
989 goto return_clone;
990
991 clone_init(io, clone);
992
993 remaining_size = size;
994
995 for (i = 0; i < nr_iovecs; i++) {
996 page = mempool_alloc(cc->page_pool, gfp_mask);
997 if (!page) {
998 crypt_free_buffer_pages(cc, clone);
999 bio_put(clone);
1000 gfp_mask |= __GFP_WAIT;
1001 goto retry;
1002 }
1003
1004 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1005
1006 bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1007 bvec->bv_page = page;
1008 bvec->bv_len = len;
1009 bvec->bv_offset = 0;
1010
1011 clone->bi_iter.bi_size += len;
1012
1013 remaining_size -= len;
1014 }
1015
1016 return_clone:
1017 if (unlikely(gfp_mask & __GFP_WAIT))
1018 mutex_unlock(&cc->bio_alloc_lock);
1019
1020 return clone;
1021 }
1022
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1023 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1024 {
1025 unsigned int i;
1026 struct bio_vec *bv;
1027
1028 bio_for_each_segment_all(bv, clone, i) {
1029 BUG_ON(!bv->bv_page);
1030 mempool_free(bv->bv_page, cc->page_pool);
1031 bv->bv_page = NULL;
1032 }
1033 }
1034
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1035 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1036 struct bio *bio, sector_t sector)
1037 {
1038 io->cc = cc;
1039 io->base_bio = bio;
1040 io->sector = sector;
1041 io->error = 0;
1042 io->ctx.req = NULL;
1043 atomic_set(&io->io_pending, 0);
1044 }
1045
crypt_inc_pending(struct dm_crypt_io * io)1046 static void crypt_inc_pending(struct dm_crypt_io *io)
1047 {
1048 atomic_inc(&io->io_pending);
1049 }
1050
1051 /*
1052 * One of the bios was finished. Check for completion of
1053 * the whole request and correctly clean up the buffer.
1054 */
crypt_dec_pending(struct dm_crypt_io * io)1055 static void crypt_dec_pending(struct dm_crypt_io *io)
1056 {
1057 struct crypt_config *cc = io->cc;
1058 struct bio *base_bio = io->base_bio;
1059 int error = io->error;
1060
1061 if (!atomic_dec_and_test(&io->io_pending))
1062 return;
1063
1064 if (io->ctx.req)
1065 crypt_free_req(cc, io->ctx.req, base_bio);
1066
1067 bio_endio(base_bio, error);
1068 }
1069
1070 /*
1071 * kcryptd/kcryptd_io:
1072 *
1073 * Needed because it would be very unwise to do decryption in an
1074 * interrupt context.
1075 *
1076 * kcryptd performs the actual encryption or decryption.
1077 *
1078 * kcryptd_io performs the IO submission.
1079 *
1080 * They must be separated as otherwise the final stages could be
1081 * starved by new requests which can block in the first stages due
1082 * to memory allocation.
1083 *
1084 * The work is done per CPU global for all dm-crypt instances.
1085 * They should not depend on each other and do not block.
1086 */
crypt_endio(struct bio * clone,int error)1087 static void crypt_endio(struct bio *clone, int error)
1088 {
1089 struct dm_crypt_io *io = clone->bi_private;
1090 struct crypt_config *cc = io->cc;
1091 unsigned rw = bio_data_dir(clone);
1092
1093 if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
1094 error = -EIO;
1095
1096 /*
1097 * free the processed pages
1098 */
1099 if (rw == WRITE)
1100 crypt_free_buffer_pages(cc, clone);
1101
1102 bio_put(clone);
1103
1104 if (rw == READ && !error) {
1105 kcryptd_queue_crypt(io);
1106 return;
1107 }
1108
1109 if (unlikely(error))
1110 io->error = error;
1111
1112 crypt_dec_pending(io);
1113 }
1114
clone_init(struct dm_crypt_io * io,struct bio * clone)1115 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1116 {
1117 struct crypt_config *cc = io->cc;
1118
1119 clone->bi_private = io;
1120 clone->bi_end_io = crypt_endio;
1121 clone->bi_bdev = cc->dev->bdev;
1122 clone->bi_rw = io->base_bio->bi_rw;
1123 }
1124
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1125 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1126 {
1127 struct crypt_config *cc = io->cc;
1128 struct bio *clone;
1129
1130 /*
1131 * We need the original biovec array in order to decrypt
1132 * the whole bio data *afterwards* -- thanks to immutable
1133 * biovecs we don't need to worry about the block layer
1134 * modifying the biovec array; so leverage bio_clone_fast().
