1/*
2 * Hardware monitoring driver for PMBus devices
3 *
4 * Copyright (c) 2010, 2011 Ericsson AB.
5 * Copyright (c) 2012 Guenter Roeck
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/init.h>
25#include <linux/err.h>
26#include <linux/slab.h>
27#include <linux/i2c.h>
28#include <linux/hwmon.h>
29#include <linux/hwmon-sysfs.h>
30#include <linux/jiffies.h>
31#include <linux/i2c/pmbus.h>
32#include <linux/regulator/driver.h>
33#include <linux/regulator/machine.h>
34#include "pmbus.h"
35
36/*
37 * Number of additional attribute pointers to allocate
38 * with each call to krealloc
39 */
40#define PMBUS_ATTR_ALLOC_SIZE	32
41
42/*
43 * Index into status register array, per status register group
44 */
45#define PB_STATUS_BASE		0
46#define PB_STATUS_VOUT_BASE	(PB_STATUS_BASE + PMBUS_PAGES)
47#define PB_STATUS_IOUT_BASE	(PB_STATUS_VOUT_BASE + PMBUS_PAGES)
48#define PB_STATUS_FAN_BASE	(PB_STATUS_IOUT_BASE + PMBUS_PAGES)
49#define PB_STATUS_FAN34_BASE	(PB_STATUS_FAN_BASE + PMBUS_PAGES)
50#define PB_STATUS_TEMP_BASE	(PB_STATUS_FAN34_BASE + PMBUS_PAGES)
51#define PB_STATUS_INPUT_BASE	(PB_STATUS_TEMP_BASE + PMBUS_PAGES)
52#define PB_STATUS_VMON_BASE	(PB_STATUS_INPUT_BASE + 1)
53
54#define PB_NUM_STATUS_REG	(PB_STATUS_VMON_BASE + 1)
55
56#define PMBUS_NAME_SIZE		24
57
58struct pmbus_sensor {
59	struct pmbus_sensor *next;
60	char name[PMBUS_NAME_SIZE];	/* sysfs sensor name */
61	struct device_attribute attribute;
62	u8 page;		/* page number */
63	u16 reg;		/* register */
64	enum pmbus_sensor_classes class;	/* sensor class */
65	bool update;		/* runtime sensor update needed */
66	int data;		/* Sensor data.
67				   Negative if there was a read error */
68};
69#define to_pmbus_sensor(_attr) \
70	container_of(_attr, struct pmbus_sensor, attribute)
71
72struct pmbus_boolean {
73	char name[PMBUS_NAME_SIZE];	/* sysfs boolean name */
74	struct sensor_device_attribute attribute;
75	struct pmbus_sensor *s1;
76	struct pmbus_sensor *s2;
77};
78#define to_pmbus_boolean(_attr) \
79	container_of(_attr, struct pmbus_boolean, attribute)
80
81struct pmbus_label {
82	char name[PMBUS_NAME_SIZE];	/* sysfs label name */
83	struct device_attribute attribute;
84	char label[PMBUS_NAME_SIZE];	/* label */
85};
86#define to_pmbus_label(_attr) \
87	container_of(_attr, struct pmbus_label, attribute)
88
89struct pmbus_data {
90	struct device *dev;
91	struct device *hwmon_dev;
92
93	u32 flags;		/* from platform data */
94
95	int exponent[PMBUS_PAGES];
96				/* linear mode: exponent for output voltages */
97
98	const struct pmbus_driver_info *info;
99
100	int max_attributes;
101	int num_attributes;
102	struct attribute_group group;
103	const struct attribute_group *groups[2];
104
105	struct pmbus_sensor *sensors;
106
107	struct mutex update_lock;
108	bool valid;
109	unsigned long last_updated;	/* in jiffies */
110
111	/*
112	 * A single status register covers multiple attributes,
113	 * so we keep them all together.
114	 */
115	u8 status[PB_NUM_STATUS_REG];
116	u8 status_register;
117
118	u8 currpage;
119};
120
121void pmbus_clear_cache(struct i2c_client *client)
122{
123	struct pmbus_data *data = i2c_get_clientdata(client);
124
125	data->valid = false;
126}
127EXPORT_SYMBOL_GPL(pmbus_clear_cache);
128
129int pmbus_set_page(struct i2c_client *client, u8 page)
130{
131	struct pmbus_data *data = i2c_get_clientdata(client);
132	int rv = 0;
133	int newpage;
134
135	if (page != data->currpage) {
136		rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page);
137		newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE);
138		if (newpage != page)
139			rv = -EIO;
140		else
141			data->currpage = page;
142	}
143	return rv;
144}
145EXPORT_SYMBOL_GPL(pmbus_set_page);
146
147int pmbus_write_byte(struct i2c_client *client, int page, u8 value)
148{
149	int rv;
150
151	if (page >= 0) {
152		rv = pmbus_set_page(client, page);
153		if (rv < 0)
154			return rv;
155	}
156
157	return i2c_smbus_write_byte(client, value);
158}
159EXPORT_SYMBOL_GPL(pmbus_write_byte);
160
161/*
162 * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if
163 * a device specific mapping function exists and calls it if necessary.
164 */
165static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value)
166{
167	struct pmbus_data *data = i2c_get_clientdata(client);
168	const struct pmbus_driver_info *info = data->info;
169	int status;
170
171	if (info->write_byte) {
172		status = info->write_byte(client, page, value);
173		if (status != -ENODATA)
174			return status;
175	}
176	return pmbus_write_byte(client, page, value);
177}
178
179int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word)
180{
181	int rv;
182
183	rv = pmbus_set_page(client, page);
184	if (rv < 0)
185		return rv;
186
187	return i2c_smbus_write_word_data(client, reg, word);
188}
189EXPORT_SYMBOL_GPL(pmbus_write_word_data);
190
191/*
192 * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if
193 * a device specific mapping function exists and calls it if necessary.
194 */
195static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg,
196				  u16 word)
197{
198	struct pmbus_data *data = i2c_get_clientdata(client);
199	const struct pmbus_driver_info *info = data->info;
200	int status;
201
202	if (info->write_word_data) {
203		status = info->write_word_data(client, page, reg, word);
204		if (status != -ENODATA)
205			return status;
206	}
207	if (reg >= PMBUS_VIRT_BASE)
208		return -ENXIO;
209	return pmbus_write_word_data(client, page, reg, word);
210}
211
212int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg)
213{
214	int rv;
215
216	rv = pmbus_set_page(client, page);
217	if (rv < 0)
218		return rv;
219
220	return i2c_smbus_read_word_data(client, reg);
221}
222EXPORT_SYMBOL_GPL(pmbus_read_word_data);
223
224/*
225 * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if
226 * a device specific mapping function exists and calls it if necessary.
227 */
228static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg)
229{
230	struct pmbus_data *data = i2c_get_clientdata(client);
231	const struct pmbus_driver_info *info = data->info;
232	int status;
233
234	if (info->read_word_data) {
235		status = info->read_word_data(client, page, reg);
236		if (status != -ENODATA)
237			return status;
238	}
239	if (reg >= PMBUS_VIRT_BASE)
240		return -ENXIO;
241	return pmbus_read_word_data(client, page, reg);
242}
243
244int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg)
245{
246	int rv;
247
248	if (page >= 0) {
249		rv = pmbus_set_page(client, page);
250		if (rv < 0)
251			return rv;
252	}
253
254	return i2c_smbus_read_byte_data(client, reg);
255}
256EXPORT_SYMBOL_GPL(pmbus_read_byte_data);
257
258int pmbus_write_byte_data(struct i2c_client *client, int page, u8 reg, u8 value)
259{
260	int rv;
261
262	rv = pmbus_set_page(client, page);
263	if (rv < 0)
264		return rv;
265
266	return i2c_smbus_write_byte_data(client, reg, value);
267}
268EXPORT_SYMBOL_GPL(pmbus_write_byte_data);
269
270int pmbus_update_byte_data(struct i2c_client *client, int page, u8 reg,
271			   u8 mask, u8 value)
272{
273	unsigned int tmp;
274	int rv;
275
276	rv = pmbus_read_byte_data(client, page, reg);
277	if (rv < 0)
278		return rv;
279
280	tmp = (rv & ~mask) | (value & mask);
281
282	if (tmp != rv)
283		rv = pmbus_write_byte_data(client, page, reg, tmp);
284
285	return rv;
286}
287EXPORT_SYMBOL_GPL(pmbus_update_byte_data);
288
289/*
290 * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if
291 * a device specific mapping function exists and calls it if necessary.
