1 /*
2  * Copyright (C) 2012 Red Hat. All rights reserved.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm.h"
8 #include "dm-bio-prison.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
11 
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20 
21 #define DM_MSG_PREFIX "cache"
22 
23 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
24 	"A percentage of time allocated for copying to and/or from cache");
25 
26 /*----------------------------------------------------------------*/
27 
28 /*
29  * Glossary:
30  *
31  * oblock: index of an origin block
32  * cblock: index of a cache block
33  * promotion: movement of a block from origin to cache
34  * demotion: movement of a block from cache to origin
35  * migration: movement of a block between the origin and cache device,
36  *	      either direction
37  */
38 
39 /*----------------------------------------------------------------*/
40 
bitset_size_in_bytes(unsigned nr_entries)41 static size_t bitset_size_in_bytes(unsigned nr_entries)
42 {
43 	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
44 }
45 
alloc_bitset(unsigned nr_entries)46 static unsigned long *alloc_bitset(unsigned nr_entries)
47 {
48 	size_t s = bitset_size_in_bytes(nr_entries);
49 	return vzalloc(s);
50 }
51 
clear_bitset(void * bitset,unsigned nr_entries)52 static void clear_bitset(void *bitset, unsigned nr_entries)
53 {
54 	size_t s = bitset_size_in_bytes(nr_entries);
55 	memset(bitset, 0, s);
56 }
57 
free_bitset(unsigned long * bits)58 static void free_bitset(unsigned long *bits)
59 {
60 	vfree(bits);
61 }
62 
63 /*----------------------------------------------------------------*/
64 
65 /*
66  * There are a couple of places where we let a bio run, but want to do some
67  * work before calling its endio function.  We do this by temporarily
68  * changing the endio fn.
69  */
70 struct dm_hook_info {
71 	bio_end_io_t *bi_end_io;
72 	void *bi_private;
73 };
74 
dm_hook_bio(struct dm_hook_info * h,struct bio * bio,bio_end_io_t * bi_end_io,void * bi_private)75 static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
76 			bio_end_io_t *bi_end_io, void *bi_private)
77 {
78 	h->bi_end_io = bio->bi_end_io;
79 	h->bi_private = bio->bi_private;
80 
81 	bio->bi_end_io = bi_end_io;
82 	bio->bi_private = bi_private;
83 }
84 
dm_unhook_bio(struct dm_hook_info * h,struct bio * bio)85 static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
86 {
87 	bio->bi_end_io = h->bi_end_io;
88 	bio->bi_private = h->bi_private;
89 
90 	/*
91 	 * Must bump bi_remaining to allow bio to complete with
92 	 * restored bi_end_io.
93 	 */
94 	atomic_inc(&bio->bi_remaining);
95 }
96 
97 /*----------------------------------------------------------------*/
98 
99 #define MIGRATION_POOL_SIZE 128
100 #define COMMIT_PERIOD HZ
101 #define MIGRATION_COUNT_WINDOW 10
102 
103 /*
104  * The block size of the device holding cache data must be
105  * between 32KB and 1GB.
106  */
107 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109 
110 /*
111  * FIXME: the cache is read/write for the time being.
112  */
113 enum cache_metadata_mode {
114 	CM_WRITE,		/* metadata may be changed */
115 	CM_READ_ONLY,		/* metadata may not be changed */
116 };
117 
118 enum cache_io_mode {
119 	/*
120 	 * Data is written to cached blocks only.  These blocks are marked
121 	 * dirty.  If you lose the cache device you will lose data.
122 	 * Potential performance increase for both reads and writes.
123 	 */
124 	CM_IO_WRITEBACK,
125 
126 	/*
127 	 * Data is written to both cache and origin.  Blocks are never
128 	 * dirty.  Potential performance benfit for reads only.
129 	 */
130 	CM_IO_WRITETHROUGH,
131 
132 	/*
133 	 * A degraded mode useful for various cache coherency situations
134 	 * (eg, rolling back snapshots).  Reads and writes always go to the
135 	 * origin.  If a write goes to a cached oblock, then the cache
136 	 * block is invalidated.
137 	 */
138 	CM_IO_PASSTHROUGH
139 };
140 
141 struct cache_features {
142 	enum cache_metadata_mode mode;
143 	enum cache_io_mode io_mode;
144 };
145 
146 struct cache_stats {
147 	atomic_t read_hit;
148 	atomic_t read_miss;
149 	atomic_t write_hit;
150 	atomic_t write_miss;
151 	atomic_t demotion;
152 	atomic_t promotion;
153 	atomic_t copies_avoided;
154 	atomic_t cache_cell_clash;
155 	atomic_t commit_count;
156 	atomic_t discard_count;
157 };
158 
159 /*
160  * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
161  * the one-past-the-end value.
162  */
163 struct cblock_range {
164 	dm_cblock_t begin;
165 	dm_cblock_t end;
166 };
167 
168 struct invalidation_request {
169 	struct list_head list;
170 	struct cblock_range *cblocks;
171 
172 	atomic_t complete;
173 	int err;
174 
175 	wait_queue_head_t result_wait;
176 };
177 
178 struct cache {
179 	struct dm_target *ti;
180 	struct dm_target_callbacks callbacks;
181 
182 	struct dm_cache_metadata *cmd;
183 
184 	/*
185 	 * Metadata is written to this device.
186 	 */
187 	struct dm_dev *metadata_dev;
188 
189 	/*
190 	 * The slower of the two data devices.  Typically a spindle.
191 	 */
192 	struct dm_dev *origin_dev;
193 
194 	/*
195 	 * The faster of the two data devices.  Typically an SSD.
196 	 */
197 	struct dm_dev *cache_dev;
198 
199 	/*
200 	 * Size of the origin device in _complete_ blocks and native sectors.
201 	 */
202 	dm_oblock_t origin_blocks;
203 	sector_t origin_sectors;
204 
205 	/*
206 	 * Size of the cache device in blocks.
207 	 */
208 	dm_cblock_t cache_size;
209 
210 	/*
211 	 * Fields for converting from sectors to blocks.
212 	 */
213 	uint32_t sectors_per_block;
214 	int sectors_per_block_shift;
215 
216 	spinlock_t lock;
217 	struct bio_list deferred_bios;
218 	struct bio_list deferred_flush_bios;
219 	struct bio_list deferred_writethrough_bios;
220 	struct list_head quiesced_migrations;
221 	struct list_head completed_migrations;
222 	struct list_head need_commit_migrations;
223 	sector_t migration_threshold;
224 	wait_queue_head_t migration_wait;
225 	atomic_t nr_allocated_migrations;
226 
227 	/*
228 	 * The number of in flight migrations that are performing
229 	 * background io. eg, promotion, writeback.
230 	 */
231 	atomic_t nr_io_migrations;
232 
233 	wait_queue_head_t quiescing_wait;
234 	atomic_t quiescing;
235 	atomic_t quiescing_ack;
236 
237 	/*
238 	 * cache_size entries, dirty if set
239 	 */
240 	atomic_t nr_dirty;
241 	unsigned long *dirty_bitset;
242 
243 	/*
244 	 * origin_blocks entries, discarded if set.
245 	 */
246 	dm_dblock_t discard_nr_blocks;
247 	unsigned long *discard_bitset;
248 	uint32_t discard_block_size; /* a power of 2 times sectors per block */
249 
250 	/*
251 	 * Rather than reconstructing the table line for the status we just
252 	 * save it and regurgitate.
253 	 */
254 	unsigned nr_ctr_args;
255 	const char **ctr_args;
256 
257 	struct dm_kcopyd_client *copier;
258 	struct workqueue_struct *wq;
259 	struct work_struct worker;
260 
261 	struct delayed_work waker;
262 	unsigned long last_commit_jiffies;
263 
264 	struct dm_bio_prison *prison;
265 	struct dm_deferred_set *all_io_ds;
266 
267 	mempool_t *migration_pool;
268 
269 	struct dm_cache_policy *policy;
270 	unsigned policy_nr_args;
271 
272 	bool need_tick_bio:1;
273 	bool sized:1;
274 	bool invalidate:1;
275 	bool commit_requested:1;
276 	bool loaded_mappings:1;
277 	bool loaded_discards:1;
278 
279 	/*
280 	 * Cache features such as write-through.
281 	 */
282 	struct cache_features features;
283 
284 	struct cache_stats stats;
285 
286 	/*
287 	 * Invalidation fields.
288 	 */
289 	spinlock_t invalidation_lock;
290 	struct list_head invalidation_requests;
291 };
292 
293 struct per_bio_data {
294 	bool tick:1;
295 	unsigned req_nr:2;
296 	struct dm_deferred_entry *all_io_entry;
297 	struct dm_hook_info hook_info;
298 
299 	/*
300 	 * writethrough fields.  These MUST remain at the end of this
301 	 * structure and the 'cache' member must be the first as it
302 	 * is used to determine the offset of the writethrough fields.
303 	 */
304 	struct cache *cache;
305 	dm_cblock_t cblock;
306 	struct dm_bio_details bio_details;
307 };
308 
309 struct dm_cache_migration {
310 	struct list_head list;
311 	struct cache *cache;
312 
313 	unsigned long start_jiffies;
314 	dm_oblock_t old_oblock;
315 	dm_oblock_t new_oblock;
316 	dm_cblock_t cblock;
317 
318 	bool err:1;
319 	bool discard:1;
320 	bool writeback:1;
321 	bool demote:1;
322 	bool promote:1;
323 	bool requeue_holder:1;
324 	bool invalidate:1;
325 
326 	struct dm_bio_prison_cell *old_ocell;
327 	struct dm_bio_prison_cell *new_ocell;
328 };
329 
330 /*
331  * Processing a bio in the worker thread may require these memory
332  * allocations.  We prealloc to avoid deadlocks (the same worker thread
333  * frees them back to the mempool).
334  */
335 struct prealloc {
336 	struct dm_cache_migration *mg;
337 	struct dm_bio_prison_cell *cell1;
338 	struct dm_bio_prison_cell *cell2;
339 };
340 
wake_worker(struct cache * cache)341 static void wake_worker(struct cache *cache)
342 {
343 	queue_work(cache->wq, &cache->worker);
344 }
345 
346 /*----------------------------------------------------------------*/
347 
alloc_prison_cell(struct cache * cache)348 static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
349 {
350 	/* FIXME: change to use a local slab. */
351 	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
352 }
353 
free_prison_cell(struct cache * cache,struct dm_bio_prison_cell * cell)354 static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
355 {
356 	dm_bio_prison_free_cell(cache->prison, cell);
357 }
358 
alloc_migration(struct cache * cache)359 static struct dm_cache_migration *alloc_migration(struct cache *cache)
360 {
361 	struct dm_cache_migration *mg;
362 
363 	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
364 	if (mg) {
365 		mg->cache = cache;
366 		atomic_inc(&mg->cache->nr_allocated_migrations);
367 	}
368 
369 	return mg;
370 }
371 
free_migration(struct dm_cache_migration * mg)372 static void free_migration(struct dm_cache_migration *mg)
373 {
374 	if (atomic_dec_and_test(&mg->cache->nr_allocated_migrations))
375 		wake_up(&mg->cache->migration_wait);
376 
377 	mempool_free(mg, mg->cache->migration_pool);
378 }
379 
prealloc_data_structs(struct cache * cache,struct prealloc * p)380 static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
381 {
382 	if (!p->mg) {
383 		p->mg = alloc_migration(cache);
384 		if (!p->mg)
385 			return -ENOMEM;
386 	}
387 
388 	if (!p->cell1) {
389 		p->cell1 = alloc_prison_cell(cache);
390 		if (!p->cell1)
391 			return -ENOMEM;
392 	}
393 
394 	if (!p->cell2) {
395 		p->cell2 = alloc_prison_cell(cache);
396 		if (!p->cell2)
397 			return -ENOMEM;
398 	}
399 
400 	return 0;
401 }
402 
prealloc_free_structs(struct cache * cache,struct prealloc * p)403 static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
404 {
405 	if (p->cell2)
406 		free_prison_cell(cache, p->cell2);
407 
408 	if (p->cell1)
409 		free_prison_cell(cache, p->cell1);
410 
411 	if (p->mg)
412 		free_migration(p->mg);
413 }
414 
prealloc_get_migration(struct prealloc * p)415 static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
416 {
417 	struct dm_cache_migration *mg = p->mg;
418 
419 	BUG_ON(!mg);
420 	p->mg = NULL;
421 
422 	return mg;
423 }
424 
425 /*
426  * You must have a cell within the prealloc struct to return.  If not this
427  * function will BUG() rather than returning NULL.
428  */
prealloc_get_cell(struct prealloc * p)429 static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
430 {
431 	struct dm_bio_prison_cell *r = NULL;
432 
433 	if (p->cell1) {
434 		r = p->cell1;
435 		p->cell1 = NULL;
436 
437 	} else if (p->cell2) {
438 		r = p->cell2;
439 		p->cell2 = NULL;
440 	} else
441 		BUG();
442 
443 	return r;
444 }
445 
446 /*
447  * You can't have more than two cells in a prealloc struct.  BUG() will be
448  * called if you try and overfill.
449  */
prealloc_put_cell(struct prealloc * p,struct dm_bio_prison_cell * cell)450 static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
451 {
452 	if (!p->cell2)
453 		p->cell2 = cell;
454 
455 	else if (!p->cell1)
456 		p->cell1 = cell;
457 
458 	else
459 		BUG();
460 }
461 
462 /*----------------------------------------------------------------*/
463 
build_key(dm_oblock_t begin,dm_oblock_t end,struct dm_cell_key * key)464 static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
465 {
466 	key->virtual = 0;
467 	key->dev = 0;
468 	key->block_begin = from_oblock(begin);
469 	key->block_end = from_oblock(end);
470 }
471 
472 /*
473  * The caller hands in a preallocated cell, and a free function for it.
474  * The cell will be freed if there's an error, or if it wasn't used because
475  * a cell with that key already exists.
