1/*
2 * Driver for I2C adapter in Rockchip RK3xxx SoC
3 *
4 * Max Schwarz <max.schwarz@online.de>
5 * based on the patches by Rockchip Inc.
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/kernel.h>
13#include <linux/module.h>
14#include <linux/i2c.h>
15#include <linux/interrupt.h>
16#include <linux/errno.h>
17#include <linux/err.h>
18#include <linux/platform_device.h>
19#include <linux/io.h>
20#include <linux/of_address.h>
21#include <linux/of_irq.h>
22#include <linux/spinlock.h>
23#include <linux/clk.h>
24#include <linux/wait.h>
25#include <linux/mfd/syscon.h>
26#include <linux/regmap.h>
27#include <linux/math64.h>
28
29
30/* Register Map */
31#define REG_CON        0x00 /* control register */
32#define REG_CLKDIV     0x04 /* clock divisor register */
33#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
34#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
35#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
36#define REG_MRXCNT     0x14 /* number of bytes to be received */
37#define REG_IEN        0x18 /* interrupt enable */
38#define REG_IPD        0x1c /* interrupt pending */
39#define REG_FCNT       0x20 /* finished count */
40
41/* Data buffer offsets */
42#define TXBUFFER_BASE 0x100
43#define RXBUFFER_BASE 0x200
44
45/* REG_CON bits */
46#define REG_CON_EN        BIT(0)
47enum {
48	REG_CON_MOD_TX = 0,      /* transmit data */
49	REG_CON_MOD_REGISTER_TX, /* select register and restart */
50	REG_CON_MOD_RX,          /* receive data */
51	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
52				  * register addr */
53};
54#define REG_CON_MOD(mod)  ((mod) << 1)
55#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
56#define REG_CON_START     BIT(3)
57#define REG_CON_STOP      BIT(4)
58#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
59#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */
60
61/* REG_MRXADDR bits */
62#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
63
64/* REG_IEN/REG_IPD bits */
65#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
66#define REG_INT_BRF       BIT(1) /* a byte was received */
67#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
68#define REG_INT_MBRF      BIT(3) /* master data receive finished */
69#define REG_INT_START     BIT(4) /* START condition generated */
70#define REG_INT_STOP      BIT(5) /* STOP condition generated */
71#define REG_INT_NAKRCV    BIT(6) /* NACK received */
72#define REG_INT_ALL       0x7f
73
74/* Constants */
75#define WAIT_TIMEOUT      200 /* ms */
76#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */
77
78enum rk3x_i2c_state {
79	STATE_IDLE,
80	STATE_START,
81	STATE_READ,
82	STATE_WRITE,
83	STATE_STOP
84};
85
86/**
87 * @grf_offset: offset inside the grf regmap for setting the i2c type
88 */
89struct rk3x_i2c_soc_data {
90	int grf_offset;
91};
92
93struct rk3x_i2c {
94	struct i2c_adapter adap;
95	struct device *dev;
96	struct rk3x_i2c_soc_data *soc_data;
97
98	/* Hardware resources */
99	void __iomem *regs;
100	struct clk *clk;
101	struct notifier_block clk_rate_nb;
102
103	/* Settings */
104	unsigned int scl_frequency;
105	unsigned int scl_rise_ns;
106	unsigned int scl_fall_ns;
107	unsigned int sda_fall_ns;
108
109	/* Synchronization & notification */
110	spinlock_t lock;
111	wait_queue_head_t wait;
112	bool busy;
113
114	/* Current message */
115	struct i2c_msg *msg;
116	u8 addr;
117	unsigned int mode;
118	bool is_last_msg;
119
120	/* I2C state machine */
121	enum rk3x_i2c_state state;
122	unsigned int processed; /* sent/received bytes */
123	int error;
124};
125
126static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
127			      unsigned int offset)
128{
129	writel(value, i2c->regs + offset);
130}
131
132static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
133{
134	return readl(i2c->regs + offset);
135}
136
137/* Reset all interrupt pending bits */
138static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
139{
140	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
141}
142
143/**
144 * Generate a START condition, which triggers a REG_INT_START interrupt.
