1/*
2 * Code for working with individual keys, and sorted sets of keys with in a
3 * btree node
4 *
5 * Copyright 2012 Google, Inc.
6 */
7
8#define pr_fmt(fmt) "bcache: %s() " fmt "\n", __func__
9
10#include "util.h"
11#include "bset.h"
12
13#include <linux/console.h>
14#include <linux/random.h>
15#include <linux/prefetch.h>
16
17#ifdef CONFIG_BCACHE_DEBUG
18
19void bch_dump_bset(struct btree_keys *b, struct bset *i, unsigned set)
20{
21	struct bkey *k, *next;
22
23	for (k = i->start; k < bset_bkey_last(i); k = next) {
24		next = bkey_next(k);
25
26		printk(KERN_ERR "block %u key %u/%u: ", set,
27		       (unsigned) ((u64 *) k - i->d), i->keys);
28
29		if (b->ops->key_dump)
30			b->ops->key_dump(b, k);
31		else
32			printk("%llu:%llu\n", KEY_INODE(k), KEY_OFFSET(k));
33
34		if (next < bset_bkey_last(i) &&
35		    bkey_cmp(k, b->ops->is_extents ?
36			     &START_KEY(next) : next) > 0)
37			printk(KERN_ERR "Key skipped backwards\n");
38	}
39}
40
41void bch_dump_bucket(struct btree_keys *b)
42{
43	unsigned i;
44
45	console_lock();
46	for (i = 0; i <= b->nsets; i++)
47		bch_dump_bset(b, b->set[i].data,
48			      bset_sector_offset(b, b->set[i].data));
49	console_unlock();
50}
51
52int __bch_count_data(struct btree_keys *b)
53{
54	unsigned ret = 0;
55	struct btree_iter iter;
56	struct bkey *k;
57
58	if (b->ops->is_extents)
59		for_each_key(b, k, &iter)
60			ret += KEY_SIZE(k);
61	return ret;
62}
63
64void __bch_check_keys(struct btree_keys *b, const char *fmt, ...)
65{
66	va_list args;
67	struct bkey *k, *p = NULL;
68	struct btree_iter iter;
69	const char *err;
70
71	for_each_key(b, k, &iter) {
72		if (b->ops->is_extents) {
73			err = "Keys out of order";
74			if (p && bkey_cmp(&START_KEY(p), &START_KEY(k)) > 0)
75				goto bug;
76
77			if (bch_ptr_invalid(b, k))
78				continue;
79
80			err =  "Overlapping keys";
81			if (p && bkey_cmp(p, &START_KEY(k)) > 0)
82				goto bug;
83		} else {
84			if (bch_ptr_bad(b, k))
85				continue;
86
87			err = "Duplicate keys";
88			if (p && !bkey_cmp(p, k))
89				goto bug;
90		}
91		p = k;
92	}
93#if 0
94	err = "Key larger than btree node key";
95	if (p && bkey_cmp(p, &b->key) > 0)
96		goto bug;
97#endif
98	return;
99bug:
100	bch_dump_bucket(b);
101
102	va_start(args, fmt);
103	vprintk(fmt, args);
104	va_end(args);
105
106	panic("bch_check_keys error:  %s:\n", err);
107}
108
109static void bch_btree_iter_next_check(struct btree_iter *iter)
110{
111	struct bkey *k = iter->data->k, *next = bkey_next(k);
112
113	if (next < iter->data->end &&
114	    bkey_cmp(k, iter->b->ops->is_extents ?
115		     &START_KEY(next) : next) > 0) {
116		bch_dump_bucket(iter->b);
117		panic("Key skipped backwards\n");
118	}
119}
120
121#else
122
123static inline void bch_btree_iter_next_check(struct btree_iter *iter) {}
124
125#endif
126
127/* Keylists */
128
129int __bch_keylist_realloc(struct keylist *l, unsigned u64s)
130{
131	size_t oldsize = bch_keylist_nkeys(l);
132	size_t newsize = oldsize + u64s;
133	uint64_t *old_keys = l->keys_p == l->inline_keys ? NULL : l->keys_p;
134	uint64_t *new_keys;
135
136	newsize = roundup_pow_of_two(newsize);
137
138	if (newsize <= KEYLIST_INLINE ||
139	    roundup_pow_of_two(oldsize) == newsize)
140		return 0;
141
142	new_keys = krealloc(old_keys, sizeof(uint64_t) * newsize, GFP_NOIO);
143
144	if (!new_keys)
145		return -ENOMEM;
146
147	if (!old_keys)
148		memcpy(new_keys, l->inline_keys, sizeof(uint64_t) * oldsize);
149
150	l->keys_p = new_keys;
151	l->top_p = new_keys + oldsize;
152
153	return 0;
154}
155
156struct bkey *bch_keylist_pop(struct keylist *l)
157{
158	struct bkey *k = l->keys;
159
160	if (k == l->top)
161		return NULL;
162
163	while (bkey_next(k) != l->top)
164		k = bkey_next(k);
165
166	return l->top = k;
167}
168
169void bch_keylist_pop_front(struct keylist *l)
170{
171	l->top_p -= bkey_u64s(l->keys);
172
173	memmove(l->keys,
174		bkey_next(l->keys),
175		bch_keylist_bytes(l));
176}
177
178/* Key/pointer manipulation */
179
180void bch_bkey_copy_single_ptr(struct bkey *dest, const struct bkey *src,
181			      unsigned i)
182{
183	BUG_ON(i > KEY_PTRS(src));
184
185	/* Only copy the header, key, and one pointer. */
186	memcpy(dest, src, 2 * sizeof(uint64_t));
187	dest->ptr[0] = src->ptr[i];
188	SET_KEY_PTRS(dest, 1);
189	/* We didn't copy the checksum so clear that bit. */
190	SET_KEY_CSUM(dest, 0);
191}
192
193bool __bch_cut_front(const struct bkey *where, struct bkey *k)
194{
195	unsigned i, len = 0;
196
197	if (bkey_cmp(where, &START_KEY(k)) <= 0)
198		return false;
199
200	if (bkey_cmp(where, k) < 0)
201		len = KEY_OFFSET(k) - KEY_OFFSET(where);
202	else
203		bkey_copy_key(k, where);
204
205	for (i = 0; i < KEY_PTRS(k); i++)
206		SET_PTR_OFFSET(k, i, PTR_OFFSET(k, i) + KEY_SIZE(k) - len);
207
208	BUG_ON(len > KEY_SIZE(k));
209	SET_KEY_SIZE(k, len);
210	return true;
211}
212
213bool __bch_cut_back(const struct bkey *where, struct bkey *k)
214{
215	unsigned len = 0;
216
217	if (bkey_cmp(where, k) >= 0)
