1/*P:700
2 * The pagetable code, on the other hand, still shows the scars of
3 * previous encounters.  It's functional, and as neat as it can be in the
4 * circumstances, but be wary, for these things are subtle and break easily.
5 * The Guest provides a virtual to physical mapping, but we can neither trust
6 * it nor use it: we verify and convert it here then point the CPU to the
7 * converted Guest pages when running the Guest.
8:*/
9
10/* Copyright (C) Rusty Russell IBM Corporation 2013.
11 * GPL v2 and any later version */
12#include <linux/mm.h>
13#include <linux/gfp.h>
14#include <linux/types.h>
15#include <linux/spinlock.h>
16#include <linux/random.h>
17#include <linux/percpu.h>
18#include <asm/tlbflush.h>
19#include <asm/uaccess.h>
20#include "lg.h"
21
22/*M:008
23 * We hold reference to pages, which prevents them from being swapped.
24 * It'd be nice to have a callback in the "struct mm_struct" when Linux wants
25 * to swap out.  If we had this, and a shrinker callback to trim PTE pages, we
26 * could probably consider launching Guests as non-root.
27:*/
28
29/*H:300
30 * The Page Table Code
31 *
32 * We use two-level page tables for the Guest, or three-level with PAE.  If
33 * you're not entirely comfortable with virtual addresses, physical addresses
34 * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
35 * Table Handling" (with diagrams!).
36 *
37 * The Guest keeps page tables, but we maintain the actual ones here: these are
38 * called "shadow" page tables.  Which is a very Guest-centric name: these are
39 * the real page tables the CPU uses, although we keep them up to date to
40 * reflect the Guest's.  (See what I mean about weird naming?  Since when do
41 * shadows reflect anything?)
42 *
43 * Anyway, this is the most complicated part of the Host code.  There are seven
44 * parts to this:
45 *  (i) Looking up a page table entry when the Guest faults,
46 *  (ii) Making sure the Guest stack is mapped,
47 *  (iii) Setting up a page table entry when the Guest tells us one has changed,
48 *  (iv) Switching page tables,
49 *  (v) Flushing (throwing away) page tables,
50 *  (vi) Mapping the Switcher when the Guest is about to run,
51 *  (vii) Setting up the page tables initially.
52:*/
53
54/*
55 * The Switcher uses the complete top PTE page.  That's 1024 PTE entries (4MB)
56 * or 512 PTE entries with PAE (2MB).
57 */
58#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
59
60/*
61 * For PAE we need the PMD index as well. We use the last 2MB, so we
62 * will need the last pmd entry of the last pmd page.
63 */
64#ifdef CONFIG_X86_PAE
65#define CHECK_GPGD_MASK		_PAGE_PRESENT
66#else
67#define CHECK_GPGD_MASK		_PAGE_TABLE
68#endif
69
70/*H:320
71 * The page table code is curly enough to need helper functions to keep it
72 * clear and clean.  The kernel itself provides many of them; one advantage
73 * of insisting that the Guest and Host use the same CONFIG_X86_PAE setting.
74 *
75 * There are two functions which return pointers to the shadow (aka "real")
76 * page tables.
77 *
78 * spgd_addr() takes the virtual address and returns a pointer to the top-level
79 * page directory entry (PGD) for that address.  Since we keep track of several
80 * page tables, the "i" argument tells us which one we're interested in (it's
81 * usually the current one).
82 */
83static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
84{
85	unsigned int index = pgd_index(vaddr);
86
87	/* Return a pointer index'th pgd entry for the i'th page table. */
88	return &cpu->lg->pgdirs[i].pgdir[index];
89}
90
91#ifdef CONFIG_X86_PAE
92/*
93 * This routine then takes the PGD entry given above, which contains the
94 * address of the PMD page.  It then returns a pointer to the PMD entry for the
95 * given address.
96 */
97static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
98{
99	unsigned int index = pmd_index(vaddr);
100	pmd_t *page;
101
102	/* You should never call this if the PGD entry wasn't valid */
103	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
104	page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
105
106	return &page[index];
107}
108#endif
109
110/*
111 * This routine then takes the page directory entry returned above, which
112 * contains the address of the page table entry (PTE) page.  It then returns a
113 * pointer to the PTE entry for the given address.
114 */
115static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
116{
117#ifdef CONFIG_X86_PAE
118	pmd_t *pmd = spmd_addr(cpu, spgd, vaddr);
119	pte_t *page = __va(pmd_pfn(*pmd) << PAGE_SHIFT);
120
121	/* You should never call this if the PMD entry wasn't valid */
122	BUG_ON(!(pmd_flags(*pmd) & _PAGE_PRESENT));
123#else
124	pte_t *page = __va(pgd_pfn(spgd) << PAGE_SHIFT);
125	/* You should never call this if the PGD entry wasn't valid */
126	BUG_ON(!(pgd_flags(spgd) & _PAGE_PRESENT));
127#endif
128
129	return &page[pte_index(vaddr)];
130}
131
132/*
133 * These functions are just like the above, except they access the Guest
134 * page tables.  Hence they return a Guest address.