145 */
146static void rk3x_i2c_start(struct rk3x_i2c *i2c)
147{
148	u32 val;
149
150	rk3x_i2c_clean_ipd(i2c);
151	i2c_writel(i2c, REG_INT_START, REG_IEN);
152
153	/* enable adapter with correct mode, send START condition */
154	val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
155
156	/* if we want to react to NACK, set ACTACK bit */
157	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
158		val |= REG_CON_ACTACK;
159
160	i2c_writel(i2c, val, REG_CON);
161}
162
163/**
164 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
165 *
166 * @error: Error code to return in rk3x_i2c_xfer
167 */
168static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
169{
170	unsigned int ctrl;
171
172	i2c->processed = 0;
173	i2c->msg = NULL;
174	i2c->error = error;
175
176	if (i2c->is_last_msg) {
177		/* Enable stop interrupt */
178		i2c_writel(i2c, REG_INT_STOP, REG_IEN);
179
180		i2c->state = STATE_STOP;
181
182		ctrl = i2c_readl(i2c, REG_CON);
183		ctrl |= REG_CON_STOP;
184		i2c_writel(i2c, ctrl, REG_CON);
185	} else {
186		/* Signal rk3x_i2c_xfer to start the next message. */
187		i2c->busy = false;
188		i2c->state = STATE_IDLE;
189
190		/*
191		 * The HW is actually not capable of REPEATED START. But we can
192		 * get the intended effect by resetting its internal state
193		 * and issuing an ordinary START.
194		 */
195		i2c_writel(i2c, 0, REG_CON);
196
197		/* signal that we are finished with the current msg */
198		wake_up(&i2c->wait);
199	}
200}
201
202/**
203 * Setup a read according to i2c->msg
204 */
205static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
206{
207	unsigned int len = i2c->msg->len - i2c->processed;
208	u32 con;
209
210	con = i2c_readl(i2c, REG_CON);
211
212	/*
213	 * The hw can read up to 32 bytes at a time. If we need more than one
214	 * chunk, send an ACK after the last byte of the current chunk.
215	 */
216	if (len > 32) {
217		len = 32;
218		con &= ~REG_CON_LASTACK;
219	} else {
220		con |= REG_CON_LASTACK;
221	}
222
223	/* make sure we are in plain RX mode if we read a second chunk */
224	if (i2c->processed != 0) {
225		con &= ~REG_CON_MOD_MASK;
226		con |= REG_CON_MOD(REG_CON_MOD_RX);
227	}
228
229	i2c_writel(i2c, con, REG_CON);
230	i2c_writel(i2c, len, REG_MRXCNT);
231}
232
233/**
234 * Fill the transmit buffer with data from i2c->msg
235 */
236static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
237{
238	unsigned int i, j;
239	u32 cnt = 0;
240	u32 val;
241	u8 byte;
242
243	for (i = 0; i < 8; ++i) {
244		val = 0;
245		for (j = 0; j < 4; ++j) {
246			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
247				break;
248
249			if (i2c->processed == 0 && cnt == 0)
250				byte = (i2c->addr & 0x7f) << 1;
251			else
252				byte = i2c->msg->buf[i2c->processed++];
253
254			val |= byte << (j * 8);
255			cnt++;
256		}
257
258		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);
259
260		if (i2c->processed == i2c->msg->len)
261			break;
262	}
263
264	i2c_writel(i2c, cnt, REG_MTXCNT);
265}
266
267
268/* IRQ handlers for individual states */
269
270static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
271{
272	if (!(ipd & REG_INT_START)) {
273		rk3x_i2c_stop(i2c, -EIO);
274		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
275		rk3x_i2c_clean_ipd(i2c);
276		return;
277	}