218		return false;
219
220	BUG_ON(KEY_INODE(where) != KEY_INODE(k));
221
222	if (bkey_cmp(where, &START_KEY(k)) > 0)
223		len = KEY_OFFSET(where) - KEY_START(k);
224
225	bkey_copy_key(k, where);
226
227	BUG_ON(len > KEY_SIZE(k));
228	SET_KEY_SIZE(k, len);
229	return true;
230}
231
232/* Auxiliary search trees */
233
234/* 32 bits total: */
235#define BKEY_MID_BITS		3
236#define BKEY_EXPONENT_BITS	7
237#define BKEY_MANTISSA_BITS	(32 - BKEY_MID_BITS - BKEY_EXPONENT_BITS)
238#define BKEY_MANTISSA_MASK	((1 << BKEY_MANTISSA_BITS) - 1)
239
240struct bkey_float {
241	unsigned	exponent:BKEY_EXPONENT_BITS;
242	unsigned	m:BKEY_MID_BITS;
243	unsigned	mantissa:BKEY_MANTISSA_BITS;
244} __packed;
245
246/*
247 * BSET_CACHELINE was originally intended to match the hardware cacheline size -
248 * it used to be 64, but I realized the lookup code would touch slightly less
249 * memory if it was 128.
250 *
251 * It definites the number of bytes (in struct bset) per struct bkey_float in
252 * the auxiliar search tree - when we're done searching the bset_float tree we
253 * have this many bytes left that we do a linear search over.
254 *
255 * Since (after level 5) every level of the bset_tree is on a new cacheline,
256 * we're touching one fewer cacheline in the bset tree in exchange for one more
257 * cacheline in the linear search - but the linear search might stop before it
258 * gets to the second cacheline.
259 */
260
261#define BSET_CACHELINE		128
262
263/* Space required for the btree node keys */
264static inline size_t btree_keys_bytes(struct btree_keys *b)
265{
266	return PAGE_SIZE << b->page_order;
267}
268
269static inline size_t btree_keys_cachelines(struct btree_keys *b)
270{
271	return btree_keys_bytes(b) / BSET_CACHELINE;
272}
273
274/* Space required for the auxiliary search trees */
275static inline size_t bset_tree_bytes(struct btree_keys *b)
276{
277	return btree_keys_cachelines(b) * sizeof(struct bkey_float);
278}
279
280/* Space required for the prev pointers */
281static inline size_t bset_prev_bytes(struct btree_keys *b)
282{
283	return btree_keys_cachelines(b) * sizeof(uint8_t);
284}
285
286/* Memory allocation */
287
288void bch_btree_keys_free(struct btree_keys *b)
289{
290	struct bset_tree *t = b->set;
291
292	if (bset_prev_bytes(b) < PAGE_SIZE)
293		kfree(t->prev);
294	else
295		free_pages((unsigned long) t->prev,
296			   get_order(bset_prev_bytes(b)));
297
298	if (bset_tree_bytes(b) < PAGE_SIZE)
299		kfree(t->tree);
300	else
301		free_pages((unsigned long) t->tree,
302			   get_order(bset_tree_bytes(b)));
303
304	free_pages((unsigned long) t->data, b->page_order);
305
306	t->prev = NULL;
307	t->tree = NULL;
308	t->data = NULL;
309}
310EXPORT_SYMBOL(bch_btree_keys_free);
311
312int bch_btree_keys_alloc(struct btree_keys *b, unsigned page_order, gfp_t gfp)
313{
314	struct bset_tree *t = b->set;
315
316	BUG_ON(t->data);
317
318	b->page_order = page_order;
319
320	t->data = (void *) __get_free_pages(gfp, b->page_order);
321	if (!t->data)
322		goto err;
323
324	t->tree = bset_tree_bytes(b) < PAGE_SIZE
325		? kmalloc(bset_tree_bytes(b), gfp)
326		: (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
327	if (!t->tree)
328		goto err;
329
330	t->prev = bset_prev_bytes(b) < PAGE_SIZE
331		? kmalloc(bset_prev_bytes(b), gfp)
332		: (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
333	if (!t->prev)
334		goto err;
335
336	return 0;
337err:
338	bch_btree_keys_free(b);
339	return -ENOMEM;
340}
341EXPORT_SYMBOL(bch_btree_keys_alloc);
342
343void bch_btree_keys_init(struct btree_keys *b, const struct btree_keys_ops *ops,
344			 bool *expensive_debug_checks)
345{
346	unsigned i;
347
348	b->ops = ops;
349	b->expensive_debug_checks = expensive_debug_checks;
350	b->nsets = 0;
351	b->last_set_unwritten = 0;
352
353	/* XXX: shouldn't be needed */
354	for (i = 0; i < MAX_BSETS; i++)
355		b->set[i].size = 0;
356	/*
357	 * Second loop starts at 1 because b->keys[0]->data is the memory we
358	 * allocated
359	 */
360	for (i = 1; i < MAX_BSETS; i++)
361		b->set[i].data = NULL;
362}
363EXPORT_SYMBOL(bch_btree_keys_init);
364
365/* Binary tree stuff for auxiliary search trees */
366
367static unsigned inorder_next(unsigned j, unsigned size)
368{
369	if (j * 2 + 1 < size) {
370		j = j * 2 + 1;
371
372		while (j * 2 < size)
373			j *= 2;
374	} else
375		j >>= ffz(j) + 1;
376
377	return j;
378}
379
380static unsigned inorder_prev(unsigned j, unsigned size)
381{
382	if (j * 2 < size) {
383		j = j * 2;
384
385		while (j * 2 + 1 < size)
386			j = j * 2 + 1;
387	} else
388		j >>= ffs(j);
389
390	return j;
391}
392
393/* I have no idea why this code works... and I'm the one who wrote it
394 *
395 * However, I do know what it does:
396 * Given a binary tree constructed in an array (i.e. how you normally implement
397 * a heap), it converts a node in the tree - referenced by array index - to the
398 * index it would have if you did an inorder traversal.