292 */
293static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg)
294{
295	struct pmbus_data *data = i2c_get_clientdata(client);
296	const struct pmbus_driver_info *info = data->info;
297	int status;
298
299	if (info->read_byte_data) {
300		status = info->read_byte_data(client, page, reg);
301		if (status != -ENODATA)
302			return status;
303	}
304	return pmbus_read_byte_data(client, page, reg);
305}
306
307static void pmbus_clear_fault_page(struct i2c_client *client, int page)
308{
309	_pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS);
310}
311
312void pmbus_clear_faults(struct i2c_client *client)
313{
314	struct pmbus_data *data = i2c_get_clientdata(client);
315	int i;
316
317	for (i = 0; i < data->info->pages; i++)
318		pmbus_clear_fault_page(client, i);
319}
320EXPORT_SYMBOL_GPL(pmbus_clear_faults);
321
322static int pmbus_check_status_cml(struct i2c_client *client)
323{
324	struct pmbus_data *data = i2c_get_clientdata(client);
325	int status, status2;
326
327	status = _pmbus_read_byte_data(client, -1, data->status_register);
328	if (status < 0 || (status & PB_STATUS_CML)) {
329		status2 = _pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML);
330		if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND))
331			return -EIO;
332	}
333	return 0;
334}
335
336static bool pmbus_check_register(struct i2c_client *client,
337				 int (*func)(struct i2c_client *client,
338					     int page, int reg),
339				 int page, int reg)
340{
341	int rv;
342	struct pmbus_data *data = i2c_get_clientdata(client);
343
344	rv = func(client, page, reg);
345	if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK))
346		rv = pmbus_check_status_cml(client);
347	pmbus_clear_fault_page(client, -1);
348	return rv >= 0;
349}
350
351bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg)
352{
353	return pmbus_check_register(client, _pmbus_read_byte_data, page, reg);
354}
355EXPORT_SYMBOL_GPL(pmbus_check_byte_register);
356
357bool pmbus_check_word_register(struct i2c_client *client, int page, int reg)
358{
359	return pmbus_check_register(client, _pmbus_read_word_data, page, reg);
360}
361EXPORT_SYMBOL_GPL(pmbus_check_word_register);
362
363const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client)
364{
365	struct pmbus_data *data = i2c_get_clientdata(client);
366
367	return data->info;
368}
369EXPORT_SYMBOL_GPL(pmbus_get_driver_info);
370
371static struct _pmbus_status {
372	u32 func;
373	u16 base;
374	u16 reg;
375} pmbus_status[] = {
376	{ PMBUS_HAVE_STATUS_VOUT, PB_STATUS_VOUT_BASE, PMBUS_STATUS_VOUT },
377	{ PMBUS_HAVE_STATUS_IOUT, PB_STATUS_IOUT_BASE, PMBUS_STATUS_IOUT },
378	{ PMBUS_HAVE_STATUS_TEMP, PB_STATUS_TEMP_BASE,
379	  PMBUS_STATUS_TEMPERATURE },
380	{ PMBUS_HAVE_STATUS_FAN12, PB_STATUS_FAN_BASE, PMBUS_STATUS_FAN_12 },
381	{ PMBUS_HAVE_STATUS_FAN34, PB_STATUS_FAN34_BASE, PMBUS_STATUS_FAN_34 },
382};
383
384static struct pmbus_data *pmbus_update_device(struct device *dev)
385{
386	struct i2c_client *client = to_i2c_client(dev->parent);
387	struct pmbus_data *data = i2c_get_clientdata(client);
388	const struct pmbus_driver_info *info = data->info;
389	struct pmbus_sensor *sensor;
390
391	mutex_lock(&data->update_lock);
392	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
393		int i, j;
394
395		for (i = 0; i < info->pages; i++) {
396			data->status[PB_STATUS_BASE + i]
397			    = _pmbus_read_byte_data(client, i,
398						    data->status_register);
399			for (j = 0; j < ARRAY_SIZE(pmbus_status); j++) {
400				struct _pmbus_status *s = &pmbus_status[j];
401
402				if (!(info->func[i] & s->func))
403					continue;
404				data->status[s->base + i]
405					= _pmbus_read_byte_data(client, i,
406								s->reg);
407			}
408		}
409
410		if (info->func[0] & PMBUS_HAVE_STATUS_INPUT)
411			data->status[PB_STATUS_INPUT_BASE]
412			  = _pmbus_read_byte_data(client, 0,
413						  PMBUS_STATUS_INPUT);
414
415		if (info->func[0] & PMBUS_HAVE_STATUS_VMON)
416			data->status[PB_STATUS_VMON_BASE]
417			  = _pmbus_read_byte_data(client, 0,
418						  PMBUS_VIRT_STATUS_VMON);
419
420		for (sensor = data->sensors; sensor; sensor = sensor->next) {
421			if (!data->valid || sensor->update)
422				sensor->data
423				    = _pmbus_read_word_data(client,
424							    sensor->page,
425							    sensor->reg);
426		}
427		pmbus_clear_faults(client);
428		data->last_updated = jiffies;
429		data->valid = 1;
430	}
431	mutex_unlock(&data->update_lock);
432	return data;
433}
434
435/*
436 * Convert linear sensor values to milli- or micro-units
437 * depending on sensor type.
438 */
439static long pmbus_reg2data_linear(struct pmbus_data *data,
440				  struct pmbus_sensor *sensor)
441{
442	s16 exponent;
443	s32 mantissa;
444	long val;
445
446	if (sensor->class == PSC_VOLTAGE_OUT) {	/* LINEAR16 */
447		exponent = data->exponent[sensor->page];
448		mantissa = (u16) sensor->data;
449	} else {				/* LINEAR11 */
450		exponent = ((s16)sensor->data) >> 11;
451		mantissa = ((s16)((sensor->data & 0x7ff) << 5)) >> 5;
452	}
453
454	val = mantissa;
455
456	/* scale result to milli-units for all sensors except fans */
457	if (sensor->class != PSC_FAN)
458		val = val * 1000L;
459
460	/* scale result to micro-units for power sensors */
461	if (sensor->class == PSC_POWER)
462		val = val * 1000L;
463
464	if (exponent >= 0)
465		val <<= exponent;
466	else
467		val >>= -exponent;
468
469	return val;
470}
471
472/*
473 * Convert direct sensor values to milli- or micro-units
474 * depending on sensor type.
475 */
476static long pmbus_reg2data_direct(struct pmbus_data *data,
477				  struct pmbus_sensor *sensor)
478{
479	long val = (s16) sensor->data;
480	long m, b, R;
481
482	m = data->info->m[sensor->class];
483	b = data->info->b[sensor->class];
484	R = data->info->R[sensor->class];
485
486	if (m == 0)
487		return 0;
488
489	/* X = 1/m * (Y * 10^-R - b) */
490	R = -R;
491	/* scale result to milli-units for everything but fans */
492	if (sensor->class != PSC_FAN) {
493		R += 3;
494		b *= 1000;
495	}
496
497	/* scale result to micro-units for power sensors */
498	if (sensor->class == PSC_POWER) {
499		R += 3;
500		b *= 1000;
501	}
502
503	while (R > 0) {
504		val *= 10;
505		R--;
506	}
507	while (R < 0) {
508		val = DIV_ROUND_CLOSEST(val, 10);
509		R++;
510	}
511
512	return (val - b) / m;
513}
514
515/*
516 * Convert VID sensor values to milli- or micro-units
517 * depending on sensor type.
518 * We currently only support VR11.