1135 */
1136 clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1137 if (!clone)
1138 return 1;
1139
1140 crypt_inc_pending(io);
1141
1142 clone_init(io, clone);
1143 clone->bi_iter.bi_sector = cc->start + io->sector;
1144
1145 generic_make_request(clone);
1146 return 0;
1147 }
1148
kcryptd_io_read_work(struct work_struct * work)1149 static void kcryptd_io_read_work(struct work_struct *work)
1150 {
1151 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1152
1153 crypt_inc_pending(io);
1154 if (kcryptd_io_read(io, GFP_NOIO))
1155 io->error = -ENOMEM;
1156 crypt_dec_pending(io);
1157 }
1158
kcryptd_queue_read(struct dm_crypt_io * io)1159 static void kcryptd_queue_read(struct dm_crypt_io *io)
1160 {
1161 struct crypt_config *cc = io->cc;
1162
1163 INIT_WORK(&io->work, kcryptd_io_read_work);
1164 queue_work(cc->io_queue, &io->work);
1165 }
1166
kcryptd_io_write(struct dm_crypt_io * io)1167 static void kcryptd_io_write(struct dm_crypt_io *io)
1168 {
1169 struct bio *clone = io->ctx.bio_out;
1170
1171 generic_make_request(clone);
1172 }
1173
1174 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1175
dmcrypt_write(void * data)1176 static int dmcrypt_write(void *data)
1177 {
1178 struct crypt_config *cc = data;
1179 struct dm_crypt_io *io;
1180
1181 while (1) {
1182 struct rb_root write_tree;
1183 struct blk_plug plug;
1184
1185 DECLARE_WAITQUEUE(wait, current);
1186
1187 spin_lock_irq(&cc->write_thread_wait.lock);
1188 continue_locked:
1189
1190 if (!RB_EMPTY_ROOT(&cc->write_tree))
1191 goto pop_from_list;
1192
1193 __set_current_state(TASK_INTERRUPTIBLE);
1194 __add_wait_queue(&cc->write_thread_wait, &wait);
1195
1196 spin_unlock_irq(&cc->write_thread_wait.lock);
1197
1198 if (unlikely(kthread_should_stop())) {
1199 set_task_state(current, TASK_RUNNING);
1200 remove_wait_queue(&cc->write_thread_wait, &wait);
1201 break;
1202 }
1203
1204 schedule();
1205
1206 set_task_state(current, TASK_RUNNING);
1207 spin_lock_irq(&cc->write_thread_wait.lock);
1208 __remove_wait_queue(&cc->write_thread_wait, &wait);
1209 goto continue_locked;
1210
1211 pop_from_list:
1212 write_tree = cc->write_tree;
1213 cc->write_tree = RB_ROOT;
1214 spin_unlock_irq(&cc->write_thread_wait.lock);
1215
1216 BUG_ON(rb_parent(write_tree.rb_node));
1217
1218 /*
1219 * Note: we cannot walk the tree here with rb_next because
1220 * the structures may be freed when kcryptd_io_write is called.