399 *
400 * Also tested for every j, size up to size somewhere around 6 million.
401 *
402 * The binary tree starts at array index 1, not 0
403 * extra is a function of size:
404 *   extra = (size - rounddown_pow_of_two(size - 1)) << 1;
405 */
406static unsigned __to_inorder(unsigned j, unsigned size, unsigned extra)
407{
408	unsigned b = fls(j);
409	unsigned shift = fls(size - 1) - b;
410
411	j  ^= 1U << (b - 1);
412	j <<= 1;
413	j  |= 1;
414	j <<= shift;
415
416	if (j > extra)
417		j -= (j - extra) >> 1;
418
419	return j;
420}
421
422static unsigned to_inorder(unsigned j, struct bset_tree *t)
423{
424	return __to_inorder(j, t->size, t->extra);
425}
426
427static unsigned __inorder_to_tree(unsigned j, unsigned size, unsigned extra)
428{
429	unsigned shift;
430
431	if (j > extra)
432		j += j - extra;
433
434	shift = ffs(j);
435
436	j >>= shift;
437	j  |= roundup_pow_of_two(size) >> shift;
438
439	return j;
440}
441
442static unsigned inorder_to_tree(unsigned j, struct bset_tree *t)
443{
444	return __inorder_to_tree(j, t->size, t->extra);
445}
446
447#if 0
448void inorder_test(void)
449{
450	unsigned long done = 0;
451	ktime_t start = ktime_get();
452
453	for (unsigned size = 2;
454	     size < 65536000;
455	     size++) {
456		unsigned extra = (size - rounddown_pow_of_two(size - 1)) << 1;
457		unsigned i = 1, j = rounddown_pow_of_two(size - 1);
458
459		if (!(size % 4096))
460			printk(KERN_NOTICE "loop %u, %llu per us\n", size,
461			       done / ktime_us_delta(ktime_get(), start));
462
463		while (1) {
464			if (__inorder_to_tree(i, size, extra) != j)
465				panic("size %10u j %10u i %10u", size, j, i);
466
467			if (__to_inorder(j, size, extra) != i)
468				panic("size %10u j %10u i %10u", size, j, i);
469
470			if (j == rounddown_pow_of_two(size) - 1)
471				break;
472
473			BUG_ON(inorder_prev(inorder_next(j, size), size) != j);
474
475			j = inorder_next(j, size);
476			i++;
477		}
478
479		done += size - 1;
480	}
481}
482#endif
483
484/*
485 * Cacheline/offset <-> bkey pointer arithmetic:
486 *
487 * t->tree is a binary search tree in an array; each node corresponds to a key
488 * in one cacheline in t->set (BSET_CACHELINE bytes).
489 *
490 * This means we don't have to store the full index of the key that a node in
491 * the binary tree points to; to_inorder() gives us the cacheline, and then
492 * bkey_float->m gives us the offset within that cacheline, in units of 8 bytes.
493 *
494 * cacheline_to_bkey() and friends abstract out all the pointer arithmetic to
495 * make this work.
496 *
497 * To construct the bfloat for an arbitrary key we need to know what the key
498 * immediately preceding it is: we have to check if the two keys differ in the
499 * bits we're going to store in bkey_float->mantissa. t->prev[j] stores the size
500 * of the previous key so we can walk backwards to it from t->tree[j]'s key.
501 */
502
503static struct bkey *cacheline_to_bkey(struct bset_tree *t, unsigned cacheline,
504				      unsigned offset)
505{
506	return ((void *) t->data) + cacheline * BSET_CACHELINE + offset * 8;
507}
508
509static unsigned bkey_to_cacheline(struct bset_tree *t, struct bkey *k)
510{
511	return ((void *) k - (void *) t->data) / BSET_CACHELINE;
512}
513
514static unsigned bkey_to_cacheline_offset(struct bset_tree *t,
515					 unsigned cacheline,
516					 struct bkey *k)
517{
518	return (u64 *) k - (u64 *) cacheline_to_bkey(t, cacheline, 0);
519}
520
521static struct bkey *tree_to_bkey(struct bset_tree *t, unsigned j)
522{
523	return cacheline_to_bkey(t, to_inorder(j, t), t->tree[j].m);
524}
525
526static struct bkey *tree_to_prev_bkey(struct bset_tree *t, unsigned j)
527{
528	return (void *) (((uint64_t *) tree_to_bkey(t, j)) - t->prev[j]);
529}
530
531/*
532 * For the write set - the one we're currently inserting keys into - we don't
533 * maintain a full search tree, we just keep a simple lookup table in t->prev.