135 */
136static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
137{
138	unsigned int index = vaddr >> (PGDIR_SHIFT);
139	return cpu->lg->pgdirs[cpu->cpu_pgd].gpgdir + index * sizeof(pgd_t);
140}
141
142#ifdef CONFIG_X86_PAE
143/* Follow the PGD to the PMD. */
144static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
145{
146	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
147	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
148	return gpage + pmd_index(vaddr) * sizeof(pmd_t);
149}
150
151/* Follow the PMD to the PTE. */
152static unsigned long gpte_addr(struct lg_cpu *cpu,
153			       pmd_t gpmd, unsigned long vaddr)
154{
155	unsigned long gpage = pmd_pfn(gpmd) << PAGE_SHIFT;
156
157	BUG_ON(!(pmd_flags(gpmd) & _PAGE_PRESENT));
158	return gpage + pte_index(vaddr) * sizeof(pte_t);
159}
160#else
161/* Follow the PGD to the PTE (no mid-level for !PAE). */
162static unsigned long gpte_addr(struct lg_cpu *cpu,
163				pgd_t gpgd, unsigned long vaddr)
164{
165	unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
166
167	BUG_ON(!(pgd_flags(gpgd) & _PAGE_PRESENT));
168	return gpage + pte_index(vaddr) * sizeof(pte_t);
169}
170#endif
171/*:*/
172
173/*M:007
174 * get_pfn is slow: we could probably try to grab batches of pages here as
175 * an optimization (ie. pre-faulting).
176:*/
177
178/*H:350
179 * This routine takes a page number given by the Guest and converts it to
180 * an actual, physical page number.  It can fail for several reasons: the
181 * virtual address might not be mapped by the Launcher, the write flag is set
182 * and the page is read-only, or the write flag was set and the page was
183 * shared so had to be copied, but we ran out of memory.
184 *
185 * This holds a reference to the page, so release_pte() is careful to put that
186 * back.
187 */
188static unsigned long get_pfn(unsigned long virtpfn, int write)
189{
190	struct page *page;
191
192	/* gup me one page at this address please! */
193	if (get_user_pages_fast(virtpfn << PAGE_SHIFT, 1, write, &page) == 1)
194		return page_to_pfn(page);
195
196	/* This value indicates failure. */
197	return -1UL;
198}
199
200/*H:340
201 * Converting a Guest page table entry to a shadow (ie. real) page table
202 * entry can be a little tricky.  The flags are (almost) the same, but the
203 * Guest PTE contains a virtual page number: the CPU needs the real page
204 * number.
205 */
206static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
207{
208	unsigned long pfn, base, flags;
209
210	/*
211	 * The Guest sets the global flag, because it thinks that it is using
212	 * PGE.  We only told it to use PGE so it would tell us whether it was
213	 * flushing a kernel mapping or a userspace mapping.  We don't actually
214	 * use the global bit, so throw it away.
215	 */
216	flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
217
218	/* The Guest's pages are offset inside the Launcher. */
219	base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
220
221	/*
222	 * We need a temporary "unsigned long" variable to hold the answer from
223	 * get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
224	 * fit in spte.pfn.  get_pfn() finds the real physical number of the
225	 * page, given the virtual number.
226	 */
227	pfn = get_pfn(base + pte_pfn(gpte), write);
228	if (pfn == -1UL) {
229		kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
230		/*
231		 * When we destroy the Guest, we'll go through the shadow page
232		 * tables and release_pte() them.  Make sure we don't think
233		 * this one is valid!
234		 */
235		flags = 0;
236	}
237	/* Now we assemble our shadow PTE from the page number and flags. */
238	return pfn_pte(pfn, __pgprot(flags));
239}
240
241/*H:460 And to complete the chain, release_pte() looks like this: */
242static void release_pte(pte_t pte)
243{
244	/*
245	 * Remember that get_user_pages_fast() took a reference to the page, in
246	 * get_pfn()?  We have to put it back now.
247	 */
248	if (pte_flags(pte) & _PAGE_PRESENT)
249		put_page(pte_page(pte));
250}
251/*:*/
252
253static bool gpte_in_iomem(struct lg_cpu *cpu, pte_t gpte)
254{
255	/* We don't handle large pages. */
256	if (pte_flags(gpte) & _PAGE_PSE)
257		return false;
258
259	return (pte_pfn(gpte) >= cpu->lg->pfn_limit
260		&& pte_pfn(gpte) < cpu->lg->device_limit);
261}
262
263static bool check_gpte(struct lg_cpu *cpu, pte_t gpte)
264{
265	if ((pte_flags(gpte) & _PAGE_PSE) ||
266	    pte_pfn(gpte) >= cpu->lg->pfn_limit) {
267		kill_guest(cpu, "bad page table entry");
268		return false;
269	}
270	return true;
271}
272
273static bool check_gpgd(struct lg_cpu *cpu, pgd_t gpgd)
274{
275	if ((pgd_flags(gpgd) & ~CHECK_GPGD_MASK) ||
276	    (pgd_pfn(gpgd) >= cpu->lg->pfn_limit)) {
277		kill_guest(cpu, "bad page directory entry");
278		return false;
279	}
280	return true;
281}
282
283#ifdef CONFIG_X86_PAE
284static bool check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
285{
286	if ((pmd_flags(gpmd) & ~_PAGE_TABLE) ||
287	    (pmd_pfn(gpmd) >= cpu->lg->pfn_limit)) {
288		kill_guest(cpu, "bad page middle directory entry");
289		return false;
290	}
291	return true;
292}
293#endif
294
295/*H:331
296 * This is the core routine to walk the shadow page tables and find the page
297 * table entry for a specific address.
298 *
299 * If allocate is set, then we allocate any missing levels, setting the flags
300 * on the new page directory and mid-level directories using the arguments
301 * (which are copied from the Guest's page table entries).