1221 */
1222 blk_start_plug(&plug);
1223 do {
1224 io = crypt_io_from_node(rb_first(&write_tree));
1225 rb_erase(&io->rb_node, &write_tree);
1226 kcryptd_io_write(io);
1227 } while (!RB_EMPTY_ROOT(&write_tree));
1228 blk_finish_plug(&plug);
1229 }
1230 return 0;
1231 }
1232
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1233 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1234 {
1235 struct bio *clone = io->ctx.bio_out;
1236 struct crypt_config *cc = io->cc;
1237 unsigned long flags;
1238 sector_t sector;
1239 struct rb_node **rbp, *parent;
1240
1241 if (unlikely(io->error < 0)) {
1242 crypt_free_buffer_pages(cc, clone);
1243 bio_put(clone);
1244 crypt_dec_pending(io);
1245 return;
1246 }
1247
1248 /* crypt_convert should have filled the clone bio */
1249 BUG_ON(io->ctx.iter_out.bi_size);
1250
1251 clone->bi_iter.bi_sector = cc->start + io->sector;
1252
1253 if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1254 generic_make_request(clone);
1255 return;
1256 }
1257
1258 spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
1259 rbp = &cc->write_tree.rb_node;
1260 parent = NULL;
1261 sector = io->sector;
1262 while (*rbp) {
1263 parent = *rbp;
1264 if (sector < crypt_io_from_node(parent)->sector)
1265 rbp = &(*rbp)->rb_left;
1266 else
1267 rbp = &(*rbp)->rb_right;
1268 }
1269 rb_link_node(&io->rb_node, parent, rbp);
1270 rb_insert_color(&io->rb_node, &cc->write_tree);
1271
1272 wake_up_locked(&cc->write_thread_wait);
1273 spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
1274 }
1275
kcryptd_crypt_write_convert(struct dm_crypt_io * io)1276 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1277 {
1278 struct crypt_config *cc = io->cc;
1279 struct bio *clone;
1280 int crypt_finished;
1281 sector_t sector = io->sector;
1282 int r;
1283
1284 /*
1285 * Prevent io from disappearing until this function completes.
1286 */
1287 crypt_inc_pending(io);
1288 crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1289
1290 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1291 if (unlikely(!clone)) {
1292 io->error = -EIO;
1293 goto dec;
1294 }
1295
1296 io->ctx.bio_out = clone;
1297 io->ctx.iter_out = clone->bi_iter;
1298
1299 sector += bio_sectors(clone);
1300
1301 crypt_inc_pending(io);
1302 r = crypt_convert(cc, &io->ctx);
1303 if (r)
1304 io->error = -EIO;
1305 crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
1306
1307 /* Encryption was already finished, submit io now */
1308 if (crypt_finished) {
1309 kcryptd_crypt_write_io_submit(io, 0);
1310 io->sector = sector;
1311 }
1312
1313 dec:
1314 crypt_dec_pending(io);
1315 }
1316
kcryptd_crypt_read_done(struct dm_crypt_io * io)1317 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1318 {
1319 crypt_dec_pending(io);
1320 }
1321
kcryptd_crypt_read_convert(struct dm_crypt_io * io)1322 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1323 {
1324 struct crypt_config *cc = io->cc;
1325 int r = 0;
1326
1327 crypt_inc_pending(io);
1328
1329 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1330 io->sector);
1331
1332 r = crypt_convert(cc, &io->ctx);
1333 if (r < 0)
1334 io->error = -EIO;
1335
1336 if (atomic_dec_and_test(&io->ctx.cc_pending))
1337 kcryptd_crypt_read_done(io);
1338
1339 crypt_dec_pending(io);
1340 }
1341
kcryptd_async_done(struct crypto_async_request * async_req,int error)1342 static void kcryptd_async_done(struct crypto_async_request *async_req,
1343 int error)
1344 {
1345 struct dm_crypt_request *dmreq = async_req->data;
1346 struct convert_context *ctx = dmreq->ctx;
1347 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1348 struct crypt_config *cc = io->cc;
1349
1350 if (error == -EINPROGRESS) {
1351 complete(&ctx->restart);
1352 return;
1353 }
1354
1355 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1356 error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1357
1358 if (error < 0)
1359 io->error = -EIO;
1360
1361 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1362