534 */
535static struct bkey *table_to_bkey(struct bset_tree *t, unsigned cacheline)
536{
537	return cacheline_to_bkey(t, cacheline, t->prev[cacheline]);
538}
539
540static inline uint64_t shrd128(uint64_t high, uint64_t low, uint8_t shift)
541{
542	low >>= shift;
543	low  |= (high << 1) << (63U - shift);
544	return low;
545}
546
547static inline unsigned bfloat_mantissa(const struct bkey *k,
548				       struct bkey_float *f)
549{
550	const uint64_t *p = &k->low - (f->exponent >> 6);
551	return shrd128(p[-1], p[0], f->exponent & 63) & BKEY_MANTISSA_MASK;
552}
553
554static void make_bfloat(struct bset_tree *t, unsigned j)
555{
556	struct bkey_float *f = &t->tree[j];
557	struct bkey *m = tree_to_bkey(t, j);
558	struct bkey *p = tree_to_prev_bkey(t, j);
559
560	struct bkey *l = is_power_of_2(j)
561		? t->data->start
562		: tree_to_prev_bkey(t, j >> ffs(j));
563
564	struct bkey *r = is_power_of_2(j + 1)
565		? bset_bkey_idx(t->data, t->data->keys - bkey_u64s(&t->end))
566		: tree_to_bkey(t, j >> (ffz(j) + 1));
567
568	BUG_ON(m < l || m > r);
569	BUG_ON(bkey_next(p) != m);
570
571	if (KEY_INODE(l) != KEY_INODE(r))
572		f->exponent = fls64(KEY_INODE(r) ^ KEY_INODE(l)) + 64;
573	else
574		f->exponent = fls64(r->low ^ l->low);
575
576	f->exponent = max_t(int, f->exponent - BKEY_MANTISSA_BITS, 0);
577
578	/*
579	 * Setting f->exponent = 127 flags this node as failed, and causes the
580	 * lookup code to fall back to comparing against the original key.
581	 */
582
583	if (bfloat_mantissa(m, f) != bfloat_mantissa(p, f))
584		f->mantissa = bfloat_mantissa(m, f) - 1;
585	else
586		f->exponent = 127;
587}
588
589static void bset_alloc_tree(struct btree_keys *b, struct bset_tree *t)
590{
591	if (t != b->set) {
592		unsigned j = roundup(t[-1].size,
593				     64 / sizeof(struct bkey_float));
594
595		t->tree = t[-1].tree + j;
596		t->prev = t[-1].prev + j;
597	}
598
599	while (t < b->set + MAX_BSETS)
600		t++->size = 0;
601}
602
603static void bch_bset_build_unwritten_tree(struct btree_keys *b)
604{
605	struct bset_tree *t = bset_tree_last(b);
606
607	BUG_ON(b->last_set_unwritten);
608	b->last_set_unwritten = 1;
609
610	bset_alloc_tree(b, t);
611
612	if (t->tree != b->set->tree + btree_keys_cachelines(b)) {
613		t->prev[0] = bkey_to_cacheline_offset(t, 0, t->data->start);
614		t->size = 1;
615	}
616}
617
618void bch_bset_init_next(struct btree_keys *b, struct bset *i, uint64_t magic)
619{
620	if (i != b->set->data) {
621		b->set[++b->nsets].data = i;
622		i->seq = b->set->data->seq;
623	} else
624		get_random_bytes(&i->seq, sizeof(uint64_t));
625
626	i->magic	= magic;
627	i->version	= 0;
628	i->keys		= 0;
629
630	bch_bset_build_unwritten_tree(b);
631}
632EXPORT_SYMBOL(bch_bset_init_next);
633
634void bch_bset_build_written_tree(struct btree_keys *b)
635{
636	struct bset_tree *t = bset_tree_last(b);
637	struct bkey *prev = NULL, *k = t->data->start;
638	unsigned j, cacheline = 1;
639
640	b->last_set_unwritten = 0;
641
642	bset_alloc_tree(b, t);
643
644	t->size = min_t(unsigned,
645			bkey_to_cacheline(t, bset_bkey_last(t->data)),
646			b->set->tree + btree_keys_cachelines(b) - t->tree);
647
648	if (t->size < 2) {
649		t->size = 0;
650		return;
651	}
652
653	t->extra = (t->size - rounddown_pow_of_two(t->size - 1)) << 1;
654
655	/* First we figure out where the first key in each cacheline is */
656	for (j = inorder_next(0, t->size);
657	     j;
658	     j = inorder_next(j, t->size)) {
659		while (bkey_to_cacheline(t, k) < cacheline)
660			prev = k, k = bkey_next(k);
661
662		t->prev[j] = bkey_u64s(prev);
663		t->tree[j].m = bkey_to_cacheline_offset(t, cacheline++, k);
664	}
665
666	while (bkey_next(k) != bset_bkey_last(t->data))
667		k = bkey_next(k);
668
669	t->end = *k;
670
671	/* Then we build the tree */
672	for (j = inorder_next(0, t->size);
673	     j;
674	     j = inorder_next(j, t->size))
675		make_bfloat(t, j);
676}
677EXPORT_SYMBOL(bch_bset_build_written_tree);
