1/*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25 *
26 */
27
28#include <linux/cpufreq.h>
29#include "i915_drv.h"
30#include "intel_drv.h"
31#include "../../../platform/x86/intel_ips.h"
32#include <linux/module.h>
33
34/**
35 * RC6 is a special power stage which allows the GPU to enter an very
36 * low-voltage mode when idle, using down to 0V while at this stage.  This
37 * stage is entered automatically when the GPU is idle when RC6 support is
38 * enabled, and as soon as new workload arises GPU wakes up automatically as well.
39 *
40 * There are different RC6 modes available in Intel GPU, which differentiate
41 * among each other with the latency required to enter and leave RC6 and
42 * voltage consumed by the GPU in different states.
43 *
44 * The combination of the following flags define which states GPU is allowed
45 * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
46 * RC6pp is deepest RC6. Their support by hardware varies according to the
47 * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
48 * which brings the most power savings; deeper states save more power, but
49 * require higher latency to switch to and wake up.
50 */
51#define INTEL_RC6_ENABLE			(1<<0)
52#define INTEL_RC6p_ENABLE			(1<<1)
53#define INTEL_RC6pp_ENABLE			(1<<2)
54
55static void gen9_init_clock_gating(struct drm_device *dev)
56{
57	struct drm_i915_private *dev_priv = dev->dev_private;
58
59	/* WaEnableLbsSlaRetryTimerDecrement:skl */
60	I915_WRITE(BDW_SCRATCH1, I915_READ(BDW_SCRATCH1) |
61		   GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
62}
63
64static void skl_init_clock_gating(struct drm_device *dev)
65{
66	struct drm_i915_private *dev_priv = dev->dev_private;
67
68	gen9_init_clock_gating(dev);
69
70	if (INTEL_REVID(dev) == SKL_REVID_A0) {
71		/*
72		 * WaDisableSDEUnitClockGating:skl
73		 * WaSetGAPSunitClckGateDisable:skl
74		 */
75		I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
76			   GEN8_GAPSUNIT_CLOCK_GATE_DISABLE |
77			   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
78	}
79
80	if (INTEL_REVID(dev) <= SKL_REVID_D0) {
81		/* WaDisableHDCInvalidation:skl */
82		I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) |
83			   BDW_DISABLE_HDC_INVALIDATION);
84
85		/* WaDisableChickenBitTSGBarrierAckForFFSliceCS:skl */
86		I915_WRITE(FF_SLICE_CS_CHICKEN2,
87			   I915_READ(FF_SLICE_CS_CHICKEN2) |
88			   GEN9_TSG_BARRIER_ACK_DISABLE);
89	}
90
91	if (INTEL_REVID(dev) <= SKL_REVID_E0)
92		/* WaDisableLSQCROPERFforOCL:skl */
93		I915_WRITE(GEN8_L3SQCREG4, I915_READ(GEN8_L3SQCREG4) |
94			   GEN8_LQSC_RO_PERF_DIS);
95}
96
97static void i915_pineview_get_mem_freq(struct drm_device *dev)
98{
99	struct drm_i915_private *dev_priv = dev->dev_private;
100	u32 tmp;
101
102	tmp = I915_READ(CLKCFG);
103
104	switch (tmp & CLKCFG_FSB_MASK) {
105	case CLKCFG_FSB_533:
106		dev_priv->fsb_freq = 533; /* 133*4 */
107		break;
108	case CLKCFG_FSB_800:
109		dev_priv->fsb_freq = 800; /* 200*4 */
110		break;
111	case CLKCFG_FSB_667:
112		dev_priv->fsb_freq =  667; /* 167*4 */
113		break;
114	case CLKCFG_FSB_400:
115		dev_priv->fsb_freq = 400; /* 100*4 */
116		break;
117	}
118
119	switch (tmp & CLKCFG_MEM_MASK) {
120	case CLKCFG_MEM_533:
121		dev_priv->mem_freq = 533;
122		break;
123	case CLKCFG_MEM_667:
124		dev_priv->mem_freq = 667;
125		break;
126	case CLKCFG_MEM_800:
127		dev_priv->mem_freq = 800;
128		break;
129	}
130
131	/* detect pineview DDR3 setting */
132	tmp = I915_READ(CSHRDDR3CTL);
133	dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
134}
135
136static void i915_ironlake_get_mem_freq(struct drm_device *dev)
137{
138	struct drm_i915_private *dev_priv = dev->dev_private;
139	u16 ddrpll, csipll;
140
141	ddrpll = I915_READ16(DDRMPLL1);
142	csipll = I915_READ16(CSIPLL0);
143
144	switch (ddrpll & 0xff) {
145	case 0xc:
146		dev_priv->mem_freq = 800;
147		break;
148	case 0x10:
149		dev_priv->mem_freq = 1066;
150		break;
151	case 0x14:
152		dev_priv->mem_freq = 1333;
153		break;
154	case 0x18:
155		dev_priv->mem_freq = 1600;
156		break;
157	default:
158		DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
159				 ddrpll & 0xff);
160		dev_priv->mem_freq = 0;
161		break;
162	}
163
164	dev_priv->ips.r_t = dev_priv->mem_freq;
165
166	switch (csipll & 0x3ff) {
167	case 0x00c:
168		dev_priv->fsb_freq = 3200;
169		break;
170	case 0x00e:
171		dev_priv->fsb_freq = 3733;
172		break;
173	case 0x010:
174		dev_priv->fsb_freq = 4266;
175		break;
176	case 0x012:
177		dev_priv->fsb_freq = 4800;
178		break;
179	case 0x014:
180		dev_priv->fsb_freq = 5333;
181		break;
182	case 0x016:
183		dev_priv->fsb_freq = 5866;
184		break;
185	case 0x018:
186		dev_priv->fsb_freq = 6400;
187		break;
188	default:
189		DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
190				 csipll & 0x3ff);
191		dev_priv->fsb_freq = 0;
192		break;
193	}
194
195	if (dev_priv->fsb_freq == 3200) {
196		dev_priv->ips.c_m = 0;
197	} else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
198		dev_priv->ips.c_m = 1;
199	} else {
200		dev_priv->ips.c_m = 2;
201	}
202}
203
204static const struct cxsr_latency cxsr_latency_table[] = {
205	{1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
206	{1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
207	{1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
208	{1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
209	{1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
210
211	{1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
212	{1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
213	{1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
214	{1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
215	{1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
216
217	{1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
218	{1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
219	{1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
220	{1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
221	{1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
222
223	{0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
224	{0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
225	{0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
226	{0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
227	{0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
228
229	{0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
230	{0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
231	{0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
232	{0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
233	{0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
234
235	{0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
236	{0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
237	{0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
238	{0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
239	{0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
240};
241
242static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
243							 int is_ddr3,
244							 int fsb,
245							 int mem)
246{
247	const struct cxsr_latency *latency;
248	int i;
249
250	if (fsb == 0 || mem == 0)
251		return NULL;
252
253	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
254		latency = &cxsr_latency_table[i];
255		if (is_desktop == latency->is_desktop &&
256		    is_ddr3 == latency->is_ddr3 &&
257		    fsb == latency->fsb_freq && mem == latency->mem_freq)
258			return latency;
259	}
260
261	DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
262
263	return NULL;
264}
265
266static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
267{
268	u32 val;
269
270	mutex_lock(&dev_priv->rps.hw_lock);
271
272	val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
273	if (enable)
274		val &= ~FORCE_DDR_HIGH_FREQ;
275	else
276		val |= FORCE_DDR_HIGH_FREQ;
277	val &= ~FORCE_DDR_LOW_FREQ;
278	val |= FORCE_DDR_FREQ_REQ_ACK;
279	vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
280
281	if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
282		      FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
283		DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
284
285	mutex_unlock(&dev_priv->rps.hw_lock);
286}
287
288static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
289{
290	u32 val;
291
292	mutex_lock(&dev_priv->rps.hw_lock);
293
294	val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
295	if (enable)
296		val |= DSP_MAXFIFO_PM5_ENABLE;
297	else
298		val &= ~DSP_MAXFIFO_PM5_ENABLE;
299	vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
300
301	mutex_unlock(&dev_priv->rps.hw_lock);
302}
303
304#define FW_WM(value, plane) \
305	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
306
307void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
308{
309	struct drm_device *dev = dev_priv->dev;
310	u32 val;
311
312	if (IS_VALLEYVIEW(dev)) {
313		I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
314		if (IS_CHERRYVIEW(dev))
315			chv_set_memory_pm5(dev_priv, enable);
316	} else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
317		I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
318	} else if (IS_PINEVIEW(dev)) {
319		val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
320		val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
321		I915_WRITE(DSPFW3, val);
322	} else if (IS_I945G(dev) || IS_I945GM(dev)) {
323		val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
324			       _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
325		I915_WRITE(FW_BLC_SELF, val);
326	} else if (IS_I915GM(dev)) {
327		val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
328			       _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
329		I915_WRITE(INSTPM, val);
330	} else {
331		return;
332	}
333
334	DRM_DEBUG_KMS("memory self-refresh is %s\n",
335		      enable ? "enabled" : "disabled");
336}
337
338
339/*
340 * Latency for FIFO fetches is dependent on several factors:
341 *   - memory configuration (speed, channels)
342 *   - chipset
343 *   - current MCH state
344 * It can be fairly high in some situations, so here we assume a fairly
345 * pessimal value.  It's a tradeoff between extra memory fetches (if we
346 * set this value too high, the FIFO will fetch frequently to stay full)
347 * and power consumption (set it too low to save power and we might see
348 * FIFO underruns and display "flicker").
349 *
350 * A value of 5us seems to be a good balance; safe for very low end
351 * platforms but not overly aggressive on lower latency configs.
352 */
353static const int pessimal_latency_ns = 5000;
354
355#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
356	((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
357
358static int vlv_get_fifo_size(struct drm_device *dev,
359			      enum pipe pipe, int plane)
360{
361	struct drm_i915_private *dev_priv = dev->dev_private;
362	int sprite0_start, sprite1_start, size;
363
364	switch (pipe) {
365		uint32_t dsparb, dsparb2, dsparb3;
366	case PIPE_A:
367		dsparb = I915_READ(DSPARB);
368		dsparb2 = I915_READ(DSPARB2);
369		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
370		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
371		break;
372	case PIPE_B:
373		dsparb = I915_READ(DSPARB);
374		dsparb2 = I915_READ(DSPARB2);
375		sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
376		sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
377		break;
378	case PIPE_C:
379		dsparb2 = I915_READ(DSPARB2);
380		dsparb3 = I915_READ(DSPARB3);
381		sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
382		sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
383		break;
384	default:
385		return 0;
386	}
387
388	switch (plane) {
389	case 0:
390		size = sprite0_start;
391		break;
392	case 1:
393		size = sprite1_start - sprite0_start;
394		break;
395	case 2:
396		size = 512 - 1 - sprite1_start;
397		break;
398	default:
399		return 0;
400	}
401
402	DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
403		      pipe_name(pipe), plane == 0 ? "primary" : "sprite",
404		      plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
405		      size);
406
407	return size;
408}
409
410static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
411{
412	struct drm_i915_private *dev_priv = dev->dev_private;
413	uint32_t dsparb = I915_READ(DSPARB);
414	int size;
415
416	size = dsparb & 0x7f;
417	if (plane)
418		size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
419
420	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
421		      plane ? "B" : "A", size);
422
423	return size;
424}
425
426static int i830_get_fifo_size(struct drm_device *dev, int plane)
427{
428	struct drm_i915_private *dev_priv = dev->dev_private;
429	uint32_t dsparb = I915_READ(DSPARB);
430	int size;
431
432	size = dsparb & 0x1ff;
433	if (plane)
434		size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
435	size >>= 1; /* Convert to cachelines */
436
437	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
438		      plane ? "B" : "A", size);
439
440	return size;
441}
442
443static int i845_get_fifo_size(struct drm_device *dev, int plane)
444{
445	struct drm_i915_private *dev_priv = dev->dev_private;
446	uint32_t dsparb = I915_READ(DSPARB);
447	int size;
448
449	size = dsparb & 0x7f;
450	size >>= 2; /* Convert to cachelines */
451
452	DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
453		      plane ? "B" : "A",
454		      size);
455
456	return size;
457}
458
459/* Pineview has different values for various configs */
460static const struct intel_watermark_params pineview_display_wm = {
461	.fifo_size = PINEVIEW_DISPLAY_FIFO,
462	.max_wm = PINEVIEW_MAX_WM,
463	.default_wm = PINEVIEW_DFT_WM,
464	.guard_size = PINEVIEW_GUARD_WM,
465	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
466};
467static const struct intel_watermark_params pineview_display_hplloff_wm = {
468	.fifo_size = PINEVIEW_DISPLAY_FIFO,
469	.max_wm = PINEVIEW_MAX_WM,
470	.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
471	.guard_size = PINEVIEW_GUARD_WM,
472	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
473};
474static const struct intel_watermark_params pineview_cursor_wm = {
475	.fifo_size = PINEVIEW_CURSOR_FIFO,
476	.max_wm = PINEVIEW_CURSOR_MAX_WM,
477	.default_wm = PINEVIEW_CURSOR_DFT_WM,
478	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
479	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
480};
481static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
482	.fifo_size = PINEVIEW_CURSOR_FIFO,
483	.max_wm = PINEVIEW_CURSOR_MAX_WM,
484	.default_wm = PINEVIEW_CURSOR_DFT_WM,
485	.guard_size = PINEVIEW_CURSOR_GUARD_WM,
486	.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
487};
488static const struct intel_watermark_params g4x_wm_info = {
489	.fifo_size = G4X_FIFO_SIZE,
490	.max_wm = G4X_MAX_WM,
491	.default_wm = G4X_MAX_WM,
492	.guard_size = 2,
493	.cacheline_size = G4X_FIFO_LINE_SIZE,
494};
495static const struct intel_watermark_params g4x_cursor_wm_info = {
496	.fifo_size = I965_CURSOR_FIFO,
497	.max_wm = I965_CURSOR_MAX_WM,
498	.default_wm = I965_CURSOR_DFT_WM,
499	.guard_size = 2,
500	.cacheline_size = G4X_FIFO_LINE_SIZE,
501};
502static const struct intel_watermark_params valleyview_wm_info = {
503	.fifo_size = VALLEYVIEW_FIFO_SIZE,
504	.max_wm = VALLEYVIEW_MAX_WM,
505	.default_wm = VALLEYVIEW_MAX_WM,
506	.guard_size = 2,
507	.cacheline_size = G4X_FIFO_LINE_SIZE,
508};
509static const struct intel_watermark_params valleyview_cursor_wm_info = {
510	.fifo_size = I965_CURSOR_FIFO,
511	.max_wm = VALLEYVIEW_CURSOR_MAX_WM,
512	.default_wm = I965_CURSOR_DFT_WM,
513	.guard_size = 2,
514	.cacheline_size = G4X_FIFO_LINE_SIZE,
515};
516static const struct intel_watermark_params i965_cursor_wm_info = {
517	.fifo_size = I965_CURSOR_FIFO,
518	.max_wm = I965_CURSOR_MAX_WM,
519	.default_wm = I965_CURSOR_DFT_WM,
520	.guard_size = 2,
521	.cacheline_size = I915_FIFO_LINE_SIZE,
522};
523static const struct intel_watermark_params i945_wm_info = {
524	.fifo_size = I945_FIFO_SIZE,
525	.max_wm = I915_MAX_WM,
526	.default_wm = 1,
527	.guard_size = 2,
528	.cacheline_size = I915_FIFO_LINE_SIZE,
529};
530static const struct intel_watermark_params i915_wm_info = {
531	.fifo_size = I915_FIFO_SIZE,
532	.max_wm = I915_MAX_WM,
533	.default_wm = 1,
534	.guard_size = 2,
535	.cacheline_size = I915_FIFO_LINE_SIZE,
536};
537static const struct intel_watermark_params i830_a_wm_info = {
538	.fifo_size = I855GM_FIFO_SIZE,
539	.max_wm = I915_MAX_WM,
540	.default_wm = 1,
541	.guard_size = 2,
542	.cacheline_size = I830_FIFO_LINE_SIZE,
543};
544static const struct intel_watermark_params i830_bc_wm_info = {
545	.fifo_size = I855GM_FIFO_SIZE,
546	.max_wm = I915_MAX_WM/2,
547	.default_wm = 1,
548	.guard_size = 2,
549	.cacheline_size = I830_FIFO_LINE_SIZE,
550};
551static const struct intel_watermark_params i845_wm_info = {
552	.fifo_size = I830_FIFO_SIZE,
553	.max_wm = I915_MAX_WM,
554	.default_wm = 1,
555	.guard_size = 2,
556	.cacheline_size = I830_FIFO_LINE_SIZE,
557};
558
559/**
560 * intel_calculate_wm - calculate watermark level
561 * @clock_in_khz: pixel clock
562 * @wm: chip FIFO params
563 * @pixel_size: display pixel size
564 * @latency_ns: memory latency for the platform
565 *
566 * Calculate the watermark level (the level at which the display plane will
567 * start fetching from memory again).  Each chip has a different display
568 * FIFO size and allocation, so the caller needs to figure that out and pass
569 * in the correct intel_watermark_params structure.
570 *
571 * As the pixel clock runs, the FIFO will be drained at a rate that depends
572 * on the pixel size.  When it reaches the watermark level, it'll start
573 * fetching FIFO line sized based chunks from memory until the FIFO fills
574 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
575 * will occur, and a display engine hang could result.
576 */
577static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
578					const struct intel_watermark_params *wm,
579					int fifo_size,
580					int pixel_size,
581					unsigned long latency_ns)
582{
583	long entries_required, wm_size;
584
585	/*
586	 * Note: we need to make sure we don't overflow for various clock &
587	 * latency values.
588	 * clocks go from a few thousand to several hundred thousand.
589	 * latency is usually a few thousand
590	 */
591	entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
592		1000;
593	entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
594
595	DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
596
597	wm_size = fifo_size - (entries_required + wm->guard_size);
598
599	DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
600
601	/* Don't promote wm_size to unsigned... */
602	if (wm_size > (long)wm->max_wm)
603		wm_size = wm->max_wm;
604	if (wm_size <= 0)
605		wm_size = wm->default_wm;
606
607	/*
608	 * Bspec seems to indicate that the value shouldn't be lower than
609	 * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
610	 * Lets go for 8 which is the burst size since certain platforms
611	 * already use a hardcoded 8 (which is what the spec says should be
612	 * done).
613	 */
614	if (wm_size <= 8)
615		wm_size = 8;
616
617	return wm_size;
618}
619
620static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
621{
622	struct drm_crtc *crtc, *enabled = NULL;
623
624	for_each_crtc(dev, crtc) {
625		if (intel_crtc_active(crtc)) {
626			if (enabled)
627				return NULL;
628			enabled = crtc;
629		}
630	}
631
632	return enabled;
633}
634
635static void pineview_update_wm(struct drm_crtc *unused_crtc)
636{
637	struct drm_device *dev = unused_crtc->dev;
638	struct drm_i915_private *dev_priv = dev->dev_private;
639	struct drm_crtc *crtc;
640	const struct cxsr_latency *latency;
641	u32 reg;
642	unsigned long wm;
643
644	latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
645					 dev_priv->fsb_freq, dev_priv->mem_freq);
646	if (!latency) {
647		DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
648		intel_set_memory_cxsr(dev_priv, false);
649		return;
650	}
651
652	crtc = single_enabled_crtc(dev);
653	if (crtc) {
654		const struct drm_display_mode *adjusted_mode;
655		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
656		int clock;
657
658		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
659		clock = adjusted_mode->crtc_clock;
660
661		/* Display SR */
662		wm = intel_calculate_wm(clock, &pineview_display_wm,
663					pineview_display_wm.fifo_size,
664					pixel_size, latency->display_sr);
665		reg = I915_READ(DSPFW1);
666		reg &= ~DSPFW_SR_MASK;
667		reg |= FW_WM(wm, SR);
668		I915_WRITE(DSPFW1, reg);
669		DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
670
671		/* cursor SR */
672		wm = intel_calculate_wm(clock, &pineview_cursor_wm,
673					pineview_display_wm.fifo_size,
674					pixel_size, latency->cursor_sr);
675		reg = I915_READ(DSPFW3);
676		reg &= ~DSPFW_CURSOR_SR_MASK;
677		reg |= FW_WM(wm, CURSOR_SR);
678		I915_WRITE(DSPFW3, reg);
679
680		/* Display HPLL off SR */
681		wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
682					pineview_display_hplloff_wm.fifo_size,
683					pixel_size, latency->display_hpll_disable);
684		reg = I915_READ(DSPFW3);
685		reg &= ~DSPFW_HPLL_SR_MASK;
686		reg |= FW_WM(wm, HPLL_SR);
687		I915_WRITE(DSPFW3, reg);
688
689		/* cursor HPLL off SR */
690		wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
691					pineview_display_hplloff_wm.fifo_size,
692					pixel_size, latency->cursor_hpll_disable);
693		reg = I915_READ(DSPFW3);
694		reg &= ~DSPFW_HPLL_CURSOR_MASK;
695		reg |= FW_WM(wm, HPLL_CURSOR);
696		I915_WRITE(DSPFW3, reg);
697		DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
698
699		intel_set_memory_cxsr(dev_priv, true);
700	} else {
701		intel_set_memory_cxsr(dev_priv, false);
702	}
703}
704
705static bool g4x_compute_wm0(struct drm_device *dev,
706			    int plane,
707			    const struct intel_watermark_params *display,
708			    int display_latency_ns,
709			    const struct intel_watermark_params *cursor,
710			    int cursor_latency_ns,
711			    int *plane_wm,
712			    int *cursor_wm)
713{
714	struct drm_crtc *crtc;
715	const struct drm_display_mode *adjusted_mode;
716	int htotal, hdisplay, clock, pixel_size;
717	int line_time_us, line_count;
718	int entries, tlb_miss;
719
720	crtc = intel_get_crtc_for_plane(dev, plane);
721	if (!intel_crtc_active(crtc)) {
722		*cursor_wm = cursor->guard_size;
723		*plane_wm = display->guard_size;
724		return false;
725	}
726
727	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
728	clock = adjusted_mode->crtc_clock;
729	htotal = adjusted_mode->crtc_htotal;
730	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
731	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
732
733	/* Use the small buffer method to calculate plane watermark */
734	entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
735	tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
736	if (tlb_miss > 0)
737		entries += tlb_miss;
738	entries = DIV_ROUND_UP(entries, display->cacheline_size);
739	*plane_wm = entries + display->guard_size;
740	if (*plane_wm > (int)display->max_wm)
741		*plane_wm = display->max_wm;
742
743	/* Use the large buffer method to calculate cursor watermark */
744	line_time_us = max(htotal * 1000 / clock, 1);
745	line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
746	entries = line_count * crtc->cursor->state->crtc_w * pixel_size;
747	tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
748	if (tlb_miss > 0)
749		entries += tlb_miss;
750	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
751	*cursor_wm = entries + cursor->guard_size;
752	if (*cursor_wm > (int)cursor->max_wm)
753		*cursor_wm = (int)cursor->max_wm;
754
755	return true;
756}
757
758/*
759 * Check the wm result.
760 *
761 * If any calculated watermark values is larger than the maximum value that
762 * can be programmed into the associated watermark register, that watermark
763 * must be disabled.
764 */
765static bool g4x_check_srwm(struct drm_device *dev,
766			   int display_wm, int cursor_wm,
767			   const struct intel_watermark_params *display,
768			   const struct intel_watermark_params *cursor)
769{
770	DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
771		      display_wm, cursor_wm);
772
773	if (display_wm > display->max_wm) {
774		DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
775			      display_wm, display->max_wm);
776		return false;
777	}
778
779	if (cursor_wm > cursor->max_wm) {
780		DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
781			      cursor_wm, cursor->max_wm);
782		return false;
783	}
784
785	if (!(display_wm || cursor_wm)) {
786		DRM_DEBUG_KMS("SR latency is 0, disabling\n");
787		return false;
788	}
789
790	return true;
791}
792
793static bool g4x_compute_srwm(struct drm_device *dev,
794			     int plane,
795			     int latency_ns,
796			     const struct intel_watermark_params *display,
797			     const struct intel_watermark_params *cursor,
798			     int *display_wm, int *cursor_wm)
799{
800	struct drm_crtc *crtc;
801	const struct drm_display_mode *adjusted_mode;
802	int hdisplay, htotal, pixel_size, clock;
803	unsigned long line_time_us;
804	int line_count, line_size;
805	int small, large;
806	int entries;
807
808	if (!latency_ns) {
809		*display_wm = *cursor_wm = 0;
810		return false;
811	}
812
813	crtc = intel_get_crtc_for_plane(dev, plane);
814	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
815	clock = adjusted_mode->crtc_clock;
816	htotal = adjusted_mode->crtc_htotal;
817	hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
818	pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
819
820	line_time_us = max(htotal * 1000 / clock, 1);
821	line_count = (latency_ns / line_time_us + 1000) / 1000;
822	line_size = hdisplay * pixel_size;
823
824	/* Use the minimum of the small and large buffer method for primary */
825	small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
826	large = line_count * line_size;
827
828	entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
829	*display_wm = entries + display->guard_size;
830
831	/* calculate the self-refresh watermark for display cursor */
832	entries = line_count * pixel_size * crtc->cursor->state->crtc_w;
833	entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
834	*cursor_wm = entries + cursor->guard_size;
835
836	return g4x_check_srwm(dev,
837			      *display_wm, *cursor_wm,
838			      display, cursor);
839}
840
841#define FW_WM_VLV(value, plane) \
842	(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
843
844static void vlv_write_wm_values(struct intel_crtc *crtc,
845				const struct vlv_wm_values *wm)
846{
847	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
848	enum pipe pipe = crtc->pipe;
849
850	I915_WRITE(VLV_DDL(pipe),
851		   (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
852		   (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
853		   (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
854		   (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
855
856	I915_WRITE(DSPFW1,
857		   FW_WM(wm->sr.plane, SR) |
858		   FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
859		   FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
860		   FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
861	I915_WRITE(DSPFW2,
862		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
863		   FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
864		   FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
865	I915_WRITE(DSPFW3,
866		   FW_WM(wm->sr.cursor, CURSOR_SR));
867
868	if (IS_CHERRYVIEW(dev_priv)) {
869		I915_WRITE(DSPFW7_CHV,
870			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
871			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
872		I915_WRITE(DSPFW8_CHV,
873			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
874			   FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
875		I915_WRITE(DSPFW9_CHV,
876			   FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
877			   FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
878		I915_WRITE(DSPHOWM,
879			   FW_WM(wm->sr.plane >> 9, SR_HI) |
880			   FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
881			   FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
882			   FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
883			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
884			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
885			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
886			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
887			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
888			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
889	} else {
890		I915_WRITE(DSPFW7,
891			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
892			   FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
893		I915_WRITE(DSPHOWM,
894			   FW_WM(wm->sr.plane >> 9, SR_HI) |
895			   FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
896			   FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
897			   FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
898			   FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
899			   FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
900			   FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
901	}
902
903	POSTING_READ(DSPFW1);
904
905	dev_priv->wm.vlv = *wm;
906}
907
908#undef FW_WM_VLV
909
910static uint8_t vlv_compute_drain_latency(struct drm_crtc *crtc,
911					 struct drm_plane *plane)
912{
913	struct drm_device *dev = crtc->dev;
914	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
915	int entries, prec_mult, drain_latency, pixel_size;
916	int clock = intel_crtc->config->base.adjusted_mode.crtc_clock;
917	const int high_precision = IS_CHERRYVIEW(dev) ? 16 : 64;
918
919	/*
920	 * FIXME the plane might have an fb
921	 * but be invisible (eg. due to clipping)
922	 */
923	if (!intel_crtc->active || !plane->state->fb)
924		return 0;
925
926	if (WARN(clock == 0, "Pixel clock is zero!\n"))
927		return 0;
928
929	pixel_size = drm_format_plane_cpp(plane->state->fb->pixel_format, 0);
930
931	if (WARN(pixel_size == 0, "Pixel size is zero!\n"))
932		return 0;
933
934	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
935
936	prec_mult = high_precision;
937	drain_latency = 64 * prec_mult * 4 / entries;
938
939	if (drain_latency > DRAIN_LATENCY_MASK) {
940		prec_mult /= 2;
941		drain_latency = 64 * prec_mult * 4 / entries;
942	}
943
944	if (drain_latency > DRAIN_LATENCY_MASK)
945		drain_latency = DRAIN_LATENCY_MASK;
946
947	return drain_latency | (prec_mult == high_precision ?