278
279	/* ack interrupt */
280	i2c_writel(i2c, REG_INT_START, REG_IPD);
281
282	/* disable start bit */
283	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);
284
285	/* enable appropriate interrupts and transition */
286	if (i2c->mode == REG_CON_MOD_TX) {
287		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
288		i2c->state = STATE_WRITE;
289		rk3x_i2c_fill_transmit_buf(i2c);
290	} else {
291		/* in any other case, we are going to be reading. */
292		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
293		i2c->state = STATE_READ;
294		rk3x_i2c_prepare_read(i2c);
295	}
296}
297
298static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
299{
300	if (!(ipd & REG_INT_MBTF)) {
301		rk3x_i2c_stop(i2c, -EIO);
302		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
303		rk3x_i2c_clean_ipd(i2c);
304		return;
305	}
306
307	/* ack interrupt */
308	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);
309
310	/* are we finished? */
311	if (i2c->processed == i2c->msg->len)
312		rk3x_i2c_stop(i2c, i2c->error);
313	else
314		rk3x_i2c_fill_transmit_buf(i2c);
315}
316
317static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
318{
319	unsigned int i;
320	unsigned int len = i2c->msg->len - i2c->processed;
321	u32 uninitialized_var(val);
322	u8 byte;
323
324	/* we only care for MBRF here. */
325	if (!(ipd & REG_INT_MBRF))
326		return;
327
328	/* ack interrupt */
329	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);
330
331	/* Can only handle a maximum of 32 bytes at a time */
332	if (len > 32)
333		len = 32;
334
335	/* read the data from receive buffer */
336	for (i = 0; i < len; ++i) {
337		if (i % 4 == 0)
338			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);
339
340		byte = (val >> ((i % 4) * 8)) & 0xff;
341		i2c->msg->buf[i2c->processed++] = byte;
342	}
343
344	/* are we finished? */
345	if (i2c->processed == i2c->msg->len)
346		rk3x_i2c_stop(i2c, i2c->error);
347	else
348		rk3x_i2c_prepare_read(i2c);
349}
350
351static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
352{
353	unsigned int con;
354
355	if (!(ipd & REG_INT_STOP)) {
356		rk3x_i2c_stop(i2c, -EIO);
357		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
358		rk3x_i2c_clean_ipd(i2c);
359		return;
360	}
361
362	/* ack interrupt */
363	i2c_writel(i2c, REG_INT_STOP, REG_IPD);
364
365	/* disable STOP bit */
366	con = i2c_readl(i2c, REG_CON);
367	con &= ~REG_CON_STOP;
368	i2c_writel(i2c, con, REG_CON);
369
370	i2c->busy = false;
371	i2c->state = STATE_IDLE;
372
373	/* signal rk3x_i2c_xfer that we are finished */
374	wake_up(&i2c->wait);
375}
376
377static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
378{
379	struct rk3x_i2c *i2c = dev_id;
380	unsigned int ipd;
381
382	spin_lock(&i2c->lock);
383
384	ipd = i2c_readl(i2c, REG_IPD);
385	if (i2c->state == STATE_IDLE) {
386		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
387		rk3x_i2c_clean_ipd(i2c);
388		goto out;
389	}
390
391	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);
392
393	/* Clean interrupt bits we don't care about */
394	ipd &= ~(REG_INT_BRF | REG_INT_BTF);
395
396	if (ipd & REG_INT_NAKRCV) {
397		/*
398		 * We got a NACK in the last operation. Depending on whether
399		 * IGNORE_NAK is set, we have to stop the operation and report
400		 * an error.