1363 if (!atomic_dec_and_test(&ctx->cc_pending))
1364 return;
1365
1366 if (bio_data_dir(io->base_bio) == READ)
1367 kcryptd_crypt_read_done(io);
1368 else
1369 kcryptd_crypt_write_io_submit(io, 1);
1370 }
1371
kcryptd_crypt(struct work_struct * work)1372 static void kcryptd_crypt(struct work_struct *work)
1373 {
1374 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1375
1376 if (bio_data_dir(io->base_bio) == READ)
1377 kcryptd_crypt_read_convert(io);
1378 else
1379 kcryptd_crypt_write_convert(io);
1380 }
1381
kcryptd_queue_crypt(struct dm_crypt_io * io)1382 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1383 {
1384 struct crypt_config *cc = io->cc;
1385
1386 INIT_WORK(&io->work, kcryptd_crypt);
1387 queue_work(cc->crypt_queue, &io->work);
1388 }
1389
1390 /*
1391 * Decode key from its hex representation
1392 */
crypt_decode_key(u8 * key,char * hex,unsigned int size)1393 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1394 {
1395 char buffer[3];
1396 unsigned int i;
1397
1398 buffer[2] = '\0';
1399
1400 for (i = 0; i < size; i++) {
1401 buffer[0] = *hex++;
1402 buffer[1] = *hex++;
1403
1404 if (kstrtou8(buffer, 16, &key[i]))
1405 return -EINVAL;
1406 }
1407
1408 if (*hex != '\0')
1409 return -EINVAL;
1410
1411 return 0;
1412 }
1413
crypt_free_tfms(struct crypt_config * cc)1414 static void crypt_free_tfms(struct crypt_config *cc)
1415 {
1416 unsigned i;
1417
1418 if (!cc->tfms)
1419 return;
1420
1421 for (i = 0; i < cc->tfms_count; i++)
1422 if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1423 crypto_free_ablkcipher(cc->tfms[i]);
1424 cc->tfms[i] = NULL;
1425 }
1426
1427 kfree(cc->tfms);
1428 cc->tfms = NULL;
1429 }
1430
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)1431 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1432 {
1433 unsigned i;
1434 int err;
1435
1436 cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_ablkcipher *),
1437 GFP_KERNEL);
1438 if (!cc->tfms)
1439 return -ENOMEM;
1440
1441 for (i = 0; i < cc->tfms_count; i++) {
1442 cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1443 if (IS_ERR(cc->tfms[i])) {
1444 err = PTR_ERR(cc->tfms[i]);
1445 crypt_free_tfms(cc);
1446 return err;
1447 }
1448 }
1449
1450 return 0;
1451 }
1452
crypt_setkey_allcpus(struct crypt_config * cc)1453 static int crypt_setkey_allcpus(struct crypt_config *cc)
1454 {
1455 unsigned subkey_size;
1456 int err = 0, i, r;
1457
1458 /* Ignore extra keys (which are used for IV etc) */
1459 subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
1460
1461 for (i = 0; i < cc->tfms_count; i++) {
1462 r = crypto_ablkcipher_setkey(cc->tfms[i],
1463 cc->key + (i * subkey_size),
1464 subkey_size);
1465 if (r)
1466 err = r;
1467 }
1468
1469 return err;
1470 }
1471
crypt_set_key(struct crypt_config * cc,char * key)1472 static int crypt_set_key(struct crypt_config *cc, char *key)
1473 {
1474 int r = -EINVAL;
1475 int key_string_len = strlen(key);
1476
1477 /* The key size may not be changed. */
1478 if (cc->key_size != (key_string_len >> 1))
1479 goto out;
1480
1481 /* Hyphen (which gives a key_size of zero) means there is no key. */
1482 if (!cc->key_size && strcmp(key, "-"))
1483 goto out;
1484
1485 if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1486 goto out;
1487
1488 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1489
1490 r = crypt_setkey_allcpus(cc);
1491
1492 out:
1493 /* Hex key string not needed after here, so wipe it. */
1494 memset(key, '0', key_string_len);
1495
1496 return r;
1497 }
1498
crypt_wipe_key(struct crypt_config * cc)1499 static int crypt_wipe_key(struct crypt_config *cc)
1500 {
1501 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1502 memset(&cc->key, 0, cc->key_size * sizeof(u8));
1503
1504 return crypt_setkey_allcpus(cc);
1505 }
1506
crypt_dtr(struct dm_target * ti)1507 static void crypt_dtr(struct dm_target *ti)
1508 {
1509 struct crypt_config *cc = ti->private;
1510
1511 ti->private = NULL;
1512
1513 if (!cc)
1514 return;
1515
1516 if (cc->write_thread)