948				DDL_PRECISION_HIGH : DDL_PRECISION_LOW);
949}
950
951static int vlv_compute_wm(struct intel_crtc *crtc,
952			  struct intel_plane *plane,
953			  int fifo_size)
954{
955	int clock, entries, pixel_size;
956
957	/*
958	 * FIXME the plane might have an fb
959	 * but be invisible (eg. due to clipping)
960	 */
961	if (!crtc->active || !plane->base.state->fb)
962		return 0;
963
964	pixel_size = drm_format_plane_cpp(plane->base.state->fb->pixel_format, 0);
965	clock = crtc->config->base.adjusted_mode.crtc_clock;
966
967	entries = DIV_ROUND_UP(clock, 1000) * pixel_size;
968
969	/*
970	 * Set up the watermark such that we don't start issuing memory
971	 * requests until we are within PND's max deadline value (256us).
972	 * Idea being to be idle as long as possible while still taking
973	 * advatange of PND's deadline scheduling. The limit of 8
974	 * cachelines (used when the FIFO will anyway drain in less time
975	 * than 256us) should match what we would be done if trickle
976	 * feed were enabled.
977	 */
978	return fifo_size - clamp(DIV_ROUND_UP(256 * entries, 64), 0, fifo_size - 8);
979}
980
981static bool vlv_compute_sr_wm(struct drm_device *dev,
982			      struct vlv_wm_values *wm)
983{
984	struct drm_i915_private *dev_priv = to_i915(dev);
985	struct drm_crtc *crtc;
986	enum pipe pipe = INVALID_PIPE;
987	int num_planes = 0;
988	int fifo_size = 0;
989	struct intel_plane *plane;
990
991	wm->sr.cursor = wm->sr.plane = 0;
992
993	crtc = single_enabled_crtc(dev);
994	/* maxfifo not supported on pipe C */
995	if (crtc && to_intel_crtc(crtc)->pipe != PIPE_C) {
996		pipe = to_intel_crtc(crtc)->pipe;
997		num_planes = !!wm->pipe[pipe].primary +
998			!!wm->pipe[pipe].sprite[0] +
999			!!wm->pipe[pipe].sprite[1];
1000		fifo_size = INTEL_INFO(dev_priv)->num_pipes * 512 - 1;
1001	}
1002
1003	if (fifo_size == 0 || num_planes > 1)
1004		return false;
1005
1006	wm->sr.cursor = vlv_compute_wm(to_intel_crtc(crtc),
1007				       to_intel_plane(crtc->cursor), 0x3f);
1008
1009	list_for_each_entry(plane, &dev->mode_config.plane_list, base.head) {
1010		if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1011			continue;
1012
1013		if (plane->pipe != pipe)
1014			continue;
1015
1016		wm->sr.plane = vlv_compute_wm(to_intel_crtc(crtc),
1017					      plane, fifo_size);
1018		if (wm->sr.plane != 0)
1019			break;
1020	}
1021
1022	return true;
1023}
1024
1025static void valleyview_update_wm(struct drm_crtc *crtc)
1026{
1027	struct drm_device *dev = crtc->dev;
1028	struct drm_i915_private *dev_priv = dev->dev_private;
1029	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1030	enum pipe pipe = intel_crtc->pipe;
1031	bool cxsr_enabled;
1032	struct vlv_wm_values wm = dev_priv->wm.vlv;
1033
1034	wm.ddl[pipe].primary = vlv_compute_drain_latency(crtc, crtc->primary);
1035	wm.pipe[pipe].primary = vlv_compute_wm(intel_crtc,
1036					       to_intel_plane(crtc->primary),
1037					       vlv_get_fifo_size(dev, pipe, 0));
1038
1039	wm.ddl[pipe].cursor = vlv_compute_drain_latency(crtc, crtc->cursor);
1040	wm.pipe[pipe].cursor = vlv_compute_wm(intel_crtc,
1041					      to_intel_plane(crtc->cursor),
1042					      0x3f);
1043
1044	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1045
1046	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1047		return;
1048
1049	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1050		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1051		      wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1052		      wm.sr.plane, wm.sr.cursor);
1053
1054	/*
1055	 * FIXME DDR DVFS introduces massive memory latencies which
1056	 * are not known to system agent so any deadline specified
1057	 * by the display may not be respected. To support DDR DVFS
1058	 * the watermark code needs to be rewritten to essentially
1059	 * bypass deadline mechanism and rely solely on the
1060	 * watermarks. For now disable DDR DVFS.
1061	 */
1062	if (IS_CHERRYVIEW(dev_priv))
1063		chv_set_memory_dvfs(dev_priv, false);
1064
1065	if (!cxsr_enabled)
1066		intel_set_memory_cxsr(dev_priv, false);
1067
1068	vlv_write_wm_values(intel_crtc, &wm);
1069
1070	if (cxsr_enabled)
1071		intel_set_memory_cxsr(dev_priv, true);
1072}
1073
1074static void valleyview_update_sprite_wm(struct drm_plane *plane,
1075					struct drm_crtc *crtc,
1076					uint32_t sprite_width,
1077					uint32_t sprite_height,
1078					int pixel_size,
1079					bool enabled, bool scaled)
1080{
1081	struct drm_device *dev = crtc->dev;
1082	struct drm_i915_private *dev_priv = dev->dev_private;
1083	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1084	enum pipe pipe = intel_crtc->pipe;
1085	int sprite = to_intel_plane(plane)->plane;
1086	bool cxsr_enabled;
1087	struct vlv_wm_values wm = dev_priv->wm.vlv;
1088
1089	if (enabled) {
1090		wm.ddl[pipe].sprite[sprite] =
1091			vlv_compute_drain_latency(crtc, plane);
1092
1093		wm.pipe[pipe].sprite[sprite] =
1094			vlv_compute_wm(intel_crtc,
1095				       to_intel_plane(plane),
1096				       vlv_get_fifo_size(dev, pipe, sprite+1));
1097	} else {
1098		wm.ddl[pipe].sprite[sprite] = 0;
1099		wm.pipe[pipe].sprite[sprite] = 0;
1100	}
1101
1102	cxsr_enabled = vlv_compute_sr_wm(dev, &wm);
1103
1104	if (memcmp(&wm, &dev_priv->wm.vlv, sizeof(wm)) == 0)
1105		return;
1106
1107	DRM_DEBUG_KMS("Setting FIFO watermarks - %c: sprite %c=%d, "
1108		      "SR: plane=%d, cursor=%d\n", pipe_name(pipe),
1109		      sprite_name(pipe, sprite),
1110		      wm.pipe[pipe].sprite[sprite],
1111		      wm.sr.plane, wm.sr.cursor);
1112
1113	if (!cxsr_enabled)
1114		intel_set_memory_cxsr(dev_priv, false);
1115
1116	vlv_write_wm_values(intel_crtc, &wm);
1117
1118	if (cxsr_enabled)
1119		intel_set_memory_cxsr(dev_priv, true);
1120}
1121
1122#define single_plane_enabled(mask) is_power_of_2(mask)
1123
1124static void g4x_update_wm(struct drm_crtc *crtc)
1125{
1126	struct drm_device *dev = crtc->dev;
1127	static const int sr_latency_ns = 12000;
1128	struct drm_i915_private *dev_priv = dev->dev_private;
1129	int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1130	int plane_sr, cursor_sr;
1131	unsigned int enabled = 0;
1132	bool cxsr_enabled;
1133
1134	if (g4x_compute_wm0(dev, PIPE_A,
1135			    &g4x_wm_info, pessimal_latency_ns,
1136			    &g4x_cursor_wm_info, pessimal_latency_ns,
1137			    &planea_wm, &cursora_wm))
1138		enabled |= 1 << PIPE_A;
1139
1140	if (g4x_compute_wm0(dev, PIPE_B,
1141			    &g4x_wm_info, pessimal_latency_ns,
1142			    &g4x_cursor_wm_info, pessimal_latency_ns,
1143			    &planeb_wm, &cursorb_wm))
1144		enabled |= 1 << PIPE_B;
1145
1146	if (single_plane_enabled(enabled) &&
1147	    g4x_compute_srwm(dev, ffs(enabled) - 1,
1148			     sr_latency_ns,
1149			     &g4x_wm_info,
1150			     &g4x_cursor_wm_info,
1151			     &plane_sr, &cursor_sr)) {
1152		cxsr_enabled = true;
1153	} else {
1154		cxsr_enabled = false;
1155		intel_set_memory_cxsr(dev_priv, false);
1156		plane_sr = cursor_sr = 0;
1157	}
1158
1159	DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1160		      "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1161		      planea_wm, cursora_wm,
1162		      planeb_wm, cursorb_wm,
1163		      plane_sr, cursor_sr);
1164
1165	I915_WRITE(DSPFW1,
1166		   FW_WM(plane_sr, SR) |
1167		   FW_WM(cursorb_wm, CURSORB) |
1168		   FW_WM(planeb_wm, PLANEB) |
1169		   FW_WM(planea_wm, PLANEA));
1170	I915_WRITE(DSPFW2,
1171		   (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1172		   FW_WM(cursora_wm, CURSORA));
1173	/* HPLL off in SR has some issues on G4x... disable it */
1174	I915_WRITE(DSPFW3,
1175		   (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1176		   FW_WM(cursor_sr, CURSOR_SR));
1177
1178	if (cxsr_enabled)
1179		intel_set_memory_cxsr(dev_priv, true);
1180}
1181
1182static void i965_update_wm(struct drm_crtc *unused_crtc)
1183{
1184	struct drm_device *dev = unused_crtc->dev;
1185	struct drm_i915_private *dev_priv = dev->dev_private;
1186	struct drm_crtc *crtc;
1187	int srwm = 1;
1188	int cursor_sr = 16;
1189	bool cxsr_enabled;
1190
1191	/* Calc sr entries for one plane configs */
1192	crtc = single_enabled_crtc(dev);
1193	if (crtc) {
1194		/* self-refresh has much higher latency */
1195		static const int sr_latency_ns = 12000;
1196		const struct drm_display_mode *adjusted_mode =
1197			&to_intel_crtc(crtc)->config->base.adjusted_mode;
1198		int clock = adjusted_mode->crtc_clock;
1199		int htotal = adjusted_mode->crtc_htotal;
1200		int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1201		int pixel_size = crtc->primary->state->fb->bits_per_pixel / 8;
1202		unsigned long line_time_us;
1203		int entries;
1204
1205		line_time_us = max(htotal * 1000 / clock, 1);
1206
1207		/* Use ns/us then divide to preserve precision */
1208		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1209			pixel_size * hdisplay;
1210		entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1211		srwm = I965_FIFO_SIZE - entries;
1212		if (srwm < 0)
1213			srwm = 1;
1214		srwm &= 0x1ff;
1215		DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1216			      entries, srwm);
1217
1218		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1219			pixel_size * crtc->cursor->state->crtc_w;
1220		entries = DIV_ROUND_UP(entries,
1221					  i965_cursor_wm_info.cacheline_size);
1222		cursor_sr = i965_cursor_wm_info.fifo_size -
1223			(entries + i965_cursor_wm_info.guard_size);
1224
1225		if (cursor_sr > i965_cursor_wm_info.max_wm)
1226			cursor_sr = i965_cursor_wm_info.max_wm;
1227
1228		DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1229			      "cursor %d\n", srwm, cursor_sr);
1230
1231		cxsr_enabled = true;
1232	} else {
1233		cxsr_enabled = false;
1234		/* Turn off self refresh if both pipes are enabled */
1235		intel_set_memory_cxsr(dev_priv, false);
1236	}
1237
1238	DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1239		      srwm);
1240
1241	/* 965 has limitations... */
1242	I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1243		   FW_WM(8, CURSORB) |
1244		   FW_WM(8, PLANEB) |
1245		   FW_WM(8, PLANEA));
1246	I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1247		   FW_WM(8, PLANEC_OLD));
1248	/* update cursor SR watermark */
1249	I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1250
1251	if (cxsr_enabled)
1252		intel_set_memory_cxsr(dev_priv, true);
1253}
1254
1255#undef FW_WM
1256
1257static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1258{
1259	struct drm_device *dev = unused_crtc->dev;
1260	struct drm_i915_private *dev_priv = dev->dev_private;
1261	const struct intel_watermark_params *wm_info;
1262	uint32_t fwater_lo;
1263	uint32_t fwater_hi;
1264	int cwm, srwm = 1;
1265	int fifo_size;
1266	int planea_wm, planeb_wm;
1267	struct drm_crtc *crtc, *enabled = NULL;
1268
1269	if (IS_I945GM(dev))
1270		wm_info = &i945_wm_info;
1271	else if (!IS_GEN2(dev))
1272		wm_info = &i915_wm_info;
1273	else
1274		wm_info = &i830_a_wm_info;
1275
1276	fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1277	crtc = intel_get_crtc_for_plane(dev, 0);
1278	if (intel_crtc_active(crtc)) {
1279		const struct drm_display_mode *adjusted_mode;
1280		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1281		if (IS_GEN2(dev))
1282			cpp = 4;
1283
1284		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1285		planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1286					       wm_info, fifo_size, cpp,
1287					       pessimal_latency_ns);
1288		enabled = crtc;
1289	} else {
1290		planea_wm = fifo_size - wm_info->guard_size;
1291		if (planea_wm > (long)wm_info->max_wm)
1292			planea_wm = wm_info->max_wm;
1293	}
1294
1295	if (IS_GEN2(dev))
1296		wm_info = &i830_bc_wm_info;
1297
1298	fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1299	crtc = intel_get_crtc_for_plane(dev, 1);
1300	if (intel_crtc_active(crtc)) {
1301		const struct drm_display_mode *adjusted_mode;
1302		int cpp = crtc->primary->state->fb->bits_per_pixel / 8;
1303		if (IS_GEN2(dev))
1304			cpp = 4;
1305
1306		adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1307		planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1308					       wm_info, fifo_size, cpp,
1309					       pessimal_latency_ns);
1310		if (enabled == NULL)
1311			enabled = crtc;
1312		else
1313			enabled = NULL;
1314	} else {
1315		planeb_wm = fifo_size - wm_info->guard_size;
1316		if (planeb_wm > (long)wm_info->max_wm)
1317			planeb_wm = wm_info->max_wm;
1318	}
1319
1320	DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1321
1322	if (IS_I915GM(dev) && enabled) {
1323		struct drm_i915_gem_object *obj;
1324
1325		obj = intel_fb_obj(enabled->primary->state->fb);
1326
1327		/* self-refresh seems busted with untiled */
1328		if (obj->tiling_mode == I915_TILING_NONE)
1329			enabled = NULL;
1330	}
1331
1332	/*
1333	 * Overlay gets an aggressive default since video jitter is bad.
1334	 */
1335	cwm = 2;
1336
1337	/* Play safe and disable self-refresh before adjusting watermarks. */
1338	intel_set_memory_cxsr(dev_priv, false);
1339
1340	/* Calc sr entries for one plane configs */
1341	if (HAS_FW_BLC(dev) && enabled) {
1342		/* self-refresh has much higher latency */
1343		static const int sr_latency_ns = 6000;
1344		const struct drm_display_mode *adjusted_mode =
1345			&to_intel_crtc(enabled)->config->base.adjusted_mode;
1346		int clock = adjusted_mode->crtc_clock;
1347		int htotal = adjusted_mode->crtc_htotal;
1348		int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1349		int pixel_size = enabled->primary->state->fb->bits_per_pixel / 8;
1350		unsigned long line_time_us;
1351		int entries;
1352
1353		line_time_us = max(htotal * 1000 / clock, 1);
1354
1355		/* Use ns/us then divide to preserve precision */
1356		entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1357			pixel_size * hdisplay;
1358		entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1359		DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1360		srwm = wm_info->fifo_size - entries;
1361		if (srwm < 0)
1362			srwm = 1;
1363
1364		if (IS_I945G(dev) || IS_I945GM(dev))
1365			I915_WRITE(FW_BLC_SELF,
1366				   FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1367		else if (IS_I915GM(dev))
1368			I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1369	}
1370
1371	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1372		      planea_wm, planeb_wm, cwm, srwm);
1373
1374	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1375	fwater_hi = (cwm & 0x1f);
1376
1377	/* Set request length to 8 cachelines per fetch */
1378	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1379	fwater_hi = fwater_hi | (1 << 8);
1380
1381	I915_WRITE(FW_BLC, fwater_lo);
1382	I915_WRITE(FW_BLC2, fwater_hi);
1383
1384	if (enabled)
1385		intel_set_memory_cxsr(dev_priv, true);
1386}
1387
1388static void i845_update_wm(struct drm_crtc *unused_crtc)
1389{
1390	struct drm_device *dev = unused_crtc->dev;
1391	struct drm_i915_private *dev_priv = dev->dev_private;
1392	struct drm_crtc *crtc;
1393	const struct drm_display_mode *adjusted_mode;
1394	uint32_t fwater_lo;
1395	int planea_wm;
1396
1397	crtc = single_enabled_crtc(dev);
1398	if (crtc == NULL)
1399		return;
1400
1401	adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1402	planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1403				       &i845_wm_info,
1404				       dev_priv->display.get_fifo_size(dev, 0),
1405				       4, pessimal_latency_ns);
1406	fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1407	fwater_lo |= (3<<8) | planea_wm;
1408
1409	DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1410
1411	I915_WRITE(FW_BLC, fwater_lo);
1412}
1413
1414static uint32_t ilk_pipe_pixel_rate(struct drm_device *dev,
1415				    struct drm_crtc *crtc)
1416{
1417	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1418	uint32_t pixel_rate;
1419
1420	pixel_rate = intel_crtc->config->base.adjusted_mode.crtc_clock;
1421
1422	/* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1423	 * adjust the pixel_rate here. */
1424
1425	if (intel_crtc->config->pch_pfit.enabled) {
1426		uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1427		uint32_t pfit_size = intel_crtc->config->pch_pfit.size;
1428
1429		pipe_w = intel_crtc->config->pipe_src_w;
1430		pipe_h = intel_crtc->config->pipe_src_h;
1431		pfit_w = (pfit_size >> 16) & 0xFFFF;
1432		pfit_h = pfit_size & 0xFFFF;
1433		if (pipe_w < pfit_w)
1434			pipe_w = pfit_w;
1435		if (pipe_h < pfit_h)
1436			pipe_h = pfit_h;
1437
1438		pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1439				     pfit_w * pfit_h);
1440	}
1441
1442	return pixel_rate;
1443}
1444
1445/* latency must be in 0.1us units. */
1446static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
1447			       uint32_t latency)
1448{
1449	uint64_t ret;
1450
1451	if (WARN(latency == 0, "Latency value missing\n"))
1452		return UINT_MAX;
1453
1454	ret = (uint64_t) pixel_rate * bytes_per_pixel * latency;
1455	ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1456
1457	return ret;
1458}
1459
1460/* latency must be in 0.1us units. */
1461static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1462			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
1463			       uint32_t latency)
1464{
1465	uint32_t ret;
1466
1467	if (WARN(latency == 0, "Latency value missing\n"))
1468		return UINT_MAX;
1469
1470	ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1471	ret = (ret + 1) * horiz_pixels * bytes_per_pixel;
1472	ret = DIV_ROUND_UP(ret, 64) + 2;
1473	return ret;
1474}
1475
1476static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1477			   uint8_t bytes_per_pixel)
1478{
1479	return DIV_ROUND_UP(pri_val * 64, horiz_pixels * bytes_per_pixel) + 2;
1480}
1481
1482struct skl_pipe_wm_parameters {
1483	bool active;
1484	uint32_t pipe_htotal;
1485	uint32_t pixel_rate; /* in KHz */
1486	struct intel_plane_wm_parameters plane[I915_MAX_PLANES];
1487	struct intel_plane_wm_parameters cursor;
1488};
1489
1490struct ilk_pipe_wm_parameters {
1491	bool active;
1492	uint32_t pipe_htotal;
1493	uint32_t pixel_rate;
1494	struct intel_plane_wm_parameters pri;
1495	struct intel_plane_wm_parameters spr;
1496	struct intel_plane_wm_parameters cur;
1497};
1498
1499struct ilk_wm_maximums {
1500	uint16_t pri;
1501	uint16_t spr;
1502	uint16_t cur;
1503	uint16_t fbc;
1504};
1505
1506/* used in computing the new watermarks state */
1507struct intel_wm_config {
1508	unsigned int num_pipes_active;
1509	bool sprites_enabled;
1510	bool sprites_scaled;
1511};
1512
1513/*
1514 * For both WM_PIPE and WM_LP.
1515 * mem_value must be in 0.1us units.
1516 */
1517static uint32_t ilk_compute_pri_wm(const struct ilk_pipe_wm_parameters *params,
1518				   uint32_t mem_value,
1519				   bool is_lp)
1520{
1521	uint32_t method1, method2;
1522
1523	if (!params->active || !params->pri.enabled)
1524		return 0;
1525
1526	method1 = ilk_wm_method1(params->pixel_rate,
1527				 params->pri.bytes_per_pixel,
1528				 mem_value);
1529
1530	if (!is_lp)
1531		return method1;
1532
1533	method2 = ilk_wm_method2(params->pixel_rate,
1534				 params->pipe_htotal,
1535				 params->pri.horiz_pixels,
1536				 params->pri.bytes_per_pixel,
1537				 mem_value);
1538
1539	return min(method1, method2);
1540}
1541
1542/*
1543 * For both WM_PIPE and WM_LP.
1544 * mem_value must be in 0.1us units.
1545 */
1546static uint32_t ilk_compute_spr_wm(const struct ilk_pipe_wm_parameters *params,
1547				   uint32_t mem_value)
1548{
1549	uint32_t method1, method2;
1550
1551	if (!params->active || !params->spr.enabled)
1552		return 0;
1553
1554	method1 = ilk_wm_method1(params->pixel_rate,
1555				 params->spr.bytes_per_pixel,
1556				 mem_value);
1557	method2 = ilk_wm_method2(params->pixel_rate,
1558				 params->pipe_htotal,
1559				 params->spr.horiz_pixels,
1560				 params->spr.bytes_per_pixel,
1561				 mem_value);
1562	return min(method1, method2);
1563}
1564
1565/*
1566 * For both WM_PIPE and WM_LP.
1567 * mem_value must be in 0.1us units.
1568 */
1569static uint32_t ilk_compute_cur_wm(const struct ilk_pipe_wm_parameters *params,
1570				   uint32_t mem_value)
1571{
1572	if (!params->active || !params->cur.enabled)
1573		return 0;
1574
1575	return ilk_wm_method2(params->pixel_rate,
1576			      params->pipe_htotal,
1577			      params->cur.horiz_pixels,
1578			      params->cur.bytes_per_pixel,
1579			      mem_value);
1580}
1581
1582/* Only for WM_LP. */
1583static uint32_t ilk_compute_fbc_wm(const struct ilk_pipe_wm_parameters *params,
1584				   uint32_t pri_val)
1585{
1586	if (!params->active || !params->pri.enabled)
1587		return 0;
1588
1589	return ilk_wm_fbc(pri_val,
1590			  params->pri.horiz_pixels,
1591			  params->pri.bytes_per_pixel);
1592}
1593
1594static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1595{
1596	if (INTEL_INFO(dev)->gen >= 8)
1597		return 3072;
1598	else if (INTEL_INFO(dev)->gen >= 7)
1599		return 768;
1600	else
1601		return 512;
1602}
1603
1604static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1605					 int level, bool is_sprite)
1606{
1607	if (INTEL_INFO(dev)->gen >= 8)
1608		/* BDW primary/sprite plane watermarks */
1609		return level == 0 ? 255 : 2047;
1610	else if (INTEL_INFO(dev)->gen >= 7)
1611		/* IVB/HSW primary/sprite plane watermarks */
1612		return level == 0 ? 127 : 1023;
1613	else if (!is_sprite)
1614		/* ILK/SNB primary plane watermarks */
1615		return level == 0 ? 127 : 511;
1616	else
1617		/* ILK/SNB sprite plane watermarks */
1618		return level == 0 ? 63 : 255;
1619}
1620
1621static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1622					  int level)
1623{
1624	if (INTEL_INFO(dev)->gen >= 7)
1625		return level == 0 ? 63 : 255;
1626	else
1627		return level == 0 ? 31 : 63;
1628}
1629
1630static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1631{
1632	if (INTEL_INFO(dev)->gen >= 8)
1633		return 31;
1634	else
1635		return 15;
1636}
1637
1638/* Calculate the maximum primary/sprite plane watermark */
1639static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1640				     int level,
1641				     const struct intel_wm_config *config,
1642				     enum intel_ddb_partitioning ddb_partitioning,
1643				     bool is_sprite)
1644{
1645	unsigned int fifo_size = ilk_display_fifo_size(dev);
1646
1647	/* if sprites aren't enabled, sprites get nothing */
1648	if (is_sprite && !config->sprites_enabled)
1649		return 0;
1650
1651	/* HSW allows LP1+ watermarks even with multiple pipes */
1652	if (level == 0 || config->num_pipes_active > 1) {
1653		fifo_size /= INTEL_INFO(dev)->num_pipes;
1654
1655		/*
1656		 * For some reason the non self refresh
1657		 * FIFO size is only half of the self
1658		 * refresh FIFO size on ILK/SNB.
1659		 */
1660		if (INTEL_INFO(dev)->gen <= 6)
1661			fifo_size /= 2;
1662	}
1663
1664	if (config->sprites_enabled) {
1665		/* level 0 is always calculated with 1:1 split */
1666		if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1667			if (is_sprite)
1668				fifo_size *= 5;
1669			fifo_size /= 6;
1670		} else {
1671			fifo_size /= 2;
1672		}
1673	}
1674
1675	/* clamp to max that the registers can hold */
1676	return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1677}
1678
1679/* Calculate the maximum cursor plane watermark */
1680static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1681				      int level,
1682				      const struct intel_wm_config *config)
1683{
1684	/* HSW LP1+ watermarks w/ multiple pipes */
1685	if (level > 0 && config->num_pipes_active > 1)
1686		return 64;
1687
1688	/* otherwise just report max that registers can hold */
1689	return ilk_cursor_wm_reg_max(dev, level);
1690}
1691
1692static void ilk_compute_wm_maximums(const struct drm_device *dev,
1693				    int level,
1694				    const struct intel_wm_config *config,
1695				    enum intel_ddb_partitioning ddb_partitioning,
1696				    struct ilk_wm_maximums *max)
1697{
1698	max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1699	max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1700	max->cur = ilk_cursor_wm_max(dev, level, config);
1701	max->fbc = ilk_fbc_wm_reg_max(dev);
1702}
1703
1704static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1705					int level,
1706					struct ilk_wm_maximums *max)
1707{
1708	max->pri = ilk_plane_wm_reg_max(dev, level, false);
1709	max->spr = ilk_plane_wm_reg_max(dev, level, true);
1710	max->cur = ilk_cursor_wm_reg_max(dev, level);
1711	max->fbc = ilk_fbc_wm_reg_max(dev);
1712}
1713
1714static bool ilk_validate_wm_level(int level,
1715				  const struct ilk_wm_maximums *max,
1716				  struct intel_wm_level *result)
1717{
1718	bool ret;
1719
1720	/* already determined to be invalid? */
1721	if (!result->enable)
1722		return false;
1723
1724	result->enable = result->pri_val <= max->pri &&
1725			 result->spr_val <= max->spr &&
1726			 result->cur_val <= max->cur;
1727
1728	ret = result->enable;
1729
1730	/*
1731	 * HACK until we can pre-compute everything,
1732	 * and thus fail gracefully if LP0 watermarks
1733	 * are exceeded...