476  */
477 typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
478 
bio_detain_range(struct cache * cache,dm_oblock_t oblock_begin,dm_oblock_t oblock_end,struct bio * bio,struct dm_bio_prison_cell * cell_prealloc,cell_free_fn free_fn,void * free_context,struct dm_bio_prison_cell ** cell_result)479 static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
480 			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
481 			    cell_free_fn free_fn, void *free_context,
482 			    struct dm_bio_prison_cell **cell_result)
483 {
484 	int r;
485 	struct dm_cell_key key;
486 
487 	build_key(oblock_begin, oblock_end, &key);
488 	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
489 	if (r)
490 		free_fn(free_context, cell_prealloc);
491 
492 	return r;
493 }
494 
bio_detain(struct cache * cache,dm_oblock_t oblock,struct bio * bio,struct dm_bio_prison_cell * cell_prealloc,cell_free_fn free_fn,void * free_context,struct dm_bio_prison_cell ** cell_result)495 static int bio_detain(struct cache *cache, dm_oblock_t oblock,
496 		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
497 		      cell_free_fn free_fn, void *free_context,
498 		      struct dm_bio_prison_cell **cell_result)
499 {
500 	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
501 	return bio_detain_range(cache, oblock, end, bio,
502 				cell_prealloc, free_fn, free_context, cell_result);
503 }
504 
get_cell(struct cache * cache,dm_oblock_t oblock,struct prealloc * structs,struct dm_bio_prison_cell ** cell_result)505 static int get_cell(struct cache *cache,
506 		    dm_oblock_t oblock,
507 		    struct prealloc *structs,
508 		    struct dm_bio_prison_cell **cell_result)
509 {
510 	int r;
511 	struct dm_cell_key key;
512 	struct dm_bio_prison_cell *cell_prealloc;
513 
514 	cell_prealloc = prealloc_get_cell(structs);
515 
516 	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
517 	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
518 	if (r)
519 		prealloc_put_cell(structs, cell_prealloc);
520 
521 	return r;
522 }
523 
524 /*----------------------------------------------------------------*/
525 
is_dirty(struct cache * cache,dm_cblock_t b)526 static bool is_dirty(struct cache *cache, dm_cblock_t b)
527 {
528 	return test_bit(from_cblock(b), cache->dirty_bitset);
529 }
530 
set_dirty(struct cache * cache,dm_oblock_t oblock,dm_cblock_t cblock)531 static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
532 {
533 	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
534 		atomic_inc(&cache->nr_dirty);
535 		policy_set_dirty(cache->policy, oblock);
536 	}
537 }
538 
clear_dirty(struct cache * cache,dm_oblock_t oblock,dm_cblock_t cblock)539 static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
540 {
541 	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
542 		policy_clear_dirty(cache->policy, oblock);
543 		if (atomic_dec_return(&cache->nr_dirty) == 0)
544 			dm_table_event(cache->ti->table);
545 	}
546 }
547 
548 /*----------------------------------------------------------------*/
549 
block_size_is_power_of_two(struct cache * cache)550 static bool block_size_is_power_of_two(struct cache *cache)
551 {
552 	return cache->sectors_per_block_shift >= 0;
553 }
554 
555 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
556 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
557 __always_inline
558 #endif
block_div(dm_block_t b,uint32_t n)559 static dm_block_t block_div(dm_block_t b, uint32_t n)
560 {
561 	do_div(b, n);
562 
563 	return b;
564 }
565 
oblocks_per_dblock(struct cache * cache)566 static dm_block_t oblocks_per_dblock(struct cache *cache)
567 {
568 	dm_block_t oblocks = cache->discard_block_size;
569 
570 	if (block_size_is_power_of_two(cache))
571 		oblocks >>= cache->sectors_per_block_shift;
572 	else
573 		oblocks = block_div(oblocks, cache->sectors_per_block);
574 
575 	return oblocks;
576 }
577 
oblock_to_dblock(struct cache * cache,dm_oblock_t oblock)578 static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
579 {
580 	return to_dblock(block_div(from_oblock(oblock),
581 				   oblocks_per_dblock(cache)));
582 }
583 
dblock_to_oblock(struct cache * cache,dm_dblock_t dblock)584 static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
585 {
586 	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
587 }
588 
set_discard(struct cache * cache,dm_dblock_t b)589 static void set_discard(struct cache *cache, dm_dblock_t b)
590 {
591 	unsigned long flags;
592 
593 	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
594 	atomic_inc(&cache->stats.discard_count);
595 
596 	spin_lock_irqsave(&cache->lock, flags);
597 	set_bit(from_dblock(b), cache->discard_bitset);
598 	spin_unlock_irqrestore(&cache->lock, flags);
599 }
600 
clear_discard(struct cache * cache,dm_dblock_t b)601 static void clear_discard(struct cache *cache, dm_dblock_t b)
602 {
603 	unsigned long flags;
604 
605 	spin_lock_irqsave(&cache->lock, flags);
606 	clear_bit(from_dblock(b), cache->discard_bitset);
607 	spin_unlock_irqrestore(&cache->lock, flags);
608 }
609 
is_discarded(struct cache * cache,dm_dblock_t b)610 static bool is_discarded(struct cache *cache, dm_dblock_t b)
611 {
612 	int r;
613 	unsigned long flags;
614 
615 	spin_lock_irqsave(&cache->lock, flags);
616 	r = test_bit(from_dblock(b), cache->discard_bitset);
617 	spin_unlock_irqrestore(&cache->lock, flags);
618 
619 	return r;
620 }
621 
is_discarded_oblock(struct cache * cache,dm_oblock_t b)622 static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
623 {
624 	int r;
625 	unsigned long flags;
626 
627 	spin_lock_irqsave(&cache->lock, flags);
628 	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
629 		     cache->discard_bitset);
630 	spin_unlock_irqrestore(&cache->lock, flags);
631 
632 	return r;
633 }
634 
635 /*----------------------------------------------------------------*/
636 
load_stats(struct cache * cache)637 static void load_stats(struct cache *cache)
638 {
639 	struct dm_cache_statistics stats;
640 
641 	dm_cache_metadata_get_stats(cache->cmd, &stats);
642 	atomic_set(&cache->stats.read_hit, stats.read_hits);
643 	atomic_set(&cache->stats.read_miss, stats.read_misses);
644 	atomic_set(&cache->stats.write_hit, stats.write_hits);
645 	atomic_set(&cache->stats.write_miss, stats.write_misses);
646 }
647 
save_stats(struct cache * cache)648 static void save_stats(struct cache *cache)
649 {
650 	struct dm_cache_statistics stats;
651 
652 	stats.read_hits = atomic_read(&cache->stats.read_hit);
653 	stats.read_misses = atomic_read(&cache->stats.read_miss);
654 	stats.write_hits = atomic_read(&cache->stats.write_hit);
655 	stats.write_misses = atomic_read(&cache->stats.write_miss);
656 
657 	dm_cache_metadata_set_stats(cache->cmd, &stats);
658 }
659 
660 /*----------------------------------------------------------------
661  * Per bio data
662  *--------------------------------------------------------------*/
663 
664 /*
665  * If using writeback, leave out struct per_bio_data's writethrough fields.
666  */
667 #define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
668 #define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
669 
writethrough_mode(struct cache_features * f)670 static bool writethrough_mode(struct cache_features *f)
671 {
672 	return f->io_mode == CM_IO_WRITETHROUGH;
673 }
674 
writeback_mode(struct cache_features * f)675 static bool writeback_mode(struct cache_features *f)
676 {
677 	return f->io_mode == CM_IO_WRITEBACK;
678 }
679 
passthrough_mode(struct cache_features * f)680 static bool passthrough_mode(struct cache_features *f)
681 {
682 	return f->io_mode == CM_IO_PASSTHROUGH;
683 }
684 
get_per_bio_data_size(struct cache * cache)685 static size_t get_per_bio_data_size(struct cache *cache)
686 {
687 	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
688 }
689 
get_per_bio_data(struct bio * bio,size_t data_size)690 static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
691 {
692 	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
693 	BUG_ON(!pb);
694 	return pb;
695 }
696 
init_per_bio_data(struct bio * bio,size_t data_size)697 static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
698 {
699 	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
700 
701 	pb->tick = false;
702 	pb->req_nr = dm_bio_get_target_bio_nr(bio);
703 	pb->all_io_entry = NULL;
704 
705 	return pb;
706 }
707 
708 /*----------------------------------------------------------------
709  * Remapping
710  *--------------------------------------------------------------*/
remap_to_origin(struct cache * cache,struct bio * bio)711 static void remap_to_origin(struct cache *cache, struct bio *bio)
712 {
713 	bio->bi_bdev = cache->origin_dev->bdev;
714 }
715 
remap_to_cache(struct cache * cache,struct bio * bio,dm_cblock_t cblock)716 static void remap_to_cache(struct cache *cache, struct bio *bio,
717 			   dm_cblock_t cblock)
718 {
719 	sector_t bi_sector = bio->bi_iter.bi_sector;
720 	sector_t block = from_cblock(cblock);
721 
722 	bio->bi_bdev = cache->cache_dev->bdev;
723 	if (!block_size_is_power_of_two(cache))
724 		bio->bi_iter.bi_sector =
725 			(block * cache->sectors_per_block) +
726 			sector_div(bi_sector, cache->sectors_per_block);
727 	else
728 		bio->bi_iter.bi_sector =
729 			(block << cache->sectors_per_block_shift) |
730 			(bi_sector & (cache->sectors_per_block - 1));
731 }
732 
check_if_tick_bio_needed(struct cache * cache,struct bio * bio)733 static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
734 {
735 	unsigned long flags;
736 	size_t pb_data_size = get_per_bio_data_size(cache);
737 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
738 
739 	spin_lock_irqsave(&cache->lock, flags);
740 	if (cache->need_tick_bio &&
741 	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
742 		pb->tick = true;
743 		cache->need_tick_bio = false;
744 	}
745 	spin_unlock_irqrestore(&cache->lock, flags);
746 }
747 
remap_to_origin_clear_discard(struct cache * cache,struct bio * bio,dm_oblock_t oblock)748 static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
749 				  dm_oblock_t oblock)
750 {
751 	check_if_tick_bio_needed(cache, bio);
752 	remap_to_origin(cache, bio);
753 	if (bio_data_dir(bio) == WRITE)
754 		clear_discard(cache, oblock_to_dblock(cache, oblock));
755 }
756 
remap_to_cache_dirty(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)757 static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
758 				 dm_oblock_t oblock, dm_cblock_t cblock)
759 {
760 	check_if_tick_bio_needed(cache, bio);
761 	remap_to_cache(cache, bio, cblock);
762 	if (bio_data_dir(bio) == WRITE) {
763 		set_dirty(cache, oblock, cblock);
764 		clear_discard(cache, oblock_to_dblock(cache, oblock));
765 	}
766 }
767 
get_bio_block(struct cache * cache,struct bio * bio)768 static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
769 {
770 	sector_t block_nr = bio->bi_iter.bi_sector;
771 
772 	if (!block_size_is_power_of_two(cache))
773 		(void) sector_div(block_nr, cache->sectors_per_block);
774 	else
775 		block_nr >>= cache->sectors_per_block_shift;
776 
777 	return to_oblock(block_nr);
778 }
779 
bio_triggers_commit(struct cache * cache,struct bio * bio)780 static int bio_triggers_commit(struct cache *cache, struct bio *bio)
781 {
782 	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
783 }
784 
785 /*
786  * You must increment the deferred set whilst the prison cell is held.  To
787  * encourage this, we ask for 'cell' to be passed in.
788  */
inc_ds(struct cache * cache,struct bio * bio,struct dm_bio_prison_cell * cell)789 static void inc_ds(struct cache *cache, struct bio *bio,
790 		   struct dm_bio_prison_cell *cell)
791 {
792 	size_t pb_data_size = get_per_bio_data_size(cache);
793 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
794 
795 	BUG_ON(!cell);
796 	BUG_ON(pb->all_io_entry);
797 
798 	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
799 }
800 
issue(struct cache * cache,struct bio * bio)801 static void issue(struct cache *cache, struct bio *bio)
802 {
803 	unsigned long flags;
804 
805 	if (!bio_triggers_commit(cache, bio)) {
806 		generic_make_request(bio);
807 		return;
808 	}
809 
810 	/*
811 	 * Batch together any bios that trigger commits and then issue a
812 	 * single commit for them in do_worker().
813 	 */
814 	spin_lock_irqsave(&cache->lock, flags);
815 	cache->commit_requested = true;
816 	bio_list_add(&cache->deferred_flush_bios, bio);
817 	spin_unlock_irqrestore(&cache->lock, flags);
818 }
819 
inc_and_issue(struct cache * cache,struct bio * bio,struct dm_bio_prison_cell * cell)820 static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
821 {
822 	inc_ds(cache, bio, cell);
823 	issue(cache, bio);
824 }
825 
defer_writethrough_bio(struct cache * cache,struct bio * bio)826 static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
827 {
828 	unsigned long flags;
829 
830 	spin_lock_irqsave(&cache->lock, flags);
831 	bio_list_add(&cache->deferred_writethrough_bios, bio);
832 	spin_unlock_irqrestore(&cache->lock, flags);
833 
834 	wake_worker(cache);
835 }
836 
writethrough_endio(struct bio * bio,int err)837 static void writethrough_endio(struct bio *bio, int err)
838 {
839 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
840 
841 	dm_unhook_bio(&pb->hook_info, bio);
842 
843 	if (err) {
844 		bio_endio(bio, err);
845 		return;
846 	}
847 
848 	dm_bio_restore(&pb->bio_details, bio);
849 	remap_to_cache(pb->cache, bio, pb->cblock);
850 
851 	/*
852 	 * We can't issue this bio directly, since we're in interrupt
853 	 * context.  So it gets put on a bio list for processing by the
854 	 * worker thread.
855 	 */
856 	defer_writethrough_bio(pb->cache, bio);
857 }
858 
859 /*
860  * When running in writethrough mode we need to send writes to clean blocks
861  * to both the cache and origin devices.  In future we'd like to clone the
862  * bio and send them in parallel, but for now we're doing them in
863  * series as this is easier.
864  */
remap_to_origin_then_cache(struct cache * cache,struct bio * bio,dm_oblock_t oblock,dm_cblock_t cblock)865 static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
866 				       dm_oblock_t oblock, dm_cblock_t cblock)
867 {
868 	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
869 
870 	pb->cache = cache;
871 	pb->cblock = cblock;
872 	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
873 	dm_bio_record(&pb->bio_details, bio);
874 
875 	remap_to_origin_clear_discard(pb->cache, bio, oblock);
876 }
877 
878 /*----------------------------------------------------------------
879  * Migration processing
880  *
881  * Migration covers moving data from the origin device to the cache, or
882  * vice versa.