519 */
520static long pmbus_reg2data_vid(struct pmbus_data *data,
521			       struct pmbus_sensor *sensor)
522{
523	long val = sensor->data;
524
525	if (val < 0x02 || val > 0xb2)
526		return 0;
527	return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100);
528}
529
530static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor)
531{
532	long val;
533
534	switch (data->info->format[sensor->class]) {
535	case direct:
536		val = pmbus_reg2data_direct(data, sensor);
537		break;
538	case vid:
539		val = pmbus_reg2data_vid(data, sensor);
540		break;
541	case linear:
542	default:
543		val = pmbus_reg2data_linear(data, sensor);
544		break;
545	}
546	return val;
547}
548
549#define MAX_MANTISSA	(1023 * 1000)
550#define MIN_MANTISSA	(511 * 1000)
551
552static u16 pmbus_data2reg_linear(struct pmbus_data *data,
553				 struct pmbus_sensor *sensor, long val)
554{
555	s16 exponent = 0, mantissa;
556	bool negative = false;
557
558	/* simple case */
559	if (val == 0)
560		return 0;
561
562	if (sensor->class == PSC_VOLTAGE_OUT) {
563		/* LINEAR16 does not support negative voltages */
564		if (val < 0)
565			return 0;
566
567		/*
568		 * For a static exponents, we don't have a choice
569		 * but to adjust the value to it.
570		 */
571		if (data->exponent[sensor->page] < 0)
572			val <<= -data->exponent[sensor->page];
573		else
574			val >>= data->exponent[sensor->page];
575		val = DIV_ROUND_CLOSEST(val, 1000);
576		return val & 0xffff;
577	}
578
579	if (val < 0) {
580		negative = true;
581		val = -val;
582	}
583
584	/* Power is in uW. Convert to mW before converting. */
585	if (sensor->class == PSC_POWER)
586		val = DIV_ROUND_CLOSEST(val, 1000L);
587
588	/*
589	 * For simplicity, convert fan data to milli-units
590	 * before calculating the exponent.
591	 */
592	if (sensor->class == PSC_FAN)
593		val = val * 1000;
594
595	/* Reduce large mantissa until it fits into 10 bit */
596	while (val >= MAX_MANTISSA && exponent < 15) {
597		exponent++;
598		val >>= 1;
599	}
600	/* Increase small mantissa to improve precision */
601	while (val < MIN_MANTISSA && exponent > -15) {
602		exponent--;
603		val <<= 1;
604	}
605
606	/* Convert mantissa from milli-units to units */
607	mantissa = DIV_ROUND_CLOSEST(val, 1000);
608
609	/* Ensure that resulting number is within range */
610	if (mantissa > 0x3ff)
611		mantissa = 0x3ff;
612
613	/* restore sign */
614	if (negative)
615		mantissa = -mantissa;
616
617	/* Convert to 5 bit exponent, 11 bit mantissa */
618	return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800);
619}
620
621static u16 pmbus_data2reg_direct(struct pmbus_data *data,
622				 struct pmbus_sensor *sensor, long val)
623{
624	long m, b, R;
625
626	m = data->info->m[sensor->class];
627	b = data->info->b[sensor->class];
628	R = data->info->R[sensor->class];
629
630	/* Power is in uW. Adjust R and b. */
631	if (sensor->class == PSC_POWER) {
632		R -= 3;
633		b *= 1000;
634	}
635
636	/* Calculate Y = (m * X + b) * 10^R */
637	if (sensor->class != PSC_FAN) {
638		R -= 3;		/* Adjust R and b for data in milli-units */
639		b *= 1000;
640	}
641	val = val * m + b;
642
643	while (R > 0) {
644		val *= 10;
645		R--;
646	}
647	while (R < 0) {
648		val = DIV_ROUND_CLOSEST(val, 10);
649		R++;
650	}
651
652	return val;
653}
654
655static u16 pmbus_data2reg_vid(struct pmbus_data *data,
656			      struct pmbus_sensor *sensor, long val)
657{
658	val = clamp_val(val, 500, 1600);
659
660	return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625);
661}
662
663static u16 pmbus_data2reg(struct pmbus_data *data,
664			  struct pmbus_sensor *sensor, long val)
665{
666	u16 regval;
667
668	switch (data->info->format[sensor->class]) {
669	case direct:
670		regval = pmbus_data2reg_direct(data, sensor, val);
671		break;
672	case vid:
673		regval = pmbus_data2reg_vid(data, sensor, val);
674		break;
675	case linear:
676	default:
677		regval = pmbus_data2reg_linear(data, sensor, val);
678		break;
679	}
680	return regval;
681}
682
683/*
684 * Return boolean calculated from converted data.
685 * <index> defines a status register index and mask.
686 * The mask is in the lower 8 bits, the register index is in bits 8..23.
687 *
688 * The associated pmbus_boolean structure contains optional pointers to two
689 * sensor attributes. If specified, those attributes are compared against each
690 * other to determine if a limit has been exceeded.
691 *
692 * If the sensor attribute pointers are NULL, the function returns true if
693 * (status[reg] & mask) is true.
694 *
695 * If sensor attribute pointers are provided, a comparison against a specified
696 * limit has to be performed to determine the boolean result.
697 * In this case, the function returns true if v1 >= v2 (where v1 and v2 are
698 * sensor values referenced by sensor attribute pointers s1 and s2).
699 *
700 * To determine if an object exceeds upper limits, specify <s1,s2> = <v,limit>.
701 * To determine if an object exceeds lower limits, specify <s1,s2> = <limit,v>.
702 *
703 * If a negative value is stored in any of the referenced registers, this value
704 * reflects an error code which will be returned.
705 */
706static int pmbus_get_boolean(struct pmbus_data *data, struct pmbus_boolean *b,
707			     int index)
708{
709	struct pmbus_sensor *s1 = b->s1;
710	struct pmbus_sensor *s2 = b->s2;
711	u16 reg = (index >> 8) & 0xffff;
712	u8 mask = index & 0xff;
713	int ret, status;
714	u8 regval;
715
716	status = data->status[reg];
717	if (status < 0)
718		return status;
719
720	regval = status & mask;
721	if (!s1 && !s2) {
722		ret = !!regval;
723	} else if (!s1 || !s2) {
724		WARN(1, "Bad boolean descriptor %p: s1=%p, s2=%p\n", b, s1, s2);
725		return 0;
726	} else {
727		long v1, v2;
728
729		if (s1->data < 0)
730			return s1->data;
731		if (s2->data < 0)
732			return s2->data;
733
734		v1 = pmbus_reg2data(data, s1);
735		v2 = pmbus_reg2data(data, s2);
736		ret = !!(regval && v1 >= v2);
737	}
738	return ret;
739}
740
741static ssize_t pmbus_show_boolean(struct device *dev,
742				  struct device_attribute *da, char *buf)
743{
744	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
745	struct pmbus_boolean *boolean = to_pmbus_boolean(attr);
746	struct pmbus_data *data = pmbus_update_device(dev);
747	int val;
748
749	val = pmbus_get_boolean(data, boolean, attr->index);
750	if (val < 0)
751		return val;
752	return snprintf(buf, PAGE_SIZE, "%d\n", val);
753}
754
755static ssize_t pmbus_show_sensor(struct device *dev,
756				 struct device_attribute *devattr, char *buf)
757{
758	struct pmbus_data *data = pmbus_update_device(dev);
759	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
760
761	if (sensor->data < 0)
762		return sensor->data;
763
764	return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor));
765}
766
767static ssize_t pmbus_set_sensor(struct device *dev,
768				struct device_attribute *devattr,
769				const char *buf, size_t count)
770{
771	struct i2c_client *client = to_i2c_client(dev->parent);
772	struct pmbus_data *data = i2c_get_clientdata(client);
773	struct pmbus_sensor *sensor = to_pmbus_sensor(devattr);
774	ssize_t rv = count;
775	long val = 0;
776	int ret;
777	u16 regval;
778
779	if (kstrtol(buf, 10, &val) < 0)
780		return -EINVAL;
781
782	mutex_lock(&data->update_lock);
783	regval = pmbus_data2reg(data, sensor, val);
784	ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval);
785	if (ret < 0)
786		rv = ret;
787	else
788		sensor->data = regval;
789	mutex_unlock(&data->update_lock);
790	return rv;
791}
792
793static ssize_t pmbus_show_label(struct device *dev,
794				struct device_attribute *da, char *buf)
795{
796	struct pmbus_label *label = to_pmbus_label(da);
797
798	return snprintf(buf, PAGE_SIZE, "%s\n", label->label);
799}