1734	 */
1735	if (level == 0 && !result->enable) {
1736		if (result->pri_val > max->pri)
1737			DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1738				      level, result->pri_val, max->pri);
1739		if (result->spr_val > max->spr)
1740			DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
1741				      level, result->spr_val, max->spr);
1742		if (result->cur_val > max->cur)
1743			DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
1744				      level, result->cur_val, max->cur);
1745
1746		result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
1747		result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
1748		result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
1749		result->enable = true;
1750	}
1751
1752	return ret;
1753}
1754
1755static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
1756				 int level,
1757				 const struct ilk_pipe_wm_parameters *p,
1758				 struct intel_wm_level *result)
1759{
1760	uint16_t pri_latency = dev_priv->wm.pri_latency[level];
1761	uint16_t spr_latency = dev_priv->wm.spr_latency[level];
1762	uint16_t cur_latency = dev_priv->wm.cur_latency[level];
1763
1764	/* WM1+ latency values stored in 0.5us units */
1765	if (level > 0) {
1766		pri_latency *= 5;
1767		spr_latency *= 5;
1768		cur_latency *= 5;
1769	}
1770
1771	result->pri_val = ilk_compute_pri_wm(p, pri_latency, level);
1772	result->spr_val = ilk_compute_spr_wm(p, spr_latency);
1773	result->cur_val = ilk_compute_cur_wm(p, cur_latency);
1774	result->fbc_val = ilk_compute_fbc_wm(p, result->pri_val);
1775	result->enable = true;
1776}
1777
1778static uint32_t
1779hsw_compute_linetime_wm(struct drm_device *dev, struct drm_crtc *crtc)
1780{
1781	struct drm_i915_private *dev_priv = dev->dev_private;
1782	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1783	struct drm_display_mode *mode = &intel_crtc->config->base.adjusted_mode;
1784	u32 linetime, ips_linetime;
1785
1786	if (!intel_crtc->active)
1787		return 0;
1788
1789	/* The WM are computed with base on how long it takes to fill a single
1790	 * row at the given clock rate, multiplied by 8.
1791	 * */
1792	linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1793				     mode->crtc_clock);
1794	ips_linetime = DIV_ROUND_CLOSEST(mode->crtc_htotal * 1000 * 8,
1795					 intel_ddi_get_cdclk_freq(dev_priv));
1796
1797	return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
1798	       PIPE_WM_LINETIME_TIME(linetime);
1799}
1800
1801static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
1802{
1803	struct drm_i915_private *dev_priv = dev->dev_private;
1804
1805	if (IS_GEN9(dev)) {
1806		uint32_t val;
1807		int ret, i;
1808		int level, max_level = ilk_wm_max_level(dev);
1809
1810		/* read the first set of memory latencies[0:3] */
1811		val = 0; /* data0 to be programmed to 0 for first set */
1812		mutex_lock(&dev_priv->rps.hw_lock);
1813		ret = sandybridge_pcode_read(dev_priv,
1814					     GEN9_PCODE_READ_MEM_LATENCY,
1815					     &val);
1816		mutex_unlock(&dev_priv->rps.hw_lock);
1817
1818		if (ret) {
1819			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1820			return;
1821		}
1822
1823		wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1824		wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1825				GEN9_MEM_LATENCY_LEVEL_MASK;
1826		wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1827				GEN9_MEM_LATENCY_LEVEL_MASK;
1828		wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1829				GEN9_MEM_LATENCY_LEVEL_MASK;
1830
1831		/* read the second set of memory latencies[4:7] */
1832		val = 1; /* data0 to be programmed to 1 for second set */
1833		mutex_lock(&dev_priv->rps.hw_lock);
1834		ret = sandybridge_pcode_read(dev_priv,
1835					     GEN9_PCODE_READ_MEM_LATENCY,
1836					     &val);
1837		mutex_unlock(&dev_priv->rps.hw_lock);
1838		if (ret) {
1839			DRM_ERROR("SKL Mailbox read error = %d\n", ret);
1840			return;
1841		}
1842
1843		wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
1844		wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
1845				GEN9_MEM_LATENCY_LEVEL_MASK;
1846		wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
1847				GEN9_MEM_LATENCY_LEVEL_MASK;
1848		wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
1849				GEN9_MEM_LATENCY_LEVEL_MASK;
1850
1851		/*
1852		 * WaWmMemoryReadLatency:skl
1853		 *
1854		 * punit doesn't take into account the read latency so we need
1855		 * to add 2us to the various latency levels we retrieve from
1856		 * the punit.
1857		 *   - W0 is a bit special in that it's the only level that
1858		 *   can't be disabled if we want to have display working, so
1859		 *   we always add 2us there.
1860		 *   - For levels >=1, punit returns 0us latency when they are
1861		 *   disabled, so we respect that and don't add 2us then
1862		 *
1863		 * Additionally, if a level n (n > 1) has a 0us latency, all
1864		 * levels m (m >= n) need to be disabled. We make sure to
1865		 * sanitize the values out of the punit to satisfy this
1866		 * requirement.
1867		 */
1868		wm[0] += 2;
1869		for (level = 1; level <= max_level; level++)
1870			if (wm[level] != 0)
1871				wm[level] += 2;
1872			else {
1873				for (i = level + 1; i <= max_level; i++)
1874					wm[i] = 0;
1875
1876				break;
1877			}
1878	} else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1879		uint64_t sskpd = I915_READ64(MCH_SSKPD);
1880
1881		wm[0] = (sskpd >> 56) & 0xFF;
1882		if (wm[0] == 0)
1883			wm[0] = sskpd & 0xF;
1884		wm[1] = (sskpd >> 4) & 0xFF;
1885		wm[2] = (sskpd >> 12) & 0xFF;
1886		wm[3] = (sskpd >> 20) & 0x1FF;
1887		wm[4] = (sskpd >> 32) & 0x1FF;
1888	} else if (INTEL_INFO(dev)->gen >= 6) {
1889		uint32_t sskpd = I915_READ(MCH_SSKPD);
1890
1891		wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
1892		wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
1893		wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
1894		wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
1895	} else if (INTEL_INFO(dev)->gen >= 5) {
1896		uint32_t mltr = I915_READ(MLTR_ILK);
1897
1898		/* ILK primary LP0 latency is 700 ns */
1899		wm[0] = 7;
1900		wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
1901		wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
1902	}
1903}
1904
1905static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
1906{
1907	/* ILK sprite LP0 latency is 1300 ns */
1908	if (INTEL_INFO(dev)->gen == 5)
1909		wm[0] = 13;
1910}
1911
1912static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
1913{
1914	/* ILK cursor LP0 latency is 1300 ns */
1915	if (INTEL_INFO(dev)->gen == 5)
1916		wm[0] = 13;
1917
1918	/* WaDoubleCursorLP3Latency:ivb */
1919	if (IS_IVYBRIDGE(dev))
1920		wm[3] *= 2;
1921}
1922
1923int ilk_wm_max_level(const struct drm_device *dev)
1924{
1925	/* how many WM levels are we expecting */
1926	if (IS_GEN9(dev))
1927		return 7;
1928	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1929		return 4;
1930	else if (INTEL_INFO(dev)->gen >= 6)
1931		return 3;
1932	else
1933		return 2;
1934}
1935
1936static void intel_print_wm_latency(struct drm_device *dev,
1937				   const char *name,
1938				   const uint16_t wm[8])
1939{
1940	int level, max_level = ilk_wm_max_level(dev);
1941
1942	for (level = 0; level <= max_level; level++) {
1943		unsigned int latency = wm[level];
1944
1945		if (latency == 0) {
1946			DRM_ERROR("%s WM%d latency not provided\n",
1947				  name, level);
1948			continue;
1949		}
1950
1951		/*
1952		 * - latencies are in us on gen9.
1953		 * - before then, WM1+ latency values are in 0.5us units
1954		 */
1955		if (IS_GEN9(dev))
1956			latency *= 10;
1957		else if (level > 0)
1958			latency *= 5;
1959
1960		DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
1961			      name, level, wm[level],
1962			      latency / 10, latency % 10);
1963	}
1964}
1965
1966static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
1967				    uint16_t wm[5], uint16_t min)
1968{
1969	int level, max_level = ilk_wm_max_level(dev_priv->dev);
1970
1971	if (wm[0] >= min)
1972		return false;
1973
1974	wm[0] = max(wm[0], min);
1975	for (level = 1; level <= max_level; level++)
1976		wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
1977
1978	return true;
1979}
1980
1981static void snb_wm_latency_quirk(struct drm_device *dev)
1982{
1983	struct drm_i915_private *dev_priv = dev->dev_private;
1984	bool changed;
1985
1986	/*
1987	 * The BIOS provided WM memory latency values are often
1988	 * inadequate for high resolution displays. Adjust them.
1989	 */
1990	changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
1991		ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
1992		ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
1993
1994	if (!changed)
1995		return;
1996
1997	DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
1998	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
1999	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2000	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2001}
2002
2003static void ilk_setup_wm_latency(struct drm_device *dev)
2004{
2005	struct drm_i915_private *dev_priv = dev->dev_private;
2006
2007	intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2008
2009	memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2010	       sizeof(dev_priv->wm.pri_latency));
2011	memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2012	       sizeof(dev_priv->wm.pri_latency));
2013
2014	intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2015	intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2016
2017	intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2018	intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2019	intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2020
2021	if (IS_GEN6(dev))
2022		snb_wm_latency_quirk(dev);
2023}
2024
2025static void skl_setup_wm_latency(struct drm_device *dev)
2026{
2027	struct drm_i915_private *dev_priv = dev->dev_private;
2028
2029	intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2030	intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2031}
2032
2033static void ilk_compute_wm_parameters(struct drm_crtc *crtc,
2034				      struct ilk_pipe_wm_parameters *p)
2035{
2036	struct drm_device *dev = crtc->dev;
2037	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2038	enum pipe pipe = intel_crtc->pipe;
2039	struct drm_plane *plane;
2040
2041	if (!intel_crtc->active)
2042		return;
2043
2044	p->active = true;
2045	p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2046	p->pixel_rate = ilk_pipe_pixel_rate(dev, crtc);
2047
2048	if (crtc->primary->state->fb)
2049		p->pri.bytes_per_pixel =
2050			crtc->primary->state->fb->bits_per_pixel / 8;
2051	else
2052		p->pri.bytes_per_pixel = 4;
2053
2054	p->cur.bytes_per_pixel = 4;
2055	/*
2056	 * TODO: for now, assume primary and cursor planes are always enabled.
2057	 * Setting them to false makes the screen flicker.
2058	 */
2059	p->pri.enabled = true;
2060	p->cur.enabled = true;
2061
2062	p->pri.horiz_pixels = intel_crtc->config->pipe_src_w;
2063	p->cur.horiz_pixels = intel_crtc->base.cursor->state->crtc_w;
2064
2065	drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
2066		struct intel_plane *intel_plane = to_intel_plane(plane);
2067
2068		if (intel_plane->pipe == pipe) {
2069			p->spr = intel_plane->wm;
2070			break;
2071		}
2072	}
2073}
2074
2075static void ilk_compute_wm_config(struct drm_device *dev,
2076				  struct intel_wm_config *config)
2077{
2078	struct intel_crtc *intel_crtc;
2079
2080	/* Compute the currently _active_ config */
2081	for_each_intel_crtc(dev, intel_crtc) {
2082		const struct intel_pipe_wm *wm = &intel_crtc->wm.active;
2083
2084		if (!wm->pipe_enabled)
2085			continue;
2086
2087		config->sprites_enabled |= wm->sprites_enabled;
2088		config->sprites_scaled |= wm->sprites_scaled;
2089		config->num_pipes_active++;
2090	}
2091}
2092
2093/* Compute new watermarks for the pipe */
2094static bool intel_compute_pipe_wm(struct drm_crtc *crtc,
2095				  const struct ilk_pipe_wm_parameters *params,
2096				  struct intel_pipe_wm *pipe_wm)
2097{
2098	struct drm_device *dev = crtc->dev;
2099	const struct drm_i915_private *dev_priv = dev->dev_private;
2100	int level, max_level = ilk_wm_max_level(dev);
2101	/* LP0 watermark maximums depend on this pipe alone */
2102	struct intel_wm_config config = {
2103		.num_pipes_active = 1,
2104		.sprites_enabled = params->spr.enabled,
2105		.sprites_scaled = params->spr.scaled,
2106	};
2107	struct ilk_wm_maximums max;
2108
2109	pipe_wm->pipe_enabled = params->active;
2110	pipe_wm->sprites_enabled = params->spr.enabled;
2111	pipe_wm->sprites_scaled = params->spr.scaled;
2112
2113	/* ILK/SNB: LP2+ watermarks only w/o sprites */
2114	if (INTEL_INFO(dev)->gen <= 6 && params->spr.enabled)
2115		max_level = 1;
2116
2117	/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2118	if (params->spr.scaled)
2119		max_level = 0;
2120
2121	ilk_compute_wm_level(dev_priv, 0, params, &pipe_wm->wm[0]);
2122
2123	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2124		pipe_wm->linetime = hsw_compute_linetime_wm(dev, crtc);
2125
2126	/* LP0 watermarks always use 1/2 DDB partitioning */
2127	ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2128
2129	/* At least LP0 must be valid */
2130	if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0]))
2131		return false;
2132
2133	ilk_compute_wm_reg_maximums(dev, 1, &max);
2134
2135	for (level = 1; level <= max_level; level++) {
2136		struct intel_wm_level wm = {};
2137
2138		ilk_compute_wm_level(dev_priv, level, params, &wm);
2139
2140		/*
2141		 * Disable any watermark level that exceeds the
2142		 * register maximums since such watermarks are
2143		 * always invalid.
2144		 */
2145		if (!ilk_validate_wm_level(level, &max, &wm))
2146			break;
2147
2148		pipe_wm->wm[level] = wm;
2149	}
2150
2151	return true;
2152}
2153
2154/*
2155 * Merge the watermarks from all active pipes for a specific level.
2156 */
2157static void ilk_merge_wm_level(struct drm_device *dev,
2158			       int level,
2159			       struct intel_wm_level *ret_wm)
2160{
2161	const struct intel_crtc *intel_crtc;
2162
2163	ret_wm->enable = true;
2164
2165	for_each_intel_crtc(dev, intel_crtc) {
2166		const struct intel_pipe_wm *active = &intel_crtc->wm.active;
2167		const struct intel_wm_level *wm = &active->wm[level];
2168
2169		if (!active->pipe_enabled)
2170			continue;
2171
2172		/*
2173		 * The watermark values may have been used in the past,
2174		 * so we must maintain them in the registers for some
2175		 * time even if the level is now disabled.
2176		 */
2177		if (!wm->enable)
2178			ret_wm->enable = false;
2179
2180		ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2181		ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2182		ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2183		ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2184	}
2185}
2186
2187/*
2188 * Merge all low power watermarks for all active pipes.
2189 */
2190static void ilk_wm_merge(struct drm_device *dev,
2191			 const struct intel_wm_config *config,
2192			 const struct ilk_wm_maximums *max,
2193			 struct intel_pipe_wm *merged)
2194{
2195	int level, max_level = ilk_wm_max_level(dev);
2196	int last_enabled_level = max_level;
2197
2198	/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2199	if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2200	    config->num_pipes_active > 1)
2201		return;
2202
2203	/* ILK: FBC WM must be disabled always */
2204	merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2205
2206	/* merge each WM1+ level */
2207	for (level = 1; level <= max_level; level++) {
2208		struct intel_wm_level *wm = &merged->wm[level];
2209
2210		ilk_merge_wm_level(dev, level, wm);
2211
2212		if (level > last_enabled_level)
2213			wm->enable = false;
2214		else if (!ilk_validate_wm_level(level, max, wm))
2215			/* make sure all following levels get disabled */
2216			last_enabled_level = level - 1;
2217
2218		/*
2219		 * The spec says it is preferred to disable
2220		 * FBC WMs instead of disabling a WM level.
2221		 */
2222		if (wm->fbc_val > max->fbc) {
2223			if (wm->enable)
2224				merged->fbc_wm_enabled = false;
2225			wm->fbc_val = 0;
2226		}
2227	}
2228
2229	/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2230	/*
2231	 * FIXME this is racy. FBC might get enabled later.
2232	 * What we should check here is whether FBC can be
2233	 * enabled sometime later.
2234	 */
2235	if (IS_GEN5(dev) && !merged->fbc_wm_enabled && intel_fbc_enabled(dev)) {
2236		for (level = 2; level <= max_level; level++) {
2237			struct intel_wm_level *wm = &merged->wm[level];
2238
2239			wm->enable = false;
2240		}
2241	}
2242}
2243
2244static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2245{
2246	/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2247	return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2248}
2249
2250/* The value we need to program into the WM_LPx latency field */
2251static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2252{
2253	struct drm_i915_private *dev_priv = dev->dev_private;
2254
2255	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2256		return 2 * level;
2257	else
2258		return dev_priv->wm.pri_latency[level];
2259}
2260
2261static void ilk_compute_wm_results(struct drm_device *dev,
2262				   const struct intel_pipe_wm *merged,
2263				   enum intel_ddb_partitioning partitioning,
2264				   struct ilk_wm_values *results)
2265{
2266	struct intel_crtc *intel_crtc;
2267	int level, wm_lp;
2268
2269	results->enable_fbc_wm = merged->fbc_wm_enabled;
2270	results->partitioning = partitioning;
2271
2272	/* LP1+ register values */
2273	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2274		const struct intel_wm_level *r;
2275
2276		level = ilk_wm_lp_to_level(wm_lp, merged);
2277
2278		r = &merged->wm[level];
2279
2280		/*
2281		 * Maintain the watermark values even if the level is
2282		 * disabled. Doing otherwise could cause underruns.
2283		 */
2284		results->wm_lp[wm_lp - 1] =
2285			(ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2286			(r->pri_val << WM1_LP_SR_SHIFT) |
2287			r->cur_val;
2288
2289		if (r->enable)
2290			results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2291
2292		if (INTEL_INFO(dev)->gen >= 8)
2293			results->wm_lp[wm_lp - 1] |=
2294				r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2295		else
2296			results->wm_lp[wm_lp - 1] |=
2297				r->fbc_val << WM1_LP_FBC_SHIFT;
2298
2299		/*
2300		 * Always set WM1S_LP_EN when spr_val != 0, even if the
2301		 * level is disabled. Doing otherwise could cause underruns.
2302		 */
2303		if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2304			WARN_ON(wm_lp != 1);
2305			results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2306		} else
2307			results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2308	}
2309
2310	/* LP0 register values */
2311	for_each_intel_crtc(dev, intel_crtc) {
2312		enum pipe pipe = intel_crtc->pipe;
2313		const struct intel_wm_level *r =
2314			&intel_crtc->wm.active.wm[0];
2315
2316		if (WARN_ON(!r->enable))
2317			continue;
2318
2319		results->wm_linetime[pipe] = intel_crtc->wm.active.linetime;
2320
2321		results->wm_pipe[pipe] =
2322			(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2323			(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2324			r->cur_val;
2325	}
2326}
2327
2328/* Find the result with the highest level enabled. Check for enable_fbc_wm in
2329 * case both are at the same level. Prefer r1 in case they're the same. */
2330static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2331						  struct intel_pipe_wm *r1,
2332						  struct intel_pipe_wm *r2)
2333{
2334	int level, max_level = ilk_wm_max_level(dev);
2335	int level1 = 0, level2 = 0;
2336
2337	for (level = 1; level <= max_level; level++) {
2338		if (r1->wm[level].enable)
2339			level1 = level;
2340		if (r2->wm[level].enable)
2341			level2 = level;
2342	}
2343
2344	if (level1 == level2) {
2345		if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2346			return r2;
2347		else
2348			return r1;
2349	} else if (level1 > level2) {
2350		return r1;
2351	} else {
2352		return r2;
2353	}
2354}
2355
2356/* dirty bits used to track which watermarks need changes */
2357#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2358#define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2359#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2360#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2361#define WM_DIRTY_FBC (1 << 24)
2362#define WM_DIRTY_DDB (1 << 25)
2363
2364static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2365					 const struct ilk_wm_values *old,
2366					 const struct ilk_wm_values *new)
2367{
2368	unsigned int dirty = 0;
2369	enum pipe pipe;
2370	int wm_lp;
2371
2372	for_each_pipe(dev_priv, pipe) {
2373		if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2374			dirty |= WM_DIRTY_LINETIME(pipe);
2375			/* Must disable LP1+ watermarks too */
2376			dirty |= WM_DIRTY_LP_ALL;
2377		}
2378
2379		if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2380			dirty |= WM_DIRTY_PIPE(pipe);
2381			/* Must disable LP1+ watermarks too */
2382			dirty |= WM_DIRTY_LP_ALL;
2383		}
2384	}
2385
2386	if (old->enable_fbc_wm != new->enable_fbc_wm) {
2387		dirty |= WM_DIRTY_FBC;
2388		/* Must disable LP1+ watermarks too */
2389		dirty |= WM_DIRTY_LP_ALL;
2390	}
2391
2392	if (old->partitioning != new->partitioning) {
2393		dirty |= WM_DIRTY_DDB;
2394		/* Must disable LP1+ watermarks too */
2395		dirty |= WM_DIRTY_LP_ALL;
2396	}
2397
2398	/* LP1+ watermarks already deemed dirty, no need to continue */
2399	if (dirty & WM_DIRTY_LP_ALL)
2400		return dirty;
2401
2402	/* Find the lowest numbered LP1+ watermark in need of an update... */
2403	for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2404		if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2405		    old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2406			break;
2407	}
2408
2409	/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2410	for (; wm_lp <= 3; wm_lp++)
2411		dirty |= WM_DIRTY_LP(wm_lp);
2412
2413	return dirty;
2414}
2415
2416static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2417			       unsigned int dirty)
2418{
2419	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2420	bool changed = false;
2421
2422	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2423		previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2424		I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2425		changed = true;
2426	}
2427	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2428		previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2429		I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2430		changed = true;
2431	}
2432	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2433		previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2434		I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2435		changed = true;
2436	}
2437
2438	/*
2439	 * Don't touch WM1S_LP_EN here.
2440	 * Doing so could cause underruns.
2441	 */
2442
2443	return changed;
2444}
2445
2446/*
2447 * The spec says we shouldn't write when we don't need, because every write
2448 * causes WMs to be re-evaluated, expending some power.
2449 */
2450static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2451				struct ilk_wm_values *results)
2452{
2453	struct drm_device *dev = dev_priv->dev;
2454	struct ilk_wm_values *previous = &dev_priv->wm.hw;
2455	unsigned int dirty;
2456	uint32_t val;
2457
2458	dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2459	if (!dirty)
2460		return;
2461
2462	_ilk_disable_lp_wm(dev_priv, dirty);
2463
2464	if (dirty & WM_DIRTY_PIPE(PIPE_A))
2465		I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2466	if (dirty & WM_DIRTY_PIPE(PIPE_B))
2467		I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2468	if (dirty & WM_DIRTY_PIPE(PIPE_C))
2469		I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2470
2471	if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2472		I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2473	if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2474		I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2475	if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2476		I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2477
2478	if (dirty & WM_DIRTY_DDB) {
2479		if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2480			val = I915_READ(WM_MISC);
2481			if (results->partitioning == INTEL_DDB_PART_1_2)
2482				val &= ~WM_MISC_DATA_PARTITION_5_6;
2483			else
2484				val |= WM_MISC_DATA_PARTITION_5_6;
2485			I915_WRITE(WM_MISC, val);
2486		} else {
2487			val = I915_READ(DISP_ARB_CTL2);
2488			if (results->partitioning == INTEL_DDB_PART_1_2)
2489				val &= ~DISP_DATA_PARTITION_5_6;
2490			else
2491				val |= DISP_DATA_PARTITION_5_6;
2492			I915_WRITE(DISP_ARB_CTL2, val);
2493		}
2494	}
2495
2496	if (dirty & WM_DIRTY_FBC) {
2497		val = I915_READ(DISP_ARB_CTL);
2498		if (results->enable_fbc_wm)
2499			val &= ~DISP_FBC_WM_DIS;
2500		else
2501			val |= DISP_FBC_WM_DIS;
2502		I915_WRITE(DISP_ARB_CTL, val);
2503	}
2504
2505	if (dirty & WM_DIRTY_LP(1) &&
2506	    previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2507		I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2508
2509	if (INTEL_INFO(dev)->gen >= 7) {
2510		if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2511			I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2512		if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2513			I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2514	}
2515
2516	if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2517		I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2518	if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2519		I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2520	if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2521		I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2522
2523	dev_priv->wm.hw = *results;
2524}
2525
2526static bool ilk_disable_lp_wm(struct drm_device *dev)
2527{
2528	struct drm_i915_private *dev_priv = dev->dev_private;
2529
2530	return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2531}
2532
2533/*
2534 * On gen9, we need to allocate Display Data Buffer (DDB) portions to the
2535 * different active planes.
2536 */
2537
2538#define SKL_DDB_SIZE		896	/* in blocks */
2539
2540static void
2541skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
2542				   struct drm_crtc *for_crtc,
2543				   const struct intel_wm_config *config,
2544				   const struct skl_pipe_wm_parameters *params,
2545				   struct skl_ddb_entry *alloc /* out */)
2546{
2547	struct drm_crtc *crtc;
2548	unsigned int pipe_size, ddb_size;
2549	int nth_active_pipe;
2550
2551	if (!params->active) {
2552		alloc->start = 0;
2553		alloc->end = 0;
2554		return;
2555	}
2556
2557	ddb_size = SKL_DDB_SIZE;
2558
2559	ddb_size -= 4; /* 4 blocks for bypass path allocation */
2560
2561	nth_active_pipe = 0;
2562	for_each_crtc(dev, crtc) {
2563		if (!to_intel_crtc(crtc)->active)
2564			continue;
2565
2566		if (crtc == for_crtc)
2567			break;
2568
2569		nth_active_pipe++;
2570	}
2571
2572	pipe_size = ddb_size / config->num_pipes_active;
2573	alloc->start = nth_active_pipe * ddb_size / config->num_pipes_active;
2574	alloc->end = alloc->start + pipe_size;
2575}
2576
2577static unsigned int skl_cursor_allocation(const struct intel_wm_config *config)
2578{
2579	if (config->num_pipes_active == 1)
2580		return 32;
2581
2582	return 8;
2583}
2584
2585static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
2586{
2587	entry->start = reg & 0x3ff;
2588	entry->end = (reg >> 16) & 0x3ff;
2589	if (entry->end)
2590		entry->end += 1;
2591}
2592
2593void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
2594			  struct skl_ddb_allocation *ddb /* out */)
2595{
2596	enum pipe pipe;
2597	int plane;
2598	u32 val;
2599
2600	for_each_pipe(dev_priv, pipe) {
2601		for_each_plane(dev_priv, pipe, plane) {
2602			val = I915_READ(PLANE_BUF_CFG(pipe, plane));
2603			skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
2604						   val);
2605		}
2606
2607		val = I915_READ(CUR_BUF_CFG(pipe));
2608		skl_ddb_entry_init_from_hw(&ddb->cursor[pipe], val);
2609	}
2610}
2611
2612static unsigned int
2613skl_plane_relative_data_rate(const struct intel_plane_wm_parameters *p)
2614{
2615	return p->horiz_pixels * p->vert_pixels * p->bytes_per_pixel;
2616}
2617
2618/*
2619 * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
2620 * a 8192x4096@32bpp framebuffer:
2621 *   3 * 4096 * 8192  * 4 < 2^32
2622 */
2623static unsigned int
2624skl_get_total_relative_data_rate(struct intel_crtc *intel_crtc,
2625				 const struct skl_pipe_wm_parameters *params)
2626{
2627	unsigned int total_data_rate = 0;
2628	int plane;
2629
2630	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2631		const struct intel_plane_wm_parameters *p;
2632
2633		p = &params->plane[plane];
2634		if (!p->enabled)
2635			continue;
2636
2637		total_data_rate += skl_plane_relative_data_rate(p);
2638	}
2639
2640	return total_data_rate;
2641}
2642
2643static void
2644skl_allocate_pipe_ddb(struct drm_crtc *crtc,
2645		      const struct intel_wm_config *config,
2646		      const struct skl_pipe_wm_parameters *params,
2647		      struct skl_ddb_allocation *ddb /* out */)
2648{
2649	struct drm_device *dev = crtc->dev;
2650	struct drm_i915_private *dev_priv = dev->dev_private;
2651	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2652	enum pipe pipe = intel_crtc->pipe;
2653	struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
2654	uint16_t alloc_size, start, cursor_blocks;
2655	uint16_t minimum[I915_MAX_PLANES];
2656	unsigned int total_data_rate;
2657	int plane;
2658
2659	skl_ddb_get_pipe_allocation_limits(dev, crtc, config, params, alloc);
2660	alloc_size = skl_ddb_entry_size(alloc);
2661	if (alloc_size == 0) {
2662		memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
2663		memset(&ddb->cursor[pipe], 0, sizeof(ddb->cursor[pipe]));
2664		return;
2665	}
2666
2667	cursor_blocks = skl_cursor_allocation(config);
2668	ddb->cursor[pipe].start = alloc->end - cursor_blocks;
2669	ddb->cursor[pipe].end = alloc->end;
2670
2671	alloc_size -= cursor_blocks;
2672	alloc->end -= cursor_blocks;
2673
2674	/* 1. Allocate the mininum required blocks for each active plane */
2675	for_each_plane(dev_priv, pipe, plane) {
2676		const struct intel_plane_wm_parameters *p;
2677
2678		p = &params->plane[plane];
2679		if (!p->enabled)
2680			continue;
2681
2682		minimum[plane] = 8;
2683		alloc_size -= minimum[plane];
2684	}
2685
2686	/*
2687	 * 2. Distribute the remaining space in proportion to the amount of
2688	 * data each plane needs to fetch from memory.