883  *--------------------------------------------------------------*/
inc_io_migrations(struct cache * cache)884 static void inc_io_migrations(struct cache *cache)
885 {
886 	atomic_inc(&cache->nr_io_migrations);
887 }
888 
dec_io_migrations(struct cache * cache)889 static void dec_io_migrations(struct cache *cache)
890 {
891 	atomic_dec(&cache->nr_io_migrations);
892 }
893 
__cell_defer(struct cache * cache,struct dm_bio_prison_cell * cell,bool holder)894 static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
895 			 bool holder)
896 {
897 	(holder ? dm_cell_release : dm_cell_release_no_holder)
898 		(cache->prison, cell, &cache->deferred_bios);
899 	free_prison_cell(cache, cell);
900 }
901 
cell_defer(struct cache * cache,struct dm_bio_prison_cell * cell,bool holder)902 static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
903 		       bool holder)
904 {
905 	unsigned long flags;
906 
907 	spin_lock_irqsave(&cache->lock, flags);
908 	__cell_defer(cache, cell, holder);
909 	spin_unlock_irqrestore(&cache->lock, flags);
910 
911 	wake_worker(cache);
912 }
913 
free_io_migration(struct dm_cache_migration * mg)914 static void free_io_migration(struct dm_cache_migration *mg)
915 {
916 	dec_io_migrations(mg->cache);
917 	free_migration(mg);
918 }
919 
migration_failure(struct dm_cache_migration * mg)920 static void migration_failure(struct dm_cache_migration *mg)
921 {
922 	struct cache *cache = mg->cache;
923 
924 	if (mg->writeback) {
925 		DMWARN_LIMIT("writeback failed; couldn't copy block");
926 		set_dirty(cache, mg->old_oblock, mg->cblock);
927 		cell_defer(cache, mg->old_ocell, false);
928 
929 	} else if (mg->demote) {
930 		DMWARN_LIMIT("demotion failed; couldn't copy block");
931 		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
932 
933 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
934 		if (mg->promote)
935 			cell_defer(cache, mg->new_ocell, true);
936 	} else {
937 		DMWARN_LIMIT("promotion failed; couldn't copy block");
938 		policy_remove_mapping(cache->policy, mg->new_oblock);
939 		cell_defer(cache, mg->new_ocell, true);
940 	}
941 
942 	free_io_migration(mg);
943 }
944 
migration_success_pre_commit(struct dm_cache_migration * mg)945 static void migration_success_pre_commit(struct dm_cache_migration *mg)
946 {
947 	unsigned long flags;
948 	struct cache *cache = mg->cache;
949 
950 	if (mg->writeback) {
951 		clear_dirty(cache, mg->old_oblock, mg->cblock);
952 		cell_defer(cache, mg->old_ocell, false);
953 		free_io_migration(mg);
954 		return;
955 
956 	} else if (mg->demote) {
957 		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
958 			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
959 			policy_force_mapping(cache->policy, mg->new_oblock,
960 					     mg->old_oblock);
961 			if (mg->promote)
962 				cell_defer(cache, mg->new_ocell, true);
963 			free_io_migration(mg);
964 			return;
965 		}
966 	} else {
967 		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
968 			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
969 			policy_remove_mapping(cache->policy, mg->new_oblock);
970 			free_io_migration(mg);
971 			return;
972 		}
973 	}
974 
975 	spin_lock_irqsave(&cache->lock, flags);
976 	list_add_tail(&mg->list, &cache->need_commit_migrations);
977 	cache->commit_requested = true;
978 	spin_unlock_irqrestore(&cache->lock, flags);
979 }
980 
migration_success_post_commit(struct dm_cache_migration * mg)981 static void migration_success_post_commit(struct dm_cache_migration *mg)
982 {
983 	unsigned long flags;
984 	struct cache *cache = mg->cache;
985 
986 	if (mg->writeback) {
987 		DMWARN("writeback unexpectedly triggered commit");
988 		return;
989 
990 	} else if (mg->demote) {
991 		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
992 
993 		if (mg->promote) {
994 			mg->demote = false;
995 
996 			spin_lock_irqsave(&cache->lock, flags);
997 			list_add_tail(&mg->list, &cache->quiesced_migrations);
998 			spin_unlock_irqrestore(&cache->lock, flags);
999 
1000 		} else {
1001 			if (mg->invalidate)
1002 				policy_remove_mapping(cache->policy, mg->old_oblock);
1003 			free_io_migration(mg);
1004 		}
1005 
1006 	} else {
1007 		if (mg->requeue_holder) {
1008 			clear_dirty(cache, mg->new_oblock, mg->cblock);
1009 			cell_defer(cache, mg->new_ocell, true);
1010 		} else {
1011 			/*
1012 			 * The block was promoted via an overwrite, so it's dirty.
1013 			 */
1014 			set_dirty(cache, mg->new_oblock, mg->cblock);
1015 			bio_endio(mg->new_ocell->holder, 0);
1016 			cell_defer(cache, mg->new_ocell, false);
1017 		}
1018 		free_io_migration(mg);
1019 	}
1020 }
1021 
copy_complete(int read_err,unsigned long write_err,void * context)1022 static void copy_complete(int read_err, unsigned long write_err, void *context)
1023 {
1024 	unsigned long flags;
1025 	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1026 	struct cache *cache = mg->cache;
1027 
1028 	if (read_err || write_err)
1029 		mg->err = true;
1030 
1031 	spin_lock_irqsave(&cache->lock, flags);
1032 	list_add_tail(&mg->list, &cache->completed_migrations);
1033 	spin_unlock_irqrestore(&cache->lock, flags);
1034 
1035 	wake_worker(cache);
1036 }
1037 
issue_copy(struct dm_cache_migration * mg)1038 static void issue_copy(struct dm_cache_migration *mg)
1039 {
1040 	int r;
1041 	struct dm_io_region o_region, c_region;
1042 	struct cache *cache = mg->cache;
1043 	sector_t cblock = from_cblock(mg->cblock);
1044 
1045 	o_region.bdev = cache->origin_dev->bdev;
1046 	o_region.count = cache->sectors_per_block;
1047 
1048 	c_region.bdev = cache->cache_dev->bdev;
1049 	c_region.sector = cblock * cache->sectors_per_block;
1050 	c_region.count = cache->sectors_per_block;
1051 
1052 	if (mg->writeback || mg->demote) {
1053 		/* demote */
1054 		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1055 		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1056 	} else {
1057 		/* promote */
1058 		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1059 		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1060 	}
1061 
1062 	if (r < 0) {
1063 		DMERR_LIMIT("issuing migration failed");
1064 		migration_failure(mg);
1065 	}
1066 }
1067 
overwrite_endio(struct bio * bio,int err)1068 static void overwrite_endio(struct bio *bio, int err)
1069 {
1070 	struct dm_cache_migration *mg = bio->bi_private;
1071 	struct cache *cache = mg->cache;
1072 	size_t pb_data_size = get_per_bio_data_size(cache);
1073 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1074 	unsigned long flags;
1075 
1076 	dm_unhook_bio(&pb->hook_info, bio);
1077 
1078 	if (err)
1079 		mg->err = true;
1080 
1081 	mg->requeue_holder = false;
1082 
1083 	spin_lock_irqsave(&cache->lock, flags);
1084 	list_add_tail(&mg->list, &cache->completed_migrations);
1085 	spin_unlock_irqrestore(&cache->lock, flags);
1086 
1087 	wake_worker(cache);
1088 }
1089 
issue_overwrite(struct dm_cache_migration * mg,struct bio * bio)1090 static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1091 {
1092 	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1093 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1094 
1095 	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1096 	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1097 
1098 	/*
1099 	 * No need to inc_ds() here, since the cell will be held for the
1100 	 * duration of the io.
1101 	 */
1102 	generic_make_request(bio);
1103 }
1104 
bio_writes_complete_block(struct cache * cache,struct bio * bio)1105 static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1106 {
1107 	return (bio_data_dir(bio) == WRITE) &&
1108 		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1109 }
1110 
avoid_copy(struct dm_cache_migration * mg)1111 static void avoid_copy(struct dm_cache_migration *mg)
1112 {
1113 	atomic_inc(&mg->cache->stats.copies_avoided);
1114 	migration_success_pre_commit(mg);
1115 }
1116 
calc_discard_block_range(struct cache * cache,struct bio * bio,dm_dblock_t * b,dm_dblock_t * e)1117 static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1118 				     dm_dblock_t *b, dm_dblock_t *e)
1119 {
1120 	sector_t sb = bio->bi_iter.bi_sector;
1121 	sector_t se = bio_end_sector(bio);
1122 
1123 	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1124 
1125 	if (se - sb < cache->discard_block_size)
1126 		*e = *b;
1127 	else
1128 		*e = to_dblock(block_div(se, cache->discard_block_size));
1129 }
1130 
issue_discard(struct dm_cache_migration * mg)1131 static void issue_discard(struct dm_cache_migration *mg)
1132 {
1133 	dm_dblock_t b, e;
1134 	struct bio *bio = mg->new_ocell->holder;
1135 
1136 	calc_discard_block_range(mg->cache, bio, &b, &e);
1137 	while (b != e) {
1138 		set_discard(mg->cache, b);
1139 		b = to_dblock(from_dblock(b) + 1);
1140 	}
1141 
1142 	bio_endio(bio, 0);
1143 	cell_defer(mg->cache, mg->new_ocell, false);
1144 	free_migration(mg);
1145 }
1146 
issue_copy_or_discard(struct dm_cache_migration * mg)1147 static void issue_copy_or_discard(struct dm_cache_migration *mg)
1148 {
1149 	bool avoid;
1150 	struct cache *cache = mg->cache;
1151 
1152 	if (mg->discard) {
1153 		issue_discard(mg);
1154 		return;
1155 	}
1156 
1157 	if (mg->writeback || mg->demote)
1158 		avoid = !is_dirty(cache, mg->cblock) ||
1159 			is_discarded_oblock(cache, mg->old_oblock);
1160 	else {
1161 		struct bio *bio = mg->new_ocell->holder;
1162 
1163 		avoid = is_discarded_oblock(cache, mg->new_oblock);
1164 
1165 		if (writeback_mode(&cache->features) &&
1166 		    !avoid && bio_writes_complete_block(cache, bio)) {
1167 			issue_overwrite(mg, bio);
1168 			return;
1169 		}
1170 	}
1171 
1172 	avoid ? avoid_copy(mg) : issue_copy(mg);
1173 }
1174 
complete_migration(struct dm_cache_migration * mg)1175 static void complete_migration(struct dm_cache_migration *mg)
1176 {
1177 	if (mg->err)
1178 		migration_failure(mg);
1179 	else
1180 		migration_success_pre_commit(mg);
1181 }
1182 
process_migrations(struct cache * cache,struct list_head * head,void (* fn)(struct dm_cache_migration *))1183 static void process_migrations(struct cache *cache, struct list_head *head,
1184 			       void (*fn)(struct dm_cache_migration *))
1185 {
1186 	unsigned long flags;
1187 	struct list_head list;
1188 	struct dm_cache_migration *mg, *tmp;
1189 
1190 	INIT_LIST_HEAD(&list);
1191 	spin_lock_irqsave(&cache->lock, flags);
1192 	list_splice_init(head, &list);
1193 	spin_unlock_irqrestore(&cache->lock, flags);
1194 
1195 	list_for_each_entry_safe(mg, tmp, &list, list)
1196 		fn(mg);
1197 }
1198 
__queue_quiesced_migration(struct dm_cache_migration * mg)1199 static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1200 {
1201 	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1202 }
1203 
queue_quiesced_migration(struct dm_cache_migration * mg)1204 static void queue_quiesced_migration(struct dm_cache_migration *mg)
1205 {
1206 	unsigned long flags;
1207 	struct cache *cache = mg->cache;
1208 
1209 	spin_lock_irqsave(&cache->lock, flags);
1210 	__queue_quiesced_migration(mg);
1211 	spin_unlock_irqrestore(&cache->lock, flags);
1212 
1213 	wake_worker(cache);
1214 }
1215 
queue_quiesced_migrations(struct cache * cache,struct list_head * work)1216 static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1217 {
1218 	unsigned long flags;
1219 	struct dm_cache_migration *mg, *tmp;
1220 
1221 	spin_lock_irqsave(&cache->lock, flags);
1222 	list_for_each_entry_safe(mg, tmp, work, list)
1223 		__queue_quiesced_migration(mg);
1224 	spin_unlock_irqrestore(&cache->lock, flags);
1225 
1226 	wake_worker(cache);
1227 }
1228 
check_for_quiesced_migrations(struct cache * cache,struct per_bio_data * pb)1229 static void check_for_quiesced_migrations(struct cache *cache,
1230 					  struct per_bio_data *pb)
1231 {
1232 	struct list_head work;
1233 
1234 	if (!pb->all_io_entry)
1235 		return;
1236 
1237 	INIT_LIST_HEAD(&work);
1238 	dm_deferred_entry_dec(pb->all_io_entry, &work);
1239 
1240 	if (!list_empty(&work))
1241 		queue_quiesced_migrations(cache, &work);
1242 }
1243 
quiesce_migration(struct dm_cache_migration * mg)1244 static void quiesce_migration(struct dm_cache_migration *mg)
1245 {
1246 	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1247 		queue_quiesced_migration(mg);
1248 }
1249 
promote(struct cache * cache,struct prealloc * structs,dm_oblock_t oblock,dm_cblock_t cblock,struct dm_bio_prison_cell * cell)1250 static void promote(struct cache *cache, struct prealloc *structs,
1251 		    dm_oblock_t oblock, dm_cblock_t cblock,
1252 		    struct dm_bio_prison_cell *cell)
1253 {
1254 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1255 
1256 	mg->err = false;
1257 	mg->discard = false;
1258 	mg->writeback = false;
1259 	mg->demote = false;
1260 	mg->promote = true;
1261 	mg->requeue_holder = true;
1262 	mg->invalidate = false;
1263 	mg->cache = cache;
1264 	mg->new_oblock = oblock;
1265 	mg->cblock = cblock;
1266 	mg->old_ocell = NULL;
1267 	mg->new_ocell = cell;
1268 	mg->start_jiffies = jiffies;
1269 
1270 	inc_io_migrations(cache);
1271 	quiesce_migration(mg);
1272 }
1273 
writeback(struct cache * cache,struct prealloc * structs,dm_oblock_t oblock,dm_cblock_t cblock,struct dm_bio_prison_cell * cell)1274 static void writeback(struct cache *cache, struct prealloc *structs,
1275 		      dm_oblock_t oblock, dm_cblock_t cblock,
1276 		      struct dm_bio_prison_cell *cell)
1277 {
1278 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1279 
1280 	mg->err = false;
1281 	mg->discard = false;
1282 	mg->writeback = true;
1283 	mg->demote = false;
1284 	mg->promote = false;
1285 	mg->requeue_holder = true;
1286 	mg->invalidate = false;
1287 	mg->cache = cache;
1288 	mg->old_oblock = oblock;
1289 	mg->cblock = cblock;
1290 	mg->old_ocell = cell;
1291 	mg->new_ocell = NULL;
1292 	mg->start_jiffies = jiffies;
1293 
1294 	inc_io_migrations(cache);
1295 	quiesce_migration(mg);
1296 }
1297 
demote_then_promote(struct cache * cache,struct prealloc * structs,dm_oblock_t old_oblock,dm_oblock_t new_oblock,dm_cblock_t cblock,struct dm_bio_prison_cell * old_ocell,struct dm_bio_prison_cell * new_ocell)1298 static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1299 				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1300 				dm_cblock_t cblock,
1301 				struct dm_bio_prison_cell *old_ocell,
1302 				struct dm_bio_prison_cell *new_ocell)
1303 {
1304 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1305 
1306 	mg->err = false;
1307 	mg->discard = false;
1308 	mg->writeback = false;
1309 	mg->demote = true;
1310 	mg->promote = true;
1311 	mg->requeue_holder = true;
1312 	mg->invalidate = false;
1313 	mg->cache = cache;
1314 	mg->old_oblock = old_oblock;
1315 	mg->new_oblock = new_oblock;
1316 	mg->cblock = cblock;
1317 	mg->old_ocell = old_ocell;
1318 	mg->new_ocell = new_ocell;
1319 	mg->start_jiffies = jiffies;
1320 
1321 	inc_io_migrations(cache);
1322 	quiesce_migration(mg);
1323 }
1324 
1325 /*
1326  * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1327  * block are thrown away.