1517 kthread_stop(cc->write_thread);
1518
1519 if (cc->io_queue)
1520 destroy_workqueue(cc->io_queue);
1521 if (cc->crypt_queue)
1522 destroy_workqueue(cc->crypt_queue);
1523
1524 crypt_free_tfms(cc);
1525
1526 if (cc->bs)
1527 bioset_free(cc->bs);
1528
1529 if (cc->page_pool)
1530 mempool_destroy(cc->page_pool);
1531 if (cc->req_pool)
1532 mempool_destroy(cc->req_pool);
1533
1534 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1535 cc->iv_gen_ops->dtr(cc);
1536
1537 if (cc->dev)
1538 dm_put_device(ti, cc->dev);
1539
1540 kzfree(cc->cipher);
1541 kzfree(cc->cipher_string);
1542
1543 /* Must zero key material before freeing */
1544 kzfree(cc);
1545 }
1546
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)1547 static int crypt_ctr_cipher(struct dm_target *ti,
1548 char *cipher_in, char *key)
1549 {
1550 struct crypt_config *cc = ti->private;
1551 char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1552 char *cipher_api = NULL;
1553 int ret = -EINVAL;
1554 char dummy;
1555
1556 /* Convert to crypto api definition? */
1557 if (strchr(cipher_in, '(')) {
1558 ti->error = "Bad cipher specification";
1559 return -EINVAL;
1560 }
1561
1562 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1563 if (!cc->cipher_string)
1564 goto bad_mem;
1565
1566 /*
1567 * Legacy dm-crypt cipher specification
1568 * cipher[:keycount]-mode-iv:ivopts
1569 */
1570 tmp = cipher_in;
1571 keycount = strsep(&tmp, "-");
1572 cipher = strsep(&keycount, ":");
1573
1574 if (!keycount)
1575 cc->tfms_count = 1;
1576 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1577 !is_power_of_2(cc->tfms_count)) {
1578 ti->error = "Bad cipher key count specification";
1579 return -EINVAL;
1580 }
1581 cc->key_parts = cc->tfms_count;
1582 cc->key_extra_size = 0;
1583
1584 cc->cipher = kstrdup(cipher, GFP_KERNEL);
1585 if (!cc->cipher)
1586 goto bad_mem;
1587
1588 chainmode = strsep(&tmp, "-");
1589 ivopts = strsep(&tmp, "-");
1590 ivmode = strsep(&ivopts, ":");
1591
1592 if (tmp)
1593 DMWARN("Ignoring unexpected additional cipher options");
1594
1595 /*
1596 * For compatibility with the original dm-crypt mapping format, if
1597 * only the cipher name is supplied, use cbc-plain.
1598 */
1599 if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1600 chainmode = "cbc";
1601 ivmode = "plain";
1602 }
1603
1604 if (strcmp(chainmode, "ecb") && !ivmode) {
1605 ti->error = "IV mechanism required";
1606 return -EINVAL;
1607 }
1608
1609 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1610 if (!cipher_api)
1611 goto bad_mem;
1612
1613 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1614 "%s(%s)", chainmode, cipher);
1615 if (ret < 0) {
1616 kfree(cipher_api);
1617 goto bad_mem;
1618 }
1619
1620 /* Allocate cipher */
1621 ret = crypt_alloc_tfms(cc, cipher_api);
1622 if (ret < 0) {
1623 ti->error = "Error allocating crypto tfm";
1624 goto bad;
1625 }
1626
1627 /* Initialize IV */
1628 cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1629 if (cc->iv_size)
1630 /* at least a 64 bit sector number should fit in our buffer */
1631 cc->iv_size = max(cc->iv_size,
1632 (unsigned int)(sizeof(u64) / sizeof(u8)));
1633 else if (ivmode) {
1634 DMWARN("Selected cipher does not support IVs");
1635 ivmode = NULL;
1636 }
1637
1638 /* Choose ivmode, see comments at iv code. */
1639 if (ivmode == NULL)
1640 cc->iv_gen_ops = NULL;
1641 else if (strcmp(ivmode, "plain") == 0)
1642 cc->iv_gen_ops = &crypt_iv_plain_ops;
1643 else if (strcmp(ivmode, "plain64") == 0)
1644 cc->iv_gen_ops = &crypt_iv_plain64_ops;
1645 else if (strcmp(ivmode, "essiv") == 0)
1646 cc->iv_gen_ops = &crypt_iv_essiv_ops;
1647 else if (strcmp(ivmode, "benbi") == 0)
1648 cc->iv_gen_ops = &crypt_iv_benbi_ops;
1649 else if (strcmp(ivmode, "null") == 0)
1650 cc->iv_gen_ops = &crypt_iv_null_ops;
1651 else if (strcmp(ivmode, "lmk") == 0) {
1652 cc->iv_gen_ops = &crypt_iv_lmk_ops;
1653 /*
1654 * Version 2 and 3 is recognised according
1655 * to length of provided multi-key string.