678
679/* Insert */
680
681void bch_bset_fix_invalidated_key(struct btree_keys *b, struct bkey *k)
682{
683	struct bset_tree *t;
684	unsigned inorder, j = 1;
685
686	for (t = b->set; t <= bset_tree_last(b); t++)
687		if (k < bset_bkey_last(t->data))
688			goto found_set;
689
690	BUG();
691found_set:
692	if (!t->size || !bset_written(b, t))
693		return;
694
695	inorder = bkey_to_cacheline(t, k);
696
697	if (k == t->data->start)
698		goto fix_left;
699
700	if (bkey_next(k) == bset_bkey_last(t->data)) {
701		t->end = *k;
702		goto fix_right;
703	}
704
705	j = inorder_to_tree(inorder, t);
706
707	if (j &&
708	    j < t->size &&
709	    k == tree_to_bkey(t, j))
710fix_left:	do {
711			make_bfloat(t, j);
712			j = j * 2;
713		} while (j < t->size);
714
715	j = inorder_to_tree(inorder + 1, t);
716
717	if (j &&
718	    j < t->size &&
719	    k == tree_to_prev_bkey(t, j))
720fix_right:	do {
721			make_bfloat(t, j);
722			j = j * 2 + 1;
723		} while (j < t->size);
724}
725EXPORT_SYMBOL(bch_bset_fix_invalidated_key);
726
727static void bch_bset_fix_lookup_table(struct btree_keys *b,
728				      struct bset_tree *t,
729				      struct bkey *k)
730{
731	unsigned shift = bkey_u64s(k);
732	unsigned j = bkey_to_cacheline(t, k);
733
734	/* We're getting called from btree_split() or btree_gc, just bail out */
735	if (!t->size)
736		return;
737
738	/* k is the key we just inserted; we need to find the entry in the
739	 * lookup table for the first key that is strictly greater than k:
740	 * it's either k's cacheline or the next one
741	 */
742	while (j < t->size &&
743	       table_to_bkey(t, j) <= k)
744		j++;
745
746	/* Adjust all the lookup table entries, and find a new key for any that
747	 * have gotten too big
748	 */
749	for (; j < t->size; j++) {
750		t->prev[j] += shift;
751
752		if (t->prev[j] > 7) {
753			k = table_to_bkey(t, j - 1);
754
755			while (k < cacheline_to_bkey(t, j, 0))
756				k = bkey_next(k);
757
758			t->prev[j] = bkey_to_cacheline_offset(t, j, k);
759		}
760	}
761
762	if (t->size == b->set->tree + btree_keys_cachelines(b) - t->tree)
763		return;
764
765	/* Possibly add a new entry to the end of the lookup table */
766
767	for (k = table_to_bkey(t, t->size - 1);
768	     k != bset_bkey_last(t->data);
769	     k = bkey_next(k))
770		if (t->size == bkey_to_cacheline(t, k)) {
771			t->prev[t->size] = bkey_to_cacheline_offset(t, t->size, k);
772			t->size++;
773		}
774}
775
776/*
777 * Tries to merge l and r: l should be lower than r
778 * Returns true if we were able to merge. If we did merge, l will be the merged
779 * key, r will be untouched.
780 */
781bool bch_bkey_try_merge(struct btree_keys *b, struct bkey *l, struct bkey *r)
782{
783	if (!b->ops->key_merge)
784		return false;
785
786	/*
787	 * Generic header checks
788	 * Assumes left and right are in order
789	 * Left and right must be exactly aligned
790	 */
791	if (!bch_bkey_equal_header(l, r) ||
792	     bkey_cmp(l, &START_KEY(r)))
793		return false;
794
795	return b->ops->key_merge(b, l, r);
796}
797EXPORT_SYMBOL(bch_bkey_try_merge);
798
799void bch_bset_insert(struct btree_keys *b, struct bkey *where,
800		     struct bkey *insert)
801{
802	struct bset_tree *t = bset_tree_last(b);
803
804	BUG_ON(!b->last_set_unwritten);
805	BUG_ON(bset_byte_offset(b, t->data) +
806	       __set_bytes(t->data, t->data->keys + bkey_u64s(insert)) >
807	       PAGE_SIZE << b->page_order);
808
809	memmove((uint64_t *) where + bkey_u64s(insert),
810		where,
811		(void *) bset_bkey_last(t->data) - (void *) where);
812
813	t->data->keys += bkey_u64s(insert);
814	bkey_copy(where, insert);
815	bch_bset_fix_lookup_table(b, t, where);
816}
817EXPORT_SYMBOL(bch_bset_insert);
818
819unsigned bch_btree_insert_key(struct btree_keys *b, struct bkey *k,
820			      struct bkey *replace_key)
821{
822	unsigned status = BTREE_INSERT_STATUS_NO_INSERT;
823	struct bset *i = bset_tree_last(b)->data;
824	struct bkey *m, *prev = NULL;