401		 */
402		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);
403
404		ipd &= ~REG_INT_NAKRCV;
405
406		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
407			rk3x_i2c_stop(i2c, -ENXIO);
408	}
409
410	/* is there anything left to handle? */
411	if ((ipd & REG_INT_ALL) == 0)
412		goto out;
413
414	switch (i2c->state) {
415	case STATE_START:
416		rk3x_i2c_handle_start(i2c, ipd);
417		break;
418	case STATE_WRITE:
419		rk3x_i2c_handle_write(i2c, ipd);
420		break;
421	case STATE_READ:
422		rk3x_i2c_handle_read(i2c, ipd);
423		break;
424	case STATE_STOP:
425		rk3x_i2c_handle_stop(i2c, ipd);
426		break;
427	case STATE_IDLE:
428		break;
429	}
430
431out:
432	spin_unlock(&i2c->lock);
433	return IRQ_HANDLED;
434}
435
436/**
437 * Calculate divider values for desired SCL frequency
438 *
439 * @clk_rate: I2C input clock rate
440 * @scl_rate: Desired SCL rate
441 * @scl_rise_ns: How many ns it takes for SCL to rise.
442 * @scl_fall_ns: How many ns it takes for SCL to fall.
443 * @sda_fall_ns: How many ns it takes for SDA to fall.
444 * @div_low: Divider output for low
445 * @div_high: Divider output for high
446 *
447 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
448 * a best-effort divider value is returned in divs. If the target rate is
449 * too high, we silently use the highest possible rate.
450 */
451static int rk3x_i2c_calc_divs(unsigned long clk_rate, unsigned long scl_rate,
452			      unsigned long scl_rise_ns,
453			      unsigned long scl_fall_ns,
454			      unsigned long sda_fall_ns,
455			      unsigned long *div_low, unsigned long *div_high)
456{
457	unsigned long spec_min_low_ns, spec_min_high_ns;
458	unsigned long spec_setup_start, spec_max_data_hold_ns;
459	unsigned long data_hold_buffer_ns;
460
461	unsigned long min_low_ns, min_high_ns;
462	unsigned long max_low_ns, min_total_ns;
463
464	unsigned long clk_rate_khz, scl_rate_khz;
465
466	unsigned long min_low_div, min_high_div;
467	unsigned long max_low_div;
468
469	unsigned long min_div_for_hold, min_total_div;
470	unsigned long extra_div, extra_low_div, ideal_low_div;
471
472	int ret = 0;
473
474	/* Only support standard-mode and fast-mode */
475	if (WARN_ON(scl_rate > 400000))
476		scl_rate = 400000;
477
478	/* prevent scl_rate_khz from becoming 0 */
479	if (WARN_ON(scl_rate < 1000))
480		scl_rate = 1000;
481
482	/*
483	 * min_low_ns:  The minimum number of ns we need to hold low to
484	 *		meet I2C specification, should include fall time.
485	 * min_high_ns: The minimum number of ns we need to hold high to
486	 *		meet I2C specification, should include rise time.
487	 * max_low_ns:  The maximum number of ns we can hold low to meet
488	 *		I2C specification.
489	 *
490	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
491	 *	 This is because the i2c host on Rockchip holds the data line
492	 *	 for half the low time.
493	 */
494	if (scl_rate <= 100000) {
495		/* Standard-mode */
496		spec_min_low_ns = 4700;
497		spec_setup_start = 4700;
498		spec_min_high_ns = 4000;
499		spec_max_data_hold_ns = 3450;
500		data_hold_buffer_ns = 50;
501	} else {
502		/* Fast-mode */
503		spec_min_low_ns = 1300;
504		spec_setup_start = 600;
505		spec_min_high_ns = 600;
506		spec_max_data_hold_ns = 900;
507		data_hold_buffer_ns = 50;
508	}
509	min_high_ns = scl_rise_ns + spec_min_high_ns;
510
511	/*
512	 * Timings for repeated start:
513	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
514	 * - controller appears to keep SCL high for 2x programmed clk high.
515	 *
516	 * We need to account for those rules in picking our "high" time so
517	 * we meet tSU;STA and tHD;STA times.