1328  */
invalidate(struct cache * cache,struct prealloc * structs,dm_oblock_t oblock,dm_cblock_t cblock,struct dm_bio_prison_cell * cell)1329 static void invalidate(struct cache *cache, struct prealloc *structs,
1330 		       dm_oblock_t oblock, dm_cblock_t cblock,
1331 		       struct dm_bio_prison_cell *cell)
1332 {
1333 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1334 
1335 	mg->err = false;
1336 	mg->discard = false;
1337 	mg->writeback = false;
1338 	mg->demote = true;
1339 	mg->promote = false;
1340 	mg->requeue_holder = true;
1341 	mg->invalidate = true;
1342 	mg->cache = cache;
1343 	mg->old_oblock = oblock;
1344 	mg->cblock = cblock;
1345 	mg->old_ocell = cell;
1346 	mg->new_ocell = NULL;
1347 	mg->start_jiffies = jiffies;
1348 
1349 	inc_io_migrations(cache);
1350 	quiesce_migration(mg);
1351 }
1352 
discard(struct cache * cache,struct prealloc * structs,struct dm_bio_prison_cell * cell)1353 static void discard(struct cache *cache, struct prealloc *structs,
1354 		    struct dm_bio_prison_cell *cell)
1355 {
1356 	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1357 
1358 	mg->err = false;
1359 	mg->discard = true;
1360 	mg->writeback = false;
1361 	mg->demote = false;
1362 	mg->promote = false;
1363 	mg->requeue_holder = false;
1364 	mg->invalidate = false;
1365 	mg->cache = cache;
1366 	mg->old_ocell = NULL;
1367 	mg->new_ocell = cell;
1368 	mg->start_jiffies = jiffies;
1369 
1370 	quiesce_migration(mg);
1371 }
1372 
1373 /*----------------------------------------------------------------
1374  * bio processing
1375  *--------------------------------------------------------------*/
defer_bio(struct cache * cache,struct bio * bio)1376 static void defer_bio(struct cache *cache, struct bio *bio)
1377 {
1378 	unsigned long flags;
1379 
1380 	spin_lock_irqsave(&cache->lock, flags);
1381 	bio_list_add(&cache->deferred_bios, bio);
1382 	spin_unlock_irqrestore(&cache->lock, flags);
1383 
1384 	wake_worker(cache);
1385 }
1386 
process_flush_bio(struct cache * cache,struct bio * bio)1387 static void process_flush_bio(struct cache *cache, struct bio *bio)
1388 {
1389 	size_t pb_data_size = get_per_bio_data_size(cache);
1390 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1391 
1392 	BUG_ON(bio->bi_iter.bi_size);
1393 	if (!pb->req_nr)
1394 		remap_to_origin(cache, bio);
1395 	else
1396 		remap_to_cache(cache, bio, 0);
1397 
1398 	/*
1399 	 * REQ_FLUSH is not directed at any particular block so we don't
1400 	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_FLUSH
1401 	 * by dm-core.
1402 	 */
1403 	issue(cache, bio);
1404 }
1405 
process_discard_bio(struct cache * cache,struct prealloc * structs,struct bio * bio)1406 static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1407 				struct bio *bio)
1408 {
1409 	int r;
1410 	dm_dblock_t b, e;
1411 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1412 
1413 	calc_discard_block_range(cache, bio, &b, &e);
1414 	if (b == e) {
1415 		bio_endio(bio, 0);
1416 		return;
1417 	}
1418 
1419 	cell_prealloc = prealloc_get_cell(structs);
1420 	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1421 			     (cell_free_fn) prealloc_put_cell,
1422 			     structs, &new_ocell);
1423 	if (r > 0)
1424 		return;
1425 
1426 	discard(cache, structs, new_ocell);
1427 }
1428 
spare_migration_bandwidth(struct cache * cache)1429 static bool spare_migration_bandwidth(struct cache *cache)
1430 {
1431 	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1432 		cache->sectors_per_block;
1433 	return current_volume < cache->migration_threshold;
1434 }
1435 
inc_hit_counter(struct cache * cache,struct bio * bio)1436 static void inc_hit_counter(struct cache *cache, struct bio *bio)
1437 {
1438 	atomic_inc(bio_data_dir(bio) == READ ?
1439 		   &cache->stats.read_hit : &cache->stats.write_hit);
1440 }
1441 
inc_miss_counter(struct cache * cache,struct bio * bio)1442 static void inc_miss_counter(struct cache *cache, struct bio *bio)
1443 {
1444 	atomic_inc(bio_data_dir(bio) == READ ?
1445 		   &cache->stats.read_miss : &cache->stats.write_miss);
1446 }
1447 
1448 /*----------------------------------------------------------------*/
1449 
1450 struct old_oblock_lock {
1451 	struct policy_locker locker;
1452 	struct cache *cache;
1453 	struct prealloc *structs;
1454 	struct dm_bio_prison_cell *cell;
1455 };
1456 
null_locker(struct policy_locker * locker,dm_oblock_t b)1457 static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1458 {
1459 	/* This should never be called */
1460 	BUG();
1461 	return 0;
1462 }
1463 
cell_locker(struct policy_locker * locker,dm_oblock_t b)1464 static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1465 {
1466 	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1467 	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1468 
1469 	return bio_detain(l->cache, b, NULL, cell_prealloc,
1470 			  (cell_free_fn) prealloc_put_cell,
1471 			  l->structs, &l->cell);
1472 }
1473 
process_bio(struct cache * cache,struct prealloc * structs,struct bio * bio)1474 static void process_bio(struct cache *cache, struct prealloc *structs,
1475 			struct bio *bio)
1476 {
1477 	int r;
1478 	bool release_cell = true;
1479 	dm_oblock_t block = get_bio_block(cache, bio);
1480 	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1481 	struct policy_result lookup_result;
1482 	bool passthrough = passthrough_mode(&cache->features);
1483 	bool discarded_block, can_migrate;
1484 	struct old_oblock_lock ool;
1485 
1486 	/*
1487 	 * Check to see if that block is currently migrating.
1488 	 */
1489 	cell_prealloc = prealloc_get_cell(structs);
1490 	r = bio_detain(cache, block, bio, cell_prealloc,
1491 		       (cell_free_fn) prealloc_put_cell,
1492 		       structs, &new_ocell);
1493 	if (r > 0)
1494 		return;
1495 
1496 	discarded_block = is_discarded_oblock(cache, block);
1497 	can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1498 
1499 	ool.locker.fn = cell_locker;
1500 	ool.cache = cache;
1501 	ool.structs = structs;
1502 	ool.cell = NULL;
1503 	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1504 		       bio, &ool.locker, &lookup_result);
1505 
1506 	if (r == -EWOULDBLOCK)
1507 		/* migration has been denied */
1508 		lookup_result.op = POLICY_MISS;
1509 
1510 	switch (lookup_result.op) {
1511 	case POLICY_HIT:
1512 		if (passthrough) {
1513 			inc_miss_counter(cache, bio);
1514 
1515 			/*
1516 			 * Passthrough always maps to the origin,
1517 			 * invalidating any cache blocks that are written
1518 			 * to.
1519 			 */
1520 
1521 			if (bio_data_dir(bio) == WRITE) {
1522 				atomic_inc(&cache->stats.demotion);
1523 				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1524 				release_cell = false;
1525 
1526 			} else {
1527 				/* FIXME: factor out issue_origin() */
1528 				remap_to_origin_clear_discard(cache, bio, block);
1529 				inc_and_issue(cache, bio, new_ocell);
1530 			}
1531 		} else {
1532 			inc_hit_counter(cache, bio);
1533 
1534 			if (bio_data_dir(bio) == WRITE &&
1535 			    writethrough_mode(&cache->features) &&
1536 			    !is_dirty(cache, lookup_result.cblock)) {
1537 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1538 				inc_and_issue(cache, bio, new_ocell);
1539 
1540 			} else  {
1541 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
1542 				inc_and_issue(cache, bio, new_ocell);
1543 			}
1544 		}
1545 
1546 		break;
1547 
1548 	case POLICY_MISS:
1549 		inc_miss_counter(cache, bio);
1550 		remap_to_origin_clear_discard(cache, bio, block);
1551 		inc_and_issue(cache, bio, new_ocell);
1552 		break;
1553 
1554 	case POLICY_NEW:
1555 		atomic_inc(&cache->stats.promotion);
1556 		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1557 		release_cell = false;
1558 		break;
1559 
1560 	case POLICY_REPLACE:
1561 		atomic_inc(&cache->stats.demotion);
1562 		atomic_inc(&cache->stats.promotion);
1563 		demote_then_promote(cache, structs, lookup_result.old_oblock,
1564 				    block, lookup_result.cblock,
1565 				    ool.cell, new_ocell);
1566 		release_cell = false;
1567 		break;
1568 
1569 	default:
1570 		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1571 			    (unsigned) lookup_result.op);
1572 		bio_io_error(bio);
1573 	}
1574 
1575 	if (release_cell)
1576 		cell_defer(cache, new_ocell, false);
1577 }
1578 
need_commit_due_to_time(struct cache * cache)1579 static int need_commit_due_to_time(struct cache *cache)
1580 {
1581 	return !time_in_range(jiffies, cache->last_commit_jiffies,
1582 			      cache->last_commit_jiffies + COMMIT_PERIOD);
1583 }
1584 
commit_if_needed(struct cache * cache)1585 static int commit_if_needed(struct cache *cache)
1586 {
1587 	int r = 0;
1588 
1589 	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1590 	    dm_cache_changed_this_transaction(cache->cmd)) {
1591 		atomic_inc(&cache->stats.commit_count);
1592 		cache->commit_requested = false;
1593 		r = dm_cache_commit(cache->cmd, false);
1594 		cache->last_commit_jiffies = jiffies;
1595 	}
1596 
1597 	return r;
1598 }
1599 
process_deferred_bios(struct cache * cache)1600 static void process_deferred_bios(struct cache *cache)
1601 {
1602 	unsigned long flags;
1603 	struct bio_list bios;
1604 	struct bio *bio;
1605 	struct prealloc structs;
1606 
1607 	memset(&structs, 0, sizeof(structs));
1608 	bio_list_init(&bios);
1609 
1610 	spin_lock_irqsave(&cache->lock, flags);
1611 	bio_list_merge(&bios, &cache->deferred_bios);
1612 	bio_list_init(&cache->deferred_bios);
1613 	spin_unlock_irqrestore(&cache->lock, flags);
1614 
1615 	while (!bio_list_empty(&bios)) {
1616 		/*
1617 		 * If we've got no free migration structs, and processing
1618 		 * this bio might require one, we pause until there are some
1619 		 * prepared mappings to process.