1656 * If present (version 3), last key is used as IV seed.
1657 * All keys (including IV seed) are always the same size.
1658 */
1659 if (cc->key_size % cc->key_parts) {
1660 cc->key_parts++;
1661 cc->key_extra_size = cc->key_size / cc->key_parts;
1662 }
1663 } else if (strcmp(ivmode, "tcw") == 0) {
1664 cc->iv_gen_ops = &crypt_iv_tcw_ops;
1665 cc->key_parts += 2; /* IV + whitening */
1666 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1667 } else {
1668 ret = -EINVAL;
1669 ti->error = "Invalid IV mode";
1670 goto bad;
1671 }
1672
1673 /* Initialize and set key */
1674 ret = crypt_set_key(cc, key);
1675 if (ret < 0) {
1676 ti->error = "Error decoding and setting key";
1677 goto bad;
1678 }
1679
1680 /* Allocate IV */
1681 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1682 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1683 if (ret < 0) {
1684 ti->error = "Error creating IV";
1685 goto bad;
1686 }
1687 }
1688
1689 /* Initialize IV (set keys for ESSIV etc) */
1690 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1691 ret = cc->iv_gen_ops->init(cc);
1692 if (ret < 0) {
1693 ti->error = "Error initialising IV";
1694 goto bad;
1695 }
1696 }
1697
1698 ret = 0;
1699 bad:
1700 kfree(cipher_api);
1701 return ret;
1702
1703 bad_mem:
1704 ti->error = "Cannot allocate cipher strings";
1705 return -ENOMEM;
1706 }
1707
1708 /*
1709 * Construct an encryption mapping:
1710 * <cipher> <key> <iv_offset> <dev_path> <start>
1711 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1712 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1713 {
1714 struct crypt_config *cc;
1715 unsigned int key_size, opt_params;
1716 unsigned long long tmpll;
1717 int ret;
1718 size_t iv_size_padding;
1719 struct dm_arg_set as;
1720 const char *opt_string;
1721 char dummy;
1722
1723 static struct dm_arg _args[] = {
1724 {0, 3, "Invalid number of feature args"},
1725 };
1726
1727 if (argc < 5) {
1728 ti->error = "Not enough arguments";
1729 return -EINVAL;
1730 }
1731
1732 key_size = strlen(argv[1]) >> 1;
1733
1734 cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1735 if (!cc) {
1736 ti->error = "Cannot allocate encryption context";
1737 return -ENOMEM;
1738 }
1739 cc->key_size = key_size;
1740
1741 ti->private = cc;
1742 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1743 if (ret < 0)
1744 goto bad;
1745
1746 cc->dmreq_start = sizeof(struct ablkcipher_request);
1747 cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1748 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1749
1750 if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1751 /* Allocate the padding exactly */
1752 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1753 & crypto_ablkcipher_alignmask(any_tfm(cc));
1754 } else {
1755 /*
1756 * If the cipher requires greater alignment than kmalloc
1757 * alignment, we don't know the exact position of the
1758 * initialization vector. We must assume worst case.