800
801static int pmbus_add_attribute(struct pmbus_data *data, struct attribute *attr)
802{
803	if (data->num_attributes >= data->max_attributes - 1) {
804		int new_max_attrs = data->max_attributes + PMBUS_ATTR_ALLOC_SIZE;
805		void *new_attrs = krealloc(data->group.attrs,
806					   new_max_attrs * sizeof(void *),
807					   GFP_KERNEL);
808		if (!new_attrs)
809			return -ENOMEM;
810		data->group.attrs = new_attrs;
811		data->max_attributes = new_max_attrs;
812	}
813
814	data->group.attrs[data->num_attributes++] = attr;
815	data->group.attrs[data->num_attributes] = NULL;
816	return 0;
817}
818
819static void pmbus_dev_attr_init(struct device_attribute *dev_attr,
820				const char *name,
821				umode_t mode,
822				ssize_t (*show)(struct device *dev,
823						struct device_attribute *attr,
824						char *buf),
825				ssize_t (*store)(struct device *dev,
826						 struct device_attribute *attr,
827						 const char *buf, size_t count))
828{
829	sysfs_attr_init(&dev_attr->attr);
830	dev_attr->attr.name = name;
831	dev_attr->attr.mode = mode;
832	dev_attr->show = show;
833	dev_attr->store = store;
834}
835
836static void pmbus_attr_init(struct sensor_device_attribute *a,
837			    const char *name,
838			    umode_t mode,
839			    ssize_t (*show)(struct device *dev,
840					    struct device_attribute *attr,
841					    char *buf),
842			    ssize_t (*store)(struct device *dev,
843					     struct device_attribute *attr,
844					     const char *buf, size_t count),
845			    int idx)
846{
847	pmbus_dev_attr_init(&a->dev_attr, name, mode, show, store);
848	a->index = idx;
849}
850
851static int pmbus_add_boolean(struct pmbus_data *data,
852			     const char *name, const char *type, int seq,
853			     struct pmbus_sensor *s1,
854			     struct pmbus_sensor *s2,
855			     u16 reg, u8 mask)
856{
857	struct pmbus_boolean *boolean;
858	struct sensor_device_attribute *a;
859
860	boolean = devm_kzalloc(data->dev, sizeof(*boolean), GFP_KERNEL);
861	if (!boolean)
862		return -ENOMEM;
863
864	a = &boolean->attribute;
865
866	snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s",
867		 name, seq, type);
868	boolean->s1 = s1;
869	boolean->s2 = s2;
870	pmbus_attr_init(a, boolean->name, S_IRUGO, pmbus_show_boolean, NULL,
871			(reg << 8) | mask);
872
873	return pmbus_add_attribute(data, &a->dev_attr.attr);
874}
875
876static struct pmbus_sensor *pmbus_add_sensor(struct pmbus_data *data,
877					     const char *name, const char *type,
878					     int seq, int page, int reg,
879					     enum pmbus_sensor_classes class,
880					     bool update, bool readonly)
881{
882	struct pmbus_sensor *sensor;
883	struct device_attribute *a;
884
885	sensor = devm_kzalloc(data->dev, sizeof(*sensor), GFP_KERNEL);
886	if (!sensor)
887		return NULL;
888	a = &sensor->attribute;
889
890	snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s",
891		 name, seq, type);
892	sensor->page = page;
893	sensor->reg = reg;
894	sensor->class = class;
895	sensor->update = update;
896	pmbus_dev_attr_init(a, sensor->name,
897			    readonly ? S_IRUGO : S_IRUGO | S_IWUSR,
898			    pmbus_show_sensor, pmbus_set_sensor);
899
900	if (pmbus_add_attribute(data, &a->attr))
901		return NULL;
902
903	sensor->next = data->sensors;
904	data->sensors = sensor;
905
906	return sensor;
907}
908
909static int pmbus_add_label(struct pmbus_data *data,
910			   const char *name, int seq,
911			   const char *lstring, int index)
912{
913	struct pmbus_label *label;
914	struct device_attribute *a;
915
916	label = devm_kzalloc(data->dev, sizeof(*label), GFP_KERNEL);
917	if (!label)
918		return -ENOMEM;
919
920	a = &label->attribute;
921
922	snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq);
923	if (!index)
924		strncpy(label->label, lstring, sizeof(label->label) - 1);
925	else
926		snprintf(label->label, sizeof(label->label), "%s%d", lstring,
927			 index);
928
929	pmbus_dev_attr_init(a, label->name, S_IRUGO, pmbus_show_label, NULL);
930	return pmbus_add_attribute(data, &a->attr);
931}
932
933/*
934 * Search for attributes. Allocate sensors, booleans, and labels as needed.
935 */
936
937/*
938 * The pmbus_limit_attr structure describes a single limit attribute
939 * and its associated alarm attribute.
940 */
941struct pmbus_limit_attr {
942	u16 reg;		/* Limit register */
943	u16 sbit;		/* Alarm attribute status bit */
944	bool update;		/* True if register needs updates */
945	bool low;		/* True if low limit; for limits with compare
946				   functions only */
947	const char *attr;	/* Attribute name */
948	const char *alarm;	/* Alarm attribute name */
949};
950
951/*
952 * The pmbus_sensor_attr structure describes one sensor attribute. This
953 * description includes a reference to the associated limit attributes.
954 */
955struct pmbus_sensor_attr {
956	u16 reg;			/* sensor register */
957	u8 gbit;			/* generic status bit */
958	u8 nlimit;			/* # of limit registers */
959	enum pmbus_sensor_classes class;/* sensor class */
960	const char *label;		/* sensor label */
961	bool paged;			/* true if paged sensor */
962	bool update;			/* true if update needed */
963	bool compare;			/* true if compare function needed */
964	u32 func;			/* sensor mask */
965	u32 sfunc;			/* sensor status mask */
966	int sbase;			/* status base register */
967	const struct pmbus_limit_attr *limit;/* limit registers */
968};
969
970/*
971 * Add a set of limit attributes and, if supported, the associated
972 * alarm attributes.
973 * returns 0 if no alarm register found, 1 if an alarm register was found,
974 * < 0 on errors.
975 */
976static int pmbus_add_limit_attrs(struct i2c_client *client,
977				 struct pmbus_data *data,
978				 const struct pmbus_driver_info *info,
979				 const char *name, int index, int page,
980				 struct pmbus_sensor *base,
981				 const struct pmbus_sensor_attr *attr)
982{
983	const struct pmbus_limit_attr *l = attr->limit;
984	int nlimit = attr->nlimit;
985	int have_alarm = 0;
986	int i, ret;
987	struct pmbus_sensor *curr;
988
989	for (i = 0; i < nlimit; i++) {
990		if (pmbus_check_word_register(client, page, l->reg)) {
991			curr = pmbus_add_sensor(data, name, l->attr, index,
992						page, l->reg, attr->class,
993						attr->update || l->update,
994						false);
995			if (!curr)
996				return -ENOMEM;
997			if (l->sbit && (info->func[page] & attr->sfunc)) {
998				ret = pmbus_add_boolean(data, name,
999					l->alarm, index,
1000					attr->compare ?  l->low ? curr : base
1001						      : NULL,
1002					attr->compare ? l->low ? base : curr
1003						      : NULL,
1004					attr->sbase + page, l->sbit);
1005				if (ret)
1006					return ret;
1007				have_alarm = 1;
1008			}
1009		}
1010		l++;
1011	}
1012	return have_alarm;
1013}
1014
1015static int pmbus_add_sensor_attrs_one(struct i2c_client *client,
1016				      struct pmbus_data *data,
1017				      const struct pmbus_driver_info *info,
1018				      const char *name,
1019				      int index, int page,
1020				      const struct pmbus_sensor_attr *attr)
1021{
1022	struct pmbus_sensor *base;
1023	int ret;
1024
1025	if (attr->label) {
1026		ret = pmbus_add_label(data, name, index, attr->label,
1027				      attr->paged ? page + 1 : 0);
1028		if (ret)
1029			return ret;
1030	}
1031	base = pmbus_add_sensor(data, name, "input", index, page, attr->reg,
1032				attr->class, true, true);
1033	if (!base)
1034		return -ENOMEM;
1035	if (attr->sfunc) {
1036		ret = pmbus_add_limit_attrs(client, data, info, name,
1037					    index, page, base, attr);
1038		if (ret < 0)
1039			return ret;
1040		/*
1041		 * Add generic alarm attribute only if there are no individual
1042		 * alarm attributes, if there is a global alarm bit, and if
1043		 * the generic status register for this page is accessible.