1620 		 */
1621 		if (prealloc_data_structs(cache, &structs)) {
1622 			spin_lock_irqsave(&cache->lock, flags);
1623 			bio_list_merge(&cache->deferred_bios, &bios);
1624 			spin_unlock_irqrestore(&cache->lock, flags);
1625 			break;
1626 		}
1627 
1628 		bio = bio_list_pop(&bios);
1629 
1630 		if (bio->bi_rw & REQ_FLUSH)
1631 			process_flush_bio(cache, bio);
1632 		else if (bio->bi_rw & REQ_DISCARD)
1633 			process_discard_bio(cache, &structs, bio);
1634 		else
1635 			process_bio(cache, &structs, bio);
1636 	}
1637 
1638 	prealloc_free_structs(cache, &structs);
1639 }
1640 
process_deferred_flush_bios(struct cache * cache,bool submit_bios)1641 static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1642 {
1643 	unsigned long flags;
1644 	struct bio_list bios;
1645 	struct bio *bio;
1646 
1647 	bio_list_init(&bios);
1648 
1649 	spin_lock_irqsave(&cache->lock, flags);
1650 	bio_list_merge(&bios, &cache->deferred_flush_bios);
1651 	bio_list_init(&cache->deferred_flush_bios);
1652 	spin_unlock_irqrestore(&cache->lock, flags);
1653 
1654 	/*
1655 	 * These bios have already been through inc_ds()
1656 	 */
1657 	while ((bio = bio_list_pop(&bios)))
1658 		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1659 }
1660 
process_deferred_writethrough_bios(struct cache * cache)1661 static void process_deferred_writethrough_bios(struct cache *cache)
1662 {
1663 	unsigned long flags;
1664 	struct bio_list bios;
1665 	struct bio *bio;
1666 
1667 	bio_list_init(&bios);
1668 
1669 	spin_lock_irqsave(&cache->lock, flags);
1670 	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1671 	bio_list_init(&cache->deferred_writethrough_bios);
1672 	spin_unlock_irqrestore(&cache->lock, flags);
1673 
1674 	/*
1675 	 * These bios have already been through inc_ds()
1676 	 */
1677 	while ((bio = bio_list_pop(&bios)))
1678 		generic_make_request(bio);
1679 }
1680 
writeback_some_dirty_blocks(struct cache * cache)1681 static void writeback_some_dirty_blocks(struct cache *cache)
1682 {
1683 	int r = 0;
1684 	dm_oblock_t oblock;
1685 	dm_cblock_t cblock;
1686 	struct prealloc structs;
1687 	struct dm_bio_prison_cell *old_ocell;
1688 
1689 	memset(&structs, 0, sizeof(structs));
1690 
1691 	while (spare_migration_bandwidth(cache)) {
1692 		if (prealloc_data_structs(cache, &structs))
1693 			break;
1694 
1695 		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1696 		if (r)
1697 			break;
1698 
1699 		r = get_cell(cache, oblock, &structs, &old_ocell);
1700 		if (r) {
1701 			policy_set_dirty(cache->policy, oblock);
1702 			break;
1703 		}
1704 
1705 		writeback(cache, &structs, oblock, cblock, old_ocell);
1706 	}
1707 
1708 	prealloc_free_structs(cache, &structs);
1709 }
1710 
1711 /*----------------------------------------------------------------
1712  * Invalidations.
1713  * Dropping something from the cache *without* writing back.
1714  *--------------------------------------------------------------*/
1715 
process_invalidation_request(struct cache * cache,struct invalidation_request * req)1716 static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1717 {
1718 	int r = 0;
1719 	uint64_t begin = from_cblock(req->cblocks->begin);
1720 	uint64_t end = from_cblock(req->cblocks->end);
1721 
1722 	while (begin != end) {
1723 		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1724 		if (!r) {
1725 			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1726 			if (r)
1727 				break;
1728 
1729 		} else if (r == -ENODATA) {
1730 			/* harmless, already unmapped */
1731 			r = 0;
1732 
1733 		} else {
1734 			DMERR("policy_remove_cblock failed");
1735 			break;
1736 		}
1737 
1738 		begin++;
1739         }
1740 
1741 	cache->commit_requested = true;
1742 
1743 	req->err = r;
1744 	atomic_set(&req->complete, 1);
1745 
1746 	wake_up(&req->result_wait);
1747 }
1748 
process_invalidation_requests(struct cache * cache)1749 static void process_invalidation_requests(struct cache *cache)
1750 {
1751 	struct list_head list;
1752 	struct invalidation_request *req, *tmp;
1753 
1754 	INIT_LIST_HEAD(&list);
1755 	spin_lock(&cache->invalidation_lock);
1756 	list_splice_init(&cache->invalidation_requests, &list);
1757 	spin_unlock(&cache->invalidation_lock);
1758 
1759 	list_for_each_entry_safe (req, tmp, &list, list)
1760 		process_invalidation_request(cache, req);
1761 }
1762 
1763 /*----------------------------------------------------------------
1764  * Main worker loop
1765  *--------------------------------------------------------------*/
is_quiescing(struct cache * cache)1766 static bool is_quiescing(struct cache *cache)
1767 {
1768 	return atomic_read(&cache->quiescing);
1769 }
1770 
ack_quiescing(struct cache * cache)1771 static void ack_quiescing(struct cache *cache)
1772 {
1773 	if (is_quiescing(cache)) {
1774 		atomic_inc(&cache->quiescing_ack);
1775 		wake_up(&cache->quiescing_wait);
1776 	}
1777 }
1778 
wait_for_quiescing_ack(struct cache * cache)1779 static void wait_for_quiescing_ack(struct cache *cache)
1780 {
1781 	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1782 }
1783 
start_quiescing(struct cache * cache)1784 static void start_quiescing(struct cache *cache)
1785 {
1786 	atomic_inc(&cache->quiescing);
1787 	wait_for_quiescing_ack(cache);
1788 }
1789 
stop_quiescing(struct cache * cache)1790 static void stop_quiescing(struct cache *cache)
1791 {
1792 	atomic_set(&cache->quiescing, 0);
1793 	atomic_set(&cache->quiescing_ack, 0);
1794 }
1795 
wait_for_migrations(struct cache * cache)1796 static void wait_for_migrations(struct cache *cache)
1797 {
1798 	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
1799 }
1800 
stop_worker(struct cache * cache)1801 static void stop_worker(struct cache *cache)
1802 {
1803 	cancel_delayed_work(&cache->waker);
1804 	flush_workqueue(cache->wq);
1805 }
1806 
requeue_deferred_io(struct cache * cache)1807 static void requeue_deferred_io(struct cache *cache)
1808 {
1809 	struct bio *bio;
1810 	struct bio_list bios;
1811 
1812 	bio_list_init(&bios);
1813 	bio_list_merge(&bios, &cache->deferred_bios);
1814 	bio_list_init(&cache->deferred_bios);
1815 
1816 	while ((bio = bio_list_pop(&bios)))
1817 		bio_endio(bio, DM_ENDIO_REQUEUE);
1818 }
1819 
more_work(struct cache * cache)1820 static int more_work(struct cache *cache)
1821 {
1822 	if (is_quiescing(cache))
1823 		return !list_empty(&cache->quiesced_migrations) ||
1824 			!list_empty(&cache->completed_migrations) ||
1825 			!list_empty(&cache->need_commit_migrations);
1826 	else
1827 		return !bio_list_empty(&cache->deferred_bios) ||
1828 			!bio_list_empty(&cache->deferred_flush_bios) ||
1829 			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1830 			!list_empty(&cache->quiesced_migrations) ||
1831 			!list_empty(&cache->completed_migrations) ||
1832 			!list_empty(&cache->need_commit_migrations) ||
1833 			cache->invalidate;
1834 }
1835 
do_worker(struct work_struct * ws)1836 static void do_worker(struct work_struct *ws)
1837 {
1838 	struct cache *cache = container_of(ws, struct cache, worker);
1839 
1840 	do {
1841 		if (!is_quiescing(cache)) {
1842 			writeback_some_dirty_blocks(cache);
1843 			process_deferred_writethrough_bios(cache);
1844 			process_deferred_bios(cache);
1845 			process_invalidation_requests(cache);
1846 		}
1847 
1848 		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
1849 		process_migrations(cache, &cache->completed_migrations, complete_migration);
1850 
1851 		if (commit_if_needed(cache)) {
1852 			process_deferred_flush_bios(cache, false);
1853 			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
1854 
1855 			/*
1856 			 * FIXME: rollback metadata or just go into a
1857 			 * failure mode and error everything
1858 			 */
1859 		} else {
1860 			process_deferred_flush_bios(cache, true);
1861 			process_migrations(cache, &cache->need_commit_migrations,
1862 					   migration_success_post_commit);
1863 		}
1864 
1865 		ack_quiescing(cache);
1866 
1867 	} while (more_work(cache));
1868 }
1869 
1870 /*
1871  * We want to commit periodically so that not too much
1872  * unwritten metadata builds up.
1873  */
do_waker(struct work_struct * ws)1874 static void do_waker(struct work_struct *ws)
1875 {
1876 	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1877 	policy_tick(cache->policy);
1878 	wake_worker(cache);
1879 	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1880 }
1881 
1882 /*----------------------------------------------------------------*/
1883 
is_congested(struct dm_dev * dev,int bdi_bits)1884 static int is_congested(struct dm_dev *dev, int bdi_bits)
1885 {
1886 	struct request_queue *q = bdev_get_queue(dev->bdev);
1887 	return bdi_congested(&q->backing_dev_info, bdi_bits);
1888 }
1889 
cache_is_congested(struct dm_target_callbacks * cb,int bdi_bits)1890 static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1891 {
1892 	struct cache *cache = container_of(cb, struct cache, callbacks);
1893 
1894 	return is_congested(cache->origin_dev, bdi_bits) ||
1895 		is_congested(cache->cache_dev, bdi_bits);
1896 }
1897 
1898 /*----------------------------------------------------------------
1899  * Target methods
1900  *--------------------------------------------------------------*/
1901 
1902 /*
1903  * This function gets called on the error paths of the constructor, so we
1904  * have to cope with a partially initialised struct.
1905  */
destroy(struct cache * cache)1906 static void destroy(struct cache *cache)
1907 {
1908 	unsigned i;
1909 
1910 	if (cache->migration_pool)
1911 		mempool_destroy(cache->migration_pool);
1912 
1913 	if (cache->all_io_ds)
1914 		dm_deferred_set_destroy(cache->all_io_ds);
1915 
1916 	if (cache->prison)
1917 		dm_bio_prison_destroy(cache->prison);
1918 
1919 	if (cache->wq)
1920 		destroy_workqueue(cache->wq);
1921 
1922 	if (cache->dirty_bitset)
1923 		free_bitset(cache->dirty_bitset);
1924 
1925 	if (cache->discard_bitset)
1926 		free_bitset(cache->discard_bitset);
1927 
1928 	if (cache->copier)
1929 		dm_kcopyd_client_destroy(cache->copier);
1930 
1931 	if (cache->cmd)
1932 		dm_cache_metadata_close(cache->cmd);
1933 
1934 	if (cache->metadata_dev)
1935 		dm_put_device(cache->ti, cache->metadata_dev);
1936 
1937 	if (cache->origin_dev)
1938 		dm_put_device(cache->ti, cache->origin_dev);
1939 
1940 	if (cache->cache_dev)
1941 		dm_put_device(cache->ti, cache->cache_dev);
1942 
1943 	if (cache->policy)
1944 		dm_cache_policy_destroy(cache->policy);
1945 
1946 	for (i = 0; i < cache->nr_ctr_args ; i++)
1947 		kfree(cache->ctr_args[i]);
1948 	kfree(cache->ctr_args);
1949 
1950 	kfree(cache);
1951 }
1952 
cache_dtr(struct dm_target * ti)1953 static void cache_dtr(struct dm_target *ti)
1954 {
1955 	struct cache *cache = ti->private;
1956 
1957 	destroy(cache);
1958 }
1959 
get_dev_size(struct dm_dev * dev)1960 static sector_t get_dev_size(struct dm_dev *dev)
1961 {
1962 	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1963 }
1964 
1965 /*----------------------------------------------------------------*/
1966 
1967 /*
1968  * Construct a cache device mapping.
1969  *
1970  * cache <metadata dev> <cache dev> <origin dev> <block size>
1971  *       <#feature args> [<feature arg>]*
1972  *       <policy> <#policy args> [<policy arg>]*
1973  *
1974  * metadata dev    : fast device holding the persistent metadata
1975  * cache dev	   : fast device holding cached data blocks
1976  * origin dev	   : slow device holding original data blocks
1977  * block size	   : cache unit size in sectors
1978  *
1979  * #feature args   : number of feature arguments passed
1980  * feature args    : writethrough.  (The default is writeback.)
1981  *
1982  * policy	   : the replacement policy to use
1983  * #policy args    : an even number of policy arguments corresponding
1984  *		     to key/value pairs passed to the policy
1985  * policy args	   : key/value pairs passed to the policy
1986  *		     E.g. 'sequential_threshold 1024'
1987  *		     See cache-policies.txt for details.
1988  *
1989  * Optional feature arguments are:
1990  *   writethrough  : write through caching that prohibits cache block
1991  *		     content from being different from origin block content.
1992  *		     Without this argument, the default behaviour is to write
1993  *		     back cache block contents later for performance reasons,
1994  *		     so they may differ from the corresponding origin blocks.