302 */
303static pte_t *find_spte(struct lg_cpu *cpu, unsigned long vaddr, bool allocate,
304			int pgd_flags, int pmd_flags)
305{
306	pgd_t *spgd;
307	/* Mid level for PAE. */
308#ifdef CONFIG_X86_PAE
309	pmd_t *spmd;
310#endif
311
312	/* Get top level entry. */
313	spgd = spgd_addr(cpu, cpu->cpu_pgd, vaddr);
314	if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
315		/* No shadow entry: allocate a new shadow PTE page. */
316		unsigned long ptepage;
317
318		/* If they didn't want us to allocate anything, stop. */
319		if (!allocate)
320			return NULL;
321
322		ptepage = get_zeroed_page(GFP_KERNEL);
323		/*
324		 * This is not really the Guest's fault, but killing it is
325		 * simple for this corner case.
326		 */
327		if (!ptepage) {
328			kill_guest(cpu, "out of memory allocating pte page");
329			return NULL;
330		}
331		/*
332		 * And we copy the flags to the shadow PGD entry.  The page
333		 * number in the shadow PGD is the page we just allocated.
334		 */
335		set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags));
336	}
337
338	/*
339	 * Intel's Physical Address Extension actually uses three levels of
340	 * page tables, so we need to look in the mid-level.
341	 */
342#ifdef CONFIG_X86_PAE
343	/* Now look at the mid-level shadow entry. */
344	spmd = spmd_addr(cpu, *spgd, vaddr);
345
346	if (!(pmd_flags(*spmd) & _PAGE_PRESENT)) {
347		/* No shadow entry: allocate a new shadow PTE page. */
348		unsigned long ptepage;
349
350		/* If they didn't want us to allocate anything, stop. */
351		if (!allocate)
352			return NULL;
353
354		ptepage = get_zeroed_page(GFP_KERNEL);
355
356		/*
357		 * This is not really the Guest's fault, but killing it is
358		 * simple for this corner case.
359		 */
360		if (!ptepage) {
361			kill_guest(cpu, "out of memory allocating pmd page");
362			return NULL;
363		}
364
365		/*
366		 * And we copy the flags to the shadow PMD entry.  The page
367		 * number in the shadow PMD is the page we just allocated.
368		 */
369		set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags));
370	}
371#endif
372
373	/* Get the pointer to the shadow PTE entry we're going to set. */
374	return spte_addr(cpu, *spgd, vaddr);
375}
376
377/*H:330
378 * (i) Looking up a page table entry when the Guest faults.
379 *
380 * We saw this call in run_guest(): when we see a page fault in the Guest, we
381 * come here.  That's because we only set up the shadow page tables lazily as
382 * they're needed, so we get page faults all the time and quietly fix them up
383 * and return to the Guest without it knowing.
384 *
385 * If we fixed up the fault (ie. we mapped the address), this routine returns
386 * true.  Otherwise, it was a real fault and we need to tell the Guest.
387 *
388 * There's a corner case: they're trying to access memory between
389 * pfn_limit and device_limit, which is I/O memory.  In this case, we
390 * return false and set @iomem to the physical address, so the the
391 * Launcher can handle the instruction manually.
392 */
393bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode,
394		 unsigned long *iomem)
395{
396	unsigned long gpte_ptr;
397	pte_t gpte;
398	pte_t *spte;
399	pmd_t gpmd;
400	pgd_t gpgd;
401
402	*iomem = 0;
403
404	/* We never demand page the Switcher, so trying is a mistake. */
405	if (vaddr >= switcher_addr)
406		return false;
407
408	/* First step: get the top-level Guest page table entry. */
409	if (unlikely(cpu->linear_pages)) {
410		/* Faking up a linear mapping. */
411		gpgd = __pgd(CHECK_GPGD_MASK);
412	} else {
413		gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
414		/* Toplevel not present?  We can't map it in. */
415		if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
416			return false;
417
418		/*
419		 * This kills the Guest if it has weird flags or tries to
420		 * refer to a "physical" address outside the bounds.
421		 */
422		if (!check_gpgd(cpu, gpgd))
423			return false;
424	}
425
426	/* This "mid-level" entry is only used for non-linear, PAE mode. */
427	gpmd = __pmd(_PAGE_TABLE);
428
429#ifdef CONFIG_X86_PAE
430	if (likely(!cpu->linear_pages)) {
431		gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
432		/* Middle level not present?  We can't map it in. */
433		if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
434			return false;
435
436		/*
437		 * This kills the Guest if it has weird flags or tries to
438		 * refer to a "physical" address outside the bounds.
439		 */
440		if (!check_gpmd(cpu, gpmd))
441			return false;
442	}
443
444	/*
445	 * OK, now we look at the lower level in the Guest page table: keep its
446	 * address, because we might update it later.
447	 */
448	gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
449#else
450	/*
451	 * OK, now we look at the lower level in the Guest page table: keep its
452	 * address, because we might update it later.
453	 */
454	gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
455#endif
456
457	if (unlikely(cpu->linear_pages)) {
458		/* Linear?  Make up a PTE which points to same page. */
459		gpte = __pte((vaddr & PAGE_MASK) | _PAGE_RW | _PAGE_PRESENT);
460	} else {
461		/* Read the actual PTE value. */
462		gpte = lgread(cpu, gpte_ptr, pte_t);
463	}
464
465	/* If this page isn't in the Guest page tables, we can't page it in. */
466	if (!(pte_flags(gpte) & _PAGE_PRESENT))
467		return false;
468
469	/*
470	 * Check they're not trying to write to a page the Guest wants
471	 * read-only (bit 2 of errcode == write).
472	 */
473	if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
474		return false;
475
476	/* User access to a kernel-only page? (bit 3 == user access) */
477	if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
478		return false;
479
480	/* If they're accessing io memory, we expect a fault. */
481	if (gpte_in_iomem(cpu, gpte)) {
482		*iomem = (pte_pfn(gpte) << PAGE_SHIFT) | (vaddr & ~PAGE_MASK);
483		return false;
484	}
485
486	/*
487	 * Check that the Guest PTE flags are OK, and the page number is below
488	 * the pfn_limit (ie. not mapping the Launcher binary).