2689	 *
2690	 * FIXME: we may not allocate every single block here.
2691	 */
2692	total_data_rate = skl_get_total_relative_data_rate(intel_crtc, params);
2693
2694	start = alloc->start;
2695	for (plane = 0; plane < intel_num_planes(intel_crtc); plane++) {
2696		const struct intel_plane_wm_parameters *p;
2697		unsigned int data_rate;
2698		uint16_t plane_blocks;
2699
2700		p = &params->plane[plane];
2701		if (!p->enabled)
2702			continue;
2703
2704		data_rate = skl_plane_relative_data_rate(p);
2705
2706		/*
2707		 * promote the expression to 64 bits to avoid overflowing, the
2708		 * result is < available as data_rate / total_data_rate < 1
2709		 */
2710		plane_blocks = minimum[plane];
2711		plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
2712					total_data_rate);
2713
2714		ddb->plane[pipe][plane].start = start;
2715		ddb->plane[pipe][plane].end = start + plane_blocks;
2716
2717		start += plane_blocks;
2718	}
2719
2720}
2721
2722static uint32_t skl_pipe_pixel_rate(const struct intel_crtc_state *config)
2723{
2724	/* TODO: Take into account the scalers once we support them */
2725	return config->base.adjusted_mode.crtc_clock;
2726}
2727
2728/*
2729 * The max latency should be 257 (max the punit can code is 255 and we add 2us
2730 * for the read latency) and bytes_per_pixel should always be <= 8, so that
2731 * should allow pixel_rate up to ~2 GHz which seems sufficient since max
2732 * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
2733*/
2734static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t bytes_per_pixel,
2735			       uint32_t latency)
2736{
2737	uint32_t wm_intermediate_val, ret;
2738
2739	if (latency == 0)
2740		return UINT_MAX;
2741
2742	wm_intermediate_val = latency * pixel_rate * bytes_per_pixel / 512;
2743	ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
2744
2745	return ret;
2746}
2747
2748static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
2749			       uint32_t horiz_pixels, uint8_t bytes_per_pixel,
2750			       uint64_t tiling, uint32_t latency)
2751{
2752	uint32_t ret;
2753	uint32_t plane_bytes_per_line, plane_blocks_per_line;
2754	uint32_t wm_intermediate_val;
2755
2756	if (latency == 0)
2757		return UINT_MAX;
2758
2759	plane_bytes_per_line = horiz_pixels * bytes_per_pixel;
2760
2761	if (tiling == I915_FORMAT_MOD_Y_TILED ||
2762	    tiling == I915_FORMAT_MOD_Yf_TILED) {
2763		plane_bytes_per_line *= 4;
2764		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2765		plane_blocks_per_line /= 4;
2766	} else {
2767		plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2768	}
2769
2770	wm_intermediate_val = latency * pixel_rate;
2771	ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
2772				plane_blocks_per_line;
2773
2774	return ret;
2775}
2776
2777static bool skl_ddb_allocation_changed(const struct skl_ddb_allocation *new_ddb,
2778				       const struct intel_crtc *intel_crtc)
2779{
2780	struct drm_device *dev = intel_crtc->base.dev;
2781	struct drm_i915_private *dev_priv = dev->dev_private;
2782	const struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
2783	enum pipe pipe = intel_crtc->pipe;
2784
2785	if (memcmp(new_ddb->plane[pipe], cur_ddb->plane[pipe],
2786		   sizeof(new_ddb->plane[pipe])))
2787		return true;
2788
2789	if (memcmp(&new_ddb->cursor[pipe], &cur_ddb->cursor[pipe],
2790		    sizeof(new_ddb->cursor[pipe])))
2791		return true;
2792
2793	return false;
2794}
2795
2796static void skl_compute_wm_global_parameters(struct drm_device *dev,
2797					     struct intel_wm_config *config)
2798{
2799	struct drm_crtc *crtc;
2800	struct drm_plane *plane;
2801
2802	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
2803		config->num_pipes_active += to_intel_crtc(crtc)->active;
2804
2805	/* FIXME: I don't think we need those two global parameters on SKL */
2806	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2807		struct intel_plane *intel_plane = to_intel_plane(plane);
2808
2809		config->sprites_enabled |= intel_plane->wm.enabled;
2810		config->sprites_scaled |= intel_plane->wm.scaled;
2811	}
2812}
2813
2814static void skl_compute_wm_pipe_parameters(struct drm_crtc *crtc,
2815					   struct skl_pipe_wm_parameters *p)
2816{
2817	struct drm_device *dev = crtc->dev;
2818	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2819	enum pipe pipe = intel_crtc->pipe;
2820	struct drm_plane *plane;
2821	struct drm_framebuffer *fb;
2822	int i = 1; /* Index for sprite planes start */
2823
2824	p->active = intel_crtc->active;
2825	if (p->active) {
2826		p->pipe_htotal = intel_crtc->config->base.adjusted_mode.crtc_htotal;
2827		p->pixel_rate = skl_pipe_pixel_rate(intel_crtc->config);
2828
2829		fb = crtc->primary->state->fb;
2830		if (fb) {
2831			p->plane[0].enabled = true;
2832			p->plane[0].bytes_per_pixel = fb->bits_per_pixel / 8;
2833			p->plane[0].tiling = fb->modifier[0];
2834		} else {
2835			p->plane[0].enabled = false;
2836			p->plane[0].bytes_per_pixel = 0;
2837			p->plane[0].tiling = DRM_FORMAT_MOD_NONE;
2838		}
2839		p->plane[0].horiz_pixels = intel_crtc->config->pipe_src_w;
2840		p->plane[0].vert_pixels = intel_crtc->config->pipe_src_h;
2841		p->plane[0].rotation = crtc->primary->state->rotation;
2842
2843		fb = crtc->cursor->state->fb;
2844		if (fb) {
2845			p->cursor.enabled = true;
2846			p->cursor.bytes_per_pixel = fb->bits_per_pixel / 8;
2847			p->cursor.horiz_pixels = crtc->cursor->state->crtc_w;
2848			p->cursor.vert_pixels = crtc->cursor->state->crtc_h;
2849		} else {
2850			p->cursor.enabled = false;
2851			p->cursor.bytes_per_pixel = 0;
2852			p->cursor.horiz_pixels = 64;
2853			p->cursor.vert_pixels = 64;
2854		}
2855	}
2856
2857	list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
2858		struct intel_plane *intel_plane = to_intel_plane(plane);
2859
2860		if (intel_plane->pipe == pipe &&
2861			plane->type == DRM_PLANE_TYPE_OVERLAY)
2862			p->plane[i++] = intel_plane->wm;
2863	}
2864}
2865
2866static bool skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
2867				 struct skl_pipe_wm_parameters *p,
2868				 struct intel_plane_wm_parameters *p_params,
2869				 uint16_t ddb_allocation,
2870				 int level,
2871				 uint16_t *out_blocks, /* out */
2872				 uint8_t *out_lines /* out */)
2873{
2874	uint32_t latency = dev_priv->wm.skl_latency[level];
2875	uint32_t method1, method2;
2876	uint32_t plane_bytes_per_line, plane_blocks_per_line;
2877	uint32_t res_blocks, res_lines;
2878	uint32_t selected_result;
2879
2880	if (latency == 0 || !p->active || !p_params->enabled)
2881		return false;
2882
2883	method1 = skl_wm_method1(p->pixel_rate,
2884				 p_params->bytes_per_pixel,
2885				 latency);
2886	method2 = skl_wm_method2(p->pixel_rate,
2887				 p->pipe_htotal,
2888				 p_params->horiz_pixels,
2889				 p_params->bytes_per_pixel,
2890				 p_params->tiling,
2891				 latency);
2892
2893	plane_bytes_per_line = p_params->horiz_pixels *
2894					p_params->bytes_per_pixel;
2895	plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
2896
2897	if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2898	    p_params->tiling == I915_FORMAT_MOD_Yf_TILED) {
2899		uint32_t min_scanlines = 4;
2900		uint32_t y_tile_minimum;
2901		if (intel_rotation_90_or_270(p_params->rotation)) {
2902			switch (p_params->bytes_per_pixel) {
2903			case 1:
2904				min_scanlines = 16;
2905				break;
2906			case 2:
2907				min_scanlines = 8;
2908				break;
2909			case 8:
2910				WARN(1, "Unsupported pixel depth for rotation");
2911			}
2912		}
2913		y_tile_minimum = plane_blocks_per_line * min_scanlines;
2914		selected_result = max(method2, y_tile_minimum);
2915	} else {
2916		if ((ddb_allocation / plane_blocks_per_line) >= 1)
2917			selected_result = min(method1, method2);
2918		else
2919			selected_result = method1;
2920	}
2921
2922	res_blocks = selected_result + 1;
2923	res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
2924
2925	if (level >= 1 && level <= 7) {
2926		if (p_params->tiling == I915_FORMAT_MOD_Y_TILED ||
2927		    p_params->tiling == I915_FORMAT_MOD_Yf_TILED)
2928			res_lines += 4;
2929		else
2930			res_blocks++;
2931	}
2932
2933	if (res_blocks >= ddb_allocation || res_lines > 31)
2934		return false;
2935
2936	*out_blocks = res_blocks;
2937	*out_lines = res_lines;
2938
2939	return true;
2940}
2941
2942static void skl_compute_wm_level(const struct drm_i915_private *dev_priv,
2943				 struct skl_ddb_allocation *ddb,
2944				 struct skl_pipe_wm_parameters *p,
2945				 enum pipe pipe,
2946				 int level,
2947				 int num_planes,
2948				 struct skl_wm_level *result)
2949{
2950	uint16_t ddb_blocks;
2951	int i;
2952
2953	for (i = 0; i < num_planes; i++) {
2954		ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
2955
2956		result->plane_en[i] = skl_compute_plane_wm(dev_priv,
2957						p, &p->plane[i],
2958						ddb_blocks,
2959						level,
2960						&result->plane_res_b[i],
2961						&result->plane_res_l[i]);
2962	}
2963
2964	ddb_blocks = skl_ddb_entry_size(&ddb->cursor[pipe]);
2965	result->cursor_en = skl_compute_plane_wm(dev_priv, p, &p->cursor,
2966						 ddb_blocks, level,
2967						 &result->cursor_res_b,
2968						 &result->cursor_res_l);
2969}
2970
2971static uint32_t
2972skl_compute_linetime_wm(struct drm_crtc *crtc, struct skl_pipe_wm_parameters *p)
2973{
2974	if (!to_intel_crtc(crtc)->active)
2975		return 0;
2976
2977	return DIV_ROUND_UP(8 * p->pipe_htotal * 1000, p->pixel_rate);
2978
2979}
2980
2981static void skl_compute_transition_wm(struct drm_crtc *crtc,
2982				      struct skl_pipe_wm_parameters *params,
2983				      struct skl_wm_level *trans_wm /* out */)
2984{
2985	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2986	int i;
2987
2988	if (!params->active)
2989		return;
2990
2991	/* Until we know more, just disable transition WMs */
2992	for (i = 0; i < intel_num_planes(intel_crtc); i++)
2993		trans_wm->plane_en[i] = false;
2994	trans_wm->cursor_en = false;
2995}
2996
2997static void skl_compute_pipe_wm(struct drm_crtc *crtc,
2998				struct skl_ddb_allocation *ddb,
2999				struct skl_pipe_wm_parameters *params,
3000				struct skl_pipe_wm *pipe_wm)
3001{
3002	struct drm_device *dev = crtc->dev;
3003	const struct drm_i915_private *dev_priv = dev->dev_private;
3004	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3005	int level, max_level = ilk_wm_max_level(dev);
3006
3007	for (level = 0; level <= max_level; level++) {
3008		skl_compute_wm_level(dev_priv, ddb, params, intel_crtc->pipe,
3009				     level, intel_num_planes(intel_crtc),
3010				     &pipe_wm->wm[level]);
3011	}
3012	pipe_wm->linetime = skl_compute_linetime_wm(crtc, params);
3013
3014	skl_compute_transition_wm(crtc, params, &pipe_wm->trans_wm);
3015}
3016
3017static void skl_compute_wm_results(struct drm_device *dev,
3018				   struct skl_pipe_wm_parameters *p,
3019				   struct skl_pipe_wm *p_wm,
3020				   struct skl_wm_values *r,
3021				   struct intel_crtc *intel_crtc)
3022{
3023	int level, max_level = ilk_wm_max_level(dev);
3024	enum pipe pipe = intel_crtc->pipe;
3025	uint32_t temp;
3026	int i;
3027
3028	for (level = 0; level <= max_level; level++) {
3029		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3030			temp = 0;
3031
3032			temp |= p_wm->wm[level].plane_res_l[i] <<
3033					PLANE_WM_LINES_SHIFT;
3034			temp |= p_wm->wm[level].plane_res_b[i];
3035			if (p_wm->wm[level].plane_en[i])
3036				temp |= PLANE_WM_EN;
3037
3038			r->plane[pipe][i][level] = temp;
3039		}
3040
3041		temp = 0;
3042
3043		temp |= p_wm->wm[level].cursor_res_l << PLANE_WM_LINES_SHIFT;
3044		temp |= p_wm->wm[level].cursor_res_b;
3045
3046		if (p_wm->wm[level].cursor_en)
3047			temp |= PLANE_WM_EN;
3048
3049		r->cursor[pipe][level] = temp;
3050
3051	}
3052
3053	/* transition WMs */
3054	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3055		temp = 0;
3056		temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3057		temp |= p_wm->trans_wm.plane_res_b[i];
3058		if (p_wm->trans_wm.plane_en[i])
3059			temp |= PLANE_WM_EN;
3060
3061		r->plane_trans[pipe][i] = temp;
3062	}
3063
3064	temp = 0;
3065	temp |= p_wm->trans_wm.cursor_res_l << PLANE_WM_LINES_SHIFT;
3066	temp |= p_wm->trans_wm.cursor_res_b;
3067	if (p_wm->trans_wm.cursor_en)
3068		temp |= PLANE_WM_EN;
3069
3070	r->cursor_trans[pipe] = temp;
3071
3072	r->wm_linetime[pipe] = p_wm->linetime;
3073}
3074
3075static void skl_ddb_entry_write(struct drm_i915_private *dev_priv, uint32_t reg,
3076				const struct skl_ddb_entry *entry)
3077{
3078	if (entry->end)
3079		I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3080	else
3081		I915_WRITE(reg, 0);
3082}
3083
3084static void skl_write_wm_values(struct drm_i915_private *dev_priv,
3085				const struct skl_wm_values *new)
3086{
3087	struct drm_device *dev = dev_priv->dev;
3088	struct intel_crtc *crtc;
3089
3090	list_for_each_entry(crtc, &dev->mode_config.crtc_list, base.head) {
3091		int i, level, max_level = ilk_wm_max_level(dev);
3092		enum pipe pipe = crtc->pipe;
3093
3094		if (!new->dirty[pipe])
3095			continue;
3096
3097		I915_WRITE(PIPE_WM_LINETIME(pipe), new->wm_linetime[pipe]);
3098
3099		for (level = 0; level <= max_level; level++) {
3100			for (i = 0; i < intel_num_planes(crtc); i++)
3101				I915_WRITE(PLANE_WM(pipe, i, level),
3102					   new->plane[pipe][i][level]);
3103			I915_WRITE(CUR_WM(pipe, level),
3104				   new->cursor[pipe][level]);
3105		}
3106		for (i = 0; i < intel_num_planes(crtc); i++)
3107			I915_WRITE(PLANE_WM_TRANS(pipe, i),
3108				   new->plane_trans[pipe][i]);
3109		I915_WRITE(CUR_WM_TRANS(pipe), new->cursor_trans[pipe]);
3110
3111		for (i = 0; i < intel_num_planes(crtc); i++)
3112			skl_ddb_entry_write(dev_priv,
3113					    PLANE_BUF_CFG(pipe, i),
3114					    &new->ddb.plane[pipe][i]);
3115
3116		skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3117				    &new->ddb.cursor[pipe]);
3118	}
3119}
3120
3121/*
3122 * When setting up a new DDB allocation arrangement, we need to correctly
3123 * sequence the times at which the new allocations for the pipes are taken into
3124 * account or we'll have pipes fetching from space previously allocated to
3125 * another pipe.
3126 *
3127 * Roughly the sequence looks like:
3128 *  1. re-allocate the pipe(s) with the allocation being reduced and not
3129 *     overlapping with a previous light-up pipe (another way to put it is:
3130 *     pipes with their new allocation strickly included into their old ones).
3131 *  2. re-allocate the other pipes that get their allocation reduced
3132 *  3. allocate the pipes having their allocation increased
3133 *
3134 * Steps 1. and 2. are here to take care of the following case:
3135 * - Initially DDB looks like this:
3136 *     |   B    |   C    |
3137 * - enable pipe A.
3138 * - pipe B has a reduced DDB allocation that overlaps with the old pipe C
3139 *   allocation
3140 *     |  A  |  B  |  C  |
3141 *
3142 * We need to sequence the re-allocation: C, B, A (and not B, C, A).
3143 */
3144
3145static void
3146skl_wm_flush_pipe(struct drm_i915_private *dev_priv, enum pipe pipe, int pass)
3147{
3148	int plane;
3149
3150	DRM_DEBUG_KMS("flush pipe %c (pass %d)\n", pipe_name(pipe), pass);
3151
3152	for_each_plane(dev_priv, pipe, plane) {
3153		I915_WRITE(PLANE_SURF(pipe, plane),
3154			   I915_READ(PLANE_SURF(pipe, plane)));
3155	}
3156	I915_WRITE(CURBASE(pipe), I915_READ(CURBASE(pipe)));
3157}
3158
3159static bool
3160skl_ddb_allocation_included(const struct skl_ddb_allocation *old,
3161			    const struct skl_ddb_allocation *new,
3162			    enum pipe pipe)
3163{
3164	uint16_t old_size, new_size;
3165
3166	old_size = skl_ddb_entry_size(&old->pipe[pipe]);
3167	new_size = skl_ddb_entry_size(&new->pipe[pipe]);
3168
3169	return old_size != new_size &&
3170	       new->pipe[pipe].start >= old->pipe[pipe].start &&
3171	       new->pipe[pipe].end <= old->pipe[pipe].end;
3172}
3173
3174static void skl_flush_wm_values(struct drm_i915_private *dev_priv,
3175				struct skl_wm_values *new_values)
3176{
3177	struct drm_device *dev = dev_priv->dev;
3178	struct skl_ddb_allocation *cur_ddb, *new_ddb;
3179	bool reallocated[I915_MAX_PIPES] = {false, false, false};
3180	struct intel_crtc *crtc;
3181	enum pipe pipe;
3182
3183	new_ddb = &new_values->ddb;
3184	cur_ddb = &dev_priv->wm.skl_hw.ddb;
3185
3186	/*
3187	 * First pass: flush the pipes with the new allocation contained into
3188	 * the old space.
3189	 *
3190	 * We'll wait for the vblank on those pipes to ensure we can safely
3191	 * re-allocate the freed space without this pipe fetching from it.
3192	 */
3193	for_each_intel_crtc(dev, crtc) {
3194		if (!crtc->active)
3195			continue;
3196
3197		pipe = crtc->pipe;
3198
3199		if (!skl_ddb_allocation_included(cur_ddb, new_ddb, pipe))
3200			continue;
3201
3202		skl_wm_flush_pipe(dev_priv, pipe, 1);
3203		intel_wait_for_vblank(dev, pipe);
3204
3205		reallocated[pipe] = true;
3206	}
3207
3208
3209	/*
3210	 * Second pass: flush the pipes that are having their allocation
3211	 * reduced, but overlapping with a previous allocation.
3212	 *
3213	 * Here as well we need to wait for the vblank to make sure the freed
3214	 * space is not used anymore.
3215	 */
3216	for_each_intel_crtc(dev, crtc) {
3217		if (!crtc->active)
3218			continue;
3219
3220		pipe = crtc->pipe;
3221
3222		if (reallocated[pipe])
3223			continue;
3224
3225		if (skl_ddb_entry_size(&new_ddb->pipe[pipe]) <
3226		    skl_ddb_entry_size(&cur_ddb->pipe[pipe])) {
3227			skl_wm_flush_pipe(dev_priv, pipe, 2);
3228			intel_wait_for_vblank(dev, pipe);
3229			reallocated[pipe] = true;
3230		}
3231	}
3232
3233	/*
3234	 * Third pass: flush the pipes that got more space allocated.
3235	 *
3236	 * We don't need to actively wait for the update here, next vblank
3237	 * will just get more DDB space with the correct WM values.
3238	 */
3239	for_each_intel_crtc(dev, crtc) {
3240		if (!crtc->active)
3241			continue;
3242
3243		pipe = crtc->pipe;
3244
3245		/*
3246		 * At this point, only the pipes more space than before are
3247		 * left to re-allocate.
3248		 */
3249		if (reallocated[pipe])
3250			continue;
3251
3252		skl_wm_flush_pipe(dev_priv, pipe, 3);
3253	}
3254}
3255
3256static bool skl_update_pipe_wm(struct drm_crtc *crtc,
3257			       struct skl_pipe_wm_parameters *params,
3258			       struct intel_wm_config *config,
3259			       struct skl_ddb_allocation *ddb, /* out */
3260			       struct skl_pipe_wm *pipe_wm /* out */)
3261{
3262	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3263
3264	skl_compute_wm_pipe_parameters(crtc, params);
3265	skl_allocate_pipe_ddb(crtc, config, params, ddb);
3266	skl_compute_pipe_wm(crtc, ddb, params, pipe_wm);
3267
3268	if (!memcmp(&intel_crtc->wm.skl_active, pipe_wm, sizeof(*pipe_wm)))
3269		return false;
3270
3271	intel_crtc->wm.skl_active = *pipe_wm;
3272	return true;
3273}
3274
3275static void skl_update_other_pipe_wm(struct drm_device *dev,
3276				     struct drm_crtc *crtc,
3277				     struct intel_wm_config *config,
3278				     struct skl_wm_values *r)
3279{
3280	struct intel_crtc *intel_crtc;
3281	struct intel_crtc *this_crtc = to_intel_crtc(crtc);
3282
3283	/*
3284	 * If the WM update hasn't changed the allocation for this_crtc (the
3285	 * crtc we are currently computing the new WM values for), other
3286	 * enabled crtcs will keep the same allocation and we don't need to
3287	 * recompute anything for them.
3288	 */
3289	if (!skl_ddb_allocation_changed(&r->ddb, this_crtc))
3290		return;
3291
3292	/*
3293	 * Otherwise, because of this_crtc being freshly enabled/disabled, the
3294	 * other active pipes need new DDB allocation and WM values.
3295	 */
3296	list_for_each_entry(intel_crtc, &dev->mode_config.crtc_list,
3297				base.head) {
3298		struct skl_pipe_wm_parameters params = {};
3299		struct skl_pipe_wm pipe_wm = {};
3300		bool wm_changed;
3301
3302		if (this_crtc->pipe == intel_crtc->pipe)
3303			continue;
3304
3305		if (!intel_crtc->active)
3306			continue;
3307
3308		wm_changed = skl_update_pipe_wm(&intel_crtc->base,
3309						&params, config,
3310						&r->ddb, &pipe_wm);
3311
3312		/*
3313		 * If we end up re-computing the other pipe WM values, it's
3314		 * because it was really needed, so we expect the WM values to
3315		 * be different.
3316		 */
3317		WARN_ON(!wm_changed);
3318
3319		skl_compute_wm_results(dev, &params, &pipe_wm, r, intel_crtc);
3320		r->dirty[intel_crtc->pipe] = true;
3321	}
3322}
3323
3324static void skl_update_wm(struct drm_crtc *crtc)
3325{
3326	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3327	struct drm_device *dev = crtc->dev;
3328	struct drm_i915_private *dev_priv = dev->dev_private;
3329	struct skl_pipe_wm_parameters params = {};
3330	struct skl_wm_values *results = &dev_priv->wm.skl_results;
3331	struct skl_pipe_wm pipe_wm = {};
3332	struct intel_wm_config config = {};
3333
3334	memset(results, 0, sizeof(*results));
3335
3336	skl_compute_wm_global_parameters(dev, &config);
3337
3338	if (!skl_update_pipe_wm(crtc, &params, &config,
3339				&results->ddb, &pipe_wm))
3340		return;
3341
3342	skl_compute_wm_results(dev, &params, &pipe_wm, results, intel_crtc);
3343	results->dirty[intel_crtc->pipe] = true;
3344
3345	skl_update_other_pipe_wm(dev, crtc, &config, results);
3346	skl_write_wm_values(dev_priv, results);
3347	skl_flush_wm_values(dev_priv, results);
3348
3349	/* store the new configuration */
3350	dev_priv->wm.skl_hw = *results;
3351}
3352
3353static void
3354skl_update_sprite_wm(struct drm_plane *plane, struct drm_crtc *crtc,
3355		     uint32_t sprite_width, uint32_t sprite_height,
3356		     int pixel_size, bool enabled, bool scaled)
3357{
3358	struct intel_plane *intel_plane = to_intel_plane(plane);
3359	struct drm_framebuffer *fb = plane->state->fb;
3360
3361	intel_plane->wm.enabled = enabled;
3362	intel_plane->wm.scaled = scaled;
3363	intel_plane->wm.horiz_pixels = sprite_width;
3364	intel_plane->wm.vert_pixels = sprite_height;
3365	intel_plane->wm.bytes_per_pixel = pixel_size;
3366	intel_plane->wm.tiling = DRM_FORMAT_MOD_NONE;
3367	/*
3368	 * Framebuffer can be NULL on plane disable, but it does not
3369	 * matter for watermarks if we assume no tiling in that case.
3370	 */
3371	if (fb)
3372		intel_plane->wm.tiling = fb->modifier[0];
3373	intel_plane->wm.rotation = plane->state->rotation;
3374
3375	skl_update_wm(crtc);
3376}
3377
3378static void ilk_update_wm(struct drm_crtc *crtc)
3379{
3380	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3381	struct drm_device *dev = crtc->dev;
3382	struct drm_i915_private *dev_priv = dev->dev_private;
3383	struct ilk_wm_maximums max;
3384	struct ilk_pipe_wm_parameters params = {};
3385	struct ilk_wm_values results = {};
3386	enum intel_ddb_partitioning partitioning;
3387	struct intel_pipe_wm pipe_wm = {};
3388	struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
3389	struct intel_wm_config config = {};
3390
3391	ilk_compute_wm_parameters(crtc, &params);
3392
3393	intel_compute_pipe_wm(crtc, &params, &pipe_wm);
3394
3395	if (!memcmp(&intel_crtc->wm.active, &pipe_wm, sizeof(pipe_wm)))
3396		return;
3397
3398	intel_crtc->wm.active = pipe_wm;
3399
3400	ilk_compute_wm_config(dev, &config);
3401
3402	ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
3403	ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
3404
3405	/* 5/6 split only in single pipe config on IVB+ */
3406	if (INTEL_INFO(dev)->gen >= 7 &&
3407	    config.num_pipes_active == 1 && config.sprites_enabled) {
3408		ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
3409		ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
3410
3411		best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
3412	} else {
3413		best_lp_wm = &lp_wm_1_2;
3414	}
3415
3416	partitioning = (best_lp_wm == &lp_wm_1_2) ?