1995  */
1996 struct cache_args {
1997 	struct dm_target *ti;
1998 
1999 	struct dm_dev *metadata_dev;
2000 
2001 	struct dm_dev *cache_dev;
2002 	sector_t cache_sectors;
2003 
2004 	struct dm_dev *origin_dev;
2005 	sector_t origin_sectors;
2006 
2007 	uint32_t block_size;
2008 
2009 	const char *policy_name;
2010 	int policy_argc;
2011 	const char **policy_argv;
2012 
2013 	struct cache_features features;
2014 };
2015 
destroy_cache_args(struct cache_args * ca)2016 static void destroy_cache_args(struct cache_args *ca)
2017 {
2018 	if (ca->metadata_dev)
2019 		dm_put_device(ca->ti, ca->metadata_dev);
2020 
2021 	if (ca->cache_dev)
2022 		dm_put_device(ca->ti, ca->cache_dev);
2023 
2024 	if (ca->origin_dev)
2025 		dm_put_device(ca->ti, ca->origin_dev);
2026 
2027 	kfree(ca);
2028 }
2029 
at_least_one_arg(struct dm_arg_set * as,char ** error)2030 static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2031 {
2032 	if (!as->argc) {
2033 		*error = "Insufficient args";
2034 		return false;
2035 	}
2036 
2037 	return true;
2038 }
2039 
parse_metadata_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2040 static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2041 			      char **error)
2042 {
2043 	int r;
2044 	sector_t metadata_dev_size;
2045 	char b[BDEVNAME_SIZE];
2046 
2047 	if (!at_least_one_arg(as, error))
2048 		return -EINVAL;
2049 
2050 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2051 			  &ca->metadata_dev);
2052 	if (r) {
2053 		*error = "Error opening metadata device";
2054 		return r;
2055 	}
2056 
2057 	metadata_dev_size = get_dev_size(ca->metadata_dev);
2058 	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2059 		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2060 		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2061 
2062 	return 0;
2063 }
2064 
parse_cache_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2065 static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2066 			   char **error)
2067 {
2068 	int r;
2069 
2070 	if (!at_least_one_arg(as, error))
2071 		return -EINVAL;
2072 
2073 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2074 			  &ca->cache_dev);
2075 	if (r) {
2076 		*error = "Error opening cache device";
2077 		return r;
2078 	}
2079 	ca->cache_sectors = get_dev_size(ca->cache_dev);
2080 
2081 	return 0;
2082 }
2083 
parse_origin_dev(struct cache_args * ca,struct dm_arg_set * as,char ** error)2084 static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2085 			    char **error)
2086 {
2087 	int r;
2088 
2089 	if (!at_least_one_arg(as, error))
2090 		return -EINVAL;
2091 
2092 	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2093 			  &ca->origin_dev);
2094 	if (r) {
2095 		*error = "Error opening origin device";
2096 		return r;
2097 	}
2098 
2099 	ca->origin_sectors = get_dev_size(ca->origin_dev);
2100 	if (ca->ti->len > ca->origin_sectors) {
2101 		*error = "Device size larger than cached device";
2102 		return -EINVAL;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
parse_block_size(struct cache_args * ca,struct dm_arg_set * as,char ** error)2108 static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2109 			    char **error)
2110 {
2111 	unsigned long block_size;
2112 
2113 	if (!at_least_one_arg(as, error))
2114 		return -EINVAL;
2115 
2116 	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2117 	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2118 	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2119 	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2120 		*error = "Invalid data block size";
2121 		return -EINVAL;
2122 	}
2123 
2124 	if (block_size > ca->cache_sectors) {
2125 		*error = "Data block size is larger than the cache device";
2126 		return -EINVAL;
2127 	}
2128 
2129 	ca->block_size = block_size;
2130 
2131 	return 0;
2132 }
2133 
init_features(struct cache_features * cf)2134 static void init_features(struct cache_features *cf)
2135 {
2136 	cf->mode = CM_WRITE;
2137 	cf->io_mode = CM_IO_WRITEBACK;
2138 }
2139 
parse_features(struct cache_args * ca,struct dm_arg_set * as,char ** error)2140 static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2141 			  char **error)
2142 {
2143 	static struct dm_arg _args[] = {
2144 		{0, 1, "Invalid number of cache feature arguments"},
2145 	};
2146 
2147 	int r;
2148 	unsigned argc;
2149 	const char *arg;
2150 	struct cache_features *cf = &ca->features;
2151 
2152 	init_features(cf);
2153 
2154 	r = dm_read_arg_group(_args, as, &argc, error);
2155 	if (r)
2156 		return -EINVAL;
2157 
2158 	while (argc--) {
2159 		arg = dm_shift_arg(as);
2160 
2161 		if (!strcasecmp(arg, "writeback"))
2162 			cf->io_mode = CM_IO_WRITEBACK;
2163 
2164 		else if (!strcasecmp(arg, "writethrough"))
2165 			cf->io_mode = CM_IO_WRITETHROUGH;
2166 
2167 		else if (!strcasecmp(arg, "passthrough"))
2168 			cf->io_mode = CM_IO_PASSTHROUGH;
2169 
2170 		else {
2171 			*error = "Unrecognised cache feature requested";
2172 			return -EINVAL;
2173 		}
2174 	}
2175 
2176 	return 0;
2177 }
2178 
parse_policy(struct cache_args * ca,struct dm_arg_set * as,char ** error)2179 static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2180 			char **error)
2181 {
2182 	static struct dm_arg _args[] = {
2183 		{0, 1024, "Invalid number of policy arguments"},
2184 	};
2185 
2186 	int r;
2187 
2188 	if (!at_least_one_arg(as, error))
2189 		return -EINVAL;
2190 
2191 	ca->policy_name = dm_shift_arg(as);
2192 
2193 	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2194 	if (r)
2195 		return -EINVAL;
2196 
2197 	ca->policy_argv = (const char **)as->argv;
2198 	dm_consume_args(as, ca->policy_argc);
2199 
2200 	return 0;
2201 }
2202 
parse_cache_args(struct cache_args * ca,int argc,char ** argv,char ** error)2203 static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2204 			    char **error)
2205 {
2206 	int r;
2207 	struct dm_arg_set as;
2208 
2209 	as.argc = argc;
2210 	as.argv = argv;
2211 
2212 	r = parse_metadata_dev(ca, &as, error);
2213 	if (r)
2214 		return r;
2215 
2216 	r = parse_cache_dev(ca, &as, error);
2217 	if (r)
2218 		return r;
2219 
2220 	r = parse_origin_dev(ca, &as, error);
2221 	if (r)
2222 		return r;
2223 
2224 	r = parse_block_size(ca, &as, error);
2225 	if (r)
2226 		return r;
2227 
2228 	r = parse_features(ca, &as, error);
2229 	if (r)
2230 		return r;
2231 
2232 	r = parse_policy(ca, &as, error);
2233 	if (r)
2234 		return r;
2235 
2236 	return 0;
2237 }
2238 
2239 /*----------------------------------------------------------------*/
2240 
2241 static struct kmem_cache *migration_cache;
2242 
2243 #define NOT_CORE_OPTION 1
2244 
process_config_option(struct cache * cache,const char * key,const char * value)2245 static int process_config_option(struct cache *cache, const char *key, const char *value)
2246 {
2247 	unsigned long tmp;
2248 
2249 	if (!strcasecmp(key, "migration_threshold")) {
2250 		if (kstrtoul(value, 10, &tmp))
2251 			return -EINVAL;
2252 
2253 		cache->migration_threshold = tmp;
2254 		return 0;
2255 	}
2256 
2257 	return NOT_CORE_OPTION;
2258 }
2259 
set_config_value(struct cache * cache,const char * key,const char * value)2260 static int set_config_value(struct cache *cache, const char *key, const char *value)
2261 {
2262 	int r = process_config_option(cache, key, value);
2263 
2264 	if (r == NOT_CORE_OPTION)
2265 		r = policy_set_config_value(cache->policy, key, value);
2266 
2267 	if (r)
2268 		DMWARN("bad config value for %s: %s", key, value);
2269 
2270 	return r;
2271 }
2272 
set_config_values(struct cache * cache,int argc,const char ** argv)2273 static int set_config_values(struct cache *cache, int argc, const char **argv)
2274 {
2275 	int r = 0;
2276 
2277 	if (argc & 1) {
2278 		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2279 		return -EINVAL;
2280 	}
2281 
2282 	while (argc) {
2283 		r = set_config_value(cache, argv[0], argv[1]);
2284 		if (r)
2285 			break;
2286 
2287 		argc -= 2;
2288 		argv += 2;
2289 	}
2290 
2291 	return r;
2292 }
2293 
create_cache_policy(struct cache * cache,struct cache_args * ca,char ** error)2294 static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2295 			       char **error)
2296 {
2297 	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2298 							   cache->cache_size,
2299 							   cache->origin_sectors,
2300 							   cache->sectors_per_block);
2301 	if (IS_ERR(p)) {
2302 		*error = "Error creating cache's policy";
2303 		return PTR_ERR(p);
2304 	}
2305 	cache->policy = p;
2306 
2307 	return 0;
2308 }
2309 
2310 /*
2311  * We want the discard block size to be at least the size of the cache
2312  * block size and have no more than 2^14 discard blocks across the origin.
2313  */
2314 #define MAX_DISCARD_BLOCKS (1 << 14)
2315 
too_many_discard_blocks(sector_t discard_block_size,sector_t origin_size)2316 static bool too_many_discard_blocks(sector_t discard_block_size,
2317 				    sector_t origin_size)
2318 {
2319 	(void) sector_div(origin_size, discard_block_size);
2320 
2321 	return origin_size > MAX_DISCARD_BLOCKS;
2322 }
2323 
calculate_discard_block_size(sector_t cache_block_size,sector_t origin_size)2324 static sector_t calculate_discard_block_size(sector_t cache_block_size,
2325 					     sector_t origin_size)
2326 {
2327 	sector_t discard_block_size = cache_block_size;
2328 
2329 	if (origin_size)
2330 		while (too_many_discard_blocks(discard_block_size, origin_size))
2331 			discard_block_size *= 2;
2332 
2333 	return discard_block_size;
2334 }
2335 
set_cache_size(struct cache * cache,dm_cblock_t size)2336 static void set_cache_size(struct cache *cache, dm_cblock_t size)
2337 {
2338 	dm_block_t nr_blocks = from_cblock(size);
2339 
2340 	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2341 		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2342 			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2343 			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2344 			     (unsigned long long) nr_blocks);
2345 
2346 	cache->cache_size = size;
2347 }
2348 
2349 #define DEFAULT_MIGRATION_THRESHOLD 2048
2350 
cache_create(struct cache_args * ca,struct cache ** result)2351 static int cache_create(struct cache_args *ca, struct cache **result)
2352 {
2353 	int r = 0;
2354 	char **error = &ca->ti->error;
2355 	struct cache *cache;
2356 	struct dm_target *ti = ca->ti;
2357 	dm_block_t origin_blocks;
2358 	struct dm_cache_metadata *cmd;
2359 	bool may_format = ca->features.mode == CM_WRITE;
2360 
2361 	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2362 	if (!cache)
2363 		return -ENOMEM;
2364 
2365 	cache->ti = ca->ti;
2366 	ti->private = cache;
2367 	ti->num_flush_bios = 2;
2368 	ti->flush_supported = true;
2369 
2370 	ti->num_discard_bios = 1;
2371 	ti->discards_supported = true;
2372 	ti->discard_zeroes_data_unsupported = true;
2373 	ti->split_discard_bios = false;
2374 
2375 	cache->features = ca->features;
2376 	ti->per_bio_data_size = get_per_bio_data_size(cache);
2377 
2378 	cache->callbacks.congested_fn = cache_is_congested;
2379 	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2380 
2381 	cache->metadata_dev = ca->metadata_dev;
2382 	cache->origin_dev = ca->origin_dev;
2383 	cache->cache_dev = ca->cache_dev;
2384 
2385 	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2386 
2387 	/* FIXME: factor out this whole section */
2388 	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2389 	origin_blocks = block_div(origin_blocks, ca->block_size);
2390 	cache->origin_blocks = to_oblock(origin_blocks);
2391 
2392 	cache->sectors_per_block = ca->block_size;
2393 	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2394 		r = -EINVAL;
2395 		goto bad;
2396 	}
2397 
2398 	if (ca->block_size & (ca->block_size - 1)) {
2399 		dm_block_t cache_size = ca->cache_sectors;
2400 
2401 		cache->sectors_per_block_shift = -1;
2402 		cache_size = block_div(cache_size, ca->block_size);
2403 		set_cache_size(cache, to_cblock(cache_size));
2404 	} else {
2405 		cache->sectors_per_block_shift = __ffs(ca->block_size);
2406 		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2407 	}
2408 
2409 	r = create_cache_policy(cache, ca, error);
2410 	if (r)
2411 		goto bad;
2412 
2413 	cache->policy_nr_args = ca->policy_argc;
2414 	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2415 
2416 	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2417 	if (r) {
2418 		*error = "Error setting cache policy's config values";
2419 		goto bad;
2420 	}
2421 
2422 	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2423 				     ca->block_size, may_format,
2424 				     dm_cache_policy_get_hint_size(cache->policy));
2425 	if (IS_ERR(cmd)) {
2426 		*error = "Error creating metadata object";
2427 		r = PTR_ERR(cmd);
2428 		goto bad;
2429 	}
2430 	cache->cmd = cmd;
2431 
2432 	if (passthrough_mode(&cache->features)) {
2433 		bool all_clean;
2434 
2435 		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2436 		if (r) {
2437 			*error = "dm_cache_metadata_all_clean() failed";
2438 			goto bad;
2439 		}
2440 
2441 		if (!all_clean) {
2442 			*error = "Cannot enter passthrough mode unless all blocks are clean";
2443 			r = -EINVAL;
2444 			goto bad;
2445 		}
2446 	}
2447 
2448 	spin_lock_init(&cache->lock);
2449 	bio_list_init(&cache->deferred_bios);
2450 	bio_list_init(&cache->deferred_flush_bios);
2451 	bio_list_init(&cache->deferred_writethrough_bios);
2452 	INIT_LIST_HEAD(&cache->quiesced_migrations);
2453 	INIT_LIST_HEAD(&cache->completed_migrations);
2454 	INIT_LIST_HEAD(&cache->need_commit_migrations);
2455 	atomic_set(&cache->nr_allocated_migrations, 0);
2456 	atomic_set(&cache->nr_io_migrations, 0);
2457 	init_waitqueue_head(&cache->migration_wait);
2458 
2459 	init_waitqueue_head(&cache->quiescing_wait);
2460 	atomic_set(&cache->quiescing, 0);
2461 	atomic_set(&cache->quiescing_ack, 0);
2462 
2463 	r = -ENOMEM;
2464 	atomic_set(&cache->nr_dirty, 0);
2465 	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2466 	if (!cache->dirty_bitset) {
2467 		*error = "could not allocate dirty bitset";
2468 		goto bad;
2469 	}
2470 	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2471 
2472 	cache->discard_block_size =
2473 		calculate_discard_block_size(cache->sectors_per_block,
2474 					     cache->origin_sectors);
2475 	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2476 							      cache->discard_block_size));
2477 	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2478 	if (!cache->discard_bitset) {
2479 		*error = "could not allocate discard bitset";
2480 		goto bad;
2481 	}
2482 	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2483 
2484 	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2485 	if (IS_ERR(cache->copier)) {
2486 		*error = "could not create kcopyd client";
2487 		r = PTR_ERR(cache->copier);
2488 		goto bad;
2489 	}
2490 
2491 	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2492 	if (!cache->wq) {
2493 		*error = "could not create workqueue for metadata object";
2494 		goto bad;
2495 	}
2496 	INIT_WORK(&cache->worker, do_worker);
2497 	INIT_DELAYED_WORK(&cache->waker, do_waker);
2498 	cache->last_commit_jiffies = jiffies;
2499 
2500 	cache->prison = dm_bio_prison_create();
2501 	if (!cache->prison) {
2502 		*error = "could not create bio prison";
2503 		goto bad;
2504 	}
2505 
2506 	cache->all_io_ds = dm_deferred_set_create();
2507 	if (!cache->all_io_ds) {
2508 		*error = "could not create all_io deferred set";
2509 		goto bad;
2510 	}
2511 
2512 	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2513 							 migration_cache);
2514 	if (!cache->migration_pool) {
2515 		*error = "Error creating cache's migration mempool";
2516 		goto bad;
2517 	}
2518 
2519 	cache->need_tick_bio = true;
2520 	cache->sized = false;
2521 	cache->invalidate = false;
2522 	cache->commit_requested = false;
2523 	cache->loaded_mappings = false;
2524 	cache->loaded_discards = false;
2525 
2526 	load_stats(cache);
2527 
2528 	atomic_set(&cache->stats.demotion, 0);
2529 	atomic_set(&cache->stats.promotion, 0);
2530 	atomic_set(&cache->stats.copies_avoided, 0);
2531 	atomic_set(&cache->stats.cache_cell_clash, 0);
2532 	atomic_set(&cache->stats.commit_count, 0);
2533 	atomic_set(&cache->stats.discard_count, 0);
2534 
2535 	spin_lock_init(&cache->invalidation_lock);
2536 	INIT_LIST_HEAD(&cache->invalidation_requests);
2537 
2538 	*result = cache;
2539 	return 0;
2540 
2541 bad:
2542 	destroy(cache);
2543 	return r;
2544 }
2545 
copy_ctr_args(struct cache * cache,int argc,const char ** argv)2546 static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2547 {
2548 	unsigned i;
2549 	const char **copy;
2550 
2551 	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2552 	if (!copy)
2553 		return -ENOMEM;
2554 	for (i = 0; i < argc; i++) {
2555 		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2556 		if (!copy[i]) {
2557 			while (i--)
2558 				kfree(copy[i]);
2559 			kfree(copy);
2560 			return -ENOMEM;
2561 		}
2562 	}
2563 
2564 	cache->nr_ctr_args = argc;
2565 	cache->ctr_args = copy;
2566 
2567 	return 0;
2568 }
2569 
cache_ctr(struct dm_target * ti,unsigned argc,char ** argv)2570 static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2571 {
2572 	int r = -EINVAL;
2573 	struct cache_args *ca;
2574 	struct cache *cache = NULL;
2575 
2576 	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2577 	if (!ca) {
2578 		ti->error = "Error allocating memory for cache";
2579 		return -ENOMEM;
2580 	}
2581 	ca->ti = ti;
2582 
2583 	r = parse_cache_args(ca, argc, argv, &ti->error);
2584 	if (r)
2585 		goto out;
2586 
2587 	r = cache_create(ca, &cache);
2588 	if (r)
2589 		goto out;
2590 
2591 	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2592 	if (r) {
2593 		destroy(cache);
2594 		goto out;
2595 	}
2596 
2597 	ti->private = cache;
2598 
2599 out:
2600 	destroy_cache_args(ca);
2601 	return r;
2602 }
2603 
__cache_map(struct cache * cache,struct bio * bio,struct dm_bio_prison_cell ** cell)2604 static int __cache_map(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell **cell)
2605 {
2606 	int r;
2607 	dm_oblock_t block = get_bio_block(cache, bio);
2608 	size_t pb_data_size = get_per_bio_data_size(cache);
2609 	bool can_migrate = false;
2610 	bool discarded_block;
2611 	struct policy_result lookup_result;
2612 	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2613 	struct old_oblock_lock ool;
2614 
2615 	ool.locker.fn = null_locker;
2616 
2617 	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2618 		/*
2619 		 * This can only occur if the io goes to a partial block at
2620 		 * the end of the origin device.  We don't cache these.