489	 */
490	if (!check_gpte(cpu, gpte))
491		return false;
492
493	/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
494	gpte = pte_mkyoung(gpte);
495	if (errcode & 2)
496		gpte = pte_mkdirty(gpte);
497
498	/* Get the pointer to the shadow PTE entry we're going to set. */
499	spte = find_spte(cpu, vaddr, true, pgd_flags(gpgd), pmd_flags(gpmd));
500	if (!spte)
501		return false;
502
503	/*
504	 * If there was a valid shadow PTE entry here before, we release it.
505	 * This can happen with a write to a previously read-only entry.
506	 */
507	release_pte(*spte);
508
509	/*
510	 * If this is a write, we insist that the Guest page is writable (the
511	 * final arg to gpte_to_spte()).
512	 */
513	if (pte_dirty(gpte))
514		*spte = gpte_to_spte(cpu, gpte, 1);
515	else
516		/*
517		 * If this is a read, don't set the "writable" bit in the page
518		 * table entry, even if the Guest says it's writable.  That way
519		 * we will come back here when a write does actually occur, so
520		 * we can update the Guest's _PAGE_DIRTY flag.
521		 */
522		set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
523
524	/*
525	 * Finally, we write the Guest PTE entry back: we've set the
526	 * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
527	 */
528	if (likely(!cpu->linear_pages))
529		lgwrite(cpu, gpte_ptr, pte_t, gpte);
530
531	/*
532	 * The fault is fixed, the page table is populated, the mapping
533	 * manipulated, the result returned and the code complete.  A small
534	 * delay and a trace of alliteration are the only indications the Guest
535	 * has that a page fault occurred at all.
536	 */
537	return true;
538}
539
540/*H:360
541 * (ii) Making sure the Guest stack is mapped.
542 *
543 * Remember that direct traps into the Guest need a mapped Guest kernel stack.
544 * pin_stack_pages() calls us here: we could simply call demand_page(), but as
545 * we've seen that logic is quite long, and usually the stack pages are already
546 * mapped, so it's overkill.
547 *
548 * This is a quick version which answers the question: is this virtual address
549 * mapped by the shadow page tables, and is it writable?
550 */
551static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
552{
553	pte_t *spte;
554	unsigned long flags;
555
556	/* You can't put your stack in the Switcher! */
557	if (vaddr >= switcher_addr)
558		return false;
559
560	/* If there's no shadow PTE, it's not writable. */
561	spte = find_spte(cpu, vaddr, false, 0, 0);
562	if (!spte)
563		return false;
564
565	/*
566	 * Check the flags on the pte entry itself: it must be present and
567	 * writable.
568	 */
569	flags = pte_flags(*spte);
570	return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
571}
572
573/*
574 * So, when pin_stack_pages() asks us to pin a page, we check if it's already
575 * in the page tables, and if not, we call demand_page() with error code 2
576 * (meaning "write").
577 */
578void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
579{
580	unsigned long iomem;
581
582	if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2, &iomem))
583		kill_guest(cpu, "bad stack page %#lx", vaddr);
584}
585/*:*/
586
587#ifdef CONFIG_X86_PAE
588static void release_pmd(pmd_t *spmd)
589{
590	/* If the entry's not present, there's nothing to release. */
591	if (pmd_flags(*spmd) & _PAGE_PRESENT) {
592		unsigned int i;
593		pte_t *ptepage = __va(pmd_pfn(*spmd) << PAGE_SHIFT);
594		/* For each entry in the page, we might need to release it. */
595		for (i = 0; i < PTRS_PER_PTE; i++)
596			release_pte(ptepage[i]);
597		/* Now we can free the page of PTEs */
598		free_page((long)ptepage);
599		/* And zero out the PMD entry so we never release it twice. */
600		set_pmd(spmd, __pmd(0));
601	}
602}
603
604static void release_pgd(pgd_t *spgd)
605{
606	/* If the entry's not present, there's nothing to release. */
607	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
608		unsigned int i;
609		pmd_t *pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
610
611		for (i = 0; i < PTRS_PER_PMD; i++)
612			release_pmd(&pmdpage[i]);
613
614		/* Now we can free the page of PMDs */
615		free_page((long)pmdpage);
616		/* And zero out the PGD entry so we never release it twice. */
617		set_pgd(spgd, __pgd(0));
618	}
619}
620
621#else /* !CONFIG_X86_PAE */
622/*H:450
623 * If we chase down the release_pgd() code, the non-PAE version looks like
624 * this.  The PAE version is almost identical, but instead of calling
625 * release_pte it calls release_pmd(), which looks much like this.
626 */
627static void release_pgd(pgd_t *spgd)
628{
629	/* If the entry's not present, there's nothing to release. */
630	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
631		unsigned int i;
632		/*
633		 * Converting the pfn to find the actual PTE page is easy: turn
634		 * the page number into a physical address, then convert to a
635		 * virtual address (easy for kernel pages like this one).
636		 */
637		pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
638		/* For each entry in the page, we might need to release it. */
639		for (i = 0; i < PTRS_PER_PTE; i++)
640			release_pte(ptepage[i]);
641		/* Now we can free the page of PTEs */
642		free_page((long)ptepage);
643		/* And zero out the PGD entry so we never release it twice. */
644		*spgd = __pgd(0);
645	}
646}
647#endif
648
649/*H:445
650 * We saw flush_user_mappings() twice: once from the flush_user_mappings()
651 * hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
652 * It simply releases every PTE page from 0 up to the Guest's kernel address.