3417		       INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
3418
3419	ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
3420
3421	ilk_write_wm_values(dev_priv, &results);
3422}
3423
3424static void
3425ilk_update_sprite_wm(struct drm_plane *plane,
3426		     struct drm_crtc *crtc,
3427		     uint32_t sprite_width, uint32_t sprite_height,
3428		     int pixel_size, bool enabled, bool scaled)
3429{
3430	struct drm_device *dev = plane->dev;
3431	struct intel_plane *intel_plane = to_intel_plane(plane);
3432
3433	intel_plane->wm.enabled = enabled;
3434	intel_plane->wm.scaled = scaled;
3435	intel_plane->wm.horiz_pixels = sprite_width;
3436	intel_plane->wm.vert_pixels = sprite_width;
3437	intel_plane->wm.bytes_per_pixel = pixel_size;
3438
3439	/*
3440	 * IVB workaround: must disable low power watermarks for at least
3441	 * one frame before enabling scaling.  LP watermarks can be re-enabled
3442	 * when scaling is disabled.
3443	 *
3444	 * WaCxSRDisabledForSpriteScaling:ivb
3445	 */
3446	if (IS_IVYBRIDGE(dev) && scaled && ilk_disable_lp_wm(dev))
3447		intel_wait_for_vblank(dev, intel_plane->pipe);
3448
3449	ilk_update_wm(crtc);
3450}
3451
3452static void skl_pipe_wm_active_state(uint32_t val,
3453				     struct skl_pipe_wm *active,
3454				     bool is_transwm,
3455				     bool is_cursor,
3456				     int i,
3457				     int level)
3458{
3459	bool is_enabled = (val & PLANE_WM_EN) != 0;
3460
3461	if (!is_transwm) {
3462		if (!is_cursor) {
3463			active->wm[level].plane_en[i] = is_enabled;
3464			active->wm[level].plane_res_b[i] =
3465					val & PLANE_WM_BLOCKS_MASK;
3466			active->wm[level].plane_res_l[i] =
3467					(val >> PLANE_WM_LINES_SHIFT) &
3468						PLANE_WM_LINES_MASK;
3469		} else {
3470			active->wm[level].cursor_en = is_enabled;
3471			active->wm[level].cursor_res_b =
3472					val & PLANE_WM_BLOCKS_MASK;
3473			active->wm[level].cursor_res_l =
3474					(val >> PLANE_WM_LINES_SHIFT) &
3475						PLANE_WM_LINES_MASK;
3476		}
3477	} else {
3478		if (!is_cursor) {
3479			active->trans_wm.plane_en[i] = is_enabled;
3480			active->trans_wm.plane_res_b[i] =
3481					val & PLANE_WM_BLOCKS_MASK;
3482			active->trans_wm.plane_res_l[i] =
3483					(val >> PLANE_WM_LINES_SHIFT) &
3484						PLANE_WM_LINES_MASK;
3485		} else {
3486			active->trans_wm.cursor_en = is_enabled;
3487			active->trans_wm.cursor_res_b =
3488					val & PLANE_WM_BLOCKS_MASK;
3489			active->trans_wm.cursor_res_l =
3490					(val >> PLANE_WM_LINES_SHIFT) &
3491						PLANE_WM_LINES_MASK;
3492		}
3493	}
3494}
3495
3496static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3497{
3498	struct drm_device *dev = crtc->dev;
3499	struct drm_i915_private *dev_priv = dev->dev_private;
3500	struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
3501	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3502	struct skl_pipe_wm *active = &intel_crtc->wm.skl_active;
3503	enum pipe pipe = intel_crtc->pipe;
3504	int level, i, max_level;
3505	uint32_t temp;
3506
3507	max_level = ilk_wm_max_level(dev);
3508
3509	hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3510
3511	for (level = 0; level <= max_level; level++) {
3512		for (i = 0; i < intel_num_planes(intel_crtc); i++)
3513			hw->plane[pipe][i][level] =
3514					I915_READ(PLANE_WM(pipe, i, level));
3515		hw->cursor[pipe][level] = I915_READ(CUR_WM(pipe, level));
3516	}
3517
3518	for (i = 0; i < intel_num_planes(intel_crtc); i++)
3519		hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
3520	hw->cursor_trans[pipe] = I915_READ(CUR_WM_TRANS(pipe));
3521
3522	if (!intel_crtc->active)
3523		return;
3524
3525	hw->dirty[pipe] = true;
3526
3527	active->linetime = hw->wm_linetime[pipe];
3528
3529	for (level = 0; level <= max_level; level++) {
3530		for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3531			temp = hw->plane[pipe][i][level];
3532			skl_pipe_wm_active_state(temp, active, false,
3533						false, i, level);
3534		}
3535		temp = hw->cursor[pipe][level];
3536		skl_pipe_wm_active_state(temp, active, false, true, i, level);
3537	}
3538
3539	for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3540		temp = hw->plane_trans[pipe][i];
3541		skl_pipe_wm_active_state(temp, active, true, false, i, 0);
3542	}
3543
3544	temp = hw->cursor_trans[pipe];
3545	skl_pipe_wm_active_state(temp, active, true, true, i, 0);
3546}
3547
3548void skl_wm_get_hw_state(struct drm_device *dev)
3549{
3550	struct drm_i915_private *dev_priv = dev->dev_private;
3551	struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
3552	struct drm_crtc *crtc;
3553
3554	skl_ddb_get_hw_state(dev_priv, ddb);
3555	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
3556		skl_pipe_wm_get_hw_state(crtc);
3557}
3558
3559static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
3560{
3561	struct drm_device *dev = crtc->dev;
3562	struct drm_i915_private *dev_priv = dev->dev_private;
3563	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3564	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3565	struct intel_pipe_wm *active = &intel_crtc->wm.active;
3566	enum pipe pipe = intel_crtc->pipe;
3567	static const unsigned int wm0_pipe_reg[] = {
3568		[PIPE_A] = WM0_PIPEA_ILK,
3569		[PIPE_B] = WM0_PIPEB_ILK,
3570		[PIPE_C] = WM0_PIPEC_IVB,
3571	};
3572
3573	hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
3574	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3575		hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
3576
3577	memset(active, 0, sizeof(*active));
3578
3579	active->pipe_enabled = intel_crtc->active;
3580
3581	if (active->pipe_enabled) {
3582		u32 tmp = hw->wm_pipe[pipe];
3583
3584		/*
3585		 * For active pipes LP0 watermark is marked as
3586		 * enabled, and LP1+ watermaks as disabled since
3587		 * we can't really reverse compute them in case
3588		 * multiple pipes are active.
3589		 */
3590		active->wm[0].enable = true;
3591		active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
3592		active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
3593		active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
3594		active->linetime = hw->wm_linetime[pipe];
3595	} else {
3596		int level, max_level = ilk_wm_max_level(dev);
3597
3598		/*
3599		 * For inactive pipes, all watermark levels
3600		 * should be marked as enabled but zeroed,
3601		 * which is what we'd compute them to.
3602		 */
3603		for (level = 0; level <= max_level; level++)
3604			active->wm[level].enable = true;
3605	}
3606}
3607
3608void ilk_wm_get_hw_state(struct drm_device *dev)
3609{
3610	struct drm_i915_private *dev_priv = dev->dev_private;
3611	struct ilk_wm_values *hw = &dev_priv->wm.hw;
3612	struct drm_crtc *crtc;
3613
3614	for_each_crtc(dev, crtc)
3615		ilk_pipe_wm_get_hw_state(crtc);
3616
3617	hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
3618	hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
3619	hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
3620
3621	hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
3622	if (INTEL_INFO(dev)->gen >= 7) {
3623		hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
3624		hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
3625	}
3626
3627	if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3628		hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
3629			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3630	else if (IS_IVYBRIDGE(dev))
3631		hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
3632			INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
3633
3634	hw->enable_fbc_wm =
3635		!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
3636}
3637
3638/**
3639 * intel_update_watermarks - update FIFO watermark values based on current modes
3640 *
3641 * Calculate watermark values for the various WM regs based on current mode
3642 * and plane configuration.
3643 *
3644 * There are several cases to deal with here:
3645 *   - normal (i.e. non-self-refresh)
3646 *   - self-refresh (SR) mode
3647 *   - lines are large relative to FIFO size (buffer can hold up to 2)
3648 *   - lines are small relative to FIFO size (buffer can hold more than 2
3649 *     lines), so need to account for TLB latency
3650 *
3651 *   The normal calculation is:
3652 *     watermark = dotclock * bytes per pixel * latency
3653 *   where latency is platform & configuration dependent (we assume pessimal
3654 *   values here).
3655 *
3656 *   The SR calculation is:
3657 *     watermark = (trunc(latency/line time)+1) * surface width *
3658 *       bytes per pixel
3659 *   where
3660 *     line time = htotal / dotclock
3661 *     surface width = hdisplay for normal plane and 64 for cursor
3662 *   and latency is assumed to be high, as above.
3663 *
3664 * The final value programmed to the register should always be rounded up,
3665 * and include an extra 2 entries to account for clock crossings.
3666 *
3667 * We don't use the sprite, so we can ignore that.  And on Crestline we have
3668 * to set the non-SR watermarks to 8.
3669 */
3670void intel_update_watermarks(struct drm_crtc *crtc)
3671{
3672	struct drm_i915_private *dev_priv = crtc->dev->dev_private;
3673
3674	if (dev_priv->display.update_wm)
3675		dev_priv->display.update_wm(crtc);
3676}
3677
3678void intel_update_sprite_watermarks(struct drm_plane *plane,
3679				    struct drm_crtc *crtc,
3680				    uint32_t sprite_width,
3681				    uint32_t sprite_height,
3682				    int pixel_size,
3683				    bool enabled, bool scaled)
3684{
3685	struct drm_i915_private *dev_priv = plane->dev->dev_private;
3686
3687	if (dev_priv->display.update_sprite_wm)
3688		dev_priv->display.update_sprite_wm(plane, crtc,
3689						   sprite_width, sprite_height,
3690						   pixel_size, enabled, scaled);
3691}
3692
3693/**
3694 * Lock protecting IPS related data structures
3695 */
3696DEFINE_SPINLOCK(mchdev_lock);
3697
3698/* Global for IPS driver to get at the current i915 device. Protected by
3699 * mchdev_lock. */
3700static struct drm_i915_private *i915_mch_dev;
3701
3702bool ironlake_set_drps(struct drm_device *dev, u8 val)
3703{
3704	struct drm_i915_private *dev_priv = dev->dev_private;
3705	u16 rgvswctl;
3706
3707	assert_spin_locked(&mchdev_lock);
3708
3709	rgvswctl = I915_READ16(MEMSWCTL);
3710	if (rgvswctl & MEMCTL_CMD_STS) {
3711		DRM_DEBUG("gpu busy, RCS change rejected\n");
3712		return false; /* still busy with another command */
3713	}
3714
3715	rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
3716		(val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
3717	I915_WRITE16(MEMSWCTL, rgvswctl);
3718	POSTING_READ16(MEMSWCTL);
3719
3720	rgvswctl |= MEMCTL_CMD_STS;
3721	I915_WRITE16(MEMSWCTL, rgvswctl);
3722
3723	return true;
3724}
3725
3726static void ironlake_enable_drps(struct drm_device *dev)
3727{
3728	struct drm_i915_private *dev_priv = dev->dev_private;
3729	u32 rgvmodectl = I915_READ(MEMMODECTL);
3730	u8 fmax, fmin, fstart, vstart;
3731
3732	spin_lock_irq(&mchdev_lock);
3733
3734	/* Enable temp reporting */
3735	I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
3736	I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
3737
3738	/* 100ms RC evaluation intervals */
3739	I915_WRITE(RCUPEI, 100000);
3740	I915_WRITE(RCDNEI, 100000);
3741
3742	/* Set max/min thresholds to 90ms and 80ms respectively */
3743	I915_WRITE(RCBMAXAVG, 90000);
3744	I915_WRITE(RCBMINAVG, 80000);
3745
3746	I915_WRITE(MEMIHYST, 1);
3747
3748	/* Set up min, max, and cur for interrupt handling */
3749	fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
3750	fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
3751	fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
3752		MEMMODE_FSTART_SHIFT;
3753
3754	vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
3755		PXVFREQ_PX_SHIFT;
3756
3757	dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
3758	dev_priv->ips.fstart = fstart;
3759
3760	dev_priv->ips.max_delay = fstart;
3761	dev_priv->ips.min_delay = fmin;
3762	dev_priv->ips.cur_delay = fstart;
3763
3764	DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
3765			 fmax, fmin, fstart);
3766
3767	I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
3768
3769	/*
3770	 * Interrupts will be enabled in ironlake_irq_postinstall
3771	 */
3772
3773	I915_WRITE(VIDSTART, vstart);
3774	POSTING_READ(VIDSTART);
3775
3776	rgvmodectl |= MEMMODE_SWMODE_EN;
3777	I915_WRITE(MEMMODECTL, rgvmodectl);
3778
3779	if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
3780		DRM_ERROR("stuck trying to change perf mode\n");
3781	mdelay(1);
3782
3783	ironlake_set_drps(dev, fstart);
3784
3785	dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
3786		I915_READ(0x112e0);
3787	dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
3788	dev_priv->ips.last_count2 = I915_READ(0x112f4);
3789	dev_priv->ips.last_time2 = ktime_get_raw_ns();
3790
3791	spin_unlock_irq(&mchdev_lock);
3792}
3793
3794static void ironlake_disable_drps(struct drm_device *dev)
3795{
3796	struct drm_i915_private *dev_priv = dev->dev_private;
3797	u16 rgvswctl;
3798
3799	spin_lock_irq(&mchdev_lock);
3800
3801	rgvswctl = I915_READ16(MEMSWCTL);
3802
3803	/* Ack interrupts, disable EFC interrupt */
3804	I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
3805	I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
3806	I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
3807	I915_WRITE(DEIIR, DE_PCU_EVENT);
3808	I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
3809
3810	/* Go back to the starting frequency */
3811	ironlake_set_drps(dev, dev_priv->ips.fstart);
3812	mdelay(1);
3813	rgvswctl |= MEMCTL_CMD_STS;
3814	I915_WRITE(MEMSWCTL, rgvswctl);
3815	mdelay(1);
3816
3817	spin_unlock_irq(&mchdev_lock);
3818}
3819
3820/* There's a funny hw issue where the hw returns all 0 when reading from
3821 * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
3822 * ourselves, instead of doing a rmw cycle (which might result in us clearing
3823 * all limits and the gpu stuck at whatever frequency it is at atm).
3824 */
3825static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
3826{
3827	u32 limits;
3828
3829	/* Only set the down limit when we've reached the lowest level to avoid
3830	 * getting more interrupts, otherwise leave this clear. This prevents a
3831	 * race in the hw when coming out of rc6: There's a tiny window where
3832	 * the hw runs at the minimal clock before selecting the desired
3833	 * frequency, if the down threshold expires in that window we will not
3834	 * receive a down interrupt. */
3835	if (IS_GEN9(dev_priv->dev)) {
3836		limits = (dev_priv->rps.max_freq_softlimit) << 23;
3837		if (val <= dev_priv->rps.min_freq_softlimit)
3838			limits |= (dev_priv->rps.min_freq_softlimit) << 14;
3839	} else {
3840		limits = dev_priv->rps.max_freq_softlimit << 24;
3841		if (val <= dev_priv->rps.min_freq_softlimit)
3842			limits |= dev_priv->rps.min_freq_softlimit << 16;
3843	}
3844
3845	return limits;
3846}
3847
3848static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
3849{
3850	int new_power;
3851	u32 threshold_up = 0, threshold_down = 0; /* in % */
3852	u32 ei_up = 0, ei_down = 0;
3853
3854	new_power = dev_priv->rps.power;
3855	switch (dev_priv->rps.power) {
3856	case LOW_POWER:
3857		if (val > dev_priv->rps.efficient_freq + 1 && val > dev_priv->rps.cur_freq)
3858			new_power = BETWEEN;
3859		break;
3860
3861	case BETWEEN:
3862		if (val <= dev_priv->rps.efficient_freq && val < dev_priv->rps.cur_freq)
3863			new_power = LOW_POWER;
3864		else if (val >= dev_priv->rps.rp0_freq && val > dev_priv->rps.cur_freq)
3865			new_power = HIGH_POWER;
3866		break;
3867
3868	case HIGH_POWER:
3869		if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 && val < dev_priv->rps.cur_freq)
3870			new_power = BETWEEN;
3871		break;
3872	}
3873	/* Max/min bins are special */
3874	if (val <= dev_priv->rps.min_freq_softlimit)
3875		new_power = LOW_POWER;
3876	if (val >= dev_priv->rps.max_freq_softlimit)
3877		new_power = HIGH_POWER;
3878	if (new_power == dev_priv->rps.power)
3879		return;
3880
3881	/* Note the units here are not exactly 1us, but 1280ns. */
3882	switch (new_power) {
3883	case LOW_POWER:
3884		/* Upclock if more than 95% busy over 16ms */
3885		ei_up = 16000;
3886		threshold_up = 95;
3887
3888		/* Downclock if less than 85% busy over 32ms */
3889		ei_down = 32000;
3890		threshold_down = 85;
3891		break;
3892
3893	case BETWEEN:
3894		/* Upclock if more than 90% busy over 13ms */
3895		ei_up = 13000;
3896		threshold_up = 90;
3897
3898		/* Downclock if less than 75% busy over 32ms */
3899		ei_down = 32000;
3900		threshold_down = 75;
3901		break;
3902
3903	case HIGH_POWER:
3904		/* Upclock if more than 85% busy over 10ms */
3905		ei_up = 10000;
3906		threshold_up = 85;
3907
3908		/* Downclock if less than 60% busy over 32ms */
3909		ei_down = 32000;
3910		threshold_down = 60;
3911		break;
3912	}
3913
3914	I915_WRITE(GEN6_RP_UP_EI,
3915		GT_INTERVAL_FROM_US(dev_priv, ei_up));
3916	I915_WRITE(GEN6_RP_UP_THRESHOLD,
3917		GT_INTERVAL_FROM_US(dev_priv, (ei_up * threshold_up / 100)));
3918
3919	I915_WRITE(GEN6_RP_DOWN_EI,
3920		GT_INTERVAL_FROM_US(dev_priv, ei_down));
3921	I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
3922		GT_INTERVAL_FROM_US(dev_priv, (ei_down * threshold_down / 100)));
3923
3924	 I915_WRITE(GEN6_RP_CONTROL,
3925		    GEN6_RP_MEDIA_TURBO |
3926		    GEN6_RP_MEDIA_HW_NORMAL_MODE |
3927		    GEN6_RP_MEDIA_IS_GFX |
3928		    GEN6_RP_ENABLE |
3929		    GEN6_RP_UP_BUSY_AVG |
3930		    GEN6_RP_DOWN_IDLE_AVG);
3931
3932	dev_priv->rps.power = new_power;
3933	dev_priv->rps.last_adj = 0;
3934}
3935
3936static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
3937{
3938	u32 mask = 0;
3939
3940	if (val > dev_priv->rps.min_freq_softlimit)
3941		mask |= GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
3942	if (val < dev_priv->rps.max_freq_softlimit)
3943		mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
3944
3945	mask &= dev_priv->pm_rps_events;
3946
3947	return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
3948}
3949
3950/* gen6_set_rps is called to update the frequency request, but should also be
3951 * called when the range (min_delay and max_delay) is modified so that we can
3952 * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
3953static void gen6_set_rps(struct drm_device *dev, u8 val)
3954{
3955	struct drm_i915_private *dev_priv = dev->dev_private;
3956
3957	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3958	WARN_ON(val > dev_priv->rps.max_freq);
3959	WARN_ON(val < dev_priv->rps.min_freq);
3960
3961	/* min/max delay may still have been modified so be sure to
3962	 * write the limits value.
3963	 */
3964	if (val != dev_priv->rps.cur_freq) {
3965		gen6_set_rps_thresholds(dev_priv, val);
3966
3967		if (IS_GEN9(dev))
3968			I915_WRITE(GEN6_RPNSWREQ,
3969				   GEN9_FREQUENCY(val));
3970		else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
3971			I915_WRITE(GEN6_RPNSWREQ,
3972				   HSW_FREQUENCY(val));
3973		else
3974			I915_WRITE(GEN6_RPNSWREQ,
3975				   GEN6_FREQUENCY(val) |
3976				   GEN6_OFFSET(0) |
3977				   GEN6_AGGRESSIVE_TURBO);
3978	}
3979
3980	/* Make sure we continue to get interrupts
3981	 * until we hit the minimum or maximum frequencies.
3982	 */
3983	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
3984	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
3985
3986	POSTING_READ(GEN6_RPNSWREQ);
3987
3988	dev_priv->rps.cur_freq = val;
3989	trace_intel_gpu_freq_change(val * 50);
3990}
3991
3992static void valleyview_set_rps(struct drm_device *dev, u8 val)
3993{
3994	struct drm_i915_private *dev_priv = dev->dev_private;
3995
3996	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
3997	WARN_ON(val > dev_priv->rps.max_freq);
3998	WARN_ON(val < dev_priv->rps.min_freq);
3999
4000	if (WARN_ONCE(IS_CHERRYVIEW(dev) && (val & 1),
4001		      "Odd GPU freq value\n"))
4002		val &= ~1;
4003
4004	if (val != dev_priv->rps.cur_freq)
4005		vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4006
4007	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4008
4009	dev_priv->rps.cur_freq = val;
4010	trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
4011}
4012
4013/* vlv_set_rps_idle: Set the frequency to Rpn if Gfx clocks are down
4014 *
4015 * * If Gfx is Idle, then
4016 * 1. Mask Turbo interrupts
4017 * 2. Bring up Gfx clock
4018 * 3. Change the freq to Rpn and wait till P-Unit updates freq
4019 * 4. Clear the Force GFX CLK ON bit so that Gfx can down
4020 * 5. Unmask Turbo interrupts
4021*/
4022static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
4023{
4024	struct drm_device *dev = dev_priv->dev;
4025	u32 val = dev_priv->rps.idle_freq;
4026
4027	/* CHV and latest VLV don't need to force the gfx clock */
4028	if (IS_CHERRYVIEW(dev) || dev->pdev->revision >= 0xd) {
4029		valleyview_set_rps(dev_priv->dev, val);
4030		return;
4031	}
4032
4033	/*
4034	 * When we are idle.  Drop to min voltage state.