518	 */
519	min_high_ns = max(min_high_ns,
520		DIV_ROUND_UP((scl_rise_ns + spec_setup_start) * 1000, 875));
521	min_high_ns = max(min_high_ns,
522		DIV_ROUND_UP((scl_rise_ns + spec_setup_start +
523			      sda_fall_ns + spec_min_high_ns), 2));
524
525	min_low_ns = scl_fall_ns + spec_min_low_ns;
526	max_low_ns = spec_max_data_hold_ns * 2 - data_hold_buffer_ns;
527	min_total_ns = min_low_ns + min_high_ns;
528
529	/* Adjust to avoid overflow */
530	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
531	scl_rate_khz = scl_rate / 1000;
532
533	/*
534	 * We need the total div to be >= this number
535	 * so we don't clock too fast.
536	 */
537	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
538
539	/* These are the min dividers needed for min hold times. */
540	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
541	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
542	min_div_for_hold = (min_low_div + min_high_div);
543
544	/*
545	 * This is the maximum divider so we don't go over the maximum.
546	 * We don't round up here (we round down) since this is a maximum.
547	 */
548	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);
549
550	if (min_low_div > max_low_div) {
551		WARN_ONCE(true,
552			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
553			  min_low_div, max_low_div);
554		max_low_div = min_low_div;
555	}
556
557	if (min_div_for_hold > min_total_div) {
558		/*
559		 * Time needed to meet hold requirements is important.
560		 * Just use that.
561		 */
562		*div_low = min_low_div;
563		*div_high = min_high_div;
564	} else {
565		/*
566		 * We've got to distribute some time among the low and high
567		 * so we don't run too fast.
568		 */
569		extra_div = min_total_div - min_div_for_hold;
570
571		/*
572		 * We'll try to split things up perfectly evenly,
573		 * biasing slightly towards having a higher div
574		 * for low (spend more time low).
575		 */
576		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
577					     scl_rate_khz * 8 * min_total_ns);
578
579		/* Don't allow it to go over the maximum */
580		if (ideal_low_div > max_low_div)
581			ideal_low_div = max_low_div;
582
583		/*
584		 * Handle when the ideal low div is going to take up
585		 * more than we have.
586		 */
587		if (ideal_low_div > min_low_div + extra_div)
588			ideal_low_div = min_low_div + extra_div;
589
590		/* Give low the "ideal" and give high whatever extra is left */
591		extra_low_div = ideal_low_div - min_low_div;
592		*div_low = ideal_low_div;
593		*div_high = min_high_div + (extra_div - extra_low_div);
594	}
595
596	/*
597	 * Adjust to the fact that the hardware has an implicit "+1".
598	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
599	 */
600	*div_low = *div_low - 1;
601	*div_high = *div_high - 1;
602
603	/* Maximum divider supported by hw is 0xffff */
604	if (*div_low > 0xffff) {
605		*div_low = 0xffff;
606		ret = -EINVAL;
607	}
608
609	if (*div_high > 0xffff) {
610		*div_high = 0xffff;
611		ret = -EINVAL;
612	}
613
614	return ret;
615}
616
617static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
618{
619	unsigned long div_low, div_high;
620	u64 t_low_ns, t_high_ns;
621	int ret;
622
623	ret = rk3x_i2c_calc_divs(clk_rate, i2c->scl_frequency, i2c->scl_rise_ns,
624				 i2c->scl_fall_ns, i2c->sda_fall_ns,
625				 &div_low, &div_high);
626	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", i2c->scl_frequency);
627
628	clk_enable(i2c->clk);
629	i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
630	clk_disable(i2c->clk);
631
632	t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
633	t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
634	dev_dbg(i2c->dev,
635		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
636		clk_rate / 1000,
637		1000000000 / i2c->scl_frequency,
638		t_low_ns, t_high_ns);
639}
640
641/**
642 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
643 * @nb:		Pointer to notifier block
644 * @event:	Notification reason
645 * @data:	Pointer to notification data object
646 *
647 * The callback checks whether a valid bus frequency can be generated after the
648 * change. If so, the change is acknowledged, otherwise the change is aborted.
649 * New dividers are written to the HW in the pre- or post change notification
650 * depending on the scaling direction.
651 *
652 * Code adapted from i2c-cadence.c.