653 */
654static void flush_user_mappings(struct lguest *lg, int idx)
655{
656	unsigned int i;
657	/* Release every pgd entry up to the kernel's address. */
658	for (i = 0; i < pgd_index(lg->kernel_address); i++)
659		release_pgd(lg->pgdirs[idx].pgdir + i);
660}
661
662/*H:440
663 * (v) Flushing (throwing away) page tables,
664 *
665 * The Guest has a hypercall to throw away the page tables: it's used when a
666 * large number of mappings have been changed.
667 */
668void guest_pagetable_flush_user(struct lg_cpu *cpu)
669{
670	/* Drop the userspace part of the current page table. */
671	flush_user_mappings(cpu->lg, cpu->cpu_pgd);
672}
673/*:*/
674
675/* We walk down the guest page tables to get a guest-physical address */
676bool __guest_pa(struct lg_cpu *cpu, unsigned long vaddr, unsigned long *paddr)
677{
678	pgd_t gpgd;
679	pte_t gpte;
680#ifdef CONFIG_X86_PAE
681	pmd_t gpmd;
682#endif
683
684	/* Still not set up?  Just map 1:1. */
685	if (unlikely(cpu->linear_pages)) {
686		*paddr = vaddr;
687		return true;
688	}
689
690	/* First step: get the top-level Guest page table entry. */
691	gpgd = lgread(cpu, gpgd_addr(cpu, vaddr), pgd_t);
692	/* Toplevel not present?  We can't map it in. */
693	if (!(pgd_flags(gpgd) & _PAGE_PRESENT))
694		goto fail;
695
696#ifdef CONFIG_X86_PAE
697	gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
698	if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
699		goto fail;
700	gpte = lgread(cpu, gpte_addr(cpu, gpmd, vaddr), pte_t);
701#else
702	gpte = lgread(cpu, gpte_addr(cpu, gpgd, vaddr), pte_t);
703#endif
704	if (!(pte_flags(gpte) & _PAGE_PRESENT))
705		goto fail;
706
707	*paddr = pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
708	return true;
709
710fail:
711	*paddr = -1UL;
712	return false;
713}
714
715/*
716 * This is the version we normally use: kills the Guest if it uses a
717 * bad address
718 */
719unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
720{
721	unsigned long paddr;
722
723	if (!__guest_pa(cpu, vaddr, &paddr))
724		kill_guest(cpu, "Bad address %#lx", vaddr);
725	return paddr;
726}
727
728/*
729 * We keep several page tables.  This is a simple routine to find the page
730 * table (if any) corresponding to this top-level address the Guest has given
731 * us.
732 */
733static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
734{
735	unsigned int i;
736	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
737		if (lg->pgdirs[i].pgdir && lg->pgdirs[i].gpgdir == pgtable)
738			break;
739	return i;
740}
741
742/*H:435
743 * And this is us, creating the new page directory.  If we really do
744 * allocate a new one (and so the kernel parts are not there), we set
745 * blank_pgdir.
746 */
747static unsigned int new_pgdir(struct lg_cpu *cpu,
748			      unsigned long gpgdir,
749			      int *blank_pgdir)
750{
751	unsigned int next;
752
753	/*
754	 * We pick one entry at random to throw out.  Choosing the Least
755	 * Recently Used might be better, but this is easy.
756	 */
757	next = prandom_u32() % ARRAY_SIZE(cpu->lg->pgdirs);
758	/* If it's never been allocated at all before, try now. */
759	if (!cpu->lg->pgdirs[next].pgdir) {
760		cpu->lg->pgdirs[next].pgdir =
761					(pgd_t *)get_zeroed_page(GFP_KERNEL);
762		/* If the allocation fails, just keep using the one we have */
763		if (!cpu->lg->pgdirs[next].pgdir)
764			next = cpu->cpu_pgd;
765		else {
766			/*
767			 * This is a blank page, so there are no kernel
768			 * mappings: caller must map the stack!
769			 */
770			*blank_pgdir = 1;
771		}
772	}
773	/* Record which Guest toplevel this shadows. */
774	cpu->lg->pgdirs[next].gpgdir = gpgdir;
775	/* Release all the non-kernel mappings. */
776	flush_user_mappings(cpu->lg, next);
777
778	/* This hasn't run on any CPU at all. */
779	cpu->lg->pgdirs[next].last_host_cpu = -1;
780
781	return next;
782}
783
784/*H:501
785 * We do need the Switcher code mapped at all times, so we allocate that
786 * part of the Guest page table here.  We map the Switcher code immediately,
787 * but defer mapping of the guest register page and IDT/LDT etc page until
788 * just before we run the guest in map_switcher_in_guest().
789 *
790 * We *could* do this setup in map_switcher_in_guest(), but at that point
791 * we've interrupts disabled, and allocating pages like that is fraught: we
792 * can't sleep if we need to free up some memory.
793 */
794static bool allocate_switcher_mapping(struct lg_cpu *cpu)
795{
796	int i;
797
798	for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
799		pte_t *pte = find_spte(cpu, switcher_addr + i * PAGE_SIZE, true,
800				       CHECK_GPGD_MASK, _PAGE_TABLE);
801		if (!pte)
802			return false;
803
804		/*
805		 * Map the switcher page if not already there.  It might
806		 * already be there because we call allocate_switcher_mapping()
807		 * in guest_set_pgd() just in case it did discard our Switcher
808		 * mapping, but it probably didn't.