4035	 */
4036
4037	if (dev_priv->rps.cur_freq <= val)
4038		return;
4039
4040	/* Mask turbo interrupt so that they will not come in between */
4041	I915_WRITE(GEN6_PMINTRMSK,
4042		   gen6_sanitize_rps_pm_mask(dev_priv, ~0));
4043
4044	vlv_force_gfx_clock(dev_priv, true);
4045
4046	dev_priv->rps.cur_freq = val;
4047
4048	vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
4049
4050	if (wait_for(((vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS))
4051				& GENFREQSTATUS) == 0, 100))
4052		DRM_ERROR("timed out waiting for Punit\n");
4053
4054	vlv_force_gfx_clock(dev_priv, false);
4055
4056	I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
4057}
4058
4059void gen6_rps_busy(struct drm_i915_private *dev_priv)
4060{
4061	mutex_lock(&dev_priv->rps.hw_lock);
4062	if (dev_priv->rps.enabled) {
4063		if (dev_priv->pm_rps_events & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED))
4064			gen6_rps_reset_ei(dev_priv);
4065		I915_WRITE(GEN6_PMINTRMSK,
4066			   gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
4067	}
4068	mutex_unlock(&dev_priv->rps.hw_lock);
4069}
4070
4071void gen6_rps_idle(struct drm_i915_private *dev_priv)
4072{
4073	struct drm_device *dev = dev_priv->dev;
4074
4075	mutex_lock(&dev_priv->rps.hw_lock);
4076	if (dev_priv->rps.enabled) {
4077		if (IS_VALLEYVIEW(dev))
4078			vlv_set_rps_idle(dev_priv);
4079		else
4080			gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4081		dev_priv->rps.last_adj = 0;
4082		I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
4083	}
4084	mutex_unlock(&dev_priv->rps.hw_lock);
4085}
4086
4087void gen6_rps_boost(struct drm_i915_private *dev_priv)
4088{
4089	u32 val;
4090
4091	mutex_lock(&dev_priv->rps.hw_lock);
4092	val = dev_priv->rps.max_freq_softlimit;
4093	if (dev_priv->rps.enabled &&
4094	    dev_priv->mm.busy &&
4095	    dev_priv->rps.cur_freq < val) {
4096		intel_set_rps(dev_priv->dev, val);
4097		dev_priv->rps.last_adj = 0;
4098	}
4099	mutex_unlock(&dev_priv->rps.hw_lock);
4100}
4101
4102void intel_set_rps(struct drm_device *dev, u8 val)
4103{
4104	if (IS_VALLEYVIEW(dev))
4105		valleyview_set_rps(dev, val);
4106	else
4107		gen6_set_rps(dev, val);
4108}
4109
4110static void gen9_disable_rps(struct drm_device *dev)
4111{
4112	struct drm_i915_private *dev_priv = dev->dev_private;
4113
4114	I915_WRITE(GEN6_RC_CONTROL, 0);
4115	I915_WRITE(GEN9_PG_ENABLE, 0);
4116}
4117
4118static void gen6_disable_rps(struct drm_device *dev)
4119{
4120	struct drm_i915_private *dev_priv = dev->dev_private;
4121
4122	I915_WRITE(GEN6_RC_CONTROL, 0);
4123	I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
4124}
4125
4126static void cherryview_disable_rps(struct drm_device *dev)
4127{
4128	struct drm_i915_private *dev_priv = dev->dev_private;
4129
4130	I915_WRITE(GEN6_RC_CONTROL, 0);
4131}
4132
4133static void valleyview_disable_rps(struct drm_device *dev)
4134{
4135	struct drm_i915_private *dev_priv = dev->dev_private;
4136
4137	/* we're doing forcewake before Disabling RC6,
4138	 * This what the BIOS expects when going into suspend */
4139	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4140
4141	I915_WRITE(GEN6_RC_CONTROL, 0);
4142
4143	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4144}
4145
4146static void intel_print_rc6_info(struct drm_device *dev, u32 mode)
4147{
4148	if (IS_VALLEYVIEW(dev)) {
4149		if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
4150			mode = GEN6_RC_CTL_RC6_ENABLE;
4151		else
4152			mode = 0;
4153	}
4154	if (HAS_RC6p(dev))
4155		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s RC6p %s RC6pp %s\n",
4156			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
4157			      (mode & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
4158			      (mode & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
4159
4160	else
4161		DRM_DEBUG_KMS("Enabling RC6 states: RC6 %s\n",
4162			      (mode & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off");
4163}
4164
4165static int sanitize_rc6_option(const struct drm_device *dev, int enable_rc6)
4166{
4167	/* No RC6 before Ironlake */
4168	if (INTEL_INFO(dev)->gen < 5)
4169		return 0;
4170
4171	/* RC6 is only on Ironlake mobile not on desktop */
4172	if (INTEL_INFO(dev)->gen == 5 && !IS_IRONLAKE_M(dev))
4173		return 0;
4174
4175	/* Respect the kernel parameter if it is set */
4176	if (enable_rc6 >= 0) {
4177		int mask;
4178
4179		if (HAS_RC6p(dev))
4180			mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
4181			       INTEL_RC6pp_ENABLE;
4182		else
4183			mask = INTEL_RC6_ENABLE;
4184
4185		if ((enable_rc6 & mask) != enable_rc6)
4186			DRM_DEBUG_KMS("Adjusting RC6 mask to %d (requested %d, valid %d)\n",
4187				      enable_rc6 & mask, enable_rc6, mask);
4188
4189		return enable_rc6 & mask;
4190	}
4191
4192	/* Disable RC6 on Ironlake */
4193	if (INTEL_INFO(dev)->gen == 5)
4194		return 0;
4195
4196	if (IS_IVYBRIDGE(dev))
4197		return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
4198
4199	return INTEL_RC6_ENABLE;
4200}
4201
4202int intel_enable_rc6(const struct drm_device *dev)
4203{
4204	return i915.enable_rc6;
4205}
4206
4207static void gen6_init_rps_frequencies(struct drm_device *dev)
4208{
4209	struct drm_i915_private *dev_priv = dev->dev_private;
4210	uint32_t rp_state_cap;
4211	u32 ddcc_status = 0;
4212	int ret;
4213
4214	rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4215	/* All of these values are in units of 50MHz */
4216	dev_priv->rps.cur_freq		= 0;
4217	/* static values from HW: RP0 > RP1 > RPn (min_freq) */
4218	dev_priv->rps.rp0_freq		= (rp_state_cap >>  0) & 0xff;
4219	dev_priv->rps.rp1_freq		= (rp_state_cap >>  8) & 0xff;
4220	dev_priv->rps.min_freq		= (rp_state_cap >> 16) & 0xff;
4221	if (IS_SKYLAKE(dev)) {
4222		/* Store the frequency values in 16.66 MHZ units, which is
4223		   the natural hardware unit for SKL */
4224		dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
4225		dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
4226		dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
4227	}
4228	/* hw_max = RP0 until we check for overclocking */
4229	dev_priv->rps.max_freq		= dev_priv->rps.rp0_freq;
4230
4231	dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
4232	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
4233		ret = sandybridge_pcode_read(dev_priv,
4234					HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
4235					&ddcc_status);
4236		if (0 == ret)
4237			dev_priv->rps.efficient_freq =
4238				clamp_t(u8,
4239					((ddcc_status >> 8) & 0xff),
4240					dev_priv->rps.min_freq,
4241					dev_priv->rps.max_freq);
4242	}
4243
4244	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4245
4246	/* Preserve min/max settings in case of re-init */
4247	if (dev_priv->rps.max_freq_softlimit == 0)
4248		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4249
4250	if (dev_priv->rps.min_freq_softlimit == 0) {
4251		if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4252			dev_priv->rps.min_freq_softlimit =
4253				/* max(RPe, 450 MHz) */
4254				max(dev_priv->rps.efficient_freq, (u8) 9);
4255		else
4256			dev_priv->rps.min_freq_softlimit =
4257				dev_priv->rps.min_freq;
4258	}
4259}
4260
4261/* See the Gen9_GT_PM_Programming_Guide doc for the below */
4262static void gen9_enable_rps(struct drm_device *dev)
4263{
4264	struct drm_i915_private *dev_priv = dev->dev_private;
4265
4266	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4267
4268	gen6_init_rps_frequencies(dev);
4269
4270	/* Program defaults and thresholds for RPS*/
4271	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4272		GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
4273
4274	/* 1 second timeout*/
4275	I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
4276		GT_INTERVAL_FROM_US(dev_priv, 1000000));
4277
4278	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
4279
4280	/* Leaning on the below call to gen6_set_rps to program/setup the
4281	 * Up/Down EI & threshold registers, as well as the RP_CONTROL,
4282	 * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
4283	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4284	gen6_set_rps(dev_priv->dev, dev_priv->rps.min_freq_softlimit);
4285
4286	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4287}
4288
4289static void gen9_enable_rc6(struct drm_device *dev)
4290{
4291	struct drm_i915_private *dev_priv = dev->dev_private;
4292	struct intel_engine_cs *ring;
4293	uint32_t rc6_mask = 0;
4294	int unused;
4295
4296	/* 1a: Software RC state - RC0 */
4297	I915_WRITE(GEN6_RC_STATE, 0);
4298
4299	/* 1b: Get forcewake during program sequence. Although the driver
4300	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4301	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4302
4303	/* 2a: Disable RC states. */
4304	I915_WRITE(GEN6_RC_CONTROL, 0);
4305
4306	/* 2b: Program RC6 thresholds.*/
4307	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
4308	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4309	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4310	for_each_ring(ring, dev_priv, unused)
4311		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4312	I915_WRITE(GEN6_RC_SLEEP, 0);
4313	I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
4314
4315	/* 2c: Program Coarse Power Gating Policies. */
4316	I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
4317	I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
4318
4319	/* 3a: Enable RC6 */
4320	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4321		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4322	DRM_INFO("RC6 %s\n", (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
4323			"on" : "off");
4324	I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4325				   GEN6_RC_CTL_EI_MODE(1) |
4326				   rc6_mask);
4327
4328	/* 3b: Enable Coarse Power Gating only when RC6 is enabled */
4329	I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? 3 : 0);
4330
4331	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4332
4333}
4334
4335static void gen8_enable_rps(struct drm_device *dev)
4336{
4337	struct drm_i915_private *dev_priv = dev->dev_private;
4338	struct intel_engine_cs *ring;
4339	uint32_t rc6_mask = 0;
4340	int unused;
4341
4342	/* 1a: Software RC state - RC0 */
4343	I915_WRITE(GEN6_RC_STATE, 0);
4344
4345	/* 1c & 1d: Get forcewake during program sequence. Although the driver
4346	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4347	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4348
4349	/* 2a: Disable RC states. */
4350	I915_WRITE(GEN6_RC_CONTROL, 0);
4351
4352	/* Initialize rps frequencies */
4353	gen6_init_rps_frequencies(dev);
4354
4355	/* 2b: Program RC6 thresholds.*/
4356	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4357	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4358	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4359	for_each_ring(ring, dev_priv, unused)
4360		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4361	I915_WRITE(GEN6_RC_SLEEP, 0);
4362	if (IS_BROADWELL(dev))
4363		I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
4364	else
4365		I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
4366
4367	/* 3: Enable RC6 */
4368	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
4369		rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
4370	intel_print_rc6_info(dev, rc6_mask);
4371	if (IS_BROADWELL(dev))
4372		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4373				GEN7_RC_CTL_TO_MODE |
4374				rc6_mask);
4375	else
4376		I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
4377				GEN6_RC_CTL_EI_MODE(1) |
4378				rc6_mask);
4379
4380	/* 4 Program defaults and thresholds for RPS*/
4381	I915_WRITE(GEN6_RPNSWREQ,
4382		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4383	I915_WRITE(GEN6_RC_VIDEO_FREQ,
4384		   HSW_FREQUENCY(dev_priv->rps.rp1_freq));
4385	/* NB: Docs say 1s, and 1000000 - which aren't equivalent */
4386	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
4387
4388	/* Docs recommend 900MHz, and 300 MHz respectively */
4389	I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
4390		   dev_priv->rps.max_freq_softlimit << 24 |
4391		   dev_priv->rps.min_freq_softlimit << 16);
4392
4393	I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
4394	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
4395	I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
4396	I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
4397
4398	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4399
4400	/* 5: Enable RPS */
4401	I915_WRITE(GEN6_RP_CONTROL,
4402		   GEN6_RP_MEDIA_TURBO |
4403		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
4404		   GEN6_RP_MEDIA_IS_GFX |
4405		   GEN6_RP_ENABLE |
4406		   GEN6_RP_UP_BUSY_AVG |
4407		   GEN6_RP_DOWN_IDLE_AVG);
4408
4409	/* 6: Ring frequency + overclocking (our driver does this later */
4410
4411	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4412	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4413
4414	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4415}
4416
4417static void gen6_enable_rps(struct drm_device *dev)
4418{
4419	struct drm_i915_private *dev_priv = dev->dev_private;
4420	struct intel_engine_cs *ring;
4421	u32 rc6vids, pcu_mbox = 0, rc6_mask = 0;
4422	u32 gtfifodbg;
4423	int rc6_mode;
4424	int i, ret;
4425
4426	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4427
4428	/* Here begins a magic sequence of register writes to enable
4429	 * auto-downclocking.
4430	 *
4431	 * Perhaps there might be some value in exposing these to
4432	 * userspace...
4433	 */
4434	I915_WRITE(GEN6_RC_STATE, 0);
4435
4436	/* Clear the DBG now so we don't confuse earlier errors */
4437	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
4438		DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
4439		I915_WRITE(GTFIFODBG, gtfifodbg);
4440	}
4441
4442	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4443
4444	/* Initialize rps frequencies */
4445	gen6_init_rps_frequencies(dev);
4446
4447	/* disable the counters and set deterministic thresholds */
4448	I915_WRITE(GEN6_RC_CONTROL, 0);
4449
4450	I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
4451	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
4452	I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
4453	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
4454	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
4455
4456	for_each_ring(ring, dev_priv, i)
4457		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4458
4459	I915_WRITE(GEN6_RC_SLEEP, 0);
4460	I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
4461	if (IS_IVYBRIDGE(dev))
4462		I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
4463	else
4464		I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
4465	I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
4466	I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
4467
4468	/* Check if we are enabling RC6 */
4469	rc6_mode = intel_enable_rc6(dev_priv->dev);
4470	if (rc6_mode & INTEL_RC6_ENABLE)
4471		rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
4472
4473	/* We don't use those on Haswell */
4474	if (!IS_HASWELL(dev)) {
4475		if (rc6_mode & INTEL_RC6p_ENABLE)
4476			rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
4477
4478		if (rc6_mode & INTEL_RC6pp_ENABLE)
4479			rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
4480	}
4481
4482	intel_print_rc6_info(dev, rc6_mask);
4483
4484	I915_WRITE(GEN6_RC_CONTROL,
4485		   rc6_mask |
4486		   GEN6_RC_CTL_EI_MODE(1) |
4487		   GEN6_RC_CTL_HW_ENABLE);
4488
4489	/* Power down if completely idle for over 50ms */
4490	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
4491	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
4492
4493	ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
4494	if (ret)
4495		DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
4496
4497	ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
4498	if (!ret && (pcu_mbox & (1<<31))) { /* OC supported */
4499		DRM_DEBUG_DRIVER("Overclocking supported. Max: %dMHz, Overclock max: %dMHz\n",
4500				 (dev_priv->rps.max_freq_softlimit & 0xff) * 50,
4501				 (pcu_mbox & 0xff) * 50);
4502		dev_priv->rps.max_freq = pcu_mbox & 0xff;
4503	}
4504
4505	dev_priv->rps.power = HIGH_POWER; /* force a reset */
4506	gen6_set_rps(dev_priv->dev, dev_priv->rps.idle_freq);
4507
4508	rc6vids = 0;
4509	ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
4510	if (IS_GEN6(dev) && ret) {
4511		DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
4512	} else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
4513		DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
4514			  GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
4515		rc6vids &= 0xffff00;
4516		rc6vids |= GEN6_ENCODE_RC6_VID(450);
4517		ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
4518		if (ret)
4519			DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
4520	}
4521
4522	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4523}
4524
4525static void __gen6_update_ring_freq(struct drm_device *dev)
4526{
4527	struct drm_i915_private *dev_priv = dev->dev_private;
4528	int min_freq = 15;
4529	unsigned int gpu_freq;
4530	unsigned int max_ia_freq, min_ring_freq;
4531	int scaling_factor = 180;
4532	struct cpufreq_policy *policy;
4533
4534	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4535
4536	policy = cpufreq_cpu_get(0);
4537	if (policy) {
4538		max_ia_freq = policy->cpuinfo.max_freq;
4539		cpufreq_cpu_put(policy);
4540	} else {
4541		/*
4542		 * Default to measured freq if none found, PCU will ensure we
4543		 * don't go over
4544		 */
4545		max_ia_freq = tsc_khz;
4546	}
4547
4548	/* Convert from kHz to MHz */
4549	max_ia_freq /= 1000;
4550
4551	min_ring_freq = I915_READ(DCLK) & 0xf;
4552	/* convert DDR frequency from units of 266.6MHz to bandwidth */
4553	min_ring_freq = mult_frac(min_ring_freq, 8, 3);
4554
4555	/*
4556	 * For each potential GPU frequency, load a ring frequency we'd like
4557	 * to use for memory access.  We do this by specifying the IA frequency
4558	 * the PCU should use as a reference to determine the ring frequency.
4559	 */
4560	for (gpu_freq = dev_priv->rps.max_freq; gpu_freq >= dev_priv->rps.min_freq;
4561	     gpu_freq--) {
4562		int diff = dev_priv->rps.max_freq - gpu_freq;
4563		unsigned int ia_freq = 0, ring_freq = 0;
4564
4565		if (INTEL_INFO(dev)->gen >= 8) {
4566			/* max(2 * GT, DDR). NB: GT is 50MHz units */
4567			ring_freq = max(min_ring_freq, gpu_freq);
4568		} else if (IS_HASWELL(dev)) {
4569			ring_freq = mult_frac(gpu_freq, 5, 4);
4570			ring_freq = max(min_ring_freq, ring_freq);
4571			/* leave ia_freq as the default, chosen by cpufreq */
4572		} else {
4573			/* On older processors, there is no separate ring
4574			 * clock domain, so in order to boost the bandwidth
4575			 * of the ring, we need to upclock the CPU (ia_freq).
4576			 *
4577			 * For GPU frequencies less than 750MHz,
4578			 * just use the lowest ring freq.
4579			 */
4580			if (gpu_freq < min_freq)
4581				ia_freq = 800;
4582			else
4583				ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
4584			ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
4585		}
4586
4587		sandybridge_pcode_write(dev_priv,
4588					GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
4589					ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
4590					ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
4591					gpu_freq);
4592	}
4593}
4594
4595void gen6_update_ring_freq(struct drm_device *dev)
4596{
4597	struct drm_i915_private *dev_priv = dev->dev_private;
4598
4599	if (INTEL_INFO(dev)->gen < 6 || IS_VALLEYVIEW(dev))
4600		return;
4601
4602	mutex_lock(&dev_priv->rps.hw_lock);
4603	__gen6_update_ring_freq(dev);
4604	mutex_unlock(&dev_priv->rps.hw_lock);
4605}
4606
4607static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
4608{
4609	struct drm_device *dev = dev_priv->dev;
4610	u32 val, rp0;
4611
4612	if (dev->pdev->revision >= 0x20) {
4613		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4614
4615		switch (INTEL_INFO(dev)->eu_total) {
4616		case 8:
4617				/* (2 * 4) config */
4618				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
4619				break;
4620		case 12:
4621				/* (2 * 6) config */
4622				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
4623				break;
4624		case 16:
4625				/* (2 * 8) config */
4626		default:
4627				/* Setting (2 * 8) Min RP0 for any other combination */
4628				rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
4629				break;
4630		}
4631		rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
4632	} else {
4633		/* For pre-production hardware */
4634		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4635		rp0 = (val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4636		       PUNIT_GPU_STATUS_MAX_FREQ_MASK;
4637	}
4638	return rp0;
4639}
4640
4641static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4642{
4643	u32 val, rpe;
4644
4645	val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
4646	rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
4647
4648	return rpe;
4649}
4650
4651static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
4652{
4653	struct drm_device *dev = dev_priv->dev;
4654	u32 val, rp1;
4655
4656	if (dev->pdev->revision >= 0x20) {
4657		val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
4658		rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
4659	} else {
4660		/* For pre-production hardware */
4661		val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4662		rp1 = ((val >> PUNIT_GPU_STATUS_MAX_FREQ_SHIFT) &
4663		       PUNIT_GPU_STATUS_MAX_FREQ_MASK);
4664	}
4665	return rp1;
4666}
4667
4668static int cherryview_rps_min_freq(struct drm_i915_private *dev_priv)
4669{
4670	struct drm_device *dev = dev_priv->dev;
4671	u32 val, rpn;
4672
4673	if (dev->pdev->revision >= 0x20) {
4674		val = vlv_punit_read(dev_priv, FB_GFX_FMIN_AT_VMIN_FUSE);
4675		rpn = ((val >> FB_GFX_FMIN_AT_VMIN_FUSE_SHIFT) &
4676		       FB_GFX_FREQ_FUSE_MASK);
4677	} else { /* For pre-production hardware */
4678		val = vlv_punit_read(dev_priv, PUNIT_GPU_STATUS_REG);
4679		rpn = ((val >> PUNIT_GPU_STATIS_GFX_MIN_FREQ_SHIFT) &
4680		       PUNIT_GPU_STATUS_GFX_MIN_FREQ_MASK);
4681	}
4682
4683	return rpn;
4684}
4685
4686static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
4687{
4688	u32 val, rp1;
4689
4690	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4691
4692	rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
4693
4694	return rp1;
4695}
4696
4697static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
4698{
4699	u32 val, rp0;
4700
4701	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
4702
4703	rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
4704	/* Clamp to max */
4705	rp0 = min_t(u32, rp0, 0xea);
4706
4707	return rp0;
4708}
4709
4710static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
4711{
4712	u32 val, rpe;
4713
4714	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
4715	rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
4716	val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
4717	rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
4718
4719	return rpe;
4720}
4721
4722static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
4723{
4724	return vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
4725}
4726
4727/* Check that the pctx buffer wasn't move under us. */
4728static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
4729{
4730	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4731
4732	WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
4733			     dev_priv->vlv_pctx->stolen->start);
4734}
4735
4736
4737/* Check that the pcbr address is not empty. */
4738static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
4739{
4740	unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
4741
4742	WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
4743}
4744
4745static void cherryview_setup_pctx(struct drm_device *dev)
4746{
4747	struct drm_i915_private *dev_priv = dev->dev_private;
4748	unsigned long pctx_paddr, paddr;
4749	struct i915_gtt *gtt = &dev_priv->gtt;
4750	u32 pcbr;
4751	int pctx_size = 32*1024;
4752
4753	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4754
4755	pcbr = I915_READ(VLV_PCBR);
4756	if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
4757		DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4758		paddr = (dev_priv->mm.stolen_base +
4759			 (gtt->stolen_size - pctx_size));
4760
4761		pctx_paddr = (paddr & (~4095));
4762		I915_WRITE(VLV_PCBR, pctx_paddr);
4763	}
4764
4765	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4766}
4767
4768static void valleyview_setup_pctx(struct drm_device *dev)
4769{
4770	struct drm_i915_private *dev_priv = dev->dev_private;
4771	struct drm_i915_gem_object *pctx;
4772	unsigned long pctx_paddr;
4773	u32 pcbr;
4774	int pctx_size = 24*1024;
4775
4776	WARN_ON(!mutex_is_locked(&dev->struct_mutex));
4777
4778	pcbr = I915_READ(VLV_PCBR);
4779	if (pcbr) {
4780		/* BIOS set it up already, grab the pre-alloc'd space */
4781		int pcbr_offset;
4782
4783		pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
4784		pctx = i915_gem_object_create_stolen_for_preallocated(dev_priv->dev,
4785								      pcbr_offset,
4786								      I915_GTT_OFFSET_NONE,
4787								      pctx_size);
4788		goto out;
4789	}
4790
4791	DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
4792
4793	/*
4794	 * From the Gunit register HAS:
4795	 * The Gfx driver is expected to program this register and ensure
4796	 * proper allocation within Gfx stolen memory.  For example, this
4797	 * register should be programmed such than the PCBR range does not
4798	 * overlap with other ranges, such as the frame buffer, protected
4799	 * memory, or any other relevant ranges.
4800	 */
4801	pctx = i915_gem_object_create_stolen(dev, pctx_size);
4802	if (!pctx) {
4803		DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
4804		return;
4805	}
4806
4807	pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
4808	I915_WRITE(VLV_PCBR, pctx_paddr);
4809
4810out:
4811	DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
4812	dev_priv->vlv_pctx = pctx;
4813}
4814
4815static void valleyview_cleanup_pctx(struct drm_device *dev)
4816{
4817	struct drm_i915_private *dev_priv = dev->dev_private;
4818
4819	if (WARN_ON(!dev_priv->vlv_pctx))
4820		return;
4821
4822	drm_gem_object_unreference(&dev_priv->vlv_pctx->base);
4823	dev_priv->vlv_pctx = NULL;
4824}
4825
4826static void valleyview_init_gt_powersave(struct drm_device *dev)
4827{
4828	struct drm_i915_private *dev_priv = dev->dev_private;
4829	u32 val;
4830
4831	valleyview_setup_pctx(dev);
4832
4833	mutex_lock(&dev_priv->rps.hw_lock);
4834
4835	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
4836	switch ((val >> 6) & 3) {
4837	case 0:
4838	case 1:
4839		dev_priv->mem_freq = 800;
4840		break;
4841	case 2:
4842		dev_priv->mem_freq = 1066;
4843		break;
4844	case 3:
4845		dev_priv->mem_freq = 1333;
4846		break;
4847	}
4848	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4849
4850	dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
4851	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4852	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4853			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4854			 dev_priv->rps.max_freq);
4855
4856	dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
4857	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4858			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4859			 dev_priv->rps.efficient_freq);
4860
4861	dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
4862	DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
4863			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4864			 dev_priv->rps.rp1_freq);
4865
4866	dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
4867	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4868			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4869			 dev_priv->rps.min_freq);
4870
4871	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4872
4873	/* Preserve min/max settings in case of re-init */
4874	if (dev_priv->rps.max_freq_softlimit == 0)
4875		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4876
4877	if (dev_priv->rps.min_freq_softlimit == 0)
4878		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4879
4880	mutex_unlock(&dev_priv->rps.hw_lock);
4881}
4882
4883static void cherryview_init_gt_powersave(struct drm_device *dev)
4884{
4885	struct drm_i915_private *dev_priv = dev->dev_private;
4886	u32 val;
4887
4888	cherryview_setup_pctx(dev);
4889
4890	mutex_lock(&dev_priv->rps.hw_lock);
4891
4892	mutex_lock(&dev_priv->dpio_lock);
4893	val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
4894	mutex_unlock(&dev_priv->dpio_lock);
4895
4896	switch ((val >> 2) & 0x7) {
4897	case 0:
4898	case 1:
4899		dev_priv->rps.cz_freq = 200;
4900		dev_priv->mem_freq = 1600;
4901		break;
4902	case 2:
4903		dev_priv->rps.cz_freq = 267;
4904		dev_priv->mem_freq = 1600;
4905		break;
4906	case 3:
4907		dev_priv->rps.cz_freq = 333;
4908		dev_priv->mem_freq = 2000;
4909		break;
4910	case 4:
4911		dev_priv->rps.cz_freq = 320;
4912		dev_priv->mem_freq = 1600;
4913		break;
4914	case 5:
4915		dev_priv->rps.cz_freq = 400;
4916		dev_priv->mem_freq = 1600;
4917		break;
4918	}
4919	DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
4920
4921	dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
4922	dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
4923	DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
4924			 intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
4925			 dev_priv->rps.max_freq);
4926
4927	dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
4928	DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
4929			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
4930			 dev_priv->rps.efficient_freq);
4931
4932	dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
4933	DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
4934			 intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
4935			 dev_priv->rps.rp1_freq);
4936
4937	dev_priv->rps.min_freq = cherryview_rps_min_freq(dev_priv);
4938	DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
4939			 intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
4940			 dev_priv->rps.min_freq);
4941
4942	WARN_ONCE((dev_priv->rps.max_freq |
4943		   dev_priv->rps.efficient_freq |
4944		   dev_priv->rps.rp1_freq |
4945		   dev_priv->rps.min_freq) & 1,
4946		  "Odd GPU freq values\n");
4947
4948	dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
4949
4950	/* Preserve min/max settings in case of re-init */
4951	if (dev_priv->rps.max_freq_softlimit == 0)
4952		dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
4953
4954	if (dev_priv->rps.min_freq_softlimit == 0)
4955		dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
4956
4957	mutex_unlock(&dev_priv->rps.hw_lock);
4958}
4959
4960static void valleyview_cleanup_gt_powersave(struct drm_device *dev)
4961{
4962	valleyview_cleanup_pctx(dev);
4963}
4964
4965static void cherryview_enable_rps(struct drm_device *dev)
4966{
4967	struct drm_i915_private *dev_priv = dev->dev_private;
4968	struct intel_engine_cs *ring;
4969	u32 gtfifodbg, val, rc6_mode = 0, pcbr;
4970	int i;
4971
4972	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973
4974	gtfifodbg = I915_READ(GTFIFODBG);
4975	if (gtfifodbg) {
4976		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
4977				 gtfifodbg);
4978		I915_WRITE(GTFIFODBG, gtfifodbg);
4979	}
4980
4981	cherryview_check_pctx(dev_priv);
4982
4983	/* 1a & 1b: Get forcewake during program sequence. Although the driver
4984	 * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
4985	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4986
4987	/*  Disable RC states. */
4988	I915_WRITE(GEN6_RC_CONTROL, 0);
4989
4990	/* 2a: Program RC6 thresholds.*/
4991	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
4992	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
4993	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
4994
4995	for_each_ring(ring, dev_priv, i)
4996		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
4997	I915_WRITE(GEN6_RC_SLEEP, 0);
4998
4999	/* TO threshold set to 1750 us ( 0x557 * 1.28 us) */
5000	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5001
5002	/* allows RC6 residency counter to work */
5003	I915_WRITE(VLV_COUNTER_CONTROL,
5004		   _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
5005				      VLV_MEDIA_RC6_COUNT_EN |
5006				      VLV_RENDER_RC6_COUNT_EN));
5007
5008	/* For now we assume BIOS is allocating and populating the PCBR  */
5009	pcbr = I915_READ(VLV_PCBR);
5010
5011	/* 3: Enable RC6 */
5012	if ((intel_enable_rc6(dev) & INTEL_RC6_ENABLE) &&
5013						(pcbr >> VLV_PCBR_ADDR_SHIFT))
5014		rc6_mode = GEN7_RC_CTL_TO_MODE;
5015
5016	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5017
5018	/* 4 Program defaults and thresholds for RPS*/
5019	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5020	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5021	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5022	I915_WRITE(GEN6_RP_UP_EI, 66000);
5023	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5024
5025	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5026
5027	/* 5: Enable RPS */
5028	I915_WRITE(GEN6_RP_CONTROL,
5029		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5030		   GEN6_RP_MEDIA_IS_GFX |
5031		   GEN6_RP_ENABLE |
5032		   GEN6_RP_UP_BUSY_AVG |
5033		   GEN6_RP_DOWN_IDLE_AVG);
5034
5035	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5036
5037	/* RPS code assumes GPLL is used */
5038	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5039
5040	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5041	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5042
5043	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5044	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5045			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5046			 dev_priv->rps.cur_freq);
5047
5048	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5049			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5050			 dev_priv->rps.efficient_freq);
5051
5052	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5053
5054	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5055}
5056
5057static void valleyview_enable_rps(struct drm_device *dev)
5058{
5059	struct drm_i915_private *dev_priv = dev->dev_private;
5060	struct intel_engine_cs *ring;
5061	u32 gtfifodbg, val, rc6_mode = 0;
5062	int i;
5063
5064	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5065
5066	valleyview_check_pctx(dev_priv);
5067
5068	if ((gtfifodbg = I915_READ(GTFIFODBG))) {
5069		DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
5070				 gtfifodbg);
5071		I915_WRITE(GTFIFODBG, gtfifodbg);
5072	}
5073
5074	/* If VLV, Forcewake all wells, else re-direct to regular path */
5075	intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5076
5077	/*  Disable RC states. */
5078	I915_WRITE(GEN6_RC_CONTROL, 0);
5079
5080	I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
5081	I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
5082	I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
5083	I915_WRITE(GEN6_RP_UP_EI, 66000);
5084	I915_WRITE(GEN6_RP_DOWN_EI, 350000);
5085
5086	I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5087
5088	I915_WRITE(GEN6_RP_CONTROL,
5089		   GEN6_RP_MEDIA_TURBO |
5090		   GEN6_RP_MEDIA_HW_NORMAL_MODE |
5091		   GEN6_RP_MEDIA_IS_GFX |
5092		   GEN6_RP_ENABLE |
5093		   GEN6_RP_UP_BUSY_AVG |
5094		   GEN6_RP_DOWN_IDLE_CONT);
5095
5096	I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
5097	I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5098	I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5099
5100	for_each_ring(ring, dev_priv, i)
5101		I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
5102
5103	I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
5104
5105	/* allows RC6 residency counter to work */
5106	I915_WRITE(VLV_COUNTER_CONTROL,
5107		   _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
5108				      VLV_RENDER_RC0_COUNT_EN |
5109				      VLV_MEDIA_RC6_COUNT_EN |
5110				      VLV_RENDER_RC6_COUNT_EN));
5111
5112	if (intel_enable_rc6(dev) & INTEL_RC6_ENABLE)
5113		rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
5114
5115	intel_print_rc6_info(dev, rc6_mode);
5116
5117	I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
5118
5119	val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5120
5121	/* RPS code assumes GPLL is used */
5122	WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
5123
5124	DRM_DEBUG_DRIVER("GPLL enabled? %s\n", val & GPLLENABLE ? "yes" : "no");
5125	DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
5126
5127	dev_priv->rps.cur_freq = (val >> 8) & 0xff;
5128	DRM_DEBUG_DRIVER("current GPU freq: %d MHz (%u)\n",
5129			 intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq),
5130			 dev_priv->rps.cur_freq);
5131
5132	DRM_DEBUG_DRIVER("setting GPU freq to %d MHz (%u)\n",
5133			 intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5134			 dev_priv->rps.efficient_freq);
5135
5136	valleyview_set_rps(dev_priv->dev, dev_priv->rps.efficient_freq);
5137
5138	intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5139}
5140
5141static unsigned long intel_pxfreq(u32 vidfreq)
5142{
5143	unsigned long freq;
5144	int div = (vidfreq & 0x3f0000) >> 16;
5145	int post = (vidfreq & 0x3000) >> 12;
5146	int pre = (vidfreq & 0x7);
5147
5148	if (!pre)
5149		return 0;
5150
5151	freq = ((div * 133333) / ((1<<post) * pre));
5152
5153	return freq;
5154}
5155
5156static const struct cparams {
5157	u16 i;
5158	u16 t;
5159	u16 m;
5160	u16 c;
5161} cparams[] = {
5162	{ 1, 1333, 301, 28664 },
5163	{ 1, 1066, 294, 24460 },
5164	{ 1, 800, 294, 25192 },
5165	{ 0, 1333, 276, 27605 },
5166	{ 0, 1066, 276, 27605 },
5167	{ 0, 800, 231, 23784 },
5168};
5169
5170static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
5171{
5172	u64 total_count, diff, ret;
5173	u32 count1, count2, count3, m = 0, c = 0;
5174	unsigned long now = jiffies_to_msecs(jiffies), diff1;
5175	int i;
5176
5177	assert_spin_locked(&mchdev_lock);
5178
5179	diff1 = now - dev_priv->ips.last_time1;
5180
5181	/* Prevent division-by-zero if we are asking too fast.