1759 */
1760 iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
1761 }
1762
1763 ret = -ENOMEM;
1764 cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1765 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1766 if (!cc->req_pool) {
1767 ti->error = "Cannot allocate crypt request mempool";
1768 goto bad;
1769 }
1770
1771 cc->per_bio_data_size = ti->per_bio_data_size =
1772 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1773 sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1774 ARCH_KMALLOC_MINALIGN);
1775
1776 cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1777 if (!cc->page_pool) {
1778 ti->error = "Cannot allocate page mempool";
1779 goto bad;
1780 }
1781
1782 cc->bs = bioset_create(MIN_IOS, 0);
1783 if (!cc->bs) {
1784 ti->error = "Cannot allocate crypt bioset";
1785 goto bad;
1786 }
1787
1788 mutex_init(&cc->bio_alloc_lock);
1789
1790 ret = -EINVAL;
1791 if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1792 ti->error = "Invalid iv_offset sector";
1793 goto bad;
1794 }
1795 cc->iv_offset = tmpll;
1796
1797 if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1798 ti->error = "Device lookup failed";
1799 goto bad;
1800 }
1801
1802 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1803 ti->error = "Invalid device sector";
1804 goto bad;
1805 }
1806 cc->start = tmpll;
1807
1808 argv += 5;
1809 argc -= 5;
1810
1811 /* Optional parameters */
1812 if (argc) {
1813 as.argc = argc;
1814 as.argv = argv;
1815
1816 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1817 if (ret)
1818 goto bad;
1819
1820 ret = -EINVAL;
1821 while (opt_params--) {
1822 opt_string = dm_shift_arg(&as);
1823 if (!opt_string) {
1824 ti->error = "Not enough feature arguments";
1825 goto bad;
1826 }
1827
1828 if (!strcasecmp(opt_string, "allow_discards"))
1829 ti->num_discard_bios = 1;
1830
1831 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1832 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1833
1834 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1835 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1836
1837 else {
1838 ti->error = "Invalid feature arguments";
1839 goto bad;
1840 }
1841 }
1842 }
1843
1844 ret = -ENOMEM;
1845 cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
1846 if (!cc->io_queue) {
1847 ti->error = "Couldn't create kcryptd io queue";
1848 goto bad;
1849 }
1850
1851 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1852 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1853 else
1854 cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1855 num_online_cpus());
1856 if (!cc->crypt_queue) {
1857 ti->error = "Couldn't create kcryptd queue";
1858 goto bad;
1859 }
1860
1861 init_waitqueue_head(&cc->write_thread_wait);
1862 cc->write_tree = RB_ROOT;
1863
1864 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1865 if (IS_ERR(cc->write_thread)) {
1866 ret = PTR_ERR(cc->write_thread);
1867 cc->write_thread = NULL;
1868 ti->error = "Couldn't spawn write thread";
1869 goto bad;
1870 }
1871 wake_up_process(cc->write_thread);
1872
1873 ti->num_flush_bios = 1;
1874 ti->discard_zeroes_data_unsupported = true;
1875
1876 return 0;
1877
1878 bad:
1879 crypt_dtr(ti);
1880 return ret;
1881 }
1882
crypt_map(struct dm_target * ti,struct bio * bio)1883 static int crypt_map(struct dm_target *ti, struct bio *bio)
1884 {
1885 struct dm_crypt_io *io;
1886 struct crypt_config *cc = ti->private;
1887
1888 /*
1889 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1890 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1891 * - for REQ_DISCARD caller must use flush if IO ordering matters
1892 */
1893 if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1894 bio->bi_bdev = cc->dev->bdev;
1895 if (bio_sectors(bio))
1896 bio->bi_iter.bi_sector = cc->start +
1897 dm_target_offset(ti, bio->bi_iter.bi_sector);
1898 return DM_MAPIO_REMAPPED;
1899 }
1900
1901 io = dm_per_bio_data(bio, cc->per_bio_data_size);
1902 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1903 io->ctx.req = (struct ablkcipher_request *)(io + 1);
1904
1905 if (bio_data_dir(io->base_bio) == READ) {
1906 if (kcryptd_io_read(io, GFP_NOWAIT))
1907 kcryptd_queue_read(io);
1908 } else
1909 kcryptd_queue_crypt(io);
1910
1911 return DM_MAPIO_SUBMITTED;
1912 }
1913
crypt_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)1914 static void crypt_status(struct dm_target *ti, status_type_t type,
1915 unsigned status_flags, char *result, unsigned maxlen)
1916 {
1917 struct crypt_config *cc = ti->private;
1918 unsigned i, sz = 0;
1919 int num_feature_args = 0;
1920
1921 switch (type) {
1922 case STATUSTYPE_INFO:
1923 result[0] = '\0';
1924 break;
1925
1926 case STATUSTYPE_TABLE:
1927 DMEMIT("%s ", cc->cipher_string);
1928
1929 if (cc->key_size > 0)
1930 for (i = 0; i < cc->key_size; i++)
1931 DMEMIT("%02x", cc->key[i]);