1044		 */
1045		if (!ret && attr->gbit &&
1046		    pmbus_check_byte_register(client, page,
1047					      data->status_register)) {
1048			ret = pmbus_add_boolean(data, name, "alarm", index,
1049						NULL, NULL,
1050						PB_STATUS_BASE + page,
1051						attr->gbit);
1052			if (ret)
1053				return ret;
1054		}
1055	}
1056	return 0;
1057}
1058
1059static int pmbus_add_sensor_attrs(struct i2c_client *client,
1060				  struct pmbus_data *data,
1061				  const char *name,
1062				  const struct pmbus_sensor_attr *attrs,
1063				  int nattrs)
1064{
1065	const struct pmbus_driver_info *info = data->info;
1066	int index, i;
1067	int ret;
1068
1069	index = 1;
1070	for (i = 0; i < nattrs; i++) {
1071		int page, pages;
1072
1073		pages = attrs->paged ? info->pages : 1;
1074		for (page = 0; page < pages; page++) {
1075			if (!(info->func[page] & attrs->func))
1076				continue;
1077			ret = pmbus_add_sensor_attrs_one(client, data, info,
1078							 name, index, page,
1079							 attrs);
1080			if (ret)
1081				return ret;
1082			index++;
1083		}
1084		attrs++;
1085	}
1086	return 0;
1087}
1088
1089static const struct pmbus_limit_attr vin_limit_attrs[] = {
1090	{
1091		.reg = PMBUS_VIN_UV_WARN_LIMIT,
1092		.attr = "min",
1093		.alarm = "min_alarm",
1094		.sbit = PB_VOLTAGE_UV_WARNING,
1095	}, {
1096		.reg = PMBUS_VIN_UV_FAULT_LIMIT,
1097		.attr = "lcrit",
1098		.alarm = "lcrit_alarm",
1099		.sbit = PB_VOLTAGE_UV_FAULT,
1100	}, {
1101		.reg = PMBUS_VIN_OV_WARN_LIMIT,
1102		.attr = "max",
1103		.alarm = "max_alarm",
1104		.sbit = PB_VOLTAGE_OV_WARNING,
1105	}, {
1106		.reg = PMBUS_VIN_OV_FAULT_LIMIT,
1107		.attr = "crit",
1108		.alarm = "crit_alarm",
1109		.sbit = PB_VOLTAGE_OV_FAULT,
1110	}, {
1111		.reg = PMBUS_VIRT_READ_VIN_AVG,
1112		.update = true,
1113		.attr = "average",
1114	}, {
1115		.reg = PMBUS_VIRT_READ_VIN_MIN,
1116		.update = true,
1117		.attr = "lowest",
1118	}, {
1119		.reg = PMBUS_VIRT_READ_VIN_MAX,
1120		.update = true,
1121		.attr = "highest",
1122	}, {
1123		.reg = PMBUS_VIRT_RESET_VIN_HISTORY,
1124		.attr = "reset_history",
1125	},
1126};
1127
1128static const struct pmbus_limit_attr vmon_limit_attrs[] = {
1129	{
1130		.reg = PMBUS_VIRT_VMON_UV_WARN_LIMIT,
1131		.attr = "min",
1132		.alarm = "min_alarm",
1133		.sbit = PB_VOLTAGE_UV_WARNING,
1134	}, {
1135		.reg = PMBUS_VIRT_VMON_UV_FAULT_LIMIT,
1136		.attr = "lcrit",
1137		.alarm = "lcrit_alarm",
1138		.sbit = PB_VOLTAGE_UV_FAULT,
1139	}, {
1140		.reg = PMBUS_VIRT_VMON_OV_WARN_LIMIT,
1141		.attr = "max",
1142		.alarm = "max_alarm",
1143		.sbit = PB_VOLTAGE_OV_WARNING,
1144	}, {
1145		.reg = PMBUS_VIRT_VMON_OV_FAULT_LIMIT,
1146		.attr = "crit",
1147		.alarm = "crit_alarm",
1148		.sbit = PB_VOLTAGE_OV_FAULT,
1149	}
1150};
1151
1152static const struct pmbus_limit_attr vout_limit_attrs[] = {
1153	{
1154		.reg = PMBUS_VOUT_UV_WARN_LIMIT,
1155		.attr = "min",
1156		.alarm = "min_alarm",
1157		.sbit = PB_VOLTAGE_UV_WARNING,
1158	}, {
1159		.reg = PMBUS_VOUT_UV_FAULT_LIMIT,
1160		.attr = "lcrit",
1161		.alarm = "lcrit_alarm",
1162		.sbit = PB_VOLTAGE_UV_FAULT,
1163	}, {
1164		.reg = PMBUS_VOUT_OV_WARN_LIMIT,
1165		.attr = "max",
1166		.alarm = "max_alarm",
1167		.sbit = PB_VOLTAGE_OV_WARNING,
1168	}, {
1169		.reg = PMBUS_VOUT_OV_FAULT_LIMIT,
1170		.attr = "crit",
1171		.alarm = "crit_alarm",
1172		.sbit = PB_VOLTAGE_OV_FAULT,
1173	}, {
1174		.reg = PMBUS_VIRT_READ_VOUT_AVG,
1175		.update = true,
1176		.attr = "average",
1177	}, {
1178		.reg = PMBUS_VIRT_READ_VOUT_MIN,
1179		.update = true,
1180		.attr = "lowest",
1181	}, {
1182		.reg = PMBUS_VIRT_READ_VOUT_MAX,
1183		.update = true,
1184		.attr = "highest",
1185	}, {
1186		.reg = PMBUS_VIRT_RESET_VOUT_HISTORY,
1187		.attr = "reset_history",
1188	}
1189};
1190
1191static const struct pmbus_sensor_attr voltage_attributes[] = {
1192	{
1193		.reg = PMBUS_READ_VIN,
1194		.class = PSC_VOLTAGE_IN,
1195		.label = "vin",
1196		.func = PMBUS_HAVE_VIN,
1197		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1198		.sbase = PB_STATUS_INPUT_BASE,
1199		.gbit = PB_STATUS_VIN_UV,
1200		.limit = vin_limit_attrs,
1201		.nlimit = ARRAY_SIZE(vin_limit_attrs),
1202	}, {
1203		.reg = PMBUS_VIRT_READ_VMON,
1204		.class = PSC_VOLTAGE_IN,
1205		.label = "vmon",
1206		.func = PMBUS_HAVE_VMON,
1207		.sfunc = PMBUS_HAVE_STATUS_VMON,
1208		.sbase = PB_STATUS_VMON_BASE,
1209		.limit = vmon_limit_attrs,
1210		.nlimit = ARRAY_SIZE(vmon_limit_attrs),
1211	}, {
1212		.reg = PMBUS_READ_VCAP,
1213		.class = PSC_VOLTAGE_IN,
1214		.label = "vcap",
1215		.func = PMBUS_HAVE_VCAP,
1216	}, {
1217		.reg = PMBUS_READ_VOUT,
1218		.class = PSC_VOLTAGE_OUT,
1219		.label = "vout",
1220		.paged = true,
1221		.func = PMBUS_HAVE_VOUT,
1222		.sfunc = PMBUS_HAVE_STATUS_VOUT,
1223		.sbase = PB_STATUS_VOUT_BASE,
1224		.gbit = PB_STATUS_VOUT_OV,
1225		.limit = vout_limit_attrs,
1226		.nlimit = ARRAY_SIZE(vout_limit_attrs),
1227	}
1228};
1229
1230/* Current attributes */
1231
1232static const struct pmbus_limit_attr iin_limit_attrs[] = {
1233	{
1234		.reg = PMBUS_IIN_OC_WARN_LIMIT,
1235		.attr = "max",
1236		.alarm = "max_alarm",
1237		.sbit = PB_IIN_OC_WARNING,
1238	}, {
1239		.reg = PMBUS_IIN_OC_FAULT_LIMIT,
1240		.attr = "crit",
1241		.alarm = "crit_alarm",
1242		.sbit = PB_IIN_OC_FAULT,
1243	}, {
1244		.reg = PMBUS_VIRT_READ_IIN_AVG,
1245		.update = true,
1246		.attr = "average",
1247	}, {
1248		.reg = PMBUS_VIRT_READ_IIN_MIN,
1249		.update = true,
1250		.attr = "lowest",
1251	}, {
1252		.reg = PMBUS_VIRT_READ_IIN_MAX,
1253		.update = true,
1254		.attr = "highest",
1255	}, {
1256		.reg = PMBUS_VIRT_RESET_IIN_HISTORY,