653 *
654 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
655 *		to acknowedge the change, NOTIFY_DONE if the notification is
656 *		considered irrelevant.
657 */
658static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
659				    event, void *data)
660{
661	struct clk_notifier_data *ndata = data;
662	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
663	unsigned long div_low, div_high;
664
665	switch (event) {
666	case PRE_RATE_CHANGE:
667		if (rk3x_i2c_calc_divs(ndata->new_rate, i2c->scl_frequency,
668				       i2c->scl_rise_ns, i2c->scl_fall_ns,
669				       i2c->sda_fall_ns,
670				       &div_low, &div_high) != 0)
671			return NOTIFY_STOP;
672
673		/* scale up */
674		if (ndata->new_rate > ndata->old_rate)
675			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
676
677		return NOTIFY_OK;
678	case POST_RATE_CHANGE:
679		/* scale down */
680		if (ndata->new_rate < ndata->old_rate)
681			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
682		return NOTIFY_OK;
683	case ABORT_RATE_CHANGE:
684		/* scale up */
685		if (ndata->new_rate > ndata->old_rate)
686			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
687		return NOTIFY_OK;
688	default:
689		return NOTIFY_DONE;
690	}
691}
692
693/**
694 * Setup I2C registers for an I2C operation specified by msgs, num.
695 *
696 * Must be called with i2c->lock held.
697 *
698 * @msgs: I2C msgs to process
699 * @num: Number of msgs
700 *
701 * returns: Number of I2C msgs processed or negative in case of error
702 */
703static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
704{
705	u32 addr = (msgs[0].addr & 0x7f) << 1;
706	int ret = 0;
707
708	/*
709	 * The I2C adapter can issue a small (len < 4) write packet before
710	 * reading. This speeds up SMBus-style register reads.
711	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
712	 * address in this case.
713	 */
714
715	if (num >= 2 && msgs[0].len < 4 &&
716	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
717		u32 reg_addr = 0;
718		int i;
719
720		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
721			addr >> 1);
722
723		/* Fill MRXRADDR with the register address(es) */
724		for (i = 0; i < msgs[0].len; ++i) {
725			reg_addr |= msgs[0].buf[i] << (i * 8);
726			reg_addr |= REG_MRXADDR_VALID(i);
727		}
728
729		/* msgs[0] is handled by hw. */
730		i2c->msg = &msgs[1];
731
732		i2c->mode = REG_CON_MOD_REGISTER_TX;
733
734		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
735		i2c_writel(i2c, reg_addr, REG_MRXRADDR);
736
737		ret = 2;
738	} else {
739		/*
740		 * We'll have to do it the boring way and process the msgs
741		 * one-by-one.
742		 */
743
744		if (msgs[0].flags & I2C_M_RD) {
745			addr |= 1; /* set read bit */
746
747			/*
748			 * We have to transmit the slave addr first. Use
749			 * MOD_REGISTER_TX for that purpose.
750			 */
751			i2c->mode = REG_CON_MOD_REGISTER_TX;
752			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
753				   REG_MRXADDR);
754			i2c_writel(i2c, 0, REG_MRXRADDR);
755		} else {
756			i2c->mode = REG_CON_MOD_TX;
757		}
758
759		i2c->msg = &msgs[0];
760
761		ret = 1;
762	}
763
764	i2c->addr = msgs[0].addr;
765	i2c->busy = true;
766	i2c->state = STATE_START;
767	i2c->processed = 0;
768	i2c->error = 0;
769
770	rk3x_i2c_clean_ipd(i2c);
771
772	return ret;
773}
774
775static int rk3x_i2c_xfer(struct i2c_adapter *adap,
776			 struct i2c_msg *msgs, int num)
777{
778	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
779	unsigned long timeout, flags;
780	int ret = 0;
781	int i;
782
783	spin_lock_irqsave(&i2c->lock, flags);
784
785	clk_enable(i2c->clk);
786
787	i2c->is_last_msg = false;
788
789	/*
790	 * Process msgs. We can handle more than one message at once (see
791	 * rk3x_i2c_setup()).