2621 		 * Just remap to the origin and carry on.
2622 		 */
2623 		remap_to_origin(cache, bio);
2624 		return DM_MAPIO_REMAPPED;
2625 	}
2626 
2627 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2628 		defer_bio(cache, bio);
2629 		return DM_MAPIO_SUBMITTED;
2630 	}
2631 
2632 	/*
2633 	 * Check to see if that block is currently migrating.
2634 	 */
2635 	*cell = alloc_prison_cell(cache);
2636 	if (!*cell) {
2637 		defer_bio(cache, bio);
2638 		return DM_MAPIO_SUBMITTED;
2639 	}
2640 
2641 	r = bio_detain(cache, block, bio, *cell,
2642 		       (cell_free_fn) free_prison_cell,
2643 		       cache, cell);
2644 	if (r) {
2645 		if (r < 0)
2646 			defer_bio(cache, bio);
2647 
2648 		return DM_MAPIO_SUBMITTED;
2649 	}
2650 
2651 	discarded_block = is_discarded_oblock(cache, block);
2652 
2653 	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2654 		       bio, &ool.locker, &lookup_result);
2655 	if (r == -EWOULDBLOCK) {
2656 		cell_defer(cache, *cell, true);
2657 		return DM_MAPIO_SUBMITTED;
2658 
2659 	} else if (r) {
2660 		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2661 		cell_defer(cache, *cell, false);
2662 		bio_io_error(bio);
2663 		return DM_MAPIO_SUBMITTED;
2664 	}
2665 
2666 	r = DM_MAPIO_REMAPPED;
2667 	switch (lookup_result.op) {
2668 	case POLICY_HIT:
2669 		if (passthrough_mode(&cache->features)) {
2670 			if (bio_data_dir(bio) == WRITE) {
2671 				/*
2672 				 * We need to invalidate this block, so
2673 				 * defer for the worker thread.
2674 				 */
2675 				cell_defer(cache, *cell, true);
2676 				r = DM_MAPIO_SUBMITTED;
2677 
2678 			} else {
2679 				inc_miss_counter(cache, bio);
2680 				remap_to_origin_clear_discard(cache, bio, block);
2681 			}
2682 
2683 		} else {
2684 			inc_hit_counter(cache, bio);
2685 			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2686 			    !is_dirty(cache, lookup_result.cblock))
2687 				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2688 			else
2689 				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2690 		}
2691 		break;
2692 
2693 	case POLICY_MISS:
2694 		inc_miss_counter(cache, bio);
2695 		if (pb->req_nr != 0) {
2696 			/*
2697 			 * This is a duplicate writethrough io that is no
2698 			 * longer needed because the block has been demoted.
2699 			 */
2700 			bio_endio(bio, 0);
2701 			cell_defer(cache, *cell, false);
2702 			r = DM_MAPIO_SUBMITTED;
2703 
2704 		} else
2705 			remap_to_origin_clear_discard(cache, bio, block);
2706 
2707 		break;
2708 
2709 	default:
2710 		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2711 			    (unsigned) lookup_result.op);
2712 		cell_defer(cache, *cell, false);
2713 		bio_io_error(bio);
2714 		r = DM_MAPIO_SUBMITTED;
2715 	}
2716 
2717 	return r;
2718 }
2719 
cache_map(struct dm_target * ti,struct bio * bio)2720 static int cache_map(struct dm_target *ti, struct bio *bio)
2721 {
2722 	int r;
2723 	struct dm_bio_prison_cell *cell = NULL;
2724 	struct cache *cache = ti->private;
2725 
2726 	r = __cache_map(cache, bio, &cell);
2727 	if (r == DM_MAPIO_REMAPPED && cell) {
2728 		inc_ds(cache, bio, cell);
2729 		cell_defer(cache, cell, false);
2730 	}
2731 
2732 	return r;
2733 }
2734 
cache_end_io(struct dm_target * ti,struct bio * bio,int error)2735 static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2736 {
2737 	struct cache *cache = ti->private;
2738 	unsigned long flags;
2739 	size_t pb_data_size = get_per_bio_data_size(cache);
2740 	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2741 
2742 	if (pb->tick) {
2743 		policy_tick(cache->policy);
2744 
2745 		spin_lock_irqsave(&cache->lock, flags);
2746 		cache->need_tick_bio = true;
2747 		spin_unlock_irqrestore(&cache->lock, flags);
2748 	}
2749 
2750 	check_for_quiesced_migrations(cache, pb);
2751 
2752 	return 0;
2753 }
2754 
write_dirty_bitset(struct cache * cache)2755 static int write_dirty_bitset(struct cache *cache)
2756 {
2757 	unsigned i, r;
2758 
2759 	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2760 		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2761 				       is_dirty(cache, to_cblock(i)));
2762 		if (r)
2763 			return r;
2764 	}
2765 
2766 	return 0;
2767 }
2768 
write_discard_bitset(struct cache * cache)2769 static int write_discard_bitset(struct cache *cache)
2770 {
2771 	unsigned i, r;
2772 
2773 	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2774 					   cache->discard_nr_blocks);
2775 	if (r) {
2776 		DMERR("could not resize on-disk discard bitset");
2777 		return r;
2778 	}
2779 
2780 	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2781 		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2782 					 is_discarded(cache, to_dblock(i)));
2783 		if (r)
2784 			return r;
2785 	}
2786 
2787 	return 0;
2788 }
2789 
2790 /*
2791  * returns true on success
2792  */
sync_metadata(struct cache * cache)2793 static bool sync_metadata(struct cache *cache)
2794 {
2795 	int r1, r2, r3, r4;
2796 
2797 	r1 = write_dirty_bitset(cache);
2798 	if (r1)
2799 		DMERR("could not write dirty bitset");
2800 
2801 	r2 = write_discard_bitset(cache);
2802 	if (r2)
2803 		DMERR("could not write discard bitset");
2804 
2805 	save_stats(cache);
2806 
2807 	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2808 	if (r3)
2809 		DMERR("could not write hints");
2810 
2811 	/*
2812 	 * If writing the above metadata failed, we still commit, but don't
2813 	 * set the clean shutdown flag.  This will effectively force every
2814 	 * dirty bit to be set on reload.
2815 	 */
2816 	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2817 	if (r4)
2818 		DMERR("could not write cache metadata.  Data loss may occur.");
2819 
2820 	return !r1 && !r2 && !r3 && !r4;
2821 }
2822 
cache_postsuspend(struct dm_target * ti)2823 static void cache_postsuspend(struct dm_target *ti)
2824 {
2825 	struct cache *cache = ti->private;
2826 
2827 	start_quiescing(cache);
2828 	wait_for_migrations(cache);
2829 	stop_worker(cache);
2830 	requeue_deferred_io(cache);
2831 	stop_quiescing(cache);
2832 
2833 	(void) sync_metadata(cache);
2834 }
2835 
load_mapping(void * context,dm_oblock_t oblock,dm_cblock_t cblock,bool dirty,uint32_t hint,bool hint_valid)2836 static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2837 			bool dirty, uint32_t hint, bool hint_valid)
2838 {
2839 	int r;
2840 	struct cache *cache = context;
2841 
2842 	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2843 	if (r)
2844 		return r;
2845 
2846 	if (dirty)
2847 		set_dirty(cache, oblock, cblock);
2848 	else
2849 		clear_dirty(cache, oblock, cblock);
2850 
2851 	return 0;
2852 }
2853 
2854 /*
2855  * The discard block size in the on disk metadata is not
2856  * neccessarily the same as we're currently using.  So we have to
2857  * be careful to only set the discarded attribute if we know it
2858  * covers a complete block of the new size.
2859  */
2860 struct discard_load_info {
2861 	struct cache *cache;
2862 
2863 	/*
2864 	 * These blocks are sized using the on disk dblock size, rather
2865 	 * than the current one.
2866 	 */
2867 	dm_block_t block_size;
2868 	dm_block_t discard_begin, discard_end;
2869 };
2870 
discard_load_info_init(struct cache * cache,struct discard_load_info * li)2871 static void discard_load_info_init(struct cache *cache,
2872 				   struct discard_load_info *li)
2873 {
2874 	li->cache = cache;
2875 	li->discard_begin = li->discard_end = 0;
2876 }
2877 
set_discard_range(struct discard_load_info * li)2878 static void set_discard_range(struct discard_load_info *li)
2879 {
2880 	sector_t b, e;
2881 
2882 	if (li->discard_begin == li->discard_end)
2883 		return;
2884 
2885 	/*
2886 	 * Convert to sectors.
2887 	 */
2888 	b = li->discard_begin * li->block_size;
2889 	e = li->discard_end * li->block_size;
2890 
2891 	/*
2892 	 * Then convert back to the current dblock size.
2893 	 */
2894 	b = dm_sector_div_up(b, li->cache->discard_block_size);
2895 	sector_div(e, li->cache->discard_block_size);
2896 
2897 	/*
2898 	 * The origin may have shrunk, so we need to check we're still in
2899 	 * bounds.
2900 	 */
2901 	if (e > from_dblock(li->cache->discard_nr_blocks))
2902 		e = from_dblock(li->cache->discard_nr_blocks);
2903 
2904 	for (; b < e; b++)
2905 		set_discard(li->cache, to_dblock(b));
2906 }
2907 
load_discard(void * context,sector_t discard_block_size,dm_dblock_t dblock,bool discard)2908 static int load_discard(void *context, sector_t discard_block_size,
2909 			dm_dblock_t dblock, bool discard)
2910 {
2911 	struct discard_load_info *li = context;
2912 
2913 	li->block_size = discard_block_size;
2914 
2915 	if (discard) {
2916 		if (from_dblock(dblock) == li->discard_end)
2917 			/*
2918 			 * We're already in a discard range, just extend it.
2919 			 */
2920 			li->discard_end = li->discard_end + 1ULL;
2921 
2922 		else {
2923 			/*
2924 			 * Emit the old range and start a new one.
2925 			 */
2926 			set_discard_range(li);
2927 			li->discard_begin = from_dblock(dblock);
2928 			li->discard_end = li->discard_begin + 1ULL;
2929 		}
2930 	} else {
2931 		set_discard_range(li);
2932 		li->discard_begin = li->discard_end = 0;
2933 	}
2934 
2935 	return 0;
2936 }
2937 
get_cache_dev_size(struct cache * cache)2938 static dm_cblock_t get_cache_dev_size(struct cache *cache)
2939 {
2940 	sector_t size = get_dev_size(cache->cache_dev);
2941 	(void) sector_div(size, cache->sectors_per_block);
2942 	return to_cblock(size);
2943 }
2944 
can_resize(struct cache * cache,dm_cblock_t new_size)2945 static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2946 {
2947 	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2948 		return true;
2949 
2950 	/*
2951 	 * We can't drop a dirty block when shrinking the cache.