1257		.attr = "reset_history",
1258	}
1259};
1260
1261static const struct pmbus_limit_attr iout_limit_attrs[] = {
1262	{
1263		.reg = PMBUS_IOUT_OC_WARN_LIMIT,
1264		.attr = "max",
1265		.alarm = "max_alarm",
1266		.sbit = PB_IOUT_OC_WARNING,
1267	}, {
1268		.reg = PMBUS_IOUT_UC_FAULT_LIMIT,
1269		.attr = "lcrit",
1270		.alarm = "lcrit_alarm",
1271		.sbit = PB_IOUT_UC_FAULT,
1272	}, {
1273		.reg = PMBUS_IOUT_OC_FAULT_LIMIT,
1274		.attr = "crit",
1275		.alarm = "crit_alarm",
1276		.sbit = PB_IOUT_OC_FAULT,
1277	}, {
1278		.reg = PMBUS_VIRT_READ_IOUT_AVG,
1279		.update = true,
1280		.attr = "average",
1281	}, {
1282		.reg = PMBUS_VIRT_READ_IOUT_MIN,
1283		.update = true,
1284		.attr = "lowest",
1285	}, {
1286		.reg = PMBUS_VIRT_READ_IOUT_MAX,
1287		.update = true,
1288		.attr = "highest",
1289	}, {
1290		.reg = PMBUS_VIRT_RESET_IOUT_HISTORY,
1291		.attr = "reset_history",
1292	}
1293};
1294
1295static const struct pmbus_sensor_attr current_attributes[] = {
1296	{
1297		.reg = PMBUS_READ_IIN,
1298		.class = PSC_CURRENT_IN,
1299		.label = "iin",
1300		.func = PMBUS_HAVE_IIN,
1301		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1302		.sbase = PB_STATUS_INPUT_BASE,
1303		.limit = iin_limit_attrs,
1304		.nlimit = ARRAY_SIZE(iin_limit_attrs),
1305	}, {
1306		.reg = PMBUS_READ_IOUT,
1307		.class = PSC_CURRENT_OUT,
1308		.label = "iout",
1309		.paged = true,
1310		.func = PMBUS_HAVE_IOUT,
1311		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1312		.sbase = PB_STATUS_IOUT_BASE,
1313		.gbit = PB_STATUS_IOUT_OC,
1314		.limit = iout_limit_attrs,
1315		.nlimit = ARRAY_SIZE(iout_limit_attrs),
1316	}
1317};
1318
1319/* Power attributes */
1320
1321static const struct pmbus_limit_attr pin_limit_attrs[] = {
1322	{
1323		.reg = PMBUS_PIN_OP_WARN_LIMIT,
1324		.attr = "max",
1325		.alarm = "alarm",
1326		.sbit = PB_PIN_OP_WARNING,
1327	}, {
1328		.reg = PMBUS_VIRT_READ_PIN_AVG,
1329		.update = true,
1330		.attr = "average",
1331	}, {
1332		.reg = PMBUS_VIRT_READ_PIN_MAX,
1333		.update = true,
1334		.attr = "input_highest",
1335	}, {
1336		.reg = PMBUS_VIRT_RESET_PIN_HISTORY,
1337		.attr = "reset_history",
1338	}
1339};
1340
1341static const struct pmbus_limit_attr pout_limit_attrs[] = {
1342	{
1343		.reg = PMBUS_POUT_MAX,
1344		.attr = "cap",
1345		.alarm = "cap_alarm",
1346		.sbit = PB_POWER_LIMITING,
1347	}, {
1348		.reg = PMBUS_POUT_OP_WARN_LIMIT,
1349		.attr = "max",
1350		.alarm = "max_alarm",
1351		.sbit = PB_POUT_OP_WARNING,
1352	}, {
1353		.reg = PMBUS_POUT_OP_FAULT_LIMIT,
1354		.attr = "crit",
1355		.alarm = "crit_alarm",
1356		.sbit = PB_POUT_OP_FAULT,
1357	}, {
1358		.reg = PMBUS_VIRT_READ_POUT_AVG,
1359		.update = true,
1360		.attr = "average",
1361	}, {
1362		.reg = PMBUS_VIRT_READ_POUT_MAX,
1363		.update = true,
1364		.attr = "input_highest",
1365	}, {
1366		.reg = PMBUS_VIRT_RESET_POUT_HISTORY,
1367		.attr = "reset_history",
1368	}
1369};
1370
1371static const struct pmbus_sensor_attr power_attributes[] = {
1372	{
1373		.reg = PMBUS_READ_PIN,
1374		.class = PSC_POWER,
1375		.label = "pin",
1376		.func = PMBUS_HAVE_PIN,
1377		.sfunc = PMBUS_HAVE_STATUS_INPUT,
1378		.sbase = PB_STATUS_INPUT_BASE,
1379		.limit = pin_limit_attrs,
1380		.nlimit = ARRAY_SIZE(pin_limit_attrs),
1381	}, {
1382		.reg = PMBUS_READ_POUT,
1383		.class = PSC_POWER,
1384		.label = "pout",
1385		.paged = true,
1386		.func = PMBUS_HAVE_POUT,
1387		.sfunc = PMBUS_HAVE_STATUS_IOUT,
1388		.sbase = PB_STATUS_IOUT_BASE,
1389		.limit = pout_limit_attrs,
1390		.nlimit = ARRAY_SIZE(pout_limit_attrs),
1391	}
1392};
1393
1394/* Temperature atributes */
1395
1396static const struct pmbus_limit_attr temp_limit_attrs[] = {
1397	{
1398		.reg = PMBUS_UT_WARN_LIMIT,
1399		.low = true,
1400		.attr = "min",
1401		.alarm = "min_alarm",
1402		.sbit = PB_TEMP_UT_WARNING,
1403	}, {
1404		.reg = PMBUS_UT_FAULT_LIMIT,
1405		.low = true,
1406		.attr = "lcrit",
1407		.alarm = "lcrit_alarm",
1408		.sbit = PB_TEMP_UT_FAULT,
1409	}, {
1410		.reg = PMBUS_OT_WARN_LIMIT,
1411		.attr = "max",
1412		.alarm = "max_alarm",
1413		.sbit = PB_TEMP_OT_WARNING,
1414	}, {
1415		.reg = PMBUS_OT_FAULT_LIMIT,
1416		.attr = "crit",
1417		.alarm = "crit_alarm",
1418		.sbit = PB_TEMP_OT_FAULT,
1419	}, {
1420		.reg = PMBUS_VIRT_READ_TEMP_MIN,
1421		.attr = "lowest",
1422	}, {
1423		.reg = PMBUS_VIRT_READ_TEMP_AVG,
1424		.attr = "average",
1425	}, {
1426		.reg = PMBUS_VIRT_READ_TEMP_MAX,
1427		.attr = "highest",
1428	}, {
1429		.reg = PMBUS_VIRT_RESET_TEMP_HISTORY,
1430		.attr = "reset_history",
1431	}
1432};
1433
1434static const struct pmbus_limit_attr temp_limit_attrs2[] = {
1435	{
1436		.reg = PMBUS_UT_WARN_LIMIT,
1437		.low = true,
1438		.attr = "min",
1439		.alarm = "min_alarm",
1440		.sbit = PB_TEMP_UT_WARNING,
1441	}, {
1442		.reg = PMBUS_UT_FAULT_LIMIT,
1443		.low = true,
1444		.attr = "lcrit",
1445		.alarm = "lcrit_alarm",
1446		.sbit = PB_TEMP_UT_FAULT,
1447	}, {
1448		.reg = PMBUS_OT_WARN_LIMIT,
1449		.attr = "max",
1450		.alarm = "max_alarm",
1451		.sbit = PB_TEMP_OT_WARNING,
1452	}, {
1453		.reg = PMBUS_OT_FAULT_LIMIT,
1454		.attr = "crit",
1455		.alarm = "crit_alarm",
1456		.sbit = PB_TEMP_OT_FAULT,
1457	}, {
1458		.reg = PMBUS_VIRT_READ_TEMP2_MIN,
1459		.attr = "lowest",
1460	}, {
1461		.reg = PMBUS_VIRT_READ_TEMP2_AVG,
1462		.attr = "average",
1463	}, {
1464		.reg = PMBUS_VIRT_READ_TEMP2_MAX,
1465		.attr = "highest",
1466	}, {
1467		.reg = PMBUS_VIRT_RESET_TEMP2_HISTORY,
1468		.attr = "reset_history",
1469	}
1470};
1471
1472static const struct pmbus_limit_attr temp_limit_attrs3[] = {
1473	{
1474		.reg = PMBUS_UT_WARN_LIMIT,
1475		.low = true,