809		 */
810		if (i == 0 && !(pte_flags(*pte) & _PAGE_PRESENT)) {
811			/* Get a reference to the Switcher page. */
812			get_page(lg_switcher_pages[0]);
813			/* Create a read-only, exectuable, kernel-style PTE */
814			set_pte(pte,
815				mk_pte(lg_switcher_pages[0], PAGE_KERNEL_RX));
816		}
817	}
818	cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped = true;
819	return true;
820}
821
822/*H:470
823 * Finally, a routine which throws away everything: all PGD entries in all
824 * the shadow page tables, including the Guest's kernel mappings.  This is used
825 * when we destroy the Guest.
826 */
827static void release_all_pagetables(struct lguest *lg)
828{
829	unsigned int i, j;
830
831	/* Every shadow pagetable this Guest has */
832	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++) {
833		if (!lg->pgdirs[i].pgdir)
834			continue;
835
836		/* Every PGD entry. */
837		for (j = 0; j < PTRS_PER_PGD; j++)
838			release_pgd(lg->pgdirs[i].pgdir + j);
839		lg->pgdirs[i].switcher_mapped = false;
840		lg->pgdirs[i].last_host_cpu = -1;
841	}
842}
843
844/*
845 * We also throw away everything when a Guest tells us it's changed a kernel
846 * mapping.  Since kernel mappings are in every page table, it's easiest to
847 * throw them all away.  This traps the Guest in amber for a while as
848 * everything faults back in, but it's rare.
849 */
850void guest_pagetable_clear_all(struct lg_cpu *cpu)
851{
852	release_all_pagetables(cpu->lg);
853	/* We need the Guest kernel stack mapped again. */
854	pin_stack_pages(cpu);
855	/* And we need Switcher allocated. */
856	if (!allocate_switcher_mapping(cpu))
857		kill_guest(cpu, "Cannot populate switcher mapping");
858}
859
860/*H:430
861 * (iv) Switching page tables
862 *
863 * Now we've seen all the page table setting and manipulation, let's see
864 * what happens when the Guest changes page tables (ie. changes the top-level
865 * pgdir).  This occurs on almost every context switch.
866 */
867void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
868{
869	int newpgdir, repin = 0;
870
871	/*
872	 * The very first time they call this, we're actually running without
873	 * any page tables; we've been making it up.  Throw them away now.
874	 */
875	if (unlikely(cpu->linear_pages)) {
876		release_all_pagetables(cpu->lg);
877		cpu->linear_pages = false;
878		/* Force allocation of a new pgdir. */
879		newpgdir = ARRAY_SIZE(cpu->lg->pgdirs);
880	} else {
881		/* Look to see if we have this one already. */
882		newpgdir = find_pgdir(cpu->lg, pgtable);
883	}
884
885	/*
886	 * If not, we allocate or mug an existing one: if it's a fresh one,
887	 * repin gets set to 1.
888	 */
889	if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
890		newpgdir = new_pgdir(cpu, pgtable, &repin);
891	/* Change the current pgd index to the new one. */
892	cpu->cpu_pgd = newpgdir;
893	/*
894	 * If it was completely blank, we map in the Guest kernel stack and
895	 * the Switcher.
896	 */
897	if (repin)
898		pin_stack_pages(cpu);
899
900	if (!cpu->lg->pgdirs[cpu->cpu_pgd].switcher_mapped) {
901		if (!allocate_switcher_mapping(cpu))
902			kill_guest(cpu, "Cannot populate switcher mapping");
903	}
904}
905/*:*/
906
907/*M:009
908 * Since we throw away all mappings when a kernel mapping changes, our
909 * performance sucks for guests using highmem.  In fact, a guest with
910 * PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
911 * usually slower than a Guest with less memory.
912 *
913 * This, of course, cannot be fixed.  It would take some kind of... well, I
914 * don't know, but the term "puissant code-fu" comes to mind.
915:*/
916
917/*H:420
918 * This is the routine which actually sets the page table entry for then
919 * "idx"'th shadow page table.
920 *
921 * Normally, we can just throw out the old entry and replace it with 0: if they
922 * use it demand_page() will put the new entry in.  We need to do this anyway:
923 * The Guest expects _PAGE_ACCESSED to be set on its PTE the first time a page
924 * is read from, and _PAGE_DIRTY when it's written to.
925 *
926 * But Avi Kivity pointed out that most Operating Systems (Linux included) set
927 * these bits on PTEs immediately anyway.  This is done to save the CPU from
928 * having to update them, but it helps us the same way: if they set
929 * _PAGE_ACCESSED then we can put a read-only PTE entry in immediately, and if
930 * they set _PAGE_DIRTY then we can put a writable PTE entry in immediately.
931 */
932static void __guest_set_pte(struct lg_cpu *cpu, int idx,
933		       unsigned long vaddr, pte_t gpte)
934{
935	/* Look up the matching shadow page directory entry. */
936	pgd_t *spgd = spgd_addr(cpu, idx, vaddr);
937#ifdef CONFIG_X86_PAE
938	pmd_t *spmd;
939#endif
940
941	/* If the top level isn't present, there's no entry to update. */
942	if (pgd_flags(*spgd) & _PAGE_PRESENT) {
943#ifdef CONFIG_X86_PAE
944		spmd = spmd_addr(cpu, *spgd, vaddr);
945		if (pmd_flags(*spmd) & _PAGE_PRESENT) {
946#endif
947			/* Otherwise, start by releasing the existing entry. */
948			pte_t *spte = spte_addr(cpu, *spgd, vaddr);
949			release_pte(*spte);
950
951			/*
952			 * If they're setting this entry as dirty or accessed,
953			 * we might as well put that entry they've given us in
954			 * now.  This shaves 10% off a copy-on-write
955			 * micro-benchmark.