825	struct btree_iter iter;
826
827	BUG_ON(b->ops->is_extents && !KEY_SIZE(k));
828
829	m = bch_btree_iter_init(b, &iter, b->ops->is_extents
830				? PRECEDING_KEY(&START_KEY(k))
831				: PRECEDING_KEY(k));
832
833	if (b->ops->insert_fixup(b, k, &iter, replace_key))
834		return status;
835
836	status = BTREE_INSERT_STATUS_INSERT;
837
838	while (m != bset_bkey_last(i) &&
839	       bkey_cmp(k, b->ops->is_extents ? &START_KEY(m) : m) > 0)
840		prev = m, m = bkey_next(m);
841
842	/* prev is in the tree, if we merge we're done */
843	status = BTREE_INSERT_STATUS_BACK_MERGE;
844	if (prev &&
845	    bch_bkey_try_merge(b, prev, k))
846		goto merged;
847#if 0
848	status = BTREE_INSERT_STATUS_OVERWROTE;
849	if (m != bset_bkey_last(i) &&
850	    KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
851		goto copy;
852#endif
853	status = BTREE_INSERT_STATUS_FRONT_MERGE;
854	if (m != bset_bkey_last(i) &&
855	    bch_bkey_try_merge(b, k, m))
856		goto copy;
857
858	bch_bset_insert(b, m, k);
859copy:	bkey_copy(m, k);
860merged:
861	return status;
862}
863EXPORT_SYMBOL(bch_btree_insert_key);
864
865/* Lookup */
866
867struct bset_search_iter {
868	struct bkey *l, *r;
869};
870
871static struct bset_search_iter bset_search_write_set(struct bset_tree *t,
872						     const struct bkey *search)
873{
874	unsigned li = 0, ri = t->size;
875
876	while (li + 1 != ri) {
877		unsigned m = (li + ri) >> 1;
878
879		if (bkey_cmp(table_to_bkey(t, m), search) > 0)
880			ri = m;
881		else
882			li = m;
883	}
884
885	return (struct bset_search_iter) {
886		table_to_bkey(t, li),
887		ri < t->size ? table_to_bkey(t, ri) : bset_bkey_last(t->data)
888	};
889}
890
891static struct bset_search_iter bset_search_tree(struct bset_tree *t,
892						const struct bkey *search)
893{
894	struct bkey *l, *r;
895	struct bkey_float *f;
896	unsigned inorder, j, n = 1;
897
898	do {
899		unsigned p = n << 4;
900		p &= ((int) (p - t->size)) >> 31;
901
902		prefetch(&t->tree[p]);
903
904		j = n;
905		f = &t->tree[j];
906
907		/*
908		 * n = (f->mantissa > bfloat_mantissa())
909		 *	? j * 2
910		 *	: j * 2 + 1;
911		 *
912		 * We need to subtract 1 from f->mantissa for the sign bit trick
913		 * to work  - that's done in make_bfloat()
914		 */
915		if (likely(f->exponent != 127))
916			n = j * 2 + (((unsigned)
917				      (f->mantissa -
918				       bfloat_mantissa(search, f))) >> 31);
919		else
920			n = (bkey_cmp(tree_to_bkey(t, j), search) > 0)
921				? j * 2
922				: j * 2 + 1;
923	} while (n < t->size);
924
925	inorder = to_inorder(j, t);
926
927	/*
928	 * n would have been the node we recursed to - the low bit tells us if
929	 * we recursed left or recursed right.
930	 */
931	if (n & 1) {
932		l = cacheline_to_bkey(t, inorder, f->m);
933
934		if (++inorder != t->size) {
935			f = &t->tree[inorder_next(j, t->size)];
936			r = cacheline_to_bkey(t, inorder, f->m);
937		} else
938			r = bset_bkey_last(t->data);
939	} else {
940		r = cacheline_to_bkey(t, inorder, f->m);
941
942		if (--inorder) {
943			f = &t->tree[inorder_prev(j, t->size)];
944			l = cacheline_to_bkey(t, inorder, f->m);
945		} else
946			l = t->data->start;
947	}
948
949	return (struct bset_search_iter) {l, r};
950}
951
952struct bkey *__bch_bset_search(struct btree_keys *b, struct bset_tree *t,
953			       const struct bkey *search)
954{
955	struct bset_search_iter i;
956
957	/*
958	 * First, we search for a cacheline, then lastly we do a linear search
959	 * within that cacheline.
960	 *
961	 * To search for the cacheline, there's three different possibilities:
962	 *  * The set is too small to have a search tree, so we just do a linear
963	 *    search over the whole set.
964	 *  * The set is the one we're currently inserting into; keeping a full
965	 *    auxiliary search tree up to date would be too expensive, so we
966	 *    use a much simpler lookup table to do a binary search -
967	 *    bset_search_write_set().