1476		.attr = "min",
1477		.alarm = "min_alarm",
1478		.sbit = PB_TEMP_UT_WARNING,
1479	}, {
1480		.reg = PMBUS_UT_FAULT_LIMIT,
1481		.low = true,
1482		.attr = "lcrit",
1483		.alarm = "lcrit_alarm",
1484		.sbit = PB_TEMP_UT_FAULT,
1485	}, {
1486		.reg = PMBUS_OT_WARN_LIMIT,
1487		.attr = "max",
1488		.alarm = "max_alarm",
1489		.sbit = PB_TEMP_OT_WARNING,
1490	}, {
1491		.reg = PMBUS_OT_FAULT_LIMIT,
1492		.attr = "crit",
1493		.alarm = "crit_alarm",
1494		.sbit = PB_TEMP_OT_FAULT,
1495	}
1496};
1497
1498static const struct pmbus_sensor_attr temp_attributes[] = {
1499	{
1500		.reg = PMBUS_READ_TEMPERATURE_1,
1501		.class = PSC_TEMPERATURE,
1502		.paged = true,
1503		.update = true,
1504		.compare = true,
1505		.func = PMBUS_HAVE_TEMP,
1506		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1507		.sbase = PB_STATUS_TEMP_BASE,
1508		.gbit = PB_STATUS_TEMPERATURE,
1509		.limit = temp_limit_attrs,
1510		.nlimit = ARRAY_SIZE(temp_limit_attrs),
1511	}, {
1512		.reg = PMBUS_READ_TEMPERATURE_2,
1513		.class = PSC_TEMPERATURE,
1514		.paged = true,
1515		.update = true,
1516		.compare = true,
1517		.func = PMBUS_HAVE_TEMP2,
1518		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1519		.sbase = PB_STATUS_TEMP_BASE,
1520		.gbit = PB_STATUS_TEMPERATURE,
1521		.limit = temp_limit_attrs2,
1522		.nlimit = ARRAY_SIZE(temp_limit_attrs2),
1523	}, {
1524		.reg = PMBUS_READ_TEMPERATURE_3,
1525		.class = PSC_TEMPERATURE,
1526		.paged = true,
1527		.update = true,
1528		.compare = true,
1529		.func = PMBUS_HAVE_TEMP3,
1530		.sfunc = PMBUS_HAVE_STATUS_TEMP,
1531		.sbase = PB_STATUS_TEMP_BASE,
1532		.gbit = PB_STATUS_TEMPERATURE,
1533		.limit = temp_limit_attrs3,
1534		.nlimit = ARRAY_SIZE(temp_limit_attrs3),
1535	}
1536};
1537
1538static const int pmbus_fan_registers[] = {
1539	PMBUS_READ_FAN_SPEED_1,
1540	PMBUS_READ_FAN_SPEED_2,
1541	PMBUS_READ_FAN_SPEED_3,
1542	PMBUS_READ_FAN_SPEED_4
1543};
1544
1545static const int pmbus_fan_config_registers[] = {
1546	PMBUS_FAN_CONFIG_12,
1547	PMBUS_FAN_CONFIG_12,
1548	PMBUS_FAN_CONFIG_34,
1549	PMBUS_FAN_CONFIG_34
1550};
1551
1552static const int pmbus_fan_status_registers[] = {
1553	PMBUS_STATUS_FAN_12,
1554	PMBUS_STATUS_FAN_12,
1555	PMBUS_STATUS_FAN_34,
1556	PMBUS_STATUS_FAN_34
1557};
1558
1559static const u32 pmbus_fan_flags[] = {
1560	PMBUS_HAVE_FAN12,
1561	PMBUS_HAVE_FAN12,
1562	PMBUS_HAVE_FAN34,
1563	PMBUS_HAVE_FAN34
1564};
1565
1566static const u32 pmbus_fan_status_flags[] = {
1567	PMBUS_HAVE_STATUS_FAN12,
1568	PMBUS_HAVE_STATUS_FAN12,
1569	PMBUS_HAVE_STATUS_FAN34,
1570	PMBUS_HAVE_STATUS_FAN34
1571};
1572
1573/* Fans */
1574static int pmbus_add_fan_attributes(struct i2c_client *client,
1575				    struct pmbus_data *data)
1576{
1577	const struct pmbus_driver_info *info = data->info;
1578	int index = 1;
1579	int page;
1580	int ret;
1581
1582	for (page = 0; page < info->pages; page++) {
1583		int f;
1584
1585		for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) {
1586			int regval;
1587
1588			if (!(info->func[page] & pmbus_fan_flags[f]))
1589				break;
1590
1591			if (!pmbus_check_word_register(client, page,
1592						       pmbus_fan_registers[f]))
1593				break;
1594
1595			/*
1596			 * Skip fan if not installed.
1597			 * Each fan configuration register covers multiple fans,
1598			 * so we have to do some magic.
1599			 */
1600			regval = _pmbus_read_byte_data(client, page,
1601				pmbus_fan_config_registers[f]);
1602			if (regval < 0 ||
1603			    (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4)))))
1604				continue;
1605
1606			if (pmbus_add_sensor(data, "fan", "input", index,
1607					     page, pmbus_fan_registers[f],
1608					     PSC_FAN, true, true) == NULL)
1609				return -ENOMEM;
1610
1611			/*
1612			 * Each fan status register covers multiple fans,
1613			 * so we have to do some magic.
1614			 */
1615			if ((info->func[page] & pmbus_fan_status_flags[f]) &&
1616			    pmbus_check_byte_register(client,
1617					page, pmbus_fan_status_registers[f])) {
1618				int base;
1619
1620				if (f > 1)	/* fan 3, 4 */
1621					base = PB_STATUS_FAN34_BASE + page;
1622				else
1623					base = PB_STATUS_FAN_BASE + page;
1624				ret = pmbus_add_boolean(data, "fan",
1625					"alarm", index, NULL, NULL, base,
1626					PB_FAN_FAN1_WARNING >> (f & 1));
1627				if (ret)
1628					return ret;
1629				ret = pmbus_add_boolean(data, "fan",
1630					"fault", index, NULL, NULL, base,
1631					PB_FAN_FAN1_FAULT >> (f & 1));
1632				if (ret)
1633					return ret;
1634			}
1635			index++;
1636		}
1637	}
1638	return 0;
1639}
1640
1641static int pmbus_find_attributes(struct i2c_client *client,
1642				 struct pmbus_data *data)
1643{
1644	int ret;
1645
1646	/* Voltage sensors */
1647	ret = pmbus_add_sensor_attrs(client, data, "in", voltage_attributes,
1648				     ARRAY_SIZE(voltage_attributes));
1649	if (ret)
1650		return ret;
1651
1652	/* Current sensors */
1653	ret = pmbus_add_sensor_attrs(client, data, "curr", current_attributes,
1654				     ARRAY_SIZE(current_attributes));
1655	if (ret)
1656		return ret;
1657
1658	/* Power sensors */
1659	ret = pmbus_add_sensor_attrs(client, data, "power", power_attributes,
1660				     ARRAY_SIZE(power_attributes));
1661	if (ret)
1662		return ret;
1663
1664	/* Temperature sensors */
1665	ret = pmbus_add_sensor_attrs(client, data, "temp", temp_attributes,
1666				     ARRAY_SIZE(temp_attributes));
1667	if (ret)
1668		return ret;
1669
1670	/* Fans */
1671	ret = pmbus_add_fan_attributes(client, data);
1672	return ret;
1673}
1674
1675/*
1676 * Identify chip parameters.
1677 * This function is called for all chips.