2952 	 */
2953 	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2954 		new_size = to_cblock(from_cblock(new_size) + 1);
2955 		if (is_dirty(cache, new_size)) {
2956 			DMERR("unable to shrink cache; cache block %llu is dirty",
2957 			      (unsigned long long) from_cblock(new_size));
2958 			return false;
2959 		}
2960 	}
2961 
2962 	return true;
2963 }
2964 
resize_cache_dev(struct cache * cache,dm_cblock_t new_size)2965 static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2966 {
2967 	int r;
2968 
2969 	r = dm_cache_resize(cache->cmd, new_size);
2970 	if (r) {
2971 		DMERR("could not resize cache metadata");
2972 		return r;
2973 	}
2974 
2975 	set_cache_size(cache, new_size);
2976 
2977 	return 0;
2978 }
2979 
cache_preresume(struct dm_target * ti)2980 static int cache_preresume(struct dm_target *ti)
2981 {
2982 	int r = 0;
2983 	struct cache *cache = ti->private;
2984 	dm_cblock_t csize = get_cache_dev_size(cache);
2985 
2986 	/*
2987 	 * Check to see if the cache has resized.
2988 	 */
2989 	if (!cache->sized) {
2990 		r = resize_cache_dev(cache, csize);
2991 		if (r)
2992 			return r;
2993 
2994 		cache->sized = true;
2995 
2996 	} else if (csize != cache->cache_size) {
2997 		if (!can_resize(cache, csize))
2998 			return -EINVAL;
2999 
3000 		r = resize_cache_dev(cache, csize);
3001 		if (r)
3002 			return r;
3003 	}
3004 
3005 	if (!cache->loaded_mappings) {
3006 		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3007 					   load_mapping, cache);
3008 		if (r) {
3009 			DMERR("could not load cache mappings");
3010 			return r;
3011 		}
3012 
3013 		cache->loaded_mappings = true;
3014 	}
3015 
3016 	if (!cache->loaded_discards) {
3017 		struct discard_load_info li;
3018 
3019 		/*
3020 		 * The discard bitset could have been resized, or the
3021 		 * discard block size changed.  To be safe we start by
3022 		 * setting every dblock to not discarded.
3023 		 */
3024 		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3025 
3026 		discard_load_info_init(cache, &li);
3027 		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3028 		if (r) {
3029 			DMERR("could not load origin discards");
3030 			return r;
3031 		}
3032 		set_discard_range(&li);
3033 
3034 		cache->loaded_discards = true;
3035 	}
3036 
3037 	return r;
3038 }
3039 
cache_resume(struct dm_target * ti)3040 static void cache_resume(struct dm_target *ti)
3041 {
3042 	struct cache *cache = ti->private;
3043 
3044 	cache->need_tick_bio = true;
3045 	do_waker(&cache->waker.work);
3046 }
3047 
3048 /*
3049  * Status format:
3050  *
3051  * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3052  * <cache block size> <#used cache blocks>/<#total cache blocks>
3053  * <#read hits> <#read misses> <#write hits> <#write misses>
3054  * <#demotions> <#promotions> <#dirty>
3055  * <#features> <features>*
3056  * <#core args> <core args>
3057  * <policy name> <#policy args> <policy args>*
3058  */
cache_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3059 static void cache_status(struct dm_target *ti, status_type_t type,
3060 			 unsigned status_flags, char *result, unsigned maxlen)
3061 {
3062 	int r = 0;
3063 	unsigned i;
3064 	ssize_t sz = 0;
3065 	dm_block_t nr_free_blocks_metadata = 0;
3066 	dm_block_t nr_blocks_metadata = 0;
3067 	char buf[BDEVNAME_SIZE];
3068 	struct cache *cache = ti->private;
3069 	dm_cblock_t residency;
3070 
3071 	switch (type) {
3072 	case STATUSTYPE_INFO:
3073 		/* Commit to ensure statistics aren't out-of-date */
3074 		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
3075 			r = dm_cache_commit(cache->cmd, false);
3076 			if (r)
3077 				DMERR("could not commit metadata for accurate status");
3078 		}
3079 
3080 		r = dm_cache_get_free_metadata_block_count(cache->cmd,
3081 							   &nr_free_blocks_metadata);
3082 		if (r) {
3083 			DMERR("could not get metadata free block count");
3084 			goto err;
3085 		}
3086 
3087 		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3088 		if (r) {
3089 			DMERR("could not get metadata device size");
3090 			goto err;
3091 		}
3092 
3093 		residency = policy_residency(cache->policy);
3094 
3095 		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %lu ",
3096 		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3097 		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3098 		       (unsigned long long)nr_blocks_metadata,
3099 		       cache->sectors_per_block,
3100 		       (unsigned long long) from_cblock(residency),
3101 		       (unsigned long long) from_cblock(cache->cache_size),
3102 		       (unsigned) atomic_read(&cache->stats.read_hit),
3103 		       (unsigned) atomic_read(&cache->stats.read_miss),
3104 		       (unsigned) atomic_read(&cache->stats.write_hit),
3105 		       (unsigned) atomic_read(&cache->stats.write_miss),
3106 		       (unsigned) atomic_read(&cache->stats.demotion),
3107 		       (unsigned) atomic_read(&cache->stats.promotion),
3108 		       (unsigned long) atomic_read(&cache->nr_dirty));
3109 
3110 		if (writethrough_mode(&cache->features))
3111 			DMEMIT("1 writethrough ");
3112 
3113 		else if (passthrough_mode(&cache->features))
3114 			DMEMIT("1 passthrough ");
3115 
3116 		else if (writeback_mode(&cache->features))
3117 			DMEMIT("1 writeback ");
3118 
3119 		else {
3120 			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
3121 			goto err;
3122 		}
3123 
3124 		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3125 
3126 		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3127 		if (sz < maxlen) {
3128 			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
3129 			if (r)
3130 				DMERR("policy_emit_config_values returned %d", r);
3131 		}
3132 
3133 		break;
3134 
3135 	case STATUSTYPE_TABLE:
3136 		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3137 		DMEMIT("%s ", buf);
3138 		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3139 		DMEMIT("%s ", buf);
3140 		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3141 		DMEMIT("%s", buf);
3142 
3143 		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3144 			DMEMIT(" %s", cache->ctr_args[i]);
3145 		if (cache->nr_ctr_args)
3146 			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3147 	}
3148 
3149 	return;
3150 
3151 err:
3152 	DMEMIT("Error");
3153 }
3154 
3155 /*
3156  * A cache block range can take two forms:
3157  *
3158  * i) A single cblock, eg. '3456'
3159  * ii) A begin and end cblock with dots between, eg. 123-234
3160  */
parse_cblock_range(struct cache * cache,const char * str,struct cblock_range * result)3161 static int parse_cblock_range(struct cache *cache, const char *str,
3162 			      struct cblock_range *result)
3163 {
3164 	char dummy;
3165 	uint64_t b, e;
3166 	int r;
3167 
3168 	/*
3169 	 * Try and parse form (ii) first.
3170 	 */
3171 	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3172 	if (r < 0)
3173 		return r;
3174 
3175 	if (r == 2) {
3176 		result->begin = to_cblock(b);
3177 		result->end = to_cblock(e);
3178 		return 0;
3179 	}
3180 
3181 	/*
3182 	 * That didn't work, try form (i).
3183 	 */
3184 	r = sscanf(str, "%llu%c", &b, &dummy);
3185 	if (r < 0)
3186 		return r;
3187 
3188 	if (r == 1) {
3189 		result->begin = to_cblock(b);
3190 		result->end = to_cblock(from_cblock(result->begin) + 1u);
3191 		return 0;
3192 	}
3193 
3194 	DMERR("invalid cblock range '%s'", str);
3195 	return -EINVAL;
3196 }
3197 
validate_cblock_range(struct cache * cache,struct cblock_range * range)3198 static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3199 {
3200 	uint64_t b = from_cblock(range->begin);
3201 	uint64_t e = from_cblock(range->end);
3202 	uint64_t n = from_cblock(cache->cache_size);
3203 
3204 	if (b >= n) {
3205 		DMERR("begin cblock out of range: %llu >= %llu", b, n);
3206 		return -EINVAL;
3207 	}
3208 
3209 	if (e > n) {
3210 		DMERR("end cblock out of range: %llu > %llu", e, n);
3211 		return -EINVAL;
3212 	}
3213 
3214 	if (b >= e) {
3215 		DMERR("invalid cblock range: %llu >= %llu", b, e);
3216 		return -EINVAL;
3217 	}
3218 
3219 	return 0;
3220 }
3221 
request_invalidation(struct cache * cache,struct cblock_range * range)3222 static int request_invalidation(struct cache *cache, struct cblock_range *range)
3223 {
3224 	struct invalidation_request req;
3225 
3226 	INIT_LIST_HEAD(&req.list);
3227 	req.cblocks = range;
3228 	atomic_set(&req.complete, 0);
3229 	req.err = 0;
3230 	init_waitqueue_head(&req.result_wait);
3231 
3232 	spin_lock(&cache->invalidation_lock);
3233 	list_add(&req.list, &cache->invalidation_requests);
3234 	spin_unlock(&cache->invalidation_lock);
3235 	wake_worker(cache);
3236 
3237 	wait_event(req.result_wait, atomic_read(&req.complete));
3238 	return req.err;
3239 }
3240 
process_invalidate_cblocks_message(struct cache * cache,unsigned count,const char ** cblock_ranges)3241 static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3242 					      const char **cblock_ranges)
3243 {
3244 	int r = 0;
3245 	unsigned i;
3246 	struct cblock_range range;
3247 
3248 	if (!passthrough_mode(&cache->features)) {
3249 		DMERR("cache has to be in passthrough mode for invalidation");
3250 		return -EPERM;
3251 	}
3252 
3253 	for (i = 0; i < count; i++) {
3254 		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3255 		if (r)
3256 			break;
3257 
3258 		r = validate_cblock_range(cache, &range);
3259 		if (r)
3260 			break;
3261 
3262 		/*
3263 		 * Pass begin and end origin blocks to the worker and wake it.
3264 		 */
3265 		r = request_invalidation(cache, &range);
3266 		if (r)
3267 			break;
3268 	}
3269 
3270 	return r;
3271 }
3272 
3273 /*
3274  * Supports
3275  *	"<key> <value>"
3276  * and
3277  *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3278  *
3279  * The key migration_threshold is supported by the cache target core.
3280  */
cache_message(struct dm_target * ti,unsigned argc,char ** argv)3281 static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
3282 {
3283 	struct cache *cache = ti->private;
3284 
3285 	if (!argc)
3286 		return -EINVAL;
3287 
3288 	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3289 		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3290 
3291 	if (argc != 2)
3292 		return -EINVAL;
3293 
3294 	return set_config_value(cache, argv[0], argv[1]);
3295 }
3296 
cache_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3297 static int cache_iterate_devices(struct dm_target *ti,
3298 				 iterate_devices_callout_fn fn, void *data)
3299 {
3300 	int r = 0;
3301 	struct cache *cache = ti->private;
3302 
3303 	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3304 	if (!r)
3305 		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3306 
3307 	return r;
3308 }
3309 
3310 /*
3311  * We assume I/O is going to the origin (which is the volume
3312  * more likely to have restrictions e.g. by being striped).
3313  * (Looking up the exact location of the data would be expensive
3314  * and could always be out of date by the time the bio is submitted.)
3315  */
cache_bvec_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)3316 static int cache_bvec_merge(struct dm_target *ti,
3317 			    struct bvec_merge_data *bvm,
3318 			    struct bio_vec *biovec, int max_size)
3319 {
3320 	struct cache *cache = ti->private;
3321 	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3322 
3323 	if (!q->merge_bvec_fn)
3324 		return max_size;
3325 
3326 	bvm->bi_bdev = cache->origin_dev->bdev;
3327 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3328 }
3329 
set_discard_limits(struct cache * cache,struct queue_limits * limits)3330 static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3331 {
3332 	/*
3333 	 * FIXME: these limits may be incompatible with the cache device
3334 	 */
3335 	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3336 					    cache->origin_sectors);
3337 	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3338 }
3339 
cache_io_hints(struct dm_target * ti,struct queue_limits * limits)3340 static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3341 {
3342 	struct cache *cache = ti->private;
3343 	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3344 
3345 	/*
3346 	 * If the system-determined stacked limits are compatible with the
3347 	 * cache's blocksize (io_opt is a factor) do not override them.
3348 	 */
3349 	if (io_opt_sectors < cache->sectors_per_block ||
3350 	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3351 		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3352 		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3353 	}
3354 	set_discard_limits(cache, limits);
3355 }
3356 
3357 /*----------------------------------------------------------------*/
3358 
3359 static struct target_type cache_target = {
3360 	.name = "cache",
3361 	.version = {1, 6, 0},
3362 	.module = THIS_MODULE,
3363 	.ctr = cache_ctr,
3364 	.dtr = cache_dtr,
3365 	.map = cache_map,
3366 	.end_io = cache_end_io,
3367 	.postsuspend = cache_postsuspend,
3368 	.preresume = cache_preresume,
3369 	.resume = cache_resume,
3370 	.status = cache_status,
3371 	.message = cache_message,
3372 	.iterate_devices = cache_iterate_devices,
3373 	.merge = cache_bvec_merge,
3374 	.io_hints = cache_io_hints,
3375 };
3376 
dm_cache_init(void)3377 static int __init dm_cache_init(void)
3378 {
3379 	int r;
3380 
3381 	r = dm_register_target(&cache_target);
3382 	if (r) {
3383 		DMERR("cache target registration failed: %d", r);
3384 		return r;
3385 	}
3386 
3387 	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3388 	if (!migration_cache) {
3389 		dm_unregister_target(&cache_target);
3390 		return -ENOMEM;
3391 	}
3392 
3393 	return 0;
3394 }
3395 
dm_cache_exit(void)3396 static void __exit dm_cache_exit(void)
3397 {
3398 	dm_unregister_target(&cache_target);
3399 	kmem_cache_destroy(migration_cache);
3400 }
3401 
3402 module_init(dm_cache_init);
3403 module_exit(dm_cache_exit);
3404 
3405 MODULE_DESCRIPTION(DM_NAME " cache target");
3406 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3407 MODULE_LICENSE("GPL");
3408