1932 else
1933 DMEMIT("-");
1934
1935 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1936 cc->dev->name, (unsigned long long)cc->start);
1937
1938 num_feature_args += !!ti->num_discard_bios;
1939 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1940 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1941 if (num_feature_args) {
1942 DMEMIT(" %d", num_feature_args);
1943 if (ti->num_discard_bios)
1944 DMEMIT(" allow_discards");
1945 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1946 DMEMIT(" same_cpu_crypt");
1947 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1948 DMEMIT(" submit_from_crypt_cpus");
1949 }
1950
1951 break;
1952 }
1953 }
1954
crypt_postsuspend(struct dm_target * ti)1955 static void crypt_postsuspend(struct dm_target *ti)
1956 {
1957 struct crypt_config *cc = ti->private;
1958
1959 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1960 }
1961
crypt_preresume(struct dm_target * ti)1962 static int crypt_preresume(struct dm_target *ti)
1963 {
1964 struct crypt_config *cc = ti->private;
1965
1966 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1967 DMERR("aborting resume - crypt key is not set.");
1968 return -EAGAIN;
1969 }
1970
1971 return 0;
1972 }
1973
crypt_resume(struct dm_target * ti)1974 static void crypt_resume(struct dm_target *ti)
1975 {
1976 struct crypt_config *cc = ti->private;
1977
1978 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1979 }
1980
1981 /* Message interface
1982 * key set <key>
1983 * key wipe
1984 */
crypt_message(struct dm_target * ti,unsigned argc,char ** argv)1985 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1986 {
1987 struct crypt_config *cc = ti->private;
1988 int ret = -EINVAL;
1989
1990 if (argc < 2)
1991 goto error;
1992
1993 if (!strcasecmp(argv[0], "key")) {
1994 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1995 DMWARN("not suspended during key manipulation.");
1996 return -EINVAL;
1997 }
1998 if (argc == 3 && !strcasecmp(argv[1], "set")) {
1999 ret = crypt_set_key(cc, argv[2]);
2000 if (ret)
2001 return ret;
2002 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2003 ret = cc->iv_gen_ops->init(cc);
2004 return ret;
2005 }
2006 if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2007 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2008 ret = cc->iv_gen_ops->wipe(cc);
2009 if (ret)
2010 return ret;
2011 }
2012 return crypt_wipe_key(cc);
2013 }
2014 }
2015
2016 error:
2017 DMWARN("unrecognised message received.");
2018 return -EINVAL;
2019 }
2020
crypt_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)2021 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2022 struct bio_vec *biovec, int max_size)
2023 {
2024 struct crypt_config *cc = ti->private;
2025 struct request_queue *q = bdev_get_queue(cc->dev->bdev);
2026
2027 if (!q->merge_bvec_fn)
2028 return max_size;
2029
2030 bvm->bi_bdev = cc->dev->bdev;
2031 bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
2032
2033 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2034 }
2035
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)2036 static int crypt_iterate_devices(struct dm_target *ti,
2037 iterate_devices_callout_fn fn, void *data)
2038 {
2039 struct crypt_config *cc = ti->private;
2040
2041 return fn(ti, cc->dev, cc->start, ti->len, data);
2042 }
2043
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)2044 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2045 {
2046 /*
2047 * Unfortunate constraint that is required to avoid the potential
2048 * for exceeding underlying device's max_segments limits -- due to
2049 * crypt_alloc_buffer() possibly allocating pages for the encryption
2050 * bio that are not as physically contiguous as the original bio.
2051 */
2052 limits->max_segment_size = PAGE_SIZE;
2053 }
2054
2055 static struct target_type crypt_target = {
2056 .name = "crypt",
2057 .version = {1, 14, 1},
2058 .module = THIS_MODULE,
2059 .ctr = crypt_ctr,
2060 .dtr = crypt_dtr,
2061 .map = crypt_map,
2062 .status = crypt_status,
2063 .postsuspend = crypt_postsuspend,
2064 .preresume = crypt_preresume,
2065 .resume = crypt_resume,
2066 .message = crypt_message,
2067 .merge = crypt_merge,
2068 .iterate_devices = crypt_iterate_devices,
2069 .io_hints = crypt_io_hints,
2070 };
2071
dm_crypt_init(void)2072 static int __init dm_crypt_init(void)
2073 {
2074 int r;
2075
2076 r = dm_register_target(&crypt_target);
2077 if (r < 0)
2078 DMERR("register failed %d", r);
2079
2080 return r;
2081 }
2082
dm_crypt_exit(void)2083 static void __exit dm_crypt_exit(void)
2084 {
2085 dm_unregister_target(&crypt_target);
2086 }
2087
2088 module_init(dm_crypt_init);
2089 module_exit(dm_crypt_exit);
2090
2091 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2092 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2093 MODULE_LICENSE("GPL");
2094