5182	 * Also, we don't get interesting results if we are polling
5183	 * faster than once in 10ms, so just return the saved value
5184	 * in such cases.
5185	 */
5186	if (diff1 <= 10)
5187		return dev_priv->ips.chipset_power;
5188
5189	count1 = I915_READ(DMIEC);
5190	count2 = I915_READ(DDREC);
5191	count3 = I915_READ(CSIEC);
5192
5193	total_count = count1 + count2 + count3;
5194
5195	/* FIXME: handle per-counter overflow */
5196	if (total_count < dev_priv->ips.last_count1) {
5197		diff = ~0UL - dev_priv->ips.last_count1;
5198		diff += total_count;
5199	} else {
5200		diff = total_count - dev_priv->ips.last_count1;
5201	}
5202
5203	for (i = 0; i < ARRAY_SIZE(cparams); i++) {
5204		if (cparams[i].i == dev_priv->ips.c_m &&
5205		    cparams[i].t == dev_priv->ips.r_t) {
5206			m = cparams[i].m;
5207			c = cparams[i].c;
5208			break;
5209		}
5210	}
5211
5212	diff = div_u64(diff, diff1);
5213	ret = ((m * diff) + c);
5214	ret = div_u64(ret, 10);
5215
5216	dev_priv->ips.last_count1 = total_count;
5217	dev_priv->ips.last_time1 = now;
5218
5219	dev_priv->ips.chipset_power = ret;
5220
5221	return ret;
5222}
5223
5224unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
5225{
5226	struct drm_device *dev = dev_priv->dev;
5227	unsigned long val;
5228
5229	if (INTEL_INFO(dev)->gen != 5)
5230		return 0;
5231
5232	spin_lock_irq(&mchdev_lock);
5233
5234	val = __i915_chipset_val(dev_priv);
5235
5236	spin_unlock_irq(&mchdev_lock);
5237
5238	return val;
5239}
5240
5241unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
5242{
5243	unsigned long m, x, b;
5244	u32 tsfs;
5245
5246	tsfs = I915_READ(TSFS);
5247
5248	m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
5249	x = I915_READ8(TR1);
5250
5251	b = tsfs & TSFS_INTR_MASK;
5252
5253	return ((m * x) / 127) - b;
5254}
5255
5256static int _pxvid_to_vd(u8 pxvid)
5257{
5258	if (pxvid == 0)
5259		return 0;
5260
5261	if (pxvid >= 8 && pxvid < 31)
5262		pxvid = 31;
5263
5264	return (pxvid + 2) * 125;
5265}
5266
5267static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
5268{
5269	struct drm_device *dev = dev_priv->dev;
5270	const int vd = _pxvid_to_vd(pxvid);
5271	const int vm = vd - 1125;
5272
5273	if (INTEL_INFO(dev)->is_mobile)
5274		return vm > 0 ? vm : 0;
5275
5276	return vd;
5277}
5278
5279static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
5280{
5281	u64 now, diff, diffms;
5282	u32 count;
5283
5284	assert_spin_locked(&mchdev_lock);
5285
5286	now = ktime_get_raw_ns();
5287	diffms = now - dev_priv->ips.last_time2;
5288	do_div(diffms, NSEC_PER_MSEC);
5289
5290	/* Don't divide by 0 */
5291	if (!diffms)
5292		return;
5293
5294	count = I915_READ(GFXEC);
5295
5296	if (count < dev_priv->ips.last_count2) {
5297		diff = ~0UL - dev_priv->ips.last_count2;
5298		diff += count;
5299	} else {
5300		diff = count - dev_priv->ips.last_count2;
5301	}
5302
5303	dev_priv->ips.last_count2 = count;
5304	dev_priv->ips.last_time2 = now;
5305
5306	/* More magic constants... */
5307	diff = diff * 1181;
5308	diff = div_u64(diff, diffms * 10);
5309	dev_priv->ips.gfx_power = diff;
5310}
5311
5312void i915_update_gfx_val(struct drm_i915_private *dev_priv)
5313{
5314	struct drm_device *dev = dev_priv->dev;
5315
5316	if (INTEL_INFO(dev)->gen != 5)
5317		return;
5318
5319	spin_lock_irq(&mchdev_lock);
5320
5321	__i915_update_gfx_val(dev_priv);
5322
5323	spin_unlock_irq(&mchdev_lock);
5324}
5325
5326static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
5327{
5328	unsigned long t, corr, state1, corr2, state2;
5329	u32 pxvid, ext_v;
5330
5331	assert_spin_locked(&mchdev_lock);
5332
5333	pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_freq * 4));
5334	pxvid = (pxvid >> 24) & 0x7f;
5335	ext_v = pvid_to_extvid(dev_priv, pxvid);
5336
5337	state1 = ext_v;
5338
5339	t = i915_mch_val(dev_priv);
5340
5341	/* Revel in the empirically derived constants */
5342
5343	/* Correction factor in 1/100000 units */
5344	if (t > 80)
5345		corr = ((t * 2349) + 135940);
5346	else if (t >= 50)
5347		corr = ((t * 964) + 29317);
5348	else /* < 50 */
5349		corr = ((t * 301) + 1004);
5350
5351	corr = corr * ((150142 * state1) / 10000 - 78642);
5352	corr /= 100000;
5353	corr2 = (corr * dev_priv->ips.corr);
5354
5355	state2 = (corr2 * state1) / 10000;
5356	state2 /= 100; /* convert to mW */
5357
5358	__i915_update_gfx_val(dev_priv);
5359
5360	return dev_priv->ips.gfx_power + state2;
5361}
5362
5363unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
5364{
5365	struct drm_device *dev = dev_priv->dev;
5366	unsigned long val;
5367
5368	if (INTEL_INFO(dev)->gen != 5)
5369		return 0;
5370
5371	spin_lock_irq(&mchdev_lock);
5372
5373	val = __i915_gfx_val(dev_priv);
5374
5375	spin_unlock_irq(&mchdev_lock);
5376
5377	return val;
5378}
5379
5380/**
5381 * i915_read_mch_val - return value for IPS use
5382 *
5383 * Calculate and return a value for the IPS driver to use when deciding whether
5384 * we have thermal and power headroom to increase CPU or GPU power budget.
5385 */
5386unsigned long i915_read_mch_val(void)
5387{
5388	struct drm_i915_private *dev_priv;
5389	unsigned long chipset_val, graphics_val, ret = 0;
5390
5391	spin_lock_irq(&mchdev_lock);
5392	if (!i915_mch_dev)
5393		goto out_unlock;
5394	dev_priv = i915_mch_dev;
5395
5396	chipset_val = __i915_chipset_val(dev_priv);
5397	graphics_val = __i915_gfx_val(dev_priv);
5398
5399	ret = chipset_val + graphics_val;
5400
5401out_unlock:
5402	spin_unlock_irq(&mchdev_lock);
5403
5404	return ret;
5405}
5406EXPORT_SYMBOL_GPL(i915_read_mch_val);
5407
5408/**
5409 * i915_gpu_raise - raise GPU frequency limit
5410 *
5411 * Raise the limit; IPS indicates we have thermal headroom.
5412 */
5413bool i915_gpu_raise(void)
5414{
5415	struct drm_i915_private *dev_priv;
5416	bool ret = true;
5417
5418	spin_lock_irq(&mchdev_lock);
5419	if (!i915_mch_dev) {
5420		ret = false;
5421		goto out_unlock;
5422	}
5423	dev_priv = i915_mch_dev;
5424
5425	if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
5426		dev_priv->ips.max_delay--;
5427
5428out_unlock:
5429	spin_unlock_irq(&mchdev_lock);
5430
5431	return ret;
5432}
5433EXPORT_SYMBOL_GPL(i915_gpu_raise);
5434
5435/**
5436 * i915_gpu_lower - lower GPU frequency limit
5437 *
5438 * IPS indicates we're close to a thermal limit, so throttle back the GPU
5439 * frequency maximum.
5440 */
5441bool i915_gpu_lower(void)
5442{
5443	struct drm_i915_private *dev_priv;
5444	bool ret = true;
5445
5446	spin_lock_irq(&mchdev_lock);
5447	if (!i915_mch_dev) {
5448		ret = false;
5449		goto out_unlock;
5450	}
5451	dev_priv = i915_mch_dev;
5452
5453	if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
5454		dev_priv->ips.max_delay++;
5455
5456out_unlock:
5457	spin_unlock_irq(&mchdev_lock);
5458
5459	return ret;
5460}
5461EXPORT_SYMBOL_GPL(i915_gpu_lower);
5462
5463/**
5464 * i915_gpu_busy - indicate GPU business to IPS
5465 *
5466 * Tell the IPS driver whether or not the GPU is busy.
5467 */
5468bool i915_gpu_busy(void)
5469{
5470	struct drm_i915_private *dev_priv;
5471	struct intel_engine_cs *ring;
5472	bool ret = false;
5473	int i;
5474
5475	spin_lock_irq(&mchdev_lock);
5476	if (!i915_mch_dev)
5477		goto out_unlock;
5478	dev_priv = i915_mch_dev;
5479
5480	for_each_ring(ring, dev_priv, i)
5481		ret |= !list_empty(&ring->request_list);
5482
5483out_unlock:
5484	spin_unlock_irq(&mchdev_lock);
5485
5486	return ret;
5487}
5488EXPORT_SYMBOL_GPL(i915_gpu_busy);
5489
5490/**
5491 * i915_gpu_turbo_disable - disable graphics turbo
5492 *
5493 * Disable graphics turbo by resetting the max frequency and setting the
5494 * current frequency to the default.
5495 */
5496bool i915_gpu_turbo_disable(void)
5497{
5498	struct drm_i915_private *dev_priv;
5499	bool ret = true;
5500
5501	spin_lock_irq(&mchdev_lock);
5502	if (!i915_mch_dev) {
5503		ret = false;
5504		goto out_unlock;
5505	}
5506	dev_priv = i915_mch_dev;
5507
5508	dev_priv->ips.max_delay = dev_priv->ips.fstart;
5509
5510	if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
5511		ret = false;
5512
5513out_unlock:
5514	spin_unlock_irq(&mchdev_lock);
5515
5516	return ret;
5517}
5518EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
5519
5520/**
5521 * Tells the intel_ips driver that the i915 driver is now loaded, if
5522 * IPS got loaded first.
5523 *
5524 * This awkward dance is so that neither module has to depend on the
5525 * other in order for IPS to do the appropriate communication of
5526 * GPU turbo limits to i915.
5527 */
5528static void
5529ips_ping_for_i915_load(void)
5530{
5531	void (*link)(void);
5532
5533	link = symbol_get(ips_link_to_i915_driver);
5534	if (link) {
5535		link();
5536		symbol_put(ips_link_to_i915_driver);
5537	}
5538}
5539
5540void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
5541{
5542	/* We only register the i915 ips part with intel-ips once everything is
5543	 * set up, to avoid intel-ips sneaking in and reading bogus values. */
5544	spin_lock_irq(&mchdev_lock);
5545	i915_mch_dev = dev_priv;
5546	spin_unlock_irq(&mchdev_lock);
5547
5548	ips_ping_for_i915_load();
5549}
5550
5551void intel_gpu_ips_teardown(void)
5552{
5553	spin_lock_irq(&mchdev_lock);
5554	i915_mch_dev = NULL;
5555	spin_unlock_irq(&mchdev_lock);
5556}
5557
5558static void intel_init_emon(struct drm_device *dev)
5559{
5560	struct drm_i915_private *dev_priv = dev->dev_private;
5561	u32 lcfuse;
5562	u8 pxw[16];
5563	int i;
5564
5565	/* Disable to program */
5566	I915_WRITE(ECR, 0);
5567	POSTING_READ(ECR);
5568
5569	/* Program energy weights for various events */
5570	I915_WRITE(SDEW, 0x15040d00);
5571	I915_WRITE(CSIEW0, 0x007f0000);
5572	I915_WRITE(CSIEW1, 0x1e220004);
5573	I915_WRITE(CSIEW2, 0x04000004);
5574
5575	for (i = 0; i < 5; i++)
5576		I915_WRITE(PEW + (i * 4), 0);
5577	for (i = 0; i < 3; i++)
5578		I915_WRITE(DEW + (i * 4), 0);
5579
5580	/* Program P-state weights to account for frequency power adjustment */
5581	for (i = 0; i < 16; i++) {
5582		u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5583		unsigned long freq = intel_pxfreq(pxvidfreq);
5584		unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5585			PXVFREQ_PX_SHIFT;
5586		unsigned long val;
5587
5588		val = vid * vid;
5589		val *= (freq / 1000);
5590		val *= 255;
5591		val /= (127*127*900);
5592		if (val > 0xff)
5593			DRM_ERROR("bad pxval: %ld\n", val);
5594		pxw[i] = val;
5595	}
5596	/* Render standby states get 0 weight */
5597	pxw[14] = 0;
5598	pxw[15] = 0;
5599
5600	for (i = 0; i < 4; i++) {
5601		u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5602			(pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5603		I915_WRITE(PXW + (i * 4), val);
5604	}
5605
5606	/* Adjust magic regs to magic values (more experimental results) */
5607	I915_WRITE(OGW0, 0);
5608	I915_WRITE(OGW1, 0);
5609	I915_WRITE(EG0, 0x00007f00);
5610	I915_WRITE(EG1, 0x0000000e);
5611	I915_WRITE(EG2, 0x000e0000);
5612	I915_WRITE(EG3, 0x68000300);
5613	I915_WRITE(EG4, 0x42000000);
5614	I915_WRITE(EG5, 0x00140031);
5615	I915_WRITE(EG6, 0);
5616	I915_WRITE(EG7, 0);
5617
5618	for (i = 0; i < 8; i++)
5619		I915_WRITE(PXWL + (i * 4), 0);
5620
5621	/* Enable PMON + select events */
5622	I915_WRITE(ECR, 0x80000019);
5623
5624	lcfuse = I915_READ(LCFUSE02);
5625
5626	dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
5627}
5628
5629void intel_init_gt_powersave(struct drm_device *dev)
5630{
5631	i915.enable_rc6 = sanitize_rc6_option(dev, i915.enable_rc6);
5632
5633	if (IS_CHERRYVIEW(dev))
5634		cherryview_init_gt_powersave(dev);
5635	else if (IS_VALLEYVIEW(dev))
5636		valleyview_init_gt_powersave(dev);
5637}
5638
5639void intel_cleanup_gt_powersave(struct drm_device *dev)
5640{
5641	if (IS_CHERRYVIEW(dev))
5642		return;
5643	else if (IS_VALLEYVIEW(dev))
5644		valleyview_cleanup_gt_powersave(dev);
5645}
5646
5647static void gen6_suspend_rps(struct drm_device *dev)
5648{
5649	struct drm_i915_private *dev_priv = dev->dev_private;
5650
5651	flush_delayed_work(&dev_priv->rps.delayed_resume_work);
5652
5653	gen6_disable_rps_interrupts(dev);
5654}
5655
5656/**
5657 * intel_suspend_gt_powersave - suspend PM work and helper threads
5658 * @dev: drm device
5659 *
5660 * We don't want to disable RC6 or other features here, we just want
5661 * to make sure any work we've queued has finished and won't bother
5662 * us while we're suspended.
5663 */
5664void intel_suspend_gt_powersave(struct drm_device *dev)
5665{
5666	struct drm_i915_private *dev_priv = dev->dev_private;
5667
5668	if (INTEL_INFO(dev)->gen < 6)
5669		return;
5670
5671	gen6_suspend_rps(dev);
5672
5673	/* Force GPU to min freq during suspend */
5674	gen6_rps_idle(dev_priv);
5675}
5676
5677void intel_disable_gt_powersave(struct drm_device *dev)
5678{
5679	struct drm_i915_private *dev_priv = dev->dev_private;
5680
5681	if (IS_IRONLAKE_M(dev)) {
5682		ironlake_disable_drps(dev);
5683	} else if (INTEL_INFO(dev)->gen >= 6) {
5684		intel_suspend_gt_powersave(dev);
5685
5686		mutex_lock(&dev_priv->rps.hw_lock);
5687		if (INTEL_INFO(dev)->gen >= 9)
5688			gen9_disable_rps(dev);
5689		else if (IS_CHERRYVIEW(dev))
5690			cherryview_disable_rps(dev);
5691		else if (IS_VALLEYVIEW(dev))
5692			valleyview_disable_rps(dev);
5693		else
5694			gen6_disable_rps(dev);
5695
5696		dev_priv->rps.enabled = false;
5697		mutex_unlock(&dev_priv->rps.hw_lock);
5698	}
5699}
5700
5701static void intel_gen6_powersave_work(struct work_struct *work)
5702{
5703	struct drm_i915_private *dev_priv =
5704		container_of(work, struct drm_i915_private,
5705			     rps.delayed_resume_work.work);
5706	struct drm_device *dev = dev_priv->dev;
5707
5708	mutex_lock(&dev_priv->rps.hw_lock);
5709
5710	gen6_reset_rps_interrupts(dev);
5711
5712	if (IS_CHERRYVIEW(dev)) {
5713		cherryview_enable_rps(dev);
5714	} else if (IS_VALLEYVIEW(dev)) {
5715		valleyview_enable_rps(dev);
5716	} else if (INTEL_INFO(dev)->gen >= 9) {
5717		gen9_enable_rc6(dev);
5718		gen9_enable_rps(dev);
5719		__gen6_update_ring_freq(dev);
5720	} else if (IS_BROADWELL(dev)) {
5721		gen8_enable_rps(dev);
5722		__gen6_update_ring_freq(dev);
5723	} else {
5724		gen6_enable_rps(dev);
5725		__gen6_update_ring_freq(dev);
5726	}
5727
5728	WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
5729	WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
5730
5731	WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
5732	WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
5733
5734	dev_priv->rps.enabled = true;
5735
5736	gen6_enable_rps_interrupts(dev);
5737
5738	mutex_unlock(&dev_priv->rps.hw_lock);
5739
5740	intel_runtime_pm_put(dev_priv);
5741}
5742
5743void intel_enable_gt_powersave(struct drm_device *dev)
5744{
5745	struct drm_i915_private *dev_priv = dev->dev_private;
5746
5747	/* Powersaving is controlled by the host when inside a VM */
5748	if (intel_vgpu_active(dev))
5749		return;
5750
5751	if (IS_IRONLAKE_M(dev)) {
5752		mutex_lock(&dev->struct_mutex);
5753		ironlake_enable_drps(dev);
5754		intel_init_emon(dev);
5755		mutex_unlock(&dev->struct_mutex);
5756	} else if (INTEL_INFO(dev)->gen >= 6) {
5757		/*
5758		 * PCU communication is slow and this doesn't need to be
5759		 * done at any specific time, so do this out of our fast path
5760		 * to make resume and init faster.
5761		 *
5762		 * We depend on the HW RC6 power context save/restore
5763		 * mechanism when entering D3 through runtime PM suspend. So
5764		 * disable RPM until RPS/RC6 is properly setup. We can only
5765		 * get here via the driver load/system resume/runtime resume
5766		 * paths, so the _noresume version is enough (and in case of
5767		 * runtime resume it's necessary).
5768		 */
5769		if (schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
5770					   round_jiffies_up_relative(HZ)))
5771			intel_runtime_pm_get_noresume(dev_priv);
5772	}
5773}
5774
5775void intel_reset_gt_powersave(struct drm_device *dev)
5776{
5777	struct drm_i915_private *dev_priv = dev->dev_private;
5778
5779	if (INTEL_INFO(dev)->gen < 6)
5780		return;
5781
5782	gen6_suspend_rps(dev);
5783	dev_priv->rps.enabled = false;
5784}
5785
5786static void ibx_init_clock_gating(struct drm_device *dev)
5787{
5788	struct drm_i915_private *dev_priv = dev->dev_private;
5789
5790	/*
5791	 * On Ibex Peak and Cougar Point, we need to disable clock
5792	 * gating for the panel power sequencer or it will fail to
5793	 * start up when no ports are active.
5794	 */
5795	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
5796}
5797
5798static void g4x_disable_trickle_feed(struct drm_device *dev)
5799{
5800	struct drm_i915_private *dev_priv = dev->dev_private;
5801	int pipe;
5802
5803	for_each_pipe(dev_priv, pipe) {
5804		I915_WRITE(DSPCNTR(pipe),
5805			   I915_READ(DSPCNTR(pipe)) |
5806			   DISPPLANE_TRICKLE_FEED_DISABLE);
5807		intel_flush_primary_plane(dev_priv, pipe);
5808	}
5809}
5810
5811static void ilk_init_lp_watermarks(struct drm_device *dev)
5812{
5813	struct drm_i915_private *dev_priv = dev->dev_private;
5814
5815	I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
5816	I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
5817	I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
5818
5819	/*
5820	 * Don't touch WM1S_LP_EN here.
5821	 * Doing so could cause underruns.
5822	 */
5823}
5824
5825static void ironlake_init_clock_gating(struct drm_device *dev)
5826{
5827	struct drm_i915_private *dev_priv = dev->dev_private;
5828	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5829
5830	/*
5831	 * Required for FBC
5832	 * WaFbcDisableDpfcClockGating:ilk
5833	 */
5834	dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
5835		   ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
5836		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
5837
5838	I915_WRITE(PCH_3DCGDIS0,
5839		   MARIUNIT_CLOCK_GATE_DISABLE |
5840		   SVSMUNIT_CLOCK_GATE_DISABLE);
5841	I915_WRITE(PCH_3DCGDIS1,
5842		   VFMUNIT_CLOCK_GATE_DISABLE);
5843
5844	/*
5845	 * According to the spec the following bits should be set in
5846	 * order to enable memory self-refresh
5847	 * The bit 22/21 of 0x42004
5848	 * The bit 5 of 0x42020
5849	 * The bit 15 of 0x45000
5850	 */
5851	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5852		   (I915_READ(ILK_DISPLAY_CHICKEN2) |
5853		    ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5854	dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
5855	I915_WRITE(DISP_ARB_CTL,
5856		   (I915_READ(DISP_ARB_CTL) |
5857		    DISP_FBC_WM_DIS));
5858
5859	ilk_init_lp_watermarks(dev);
5860
5861	/*
5862	 * Based on the document from hardware guys the following bits
5863	 * should be set unconditionally in order to enable FBC.
5864	 * The bit 22 of 0x42000
5865	 * The bit 22 of 0x42004
5866	 * The bit 7,8,9 of 0x42020.
5867	 */
5868	if (IS_IRONLAKE_M(dev)) {
5869		/* WaFbcAsynchFlipDisableFbcQueue:ilk */
5870		I915_WRITE(ILK_DISPLAY_CHICKEN1,
5871			   I915_READ(ILK_DISPLAY_CHICKEN1) |
5872			   ILK_FBCQ_DIS);
5873		I915_WRITE(ILK_DISPLAY_CHICKEN2,
5874			   I915_READ(ILK_DISPLAY_CHICKEN2) |
5875			   ILK_DPARB_GATE);
5876	}
5877
5878	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5879
5880	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5881		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5882		   ILK_ELPIN_409_SELECT);
5883	I915_WRITE(_3D_CHICKEN2,
5884		   _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
5885		   _3D_CHICKEN2_WM_READ_PIPELINED);
5886
5887	/* WaDisableRenderCachePipelinedFlush:ilk */
5888	I915_WRITE(CACHE_MODE_0,
5889		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
5890
5891	/* WaDisable_RenderCache_OperationalFlush:ilk */
5892	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5893
5894	g4x_disable_trickle_feed(dev);
5895
5896	ibx_init_clock_gating(dev);
5897}
5898
5899static void cpt_init_clock_gating(struct drm_device *dev)
5900{
5901	struct drm_i915_private *dev_priv = dev->dev_private;
5902	int pipe;
5903	uint32_t val;
5904
5905	/*
5906	 * On Ibex Peak and Cougar Point, we need to disable clock
5907	 * gating for the panel power sequencer or it will fail to
5908	 * start up when no ports are active.
5909	 */
5910	I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
5911		   PCH_DPLUNIT_CLOCK_GATE_DISABLE |
5912		   PCH_CPUNIT_CLOCK_GATE_DISABLE);
5913	I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
5914		   DPLS_EDP_PPS_FIX_DIS);
5915	/* The below fixes the weird display corruption, a few pixels shifted
5916	 * downward, on (only) LVDS of some HP laptops with IVY.
5917	 */
5918	for_each_pipe(dev_priv, pipe) {
5919		val = I915_READ(TRANS_CHICKEN2(pipe));
5920		val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
5921		val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5922		if (dev_priv->vbt.fdi_rx_polarity_inverted)
5923			val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
5924		val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
5925		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
5926		val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
5927		I915_WRITE(TRANS_CHICKEN2(pipe), val);
5928	}
5929	/* WADP0ClockGatingDisable */
5930	for_each_pipe(dev_priv, pipe) {
5931		I915_WRITE(TRANS_CHICKEN1(pipe),
5932			   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
5933	}
5934}
5935
5936static void gen6_check_mch_setup(struct drm_device *dev)
5937{
5938	struct drm_i915_private *dev_priv = dev->dev_private;
5939	uint32_t tmp;
5940
5941	tmp = I915_READ(MCH_SSKPD);
5942	if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
5943		DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
5944			      tmp);
5945}
5946
5947static void gen6_init_clock_gating(struct drm_device *dev)
5948{
5949	struct drm_i915_private *dev_priv = dev->dev_private;
5950	uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
5951
5952	I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
5953
5954	I915_WRITE(ILK_DISPLAY_CHICKEN2,
5955		   I915_READ(ILK_DISPLAY_CHICKEN2) |
5956		   ILK_ELPIN_409_SELECT);
5957
5958	/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
5959	I915_WRITE(_3D_CHICKEN,
5960		   _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
5961
5962	/* WaDisable_RenderCache_OperationalFlush:snb */
5963	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
5964
5965	/*
5966	 * BSpec recoomends 8x4 when MSAA is used,
5967	 * however in practice 16x4 seems fastest.