792	 */
793	for (i = 0; i < num; i += ret) {
794		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);
795
796		if (ret < 0) {
797			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
798			break;
799		}
800
801		if (i + ret >= num)
802			i2c->is_last_msg = true;
803
804		spin_unlock_irqrestore(&i2c->lock, flags);
805
806		rk3x_i2c_start(i2c);
807
808		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
809					     msecs_to_jiffies(WAIT_TIMEOUT));
810
811		spin_lock_irqsave(&i2c->lock, flags);
812
813		if (timeout == 0) {
814			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
815				i2c_readl(i2c, REG_IPD), i2c->state);
816
817			/* Force a STOP condition without interrupt */
818			i2c_writel(i2c, 0, REG_IEN);
819			i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
820
821			i2c->state = STATE_IDLE;
822
823			ret = -ETIMEDOUT;
824			break;
825		}
826
827		if (i2c->error) {
828			ret = i2c->error;
829			break;
830		}
831	}
832
833	clk_disable(i2c->clk);
834	spin_unlock_irqrestore(&i2c->lock, flags);
835
836	return ret < 0 ? ret : num;
837}
838
839static u32 rk3x_i2c_func(struct i2c_adapter *adap)
840{
841	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
842}
843
844static const struct i2c_algorithm rk3x_i2c_algorithm = {
845	.master_xfer		= rk3x_i2c_xfer,
846	.functionality		= rk3x_i2c_func,
847};
848
849static struct rk3x_i2c_soc_data soc_data[3] = {
850	{ .grf_offset = 0x154 }, /* rk3066 */
851	{ .grf_offset = 0x0a4 }, /* rk3188 */
852	{ .grf_offset = -1 },    /* no I2C switching needed */
853};
854
855static const struct of_device_id rk3x_i2c_match[] = {
856	{ .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
857	{ .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
858	{ .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
859	{},
860};
861
862static int rk3x_i2c_probe(struct platform_device *pdev)
863{
864	struct device_node *np = pdev->dev.of_node;
865	const struct of_device_id *match;
866	struct rk3x_i2c *i2c;
867	struct resource *mem;
868	int ret = 0;
869	int bus_nr;
870	u32 value;
871	int irq;
872	unsigned long clk_rate;
873
874	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
875	if (!i2c)
876		return -ENOMEM;
877
878	match = of_match_node(rk3x_i2c_match, np);
879	i2c->soc_data = (struct rk3x_i2c_soc_data *)match->data;
880
881	if (of_property_read_u32(pdev->dev.of_node, "clock-frequency",
882				 &i2c->scl_frequency)) {
883		dev_info(&pdev->dev, "using default SCL frequency: %d\n",
884			 DEFAULT_SCL_RATE);
885		i2c->scl_frequency = DEFAULT_SCL_RATE;
886	}
887
888	if (i2c->scl_frequency == 0 || i2c->scl_frequency > 400 * 1000) {
889		dev_warn(&pdev->dev, "invalid SCL frequency specified.\n");
890		dev_warn(&pdev->dev, "using default SCL frequency: %d\n",
891			 DEFAULT_SCL_RATE);
892		i2c->scl_frequency = DEFAULT_SCL_RATE;
893	}
894
895	/*
896	 * Read rise and fall time from device tree. If not available use
897	 * the default maximum timing from the specification.