956			 */
957			if ((pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED))
958			    && !gpte_in_iomem(cpu, gpte)) {
959				if (!check_gpte(cpu, gpte))
960					return;
961				set_pte(spte,
962					gpte_to_spte(cpu, gpte,
963						pte_flags(gpte) & _PAGE_DIRTY));
964			} else {
965				/*
966				 * Otherwise kill it and we can demand_page()
967				 * it in later.
968				 */
969				set_pte(spte, __pte(0));
970			}
971#ifdef CONFIG_X86_PAE
972		}
973#endif
974	}
975}
976
977/*H:410
978 * Updating a PTE entry is a little trickier.
979 *
980 * We keep track of several different page tables (the Guest uses one for each
981 * process, so it makes sense to cache at least a few).  Each of these have
982 * identical kernel parts: ie. every mapping above PAGE_OFFSET is the same for
983 * all processes.  So when the page table above that address changes, we update
984 * all the page tables, not just the current one.  This is rare.
985 *
986 * The benefit is that when we have to track a new page table, we can keep all
987 * the kernel mappings.  This speeds up context switch immensely.
988 */
989void guest_set_pte(struct lg_cpu *cpu,
990		   unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
991{
992	/* We don't let you remap the Switcher; we need it to get back! */
993	if (vaddr >= switcher_addr) {
994		kill_guest(cpu, "attempt to set pte into Switcher pages");
995		return;
996	}
997
998	/*
999	 * Kernel mappings must be changed on all top levels.  Slow, but doesn't
1000	 * happen often.
1001	 */
1002	if (vaddr >= cpu->lg->kernel_address) {
1003		unsigned int i;
1004		for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
1005			if (cpu->lg->pgdirs[i].pgdir)
1006				__guest_set_pte(cpu, i, vaddr, gpte);
1007	} else {
1008		/* Is this page table one we have a shadow for? */
1009		int pgdir = find_pgdir(cpu->lg, gpgdir);
1010		if (pgdir != ARRAY_SIZE(cpu->lg->pgdirs))
1011			/* If so, do the update. */
1012			__guest_set_pte(cpu, pgdir, vaddr, gpte);
1013	}
1014}
1015
1016/*H:400
1017 * (iii) Setting up a page table entry when the Guest tells us one has changed.
1018 *
1019 * Just like we did in interrupts_and_traps.c, it makes sense for us to deal
1020 * with the other side of page tables while we're here: what happens when the
1021 * Guest asks for a page table to be updated?
1022 *
1023 * We already saw that demand_page() will fill in the shadow page tables when
1024 * needed, so we can simply remove shadow page table entries whenever the Guest
1025 * tells us they've changed.  When the Guest tries to use the new entry it will
1026 * fault and demand_page() will fix it up.
1027 *
1028 * So with that in mind here's our code to update a (top-level) PGD entry:
1029 */
1030void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
1031{
1032	int pgdir;
1033
1034	if (idx > PTRS_PER_PGD) {
1035		kill_guest(&lg->cpus[0], "Attempt to set pgd %u/%u",
1036			   idx, PTRS_PER_PGD);
1037		return;
1038	}
1039
1040	/* If they're talking about a page table we have a shadow for... */
1041	pgdir = find_pgdir(lg, gpgdir);
1042	if (pgdir < ARRAY_SIZE(lg->pgdirs)) {
1043		/* ... throw it away. */
1044		release_pgd(lg->pgdirs[pgdir].pgdir + idx);
1045		/* That might have been the Switcher mapping, remap it. */
1046		if (!allocate_switcher_mapping(&lg->cpus[0])) {
1047			kill_guest(&lg->cpus[0],
1048				   "Cannot populate switcher mapping");
1049		}
1050		lg->pgdirs[pgdir].last_host_cpu = -1;
1051	}
1052}
1053
1054#ifdef CONFIG_X86_PAE
1055/* For setting a mid-level, we just throw everything away.  It's easy. */
1056void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
1057{
1058	guest_pagetable_clear_all(&lg->cpus[0]);
1059}
1060#endif
1061
1062/*H:500
1063 * (vii) Setting up the page tables initially.
1064 *
1065 * When a Guest is first created, set initialize a shadow page table which
1066 * we will populate on future faults.  The Guest doesn't have any actual
1067 * pagetables yet, so we set linear_pages to tell demand_page() to fake it
1068 * for the moment.
1069 *
1070 * We do need the Switcher to be mapped at all times, so we allocate that
1071 * part of the Guest page table here.
1072 */
1073int init_guest_pagetable(struct lguest *lg)
1074{
1075	struct lg_cpu *cpu = &lg->cpus[0];
1076	int allocated = 0;
1077
1078	/* lg (and lg->cpus[]) starts zeroed: this allocates a new pgdir */
1079	cpu->cpu_pgd = new_pgdir(cpu, 0, &allocated);
1080	if (!allocated)
1081		return -ENOMEM;
1082
1083	/* We start with a linear mapping until the initialize. */
1084	cpu->linear_pages = true;
1085
1086	/* Allocate the page tables for the Switcher. */
1087	if (!allocate_switcher_mapping(cpu)) {
1088		release_all_pagetables(lg);
1089		return -ENOMEM;
1090	}
1091
1092	return 0;
1093}
1094
1095/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
1096void page_table_guest_data_init(struct lg_cpu *cpu)
1097{
1098	/*
1099	 * We tell the Guest that it can't use the virtual addresses
1100	 * used by the Switcher.  This trick is equivalent to 4GB -
1101	 * switcher_addr.
1102	 */
1103	u32 top = ~switcher_addr + 1;
1104
1105	/* We get the kernel address: above this is all kernel memory. */
1106	if (get_user(cpu->lg->kernel_address,
1107		     &cpu->lg->lguest_data->kernel_address)
1108		/*
1109		 * We tell the Guest that it can't use the top virtual
1110		 * addresses (used by the Switcher).