1678 */
1679static int pmbus_identify_common(struct i2c_client *client,
1680				 struct pmbus_data *data, int page)
1681{
1682	int vout_mode = -1;
1683
1684	if (pmbus_check_byte_register(client, page, PMBUS_VOUT_MODE))
1685		vout_mode = _pmbus_read_byte_data(client, page,
1686						  PMBUS_VOUT_MODE);
1687	if (vout_mode >= 0 && vout_mode != 0xff) {
1688		/*
1689		 * Not all chips support the VOUT_MODE command,
1690		 * so a failure to read it is not an error.
1691		 */
1692		switch (vout_mode >> 5) {
1693		case 0:	/* linear mode      */
1694			if (data->info->format[PSC_VOLTAGE_OUT] != linear)
1695				return -ENODEV;
1696
1697			data->exponent[page] = ((s8)(vout_mode << 3)) >> 3;
1698			break;
1699		case 1: /* VID mode         */
1700			if (data->info->format[PSC_VOLTAGE_OUT] != vid)
1701				return -ENODEV;
1702			break;
1703		case 2:	/* direct mode      */
1704			if (data->info->format[PSC_VOLTAGE_OUT] != direct)
1705				return -ENODEV;
1706			break;
1707		default:
1708			return -ENODEV;
1709		}
1710	}
1711
1712	pmbus_clear_fault_page(client, page);
1713	return 0;
1714}
1715
1716static int pmbus_init_common(struct i2c_client *client, struct pmbus_data *data,
1717			     struct pmbus_driver_info *info)
1718{
1719	struct device *dev = &client->dev;
1720	int page, ret;
1721
1722	/*
1723	 * Some PMBus chips don't support PMBUS_STATUS_BYTE, so try
1724	 * to use PMBUS_STATUS_WORD instead if that is the case.
1725	 * Bail out if both registers are not supported.
1726	 */
1727	data->status_register = PMBUS_STATUS_BYTE;
1728	ret = i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE);
1729	if (ret < 0 || ret == 0xff) {
1730		data->status_register = PMBUS_STATUS_WORD;
1731		ret = i2c_smbus_read_word_data(client, PMBUS_STATUS_WORD);
1732		if (ret < 0 || ret == 0xffff) {
1733			dev_err(dev, "PMBus status register not found\n");
1734			return -ENODEV;
1735		}
1736	}
1737
1738	pmbus_clear_faults(client);
1739
1740	if (info->identify) {
1741		ret = (*info->identify)(client, info);
1742		if (ret < 0) {
1743			dev_err(dev, "Chip identification failed\n");
1744			return ret;
1745		}
1746	}
1747
1748	if (info->pages <= 0 || info->pages > PMBUS_PAGES) {
1749		dev_err(dev, "Bad number of PMBus pages: %d\n", info->pages);
1750		return -ENODEV;
1751	}
1752
1753	for (page = 0; page < info->pages; page++) {
1754		ret = pmbus_identify_common(client, data, page);
1755		if (ret < 0) {
1756			dev_err(dev, "Failed to identify chip capabilities\n");
1757			return ret;
1758		}
1759	}
1760	return 0;
1761}
1762
1763#if IS_ENABLED(CONFIG_REGULATOR)
1764static int pmbus_regulator_is_enabled(struct regulator_dev *rdev)
1765{
1766	struct device *dev = rdev_get_dev(rdev);
1767	struct i2c_client *client = to_i2c_client(dev->parent);
1768	u8 page = rdev_get_id(rdev);
1769	int ret;
1770
1771	ret = pmbus_read_byte_data(client, page, PMBUS_OPERATION);
1772	if (ret < 0)
1773		return ret;
1774
1775	return !!(ret & PB_OPERATION_CONTROL_ON);
1776}
1777
1778static int _pmbus_regulator_on_off(struct regulator_dev *rdev, bool enable)
1779{
1780	struct device *dev = rdev_get_dev(rdev);
1781	struct i2c_client *client = to_i2c_client(dev->parent);
1782	u8 page = rdev_get_id(rdev);
1783
1784	return pmbus_update_byte_data(client, page, PMBUS_OPERATION,
1785				      PB_OPERATION_CONTROL_ON,
1786				      enable ? PB_OPERATION_CONTROL_ON : 0);
1787}
1788
1789static int pmbus_regulator_enable(struct regulator_dev *rdev)
1790{
1791	return _pmbus_regulator_on_off(rdev, 1);
1792}
1793
1794static int pmbus_regulator_disable(struct regulator_dev *rdev)
1795{
1796	return _pmbus_regulator_on_off(rdev, 0);
1797}
1798
1799struct regulator_ops pmbus_regulator_ops = {
1800	.enable = pmbus_regulator_enable,
1801	.disable = pmbus_regulator_disable,
1802	.is_enabled = pmbus_regulator_is_enabled,
1803};
1804EXPORT_SYMBOL_GPL(pmbus_regulator_ops);
1805
1806static int pmbus_regulator_register(struct pmbus_data *data)
1807{
1808	struct device *dev = data->dev;
1809	const struct pmbus_driver_info *info = data->info;
1810	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1811	struct regulator_dev *rdev;
1812	int i;
1813
1814	for (i = 0; i < info->num_regulators; i++) {
1815		struct regulator_config config = { };
1816
1817		config.dev = dev;
1818		config.driver_data = data;
1819
1820		if (pdata && pdata->reg_init_data)
1821			config.init_data = &pdata->reg_init_data[i];
1822
1823		rdev = devm_regulator_register(dev, &info->reg_desc[i],
1824					       &config);
1825		if (IS_ERR(rdev)) {
1826			dev_err(dev, "Failed to register %s regulator\n",
1827				info->reg_desc[i].name);
1828			return PTR_ERR(rdev);
1829		}
1830	}
1831
1832	return 0;
1833}
1834#else
1835static int pmbus_regulator_register(struct pmbus_data *data)
1836{
1837	return 0;
1838}
1839#endif
1840
1841int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id,
1842		   struct pmbus_driver_info *info)
1843{
1844	struct device *dev = &client->dev;
1845	const struct pmbus_platform_data *pdata = dev_get_platdata(dev);
1846	struct pmbus_data *data;
1847	int ret;
1848
1849	if (!info)
1850		return -ENODEV;
1851
1852	if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE
1853				     | I2C_FUNC_SMBUS_BYTE_DATA
1854				     | I2C_FUNC_SMBUS_WORD_DATA))
1855		return -ENODEV;
1856
1857	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
1858	if (!data)
1859		return -ENOMEM;
1860
1861	i2c_set_clientdata(client, data);
1862	mutex_init(&data->update_lock);
1863	data->dev = dev;
1864
1865	if (pdata)
1866		data->flags = pdata->flags;
1867	data->info = info;
1868
1869	ret = pmbus_init_common(client, data, info);
1870	if (ret < 0)
1871		return ret;
1872
1873	ret = pmbus_find_attributes(client, data);
1874	if (ret)
1875		goto out_kfree;
1876
1877	/*
1878	 * If there are no attributes, something is wrong.
1879	 * Bail out instead of trying to register nothing.
1880	 */
1881	if (!data->num_attributes) {
1882		dev_err(dev, "No attributes found\n");
1883		ret = -ENODEV;
1884		goto out_kfree;
1885	}
1886
1887	data->groups[0] = &data->group;
1888	data->hwmon_dev = hwmon_device_register_with_groups(dev, client->name,
1889							    data, data->groups);
1890	if (IS_ERR(data->hwmon_dev)) {
1891		ret = PTR_ERR(data->hwmon_dev);
1892		dev_err(dev, "Failed to register hwmon device\n");
1893		goto out_kfree;
1894	}
1895
1896	ret = pmbus_regulator_register(data);
1897	if (ret)
1898		goto out_unregister;
1899
1900	return 0;
1901
1902out_unregister:
1903	hwmon_device_unregister(data->hwmon_dev);
1904out_kfree:
1905	kfree(data->group.attrs);
1906	return ret;
1907}
1908EXPORT_SYMBOL_GPL(pmbus_do_probe);
1909
1910int pmbus_do_remove(struct i2c_client *client)
1911{
1912	struct pmbus_data *data = i2c_get_clientdata(client);
1913	hwmon_device_unregister(data->hwmon_dev);
1914	kfree(data->group.attrs);
1915	return 0;
1916}
1917EXPORT_SYMBOL_GPL(pmbus_do_remove);
1918
1919MODULE_AUTHOR("Guenter Roeck");
1920MODULE_DESCRIPTION("PMBus core driver");
1921MODULE_LICENSE("GPL");
1922