898	 */
899	if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-rising-time-ns",
900				 &i2c->scl_rise_ns)) {
901		if (i2c->scl_frequency <= 100000)
902			i2c->scl_rise_ns = 1000;
903		else
904			i2c->scl_rise_ns = 300;
905	}
906	if (of_property_read_u32(pdev->dev.of_node, "i2c-scl-falling-time-ns",
907				 &i2c->scl_fall_ns))
908		i2c->scl_fall_ns = 300;
909	if (of_property_read_u32(pdev->dev.of_node, "i2c-sda-falling-time-ns",
910				 &i2c->scl_fall_ns))
911		i2c->sda_fall_ns = i2c->scl_fall_ns;
912
913	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
914	i2c->adap.owner = THIS_MODULE;
915	i2c->adap.algo = &rk3x_i2c_algorithm;
916	i2c->adap.retries = 3;
917	i2c->adap.dev.of_node = np;
918	i2c->adap.algo_data = i2c;
919	i2c->adap.dev.parent = &pdev->dev;
920
921	i2c->dev = &pdev->dev;
922
923	spin_lock_init(&i2c->lock);
924	init_waitqueue_head(&i2c->wait);
925
926	i2c->clk = devm_clk_get(&pdev->dev, NULL);
927	if (IS_ERR(i2c->clk)) {
928		dev_err(&pdev->dev, "cannot get clock\n");
929		return PTR_ERR(i2c->clk);
930	}
931
932	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
933	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
934	if (IS_ERR(i2c->regs))
935		return PTR_ERR(i2c->regs);
936
937	/* Try to set the I2C adapter number from dt */
938	bus_nr = of_alias_get_id(np, "i2c");
939
940	/*
941	 * Switch to new interface if the SoC also offers the old one.
942	 * The control bit is located in the GRF register space.
943	 */
944	if (i2c->soc_data->grf_offset >= 0) {
945		struct regmap *grf;
946
947		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
948		if (IS_ERR(grf)) {
949			dev_err(&pdev->dev,
950				"rk3x-i2c needs 'rockchip,grf' property\n");
951			return PTR_ERR(grf);
952		}
953
954		if (bus_nr < 0) {
955			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
956			return -EINVAL;
957		}
958
959		/* 27+i: write mask, 11+i: value */
960		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);
961
962		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
963		if (ret != 0) {
964			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
965			return ret;
966		}
967	}
968
969	/* IRQ setup */
970	irq = platform_get_irq(pdev, 0);
971	if (irq < 0) {
972		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
973		return irq;
974	}
975
976	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
977			       0, dev_name(&pdev->dev), i2c);
978	if (ret < 0) {
979		dev_err(&pdev->dev, "cannot request IRQ\n");
980		return ret;
981	}
982
983	platform_set_drvdata(pdev, i2c);
984
985	ret = clk_prepare(i2c->clk);
986	if (ret < 0) {
987		dev_err(&pdev->dev, "Could not prepare clock\n");
988		return ret;
989	}
990
991	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
992	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
993	if (ret != 0) {
994		dev_err(&pdev->dev, "Unable to register clock notifier\n");
995		goto err_clk;
996	}
997
998	clk_rate = clk_get_rate(i2c->clk);
999	rk3x_i2c_adapt_div(i2c, clk_rate);
1000
1001	ret = i2c_add_adapter(&i2c->adap);
1002	if (ret < 0) {
1003		dev_err(&pdev->dev, "Could not register adapter\n");
1004		goto err_clk_notifier;
1005	}
1006
1007	dev_info(&pdev->dev, "Initialized RK3xxx I2C bus at %p\n", i2c->regs);
1008
1009	return 0;
1010
1011err_clk_notifier:
1012	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1013err_clk:
1014	clk_unprepare(i2c->clk);
1015	return ret;
1016}
1017
1018static int rk3x_i2c_remove(struct platform_device *pdev)
1019{
1020	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);
1021
1022	i2c_del_adapter(&i2c->adap);
1023
1024	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
1025	clk_unprepare(i2c->clk);
1026
1027	return 0;
1028}
1029
1030static struct platform_driver rk3x_i2c_driver = {
1031	.probe   = rk3x_i2c_probe,
1032	.remove  = rk3x_i2c_remove,
1033	.driver  = {
1034		.name  = "rk3x-i2c",
1035		.of_match_table = rk3x_i2c_match,
1036	},
1037};
1038
1039module_platform_driver(rk3x_i2c_driver);
1040
1041MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
1042MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
1043MODULE_LICENSE("GPL v2");
1044