968	 *  * Or we use the auxiliary search tree we constructed earlier -
969	 *    bset_search_tree()
970	 */
971
972	if (unlikely(!t->size)) {
973		i.l = t->data->start;
974		i.r = bset_bkey_last(t->data);
975	} else if (bset_written(b, t)) {
976		/*
977		 * Each node in the auxiliary search tree covers a certain range
978		 * of bits, and keys above and below the set it covers might
979		 * differ outside those bits - so we have to special case the
980		 * start and end - handle that here:
981		 */
982
983		if (unlikely(bkey_cmp(search, &t->end) >= 0))
984			return bset_bkey_last(t->data);
985
986		if (unlikely(bkey_cmp(search, t->data->start) < 0))
987			return t->data->start;
988
989		i = bset_search_tree(t, search);
990	} else {
991		BUG_ON(!b->nsets &&
992		       t->size < bkey_to_cacheline(t, bset_bkey_last(t->data)));
993
994		i = bset_search_write_set(t, search);
995	}
996
997	if (btree_keys_expensive_checks(b)) {
998		BUG_ON(bset_written(b, t) &&
999		       i.l != t->data->start &&
1000		       bkey_cmp(tree_to_prev_bkey(t,
1001			  inorder_to_tree(bkey_to_cacheline(t, i.l), t)),
1002				search) > 0);
1003
1004		BUG_ON(i.r != bset_bkey_last(t->data) &&
1005		       bkey_cmp(i.r, search) <= 0);
1006	}
1007
1008	while (likely(i.l != i.r) &&
1009	       bkey_cmp(i.l, search) <= 0)
1010		i.l = bkey_next(i.l);
1011
1012	return i.l;
1013}
1014EXPORT_SYMBOL(__bch_bset_search);
1015
1016/* Btree iterator */
1017
1018typedef bool (btree_iter_cmp_fn)(struct btree_iter_set,
1019				 struct btree_iter_set);
1020
1021static inline bool btree_iter_cmp(struct btree_iter_set l,
1022				  struct btree_iter_set r)
1023{
1024	return bkey_cmp(l.k, r.k) > 0;
1025}
1026
1027static inline bool btree_iter_end(struct btree_iter *iter)
1028{
1029	return !iter->used;
1030}
1031
1032void bch_btree_iter_push(struct btree_iter *iter, struct bkey *k,
1033			 struct bkey *end)
1034{
1035	if (k != end)
1036		BUG_ON(!heap_add(iter,
1037				 ((struct btree_iter_set) { k, end }),
1038				 btree_iter_cmp));
1039}
1040
1041static struct bkey *__bch_btree_iter_init(struct btree_keys *b,
1042					  struct btree_iter *iter,
1043					  struct bkey *search,
1044					  struct bset_tree *start)
1045{
1046	struct bkey *ret = NULL;
1047	iter->size = ARRAY_SIZE(iter->data);
1048	iter->used = 0;
1049
1050#ifdef CONFIG_BCACHE_DEBUG
1051	iter->b = b;
1052#endif
1053
1054	for (; start <= bset_tree_last(b); start++) {
1055		ret = bch_bset_search(b, start, search);
1056		bch_btree_iter_push(iter, ret, bset_bkey_last(start->data));
1057	}
1058
1059	return ret;
1060}
1061
1062struct bkey *bch_btree_iter_init(struct btree_keys *b,
1063				 struct btree_iter *iter,
1064				 struct bkey *search)
1065{
1066	return __bch_btree_iter_init(b, iter, search, b->set);
1067}
1068EXPORT_SYMBOL(bch_btree_iter_init);
1069
1070static inline struct bkey *__bch_btree_iter_next(struct btree_iter *iter,
1071						 btree_iter_cmp_fn *cmp)
1072{
1073	struct btree_iter_set unused;
1074	struct bkey *ret = NULL;
1075
1076	if (!btree_iter_end(iter)) {
1077		bch_btree_iter_next_check(iter);
1078
1079		ret = iter->data->k;
1080		iter->data->k = bkey_next(iter->data->k);
1081
1082		if (iter->data->k > iter->data->end) {
1083			WARN_ONCE(1, "bset was corrupt!\n");
1084			iter->data->k = iter->data->end;
1085		}
1086
1087		if (iter->data->k == iter->data->end)
1088			heap_pop(iter, unused, cmp);
1089		else
1090			heap_sift(iter, 0, cmp);
1091	}
1092
1093	return ret;
1094}
1095
1096struct bkey *bch_btree_iter_next(struct btree_iter *iter)
1097{
1098	return __bch_btree_iter_next(iter, btree_iter_cmp);
1099
1100}
1101EXPORT_SYMBOL(bch_btree_iter_next);
1102
1103struct bkey *bch_btree_iter_next_filter(struct btree_iter *iter,
1104					struct btree_keys *b, ptr_filter_fn fn)
1105{
1106	struct bkey *ret;
1107
1108	do {
1109		ret = bch_btree_iter_next(iter);
1110	} while (ret && fn(b, ret));
1111
1112	return ret;
1113}
1114
1115/* Mergesort */
1116
1117void bch_bset_sort_state_free(struct bset_sort_state *state)
1118{
1119	if (state->pool)
1120		mempool_destroy(state->pool);
1121}
1122
1123int bch_bset_sort_state_init(struct bset_sort_state *state, unsigned page_order)
1124{
1125	spin_lock_init(&state->time.lock);
1126
1127	state->page_order = page_order;
1128	state->crit_factor = int_sqrt(1 << page_order);
1129
1130	state->pool = mempool_create_page_pool(1, page_order);
1131	if (!state->pool)
1132		return -ENOMEM;
1133
1134	return 0;
1135}
1136EXPORT_SYMBOL(bch_bset_sort_state_init);
1137
1138static void btree_mergesort(struct btree_keys *b, struct bset *out,
1139			    struct btree_iter *iter,
1140			    bool fixup, bool remove_stale)
1141{
1142	int i;
1143	struct bkey *k, *last = NULL;
1144	BKEY_PADDED(k) tmp;
1145	bool (*bad)(struct btree_keys *, const struct bkey *) = remove_stale
1146		? bch_ptr_bad
1147		: bch_ptr_invalid;
1148