5968	 *
5969	 * Note that PS/WM thread counts depend on the WIZ hashing
5970	 * disable bit, which we don't touch here, but it's good
5971	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
5972	 */
5973	I915_WRITE(GEN6_GT_MODE,
5974		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
5975
5976	ilk_init_lp_watermarks(dev);
5977
5978	I915_WRITE(CACHE_MODE_0,
5979		   _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
5980
5981	I915_WRITE(GEN6_UCGCTL1,
5982		   I915_READ(GEN6_UCGCTL1) |
5983		   GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
5984		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
5985
5986	/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
5987	 * gating disable must be set.  Failure to set it results in
5988	 * flickering pixels due to Z write ordering failures after
5989	 * some amount of runtime in the Mesa "fire" demo, and Unigine
5990	 * Sanctuary and Tropics, and apparently anything else with
5991	 * alpha test or pixel discard.
5992	 *
5993	 * According to the spec, bit 11 (RCCUNIT) must also be set,
5994	 * but we didn't debug actual testcases to find it out.
5995	 *
5996	 * WaDisableRCCUnitClockGating:snb
5997	 * WaDisableRCPBUnitClockGating:snb
5998	 */
5999	I915_WRITE(GEN6_UCGCTL2,
6000		   GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
6001		   GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
6002
6003	/* WaStripsFansDisableFastClipPerformanceFix:snb */
6004	I915_WRITE(_3D_CHICKEN3,
6005		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
6006
6007	/*
6008	 * Bspec says:
6009	 * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
6010	 * 3DSTATE_SF number of SF output attributes is more than 16."
6011	 */
6012	I915_WRITE(_3D_CHICKEN3,
6013		   _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
6014
6015	/*
6016	 * According to the spec the following bits should be
6017	 * set in order to enable memory self-refresh and fbc:
6018	 * The bit21 and bit22 of 0x42000
6019	 * The bit21 and bit22 of 0x42004
6020	 * The bit5 and bit7 of 0x42020
6021	 * The bit14 of 0x70180
6022	 * The bit14 of 0x71180
6023	 *
6024	 * WaFbcAsynchFlipDisableFbcQueue:snb
6025	 */
6026	I915_WRITE(ILK_DISPLAY_CHICKEN1,
6027		   I915_READ(ILK_DISPLAY_CHICKEN1) |
6028		   ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
6029	I915_WRITE(ILK_DISPLAY_CHICKEN2,
6030		   I915_READ(ILK_DISPLAY_CHICKEN2) |
6031		   ILK_DPARB_GATE | ILK_VSDPFD_FULL);
6032	I915_WRITE(ILK_DSPCLK_GATE_D,
6033		   I915_READ(ILK_DSPCLK_GATE_D) |
6034		   ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
6035		   ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
6036
6037	g4x_disable_trickle_feed(dev);
6038
6039	cpt_init_clock_gating(dev);
6040
6041	gen6_check_mch_setup(dev);
6042}
6043
6044static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
6045{
6046	uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
6047
6048	/*
6049	 * WaVSThreadDispatchOverride:ivb,vlv
6050	 *
6051	 * This actually overrides the dispatch
6052	 * mode for all thread types.
6053	 */
6054	reg &= ~GEN7_FF_SCHED_MASK;
6055	reg |= GEN7_FF_TS_SCHED_HW;
6056	reg |= GEN7_FF_VS_SCHED_HW;
6057	reg |= GEN7_FF_DS_SCHED_HW;
6058
6059	I915_WRITE(GEN7_FF_THREAD_MODE, reg);
6060}
6061
6062static void lpt_init_clock_gating(struct drm_device *dev)
6063{
6064	struct drm_i915_private *dev_priv = dev->dev_private;
6065
6066	/*
6067	 * TODO: this bit should only be enabled when really needed, then
6068	 * disabled when not needed anymore in order to save power.
6069	 */
6070	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
6071		I915_WRITE(SOUTH_DSPCLK_GATE_D,
6072			   I915_READ(SOUTH_DSPCLK_GATE_D) |
6073			   PCH_LP_PARTITION_LEVEL_DISABLE);
6074
6075	/* WADPOClockGatingDisable:hsw */
6076	I915_WRITE(_TRANSA_CHICKEN1,
6077		   I915_READ(_TRANSA_CHICKEN1) |
6078		   TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
6079}
6080
6081static void lpt_suspend_hw(struct drm_device *dev)
6082{
6083	struct drm_i915_private *dev_priv = dev->dev_private;
6084
6085	if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
6086		uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
6087
6088		val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
6089		I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
6090	}
6091}
6092
6093static void broadwell_init_clock_gating(struct drm_device *dev)
6094{
6095	struct drm_i915_private *dev_priv = dev->dev_private;
6096	enum pipe pipe;
6097
6098	I915_WRITE(WM3_LP_ILK, 0);
6099	I915_WRITE(WM2_LP_ILK, 0);
6100	I915_WRITE(WM1_LP_ILK, 0);
6101
6102	/* WaSwitchSolVfFArbitrationPriority:bdw */
6103	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6104
6105	/* WaPsrDPAMaskVBlankInSRD:bdw */
6106	I915_WRITE(CHICKEN_PAR1_1,
6107		   I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
6108
6109	/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
6110	for_each_pipe(dev_priv, pipe) {
6111		I915_WRITE(CHICKEN_PIPESL_1(pipe),
6112			   I915_READ(CHICKEN_PIPESL_1(pipe)) |
6113			   BDW_DPRS_MASK_VBLANK_SRD);
6114	}
6115
6116	/* WaVSRefCountFullforceMissDisable:bdw */
6117	/* WaDSRefCountFullforceMissDisable:bdw */
6118	I915_WRITE(GEN7_FF_THREAD_MODE,
6119		   I915_READ(GEN7_FF_THREAD_MODE) &
6120		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6121
6122	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6123		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6124
6125	/* WaDisableSDEUnitClockGating:bdw */
6126	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6127		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6128
6129	lpt_init_clock_gating(dev);
6130}
6131
6132static void haswell_init_clock_gating(struct drm_device *dev)
6133{
6134	struct drm_i915_private *dev_priv = dev->dev_private;
6135
6136	ilk_init_lp_watermarks(dev);
6137
6138	/* L3 caching of data atomics doesn't work -- disable it. */
6139	I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
6140	I915_WRITE(HSW_ROW_CHICKEN3,
6141		   _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
6142
6143	/* This is required by WaCatErrorRejectionIssue:hsw */
6144	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6145			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6146			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6147
6148	/* WaVSRefCountFullforceMissDisable:hsw */
6149	I915_WRITE(GEN7_FF_THREAD_MODE,
6150		   I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
6151
6152	/* WaDisable_RenderCache_OperationalFlush:hsw */
6153	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6154
6155	/* enable HiZ Raw Stall Optimization */
6156	I915_WRITE(CACHE_MODE_0_GEN7,
6157		   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6158
6159	/* WaDisable4x2SubspanOptimization:hsw */
6160	I915_WRITE(CACHE_MODE_1,
6161		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6162
6163	/*
6164	 * BSpec recommends 8x4 when MSAA is used,
6165	 * however in practice 16x4 seems fastest.
6166	 *
6167	 * Note that PS/WM thread counts depend on the WIZ hashing
6168	 * disable bit, which we don't touch here, but it's good
6169	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6170	 */
6171	I915_WRITE(GEN7_GT_MODE,
6172		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6173
6174	/* WaSampleCChickenBitEnable:hsw */
6175	I915_WRITE(HALF_SLICE_CHICKEN3,
6176		   _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
6177
6178	/* WaSwitchSolVfFArbitrationPriority:hsw */
6179	I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
6180
6181	/* WaRsPkgCStateDisplayPMReq:hsw */
6182	I915_WRITE(CHICKEN_PAR1_1,
6183		   I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
6184
6185	lpt_init_clock_gating(dev);
6186}
6187
6188static void ivybridge_init_clock_gating(struct drm_device *dev)
6189{
6190	struct drm_i915_private *dev_priv = dev->dev_private;
6191	uint32_t snpcr;
6192
6193	ilk_init_lp_watermarks(dev);
6194
6195	I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
6196
6197	/* WaDisableEarlyCull:ivb */
6198	I915_WRITE(_3D_CHICKEN3,
6199		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6200
6201	/* WaDisableBackToBackFlipFix:ivb */
6202	I915_WRITE(IVB_CHICKEN3,
6203		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6204		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6205
6206	/* WaDisablePSDDualDispatchEnable:ivb */
6207	if (IS_IVB_GT1(dev))
6208		I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6209			   _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6210
6211	/* WaDisable_RenderCache_OperationalFlush:ivb */
6212	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6213
6214	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
6215	I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
6216		   GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
6217
6218	/* WaApplyL3ControlAndL3ChickenMode:ivb */
6219	I915_WRITE(GEN7_L3CNTLREG1,
6220			GEN7_WA_FOR_GEN7_L3_CONTROL);
6221	I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
6222		   GEN7_WA_L3_CHICKEN_MODE);
6223	if (IS_IVB_GT1(dev))
6224		I915_WRITE(GEN7_ROW_CHICKEN2,
6225			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6226	else {
6227		/* must write both registers */
6228		I915_WRITE(GEN7_ROW_CHICKEN2,
6229			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6230		I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
6231			   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6232	}
6233
6234	/* WaForceL3Serialization:ivb */
6235	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6236		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6237
6238	/*
6239	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6240	 * This implements the WaDisableRCZUnitClockGating:ivb workaround.
6241	 */
6242	I915_WRITE(GEN6_UCGCTL2,
6243		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6244
6245	/* This is required by WaCatErrorRejectionIssue:ivb */
6246	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6247			I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6248			GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6249
6250	g4x_disable_trickle_feed(dev);
6251
6252	gen7_setup_fixed_func_scheduler(dev_priv);
6253
6254	if (0) { /* causes HiZ corruption on ivb:gt1 */
6255		/* enable HiZ Raw Stall Optimization */
6256		I915_WRITE(CACHE_MODE_0_GEN7,
6257			   _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
6258	}
6259
6260	/* WaDisable4x2SubspanOptimization:ivb */
6261	I915_WRITE(CACHE_MODE_1,
6262		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6263
6264	/*
6265	 * BSpec recommends 8x4 when MSAA is used,
6266	 * however in practice 16x4 seems fastest.
6267	 *
6268	 * Note that PS/WM thread counts depend on the WIZ hashing
6269	 * disable bit, which we don't touch here, but it's good
6270	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6271	 */
6272	I915_WRITE(GEN7_GT_MODE,
6273		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6274
6275	snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
6276	snpcr &= ~GEN6_MBC_SNPCR_MASK;
6277	snpcr |= GEN6_MBC_SNPCR_MED;
6278	I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
6279
6280	if (!HAS_PCH_NOP(dev))
6281		cpt_init_clock_gating(dev);
6282
6283	gen6_check_mch_setup(dev);
6284}
6285
6286static void vlv_init_display_clock_gating(struct drm_i915_private *dev_priv)
6287{
6288	I915_WRITE(DSPCLK_GATE_D, VRHUNIT_CLOCK_GATE_DISABLE);
6289
6290	/*
6291	 * Disable trickle feed and enable pnd deadline calculation
6292	 */
6293	I915_WRITE(MI_ARB_VLV, MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE);
6294	I915_WRITE(CBR1_VLV, 0);
6295}
6296
6297static void valleyview_init_clock_gating(struct drm_device *dev)
6298{
6299	struct drm_i915_private *dev_priv = dev->dev_private;
6300
6301	vlv_init_display_clock_gating(dev_priv);
6302
6303	/* WaDisableEarlyCull:vlv */
6304	I915_WRITE(_3D_CHICKEN3,
6305		   _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
6306
6307	/* WaDisableBackToBackFlipFix:vlv */
6308	I915_WRITE(IVB_CHICKEN3,
6309		   CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
6310		   CHICKEN3_DGMG_DONE_FIX_DISABLE);
6311
6312	/* WaPsdDispatchEnable:vlv */
6313	/* WaDisablePSDDualDispatchEnable:vlv */
6314	I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
6315		   _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
6316				      GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
6317
6318	/* WaDisable_RenderCache_OperationalFlush:vlv */
6319	I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6320
6321	/* WaForceL3Serialization:vlv */
6322	I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
6323		   ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
6324
6325	/* WaDisableDopClockGating:vlv */
6326	I915_WRITE(GEN7_ROW_CHICKEN2,
6327		   _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
6328
6329	/* This is required by WaCatErrorRejectionIssue:vlv */
6330	I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
6331		   I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
6332		   GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
6333
6334	gen7_setup_fixed_func_scheduler(dev_priv);
6335
6336	/*
6337	 * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
6338	 * This implements the WaDisableRCZUnitClockGating:vlv workaround.
6339	 */
6340	I915_WRITE(GEN6_UCGCTL2,
6341		   GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
6342
6343	/* WaDisableL3Bank2xClockGate:vlv
6344	 * Disabling L3 clock gating- MMIO 940c[25] = 1
6345	 * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
6346	I915_WRITE(GEN7_UCGCTL4,
6347		   I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
6348
6349	/*
6350	 * BSpec says this must be set, even though
6351	 * WaDisable4x2SubspanOptimization isn't listed for VLV.
6352	 */
6353	I915_WRITE(CACHE_MODE_1,
6354		   _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
6355
6356	/*
6357	 * BSpec recommends 8x4 when MSAA is used,
6358	 * however in practice 16x4 seems fastest.
6359	 *
6360	 * Note that PS/WM thread counts depend on the WIZ hashing
6361	 * disable bit, which we don't touch here, but it's good
6362	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
6363	 */
6364	I915_WRITE(GEN7_GT_MODE,
6365		   _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
6366
6367	/*
6368	 * WaIncreaseL3CreditsForVLVB0:vlv
6369	 * This is the hardware default actually.
6370	 */
6371	I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
6372
6373	/*
6374	 * WaDisableVLVClockGating_VBIIssue:vlv
6375	 * Disable clock gating on th GCFG unit to prevent a delay
6376	 * in the reporting of vblank events.
6377	 */
6378	I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
6379}
6380
6381static void cherryview_init_clock_gating(struct drm_device *dev)
6382{
6383	struct drm_i915_private *dev_priv = dev->dev_private;
6384
6385	vlv_init_display_clock_gating(dev_priv);
6386
6387	/* WaVSRefCountFullforceMissDisable:chv */
6388	/* WaDSRefCountFullforceMissDisable:chv */
6389	I915_WRITE(GEN7_FF_THREAD_MODE,
6390		   I915_READ(GEN7_FF_THREAD_MODE) &
6391		   ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
6392
6393	/* WaDisableSemaphoreAndSyncFlipWait:chv */
6394	I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
6395		   _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
6396
6397	/* WaDisableCSUnitClockGating:chv */
6398	I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
6399		   GEN6_CSUNIT_CLOCK_GATE_DISABLE);
6400
6401	/* WaDisableSDEUnitClockGating:chv */
6402	I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
6403		   GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
6404}
6405
6406static void g4x_init_clock_gating(struct drm_device *dev)
6407{
6408	struct drm_i915_private *dev_priv = dev->dev_private;
6409	uint32_t dspclk_gate;
6410
6411	I915_WRITE(RENCLK_GATE_D1, 0);
6412	I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
6413		   GS_UNIT_CLOCK_GATE_DISABLE |
6414		   CL_UNIT_CLOCK_GATE_DISABLE);
6415	I915_WRITE(RAMCLK_GATE_D, 0);
6416	dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
6417		OVRUNIT_CLOCK_GATE_DISABLE |
6418		OVCUNIT_CLOCK_GATE_DISABLE;
6419	if (IS_GM45(dev))
6420		dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
6421	I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
6422
6423	/* WaDisableRenderCachePipelinedFlush */
6424	I915_WRITE(CACHE_MODE_0,
6425		   _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6426
6427	/* WaDisable_RenderCache_OperationalFlush:g4x */
6428	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6429
6430	g4x_disable_trickle_feed(dev);
6431}
6432
6433static void crestline_init_clock_gating(struct drm_device *dev)
6434{
6435	struct drm_i915_private *dev_priv = dev->dev_private;
6436
6437	I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
6438	I915_WRITE(RENCLK_GATE_D2, 0);
6439	I915_WRITE(DSPCLK_GATE_D, 0);
6440	I915_WRITE(RAMCLK_GATE_D, 0);
6441	I915_WRITE16(DEUC, 0);
6442	I915_WRITE(MI_ARB_STATE,
6443		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6444
6445	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6446	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6447}
6448
6449static void broadwater_init_clock_gating(struct drm_device *dev)
6450{
6451	struct drm_i915_private *dev_priv = dev->dev_private;
6452
6453	I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
6454		   I965_RCC_CLOCK_GATE_DISABLE |
6455		   I965_RCPB_CLOCK_GATE_DISABLE |
6456		   I965_ISC_CLOCK_GATE_DISABLE |
6457		   I965_FBC_CLOCK_GATE_DISABLE);
6458	I915_WRITE(RENCLK_GATE_D2, 0);
6459	I915_WRITE(MI_ARB_STATE,
6460		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6461
6462	/* WaDisable_RenderCache_OperationalFlush:gen4 */
6463	I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6464}
6465
6466static void gen3_init_clock_gating(struct drm_device *dev)
6467{
6468	struct drm_i915_private *dev_priv = dev->dev_private;
6469	u32 dstate = I915_READ(D_STATE);
6470
6471	dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
6472		DSTATE_DOT_CLOCK_GATING;
6473	I915_WRITE(D_STATE, dstate);
6474
6475	if (IS_PINEVIEW(dev))
6476		I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
6477
6478	/* IIR "flip pending" means done if this bit is set */
6479	I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
6480
6481	/* interrupts should cause a wake up from C3 */
6482	I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
6483
6484	/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
6485	I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
6486
6487	I915_WRITE(MI_ARB_STATE,
6488		   _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
6489}
6490
6491static void i85x_init_clock_gating(struct drm_device *dev)
6492{
6493	struct drm_i915_private *dev_priv = dev->dev_private;
6494
6495	I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
6496
6497	/* interrupts should cause a wake up from C3 */
6498	I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
6499		   _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
6500
6501	I915_WRITE(MEM_MODE,
6502		   _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
6503}
6504
6505static void i830_init_clock_gating(struct drm_device *dev)
6506{
6507	struct drm_i915_private *dev_priv = dev->dev_private;
6508
6509	I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
6510
6511	I915_WRITE(MEM_MODE,
6512		   _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
6513		   _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
6514}
6515
6516void intel_init_clock_gating(struct drm_device *dev)
6517{
6518	struct drm_i915_private *dev_priv = dev->dev_private;
6519
6520	if (dev_priv->display.init_clock_gating)
6521		dev_priv->display.init_clock_gating(dev);
6522}
6523
6524void intel_suspend_hw(struct drm_device *dev)
6525{
6526	if (HAS_PCH_LPT(dev))
6527		lpt_suspend_hw(dev);
6528}
6529
6530/* Set up chip specific power management-related functions */
6531void intel_init_pm(struct drm_device *dev)
6532{
6533	struct drm_i915_private *dev_priv = dev->dev_private;
6534
6535	intel_fbc_init(dev_priv);
6536
6537	/* For cxsr */
6538	if (IS_PINEVIEW(dev))
6539		i915_pineview_get_mem_freq(dev);
6540	else if (IS_GEN5(dev))
6541		i915_ironlake_get_mem_freq(dev);
6542
6543	/* For FIFO watermark updates */
6544	if (INTEL_INFO(dev)->gen >= 9) {
6545		skl_setup_wm_latency(dev);
6546
6547		dev_priv->display.init_clock_gating = skl_init_clock_gating;
6548		dev_priv->display.update_wm = skl_update_wm;
6549		dev_priv->display.update_sprite_wm = skl_update_sprite_wm;
6550	} else if (HAS_PCH_SPLIT(dev)) {
6551		ilk_setup_wm_latency(dev);
6552
6553		if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
6554		     dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
6555		    (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
6556		     dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
6557			dev_priv->display.update_wm = ilk_update_wm;
6558			dev_priv->display.update_sprite_wm = ilk_update_sprite_wm;
6559		} else {
6560			DRM_DEBUG_KMS("Failed to read display plane latency. "
6561				      "Disable CxSR\n");
6562		}
6563
6564		if (IS_GEN5(dev))
6565			dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
6566		else if (IS_GEN6(dev))
6567			dev_priv->display.init_clock_gating = gen6_init_clock_gating;
6568		else if (IS_IVYBRIDGE(dev))
6569			dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
6570		else if (IS_HASWELL(dev))
6571			dev_priv->display.init_clock_gating = haswell_init_clock_gating;
6572		else if (INTEL_INFO(dev)->gen == 8)
6573			dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
6574	} else if (IS_CHERRYVIEW(dev)) {
6575		dev_priv->display.update_wm = valleyview_update_wm;
6576		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6577		dev_priv->display.init_clock_gating =
6578			cherryview_init_clock_gating;
6579	} else if (IS_VALLEYVIEW(dev)) {
6580		dev_priv->display.update_wm = valleyview_update_wm;
6581		dev_priv->display.update_sprite_wm = valleyview_update_sprite_wm;
6582		dev_priv->display.init_clock_gating =
6583			valleyview_init_clock_gating;
6584	} else if (IS_PINEVIEW(dev)) {
6585		if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
6586					    dev_priv->is_ddr3,
6587					    dev_priv->fsb_freq,
6588					    dev_priv->mem_freq)) {
6589			DRM_INFO("failed to find known CxSR latency "
6590				 "(found ddr%s fsb freq %d, mem freq %d), "
6591				 "disabling CxSR\n",
6592				 (dev_priv->is_ddr3 == 1) ? "3" : "2",
6593				 dev_priv->fsb_freq, dev_priv->mem_freq);
6594			/* Disable CxSR and never update its watermark again */
6595			intel_set_memory_cxsr(dev_priv, false);
6596			dev_priv->display.update_wm = NULL;
6597		} else
6598			dev_priv->display.update_wm = pineview_update_wm;
6599		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6600	} else if (IS_G4X(dev)) {
6601		dev_priv->display.update_wm = g4x_update_wm;
6602		dev_priv->display.init_clock_gating = g4x_init_clock_gating;
6603	} else if (IS_GEN4(dev)) {
6604		dev_priv->display.update_wm = i965_update_wm;
6605		if (IS_CRESTLINE(dev))
6606			dev_priv->display.init_clock_gating = crestline_init_clock_gating;
6607		else if (IS_BROADWATER(dev))
6608			dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
6609	} else if (IS_GEN3(dev)) {
6610		dev_priv->display.update_wm = i9xx_update_wm;
6611		dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
6612		dev_priv->display.init_clock_gating = gen3_init_clock_gating;
6613	} else if (IS_GEN2(dev)) {
6614		if (INTEL_INFO(dev)->num_pipes == 1) {
6615			dev_priv->display.update_wm = i845_update_wm;
6616			dev_priv->display.get_fifo_size = i845_get_fifo_size;
6617		} else {
6618			dev_priv->display.update_wm = i9xx_update_wm;
6619			dev_priv->display.get_fifo_size = i830_get_fifo_size;
6620		}
6621
6622		if (IS_I85X(dev) || IS_I865G(dev))
6623			dev_priv->display.init_clock_gating = i85x_init_clock_gating;
6624		else
6625			dev_priv->display.init_clock_gating = i830_init_clock_gating;
6626	} else {
6627		DRM_ERROR("unexpected fall-through in intel_init_pm\n");
6628	}
6629}
6630
6631int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
6632{
6633	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6634
6635	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6636		DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
6637		return -EAGAIN;
6638	}
6639
6640	I915_WRITE(GEN6_PCODE_DATA, *val);
6641	I915_WRITE(GEN6_PCODE_DATA1, 0);
6642	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6643
6644	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6645		     500)) {
6646		DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
6647		return -ETIMEDOUT;
6648	}
6649
6650	*val = I915_READ(GEN6_PCODE_DATA);
6651	I915_WRITE(GEN6_PCODE_DATA, 0);
6652
6653	return 0;
6654}
6655
6656int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u32 mbox, u32 val)
6657{
6658	WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6659
6660	if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
6661		DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
6662		return -EAGAIN;
6663	}
6664
6665	I915_WRITE(GEN6_PCODE_DATA, val);
6666	I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
6667
6668	if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
6669		     500)) {
6670		DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
6671		return -ETIMEDOUT;
6672	}
6673
6674	I915_WRITE(GEN6_PCODE_DATA, 0);
6675
6676	return 0;
6677}
6678
6679static int vlv_gpu_freq_div(unsigned int czclk_freq)
6680{
6681	switch (czclk_freq) {
6682	case 200:
6683		return 10;
6684	case 267:
6685		return 12;
6686	case 320:
6687	case 333:
6688		return 16;
6689	case 400:
6690		return 20;
6691	default:
6692		return -1;
6693	}
6694}
6695
6696static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
6697{
6698	int div, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6699
6700	div = vlv_gpu_freq_div(czclk_freq);
6701	if (div < 0)
6702		return div;
6703
6704	return DIV_ROUND_CLOSEST(czclk_freq * (val + 6 - 0xbd), div);
6705}
6706
6707static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
6708{
6709	int mul, czclk_freq = DIV_ROUND_CLOSEST(dev_priv->mem_freq, 4);
6710
6711	mul = vlv_gpu_freq_div(czclk_freq);
6712	if (mul < 0)
6713		return mul;
6714
6715	return DIV_ROUND_CLOSEST(mul * val, czclk_freq) + 0xbd - 6;
6716}
6717
6718static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
6719{
6720	int div, czclk_freq = dev_priv->rps.cz_freq;
6721
6722	div = vlv_gpu_freq_div(czclk_freq) / 2;
6723	if (div < 0)
6724		return div;
6725
6726	return DIV_ROUND_CLOSEST(czclk_freq * val, 2 * div) / 2;
6727}
6728
6729static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
6730{
6731	int mul, czclk_freq = dev_priv->rps.cz_freq;
6732
6733	mul = vlv_gpu_freq_div(czclk_freq) / 2;
6734	if (mul < 0)
6735		return mul;
6736
6737	/* CHV needs even values */
6738	return DIV_ROUND_CLOSEST(val * 2 * mul, czclk_freq) * 2;
6739}
6740
6741int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
6742{
6743	if (IS_GEN9(dev_priv->dev))
6744		return (val * GT_FREQUENCY_MULTIPLIER) / GEN9_FREQ_SCALER;
6745	else if (IS_CHERRYVIEW(dev_priv->dev))
6746		return chv_gpu_freq(dev_priv, val);
6747	else if (IS_VALLEYVIEW(dev_priv->dev))
6748		return byt_gpu_freq(dev_priv, val);
6749	else
6750		return val * GT_FREQUENCY_MULTIPLIER;
6751}
6752
6753int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
6754{
6755	if (IS_GEN9(dev_priv->dev))
6756		return (val * GEN9_FREQ_SCALER) / GT_FREQUENCY_MULTIPLIER;
6757	else if (IS_CHERRYVIEW(dev_priv->dev))
6758		return chv_freq_opcode(dev_priv, val);
6759	else if (IS_VALLEYVIEW(dev_priv->dev))
6760		return byt_freq_opcode(dev_priv, val);
6761	else
6762		return val / GT_FREQUENCY_MULTIPLIER;
6763}
6764
6765void intel_pm_setup(struct drm_device *dev)
6766{
6767	struct drm_i915_private *dev_priv = dev->dev_private;
6768
6769	mutex_init(&dev_priv->rps.hw_lock);
6770
6771	INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
6772			  intel_gen6_powersave_work);
6773
6774	dev_priv->pm.suspended = false;
6775}
6776