1111		 */
1112	    || put_user(top, &cpu->lg->lguest_data->reserve_mem)) {
1113		kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
1114		return;
1115	}
1116
1117	/*
1118	 * In flush_user_mappings() we loop from 0 to
1119	 * "pgd_index(lg->kernel_address)".  This assumes it won't hit the
1120	 * Switcher mappings, so check that now.
1121	 */
1122	if (cpu->lg->kernel_address >= switcher_addr)
1123		kill_guest(cpu, "bad kernel address %#lx",
1124				 cpu->lg->kernel_address);
1125}
1126
1127/* When a Guest dies, our cleanup is fairly simple. */
1128void free_guest_pagetable(struct lguest *lg)
1129{
1130	unsigned int i;
1131
1132	/* Throw away all page table pages. */
1133	release_all_pagetables(lg);
1134	/* Now free the top levels: free_page() can handle 0 just fine. */
1135	for (i = 0; i < ARRAY_SIZE(lg->pgdirs); i++)
1136		free_page((long)lg->pgdirs[i].pgdir);
1137}
1138
1139/*H:481
1140 * This clears the Switcher mappings for cpu #i.
1141 */
1142static void remove_switcher_percpu_map(struct lg_cpu *cpu, unsigned int i)
1143{
1144	unsigned long base = switcher_addr + PAGE_SIZE + i * PAGE_SIZE*2;
1145	pte_t *pte;
1146
1147	/* Clear the mappings for both pages. */
1148	pte = find_spte(cpu, base, false, 0, 0);
1149	release_pte(*pte);
1150	set_pte(pte, __pte(0));
1151
1152	pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1153	release_pte(*pte);
1154	set_pte(pte, __pte(0));
1155}
1156
1157/*H:480
1158 * (vi) Mapping the Switcher when the Guest is about to run.
1159 *
1160 * The Switcher and the two pages for this CPU need to be visible in the Guest
1161 * (and not the pages for other CPUs).
1162 *
1163 * The pages for the pagetables have all been allocated before: we just need
1164 * to make sure the actual PTEs are up-to-date for the CPU we're about to run
1165 * on.
1166 */
1167void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
1168{
1169	unsigned long base;
1170	struct page *percpu_switcher_page, *regs_page;
1171	pte_t *pte;
1172	struct pgdir *pgdir = &cpu->lg->pgdirs[cpu->cpu_pgd];
1173
1174	/* Switcher page should always be mapped by now! */
1175	BUG_ON(!pgdir->switcher_mapped);
1176
1177	/*
1178	 * Remember that we have two pages for each Host CPU, so we can run a
1179	 * Guest on each CPU without them interfering.  We need to make sure
1180	 * those pages are mapped correctly in the Guest, but since we usually
1181	 * run on the same CPU, we cache that, and only update the mappings
1182	 * when we move.
1183	 */
1184	if (pgdir->last_host_cpu == raw_smp_processor_id())
1185		return;
1186
1187	/* -1 means unknown so we remove everything. */
1188	if (pgdir->last_host_cpu == -1) {
1189		unsigned int i;
1190		for_each_possible_cpu(i)
1191			remove_switcher_percpu_map(cpu, i);
1192	} else {
1193		/* We know exactly what CPU mapping to remove. */
1194		remove_switcher_percpu_map(cpu, pgdir->last_host_cpu);
1195	}
1196
1197	/*
1198	 * When we're running the Guest, we want the Guest's "regs" page to
1199	 * appear where the first Switcher page for this CPU is.  This is an
1200	 * optimization: when the Switcher saves the Guest registers, it saves
1201	 * them into the first page of this CPU's "struct lguest_pages": if we
1202	 * make sure the Guest's register page is already mapped there, we
1203	 * don't have to copy them out again.
1204	 */
1205	/* Find the shadow PTE for this regs page. */
1206	base = switcher_addr + PAGE_SIZE
1207		+ raw_smp_processor_id() * sizeof(struct lguest_pages);
1208	pte = find_spte(cpu, base, false, 0, 0);
1209	regs_page = pfn_to_page(__pa(cpu->regs_page) >> PAGE_SHIFT);
1210	get_page(regs_page);
1211	set_pte(pte, mk_pte(regs_page, __pgprot(__PAGE_KERNEL & ~_PAGE_GLOBAL)));
1212
1213	/*
1214	 * We map the second page of the struct lguest_pages read-only in
1215	 * the Guest: the IDT, GDT and other things it's not supposed to
1216	 * change.
1217	 */
1218	pte = find_spte(cpu, base + PAGE_SIZE, false, 0, 0);
1219	percpu_switcher_page
1220		= lg_switcher_pages[1 + raw_smp_processor_id()*2 + 1];
1221	get_page(percpu_switcher_page);
1222	set_pte(pte, mk_pte(percpu_switcher_page,
1223			    __pgprot(__PAGE_KERNEL_RO & ~_PAGE_GLOBAL)));
1224
1225	pgdir->last_host_cpu = raw_smp_processor_id();
1226}
1227
1228/*H:490
1229 * We've made it through the page table code.  Perhaps our tired brains are
1230 * still processing the details, or perhaps we're simply glad it's over.
1231 *
1232 * If nothing else, note that all this complexity in juggling shadow page tables
1233 * in sync with the Guest's page tables is for one reason: for most Guests this
1234 * page table dance determines how bad performance will be.  This is why Xen
1235 * uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
1236 * have implemented shadow page table support directly into hardware.
1237 *
1238 * There is just one file remaining in the Host.
1239 */
1240