1149	/* Heapify the iterator, using our comparison function */
1150	for (i = iter->used / 2 - 1; i >= 0; --i)
1151		heap_sift(iter, i, b->ops->sort_cmp);
1152
1153	while (!btree_iter_end(iter)) {
1154		if (b->ops->sort_fixup && fixup)
1155			k = b->ops->sort_fixup(iter, &tmp.k);
1156		else
1157			k = NULL;
1158
1159		if (!k)
1160			k = __bch_btree_iter_next(iter, b->ops->sort_cmp);
1161
1162		if (bad(b, k))
1163			continue;
1164
1165		if (!last) {
1166			last = out->start;
1167			bkey_copy(last, k);
1168		} else if (!bch_bkey_try_merge(b, last, k)) {
1169			last = bkey_next(last);
1170			bkey_copy(last, k);
1171		}
1172	}
1173
1174	out->keys = last ? (uint64_t *) bkey_next(last) - out->d : 0;
1175
1176	pr_debug("sorted %i keys", out->keys);
1177}
1178
1179static void __btree_sort(struct btree_keys *b, struct btree_iter *iter,
1180			 unsigned start, unsigned order, bool fixup,
1181			 struct bset_sort_state *state)
1182{
1183	uint64_t start_time;
1184	bool used_mempool = false;
1185	struct bset *out = (void *) __get_free_pages(__GFP_NOWARN|GFP_NOWAIT,
1186						     order);
1187	if (!out) {
1188		struct page *outp;
1189
1190		BUG_ON(order > state->page_order);
1191
1192		outp = mempool_alloc(state->pool, GFP_NOIO);
1193		out = page_address(outp);
1194		used_mempool = true;
1195		order = state->page_order;
1196	}
1197
1198	start_time = local_clock();
1199
1200	btree_mergesort(b, out, iter, fixup, false);
1201	b->nsets = start;
1202
1203	if (!start && order == b->page_order) {
1204		/*
1205		 * Our temporary buffer is the same size as the btree node's
1206		 * buffer, we can just swap buffers instead of doing a big
1207		 * memcpy()
1208		 */
1209
1210		out->magic	= b->set->data->magic;
1211		out->seq	= b->set->data->seq;
1212		out->version	= b->set->data->version;
1213		swap(out, b->set->data);
1214	} else {
1215		b->set[start].data->keys = out->keys;
1216		memcpy(b->set[start].data->start, out->start,
1217		       (void *) bset_bkey_last(out) - (void *) out->start);
1218	}
1219
1220	if (used_mempool)
1221		mempool_free(virt_to_page(out), state->pool);
1222	else
1223		free_pages((unsigned long) out, order);
1224
1225	bch_bset_build_written_tree(b);
1226
1227	if (!start)
1228		bch_time_stats_update(&state->time, start_time);
1229}
1230
1231void bch_btree_sort_partial(struct btree_keys *b, unsigned start,
1232			    struct bset_sort_state *state)
1233{
1234	size_t order = b->page_order, keys = 0;
1235	struct btree_iter iter;
1236	int oldsize = bch_count_data(b);
1237
1238	__bch_btree_iter_init(b, &iter, NULL, &b->set[start]);
1239
1240	if (start) {
1241		unsigned i;
1242
1243		for (i = start; i <= b->nsets; i++)
1244			keys += b->set[i].data->keys;
1245
1246		order = get_order(__set_bytes(b->set->data, keys));
1247	}
1248
1249	__btree_sort(b, &iter, start, order, false, state);
1250
1251	EBUG_ON(oldsize >= 0 && bch_count_data(b) != oldsize);
1252}
1253EXPORT_SYMBOL(bch_btree_sort_partial);
1254
1255void bch_btree_sort_and_fix_extents(struct btree_keys *b,
1256				    struct btree_iter *iter,
1257				    struct bset_sort_state *state)
1258{
1259	__btree_sort(b, iter, 0, b->page_order, true, state);
1260}
1261
1262void bch_btree_sort_into(struct btree_keys *b, struct btree_keys *new,
1263			 struct bset_sort_state *state)
1264{
1265	uint64_t start_time = local_clock();
1266
1267	struct btree_iter iter;
1268	bch_btree_iter_init(b, &iter, NULL);
1269
1270	btree_mergesort(b, new->set->data, &iter, false, true);
1271
1272	bch_time_stats_update(&state->time, start_time);
1273
1274	new->set->size = 0; // XXX: why?
1275}
1276
1277#define SORT_CRIT	(4096 / sizeof(uint64_t))
1278
1279void bch_btree_sort_lazy(struct btree_keys *b, struct bset_sort_state *state)
1280{
1281	unsigned crit = SORT_CRIT;
1282	int i;
1283
1284	/* Don't sort if nothing to do */
1285	if (!b->nsets)
1286		goto out;
1287
1288	for (i = b->nsets - 1; i >= 0; --i) {
1289		crit *= state->crit_factor;
1290
1291		if (b->set[i].data->keys < crit) {
1292			bch_btree_sort_partial(b, i, state);
1293			return;
1294		}
1295	}
1296
1297	/* Sort if we'd overflow */
1298	if (b->nsets + 1 == MAX_BSETS) {
1299		bch_btree_sort(b, state);
1300		return;
1301	}
1302
1303out:
1304	bch_bset_build_written_tree(b);
1305}
1306EXPORT_SYMBOL(bch_btree_sort_lazy);
1307
1308void bch_btree_keys_stats(struct btree_keys *b, struct bset_stats *stats)
1309{
1310	unsigned i;
1311
1312	for (i = 0; i <= b->nsets; i++) {
1313		struct bset_tree *t = &b->set[i];
1314		size_t bytes = t->data->keys * sizeof(uint64_t);
1315		size_t j;
1316
1317		if (bset_written(b, t)) {
1318			stats->sets_written++;
1319			stats->bytes_written += bytes;
1320
1321			stats->floats += t->size - 1;
1322
1323			for (j = 1; j < t->size; j++)
1324				if (t->tree[j].exponent == 127)
1325					stats->failed++;
1326		} else {
1327			stats->sets_unwritten++;
1328			stats->bytes_unwritten += bytes;
1329		}
1330	}
1331}
1332