1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include <linux/printk.h>
25#include <linux/slab.h>
26#include "kfd_priv.h"
27#include "kfd_mqd_manager.h"
28#include "cik_regs.h"
29#include "cik_structs.h"
30
31static inline struct cik_mqd *get_mqd(void *mqd)
32{
33	return (struct cik_mqd *)mqd;
34}
35
36static int init_mqd(struct mqd_manager *mm, void **mqd,
37		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
38		struct queue_properties *q)
39{
40	uint64_t addr;
41	struct cik_mqd *m;
42	int retval;
43
44	BUG_ON(!mm || !q || !mqd);
45
46	pr_debug("kfd: In func %s\n", __func__);
47
48	retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
49					mqd_mem_obj);
50
51	if (retval != 0)
52		return -ENOMEM;
53
54	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
55	addr = (*mqd_mem_obj)->gpu_addr;
56
57	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
58
59	m->header = 0xC0310800;
60	m->compute_pipelinestat_enable = 1;
61	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
62	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
63	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
64	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
65
66	/*
67	 * Make sure to use the last queue state saved on mqd when the cp
68	 * reassigns the queue, so when queue is switched on/off (e.g over
69	 * subscription or quantum timeout) the context will be consistent
70	 */
71	m->cp_hqd_persistent_state =
72				DEFAULT_CP_HQD_PERSISTENT_STATE | PRELOAD_REQ;
73
74	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
75	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
76	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
77
78	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE | IB_ATC_EN;
79	/* Although WinKFD writes this, I suspect it should not be necessary */
80	m->cp_hqd_ib_control = IB_ATC_EN | DEFAULT_MIN_IB_AVAIL_SIZE;
81
82	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
83				QUANTUM_DURATION(10);
84
85	/*
86	 * Pipe Priority
87	 * Identifies the pipe relative priority when this queue is connected
88	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
89	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
90	 * 0 = CS_LOW (typically below GFX)
91	 * 1 = CS_MEDIUM (typically between HP3D and GFX
92	 * 2 = CS_HIGH (typically above HP3D)
93	 */
94	m->cp_hqd_pipe_priority = 1;
95	m->cp_hqd_queue_priority = 15;
96
97	if (q->format == KFD_QUEUE_FORMAT_AQL)
98		m->cp_hqd_iq_rptr = AQL_ENABLE;
99
100	*mqd = m;
101	if (gart_addr != NULL)
102		*gart_addr = addr;
103	retval = mm->update_mqd(mm, m, q);
104
105	return retval;
106}
107
108static int init_mqd_sdma(struct mqd_manager *mm, void **mqd,
109			struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
110			struct queue_properties *q)
111{
112	int retval;
113	struct cik_sdma_rlc_registers *m;
114
115	BUG_ON(!mm || !mqd || !mqd_mem_obj);
116
117	retval = kfd_gtt_sa_allocate(mm->dev,
118					sizeof(struct cik_sdma_rlc_registers),
119					mqd_mem_obj);
120
121	if (retval != 0)
122		return -ENOMEM;
123
124	m = (struct cik_sdma_rlc_registers *) (*mqd_mem_obj)->cpu_ptr;
125
126	memset(m, 0, sizeof(struct cik_sdma_rlc_registers));
127
128	*mqd = m;
129	if (gart_addr != NULL)
130		*gart_addr = (*mqd_mem_obj)->gpu_addr;
131
132	retval = mm->update_mqd(mm, m, q);
133
134	return retval;
135}
136
137static void uninit_mqd(struct mqd_manager *mm, void *mqd,
138			struct kfd_mem_obj *mqd_mem_obj)
139{
140	BUG_ON(!mm || !mqd);
141	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
142}
143
144static void uninit_mqd_sdma(struct mqd_manager *mm, void *mqd,
145				struct kfd_mem_obj *mqd_mem_obj)
146{
147	BUG_ON(!mm || !mqd);
148	kfd_gtt_sa_free(mm->dev, mqd_mem_obj);
149}
150
151static int load_mqd(struct mqd_manager *mm, void *mqd, uint32_t pipe_id,
152			uint32_t queue_id, uint32_t __user *wptr)
153{
154	return mm->dev->kfd2kgd->hqd_load
155		(mm->dev->kgd, mqd, pipe_id, queue_id, wptr);
156}
157
158static int load_mqd_sdma(struct mqd_manager *mm, void *mqd,
159			uint32_t pipe_id, uint32_t queue_id,
160			uint32_t __user *wptr)
161{
162	return mm->dev->kfd2kgd->hqd_sdma_load(mm->dev->kgd, mqd);
163}
164
165static int update_mqd(struct mqd_manager *mm, void *mqd,
166			struct queue_properties *q)
167{
168	struct cik_mqd *m;
169
170	BUG_ON(!mm || !q || !mqd);
171
172	pr_debug("kfd: In func %s\n", __func__);
173
174	m = get_mqd(mqd);
175	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
176				DEFAULT_MIN_AVAIL_SIZE | PQ_ATC_EN;
177
178	/*
179	 * Calculating queue size which is log base 2 of actual queue size -1
180	 * dwords and another -1 for ffs
181	 */
182	m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
183								- 1 - 1;
184	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
185	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
186	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
187	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
188	m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
189					DOORBELL_OFFSET(q->doorbell_off);
190
191	m->cp_hqd_vmid = q->vmid;
192
193	if (q->format == KFD_QUEUE_FORMAT_AQL) {
194		m->cp_hqd_pq_control |= NO_UPDATE_RPTR;
195	}
196
197	m->cp_hqd_active = 0;
198	q->is_active = false;
199	if (q->queue_size > 0 &&
200			q->queue_address != 0 &&
201			q->queue_percent > 0) {
202		m->cp_hqd_active = 1;
203		q->is_active = true;
204	}
205
206	return 0;
207}
208
209static int update_mqd_sdma(struct mqd_manager *mm, void *mqd,
210				struct queue_properties *q)
211{
212	struct cik_sdma_rlc_registers *m;
213
214	BUG_ON(!mm || !mqd || !q);
215
216	m = get_sdma_mqd(mqd);
217	m->sdma_rlc_rb_cntl =
218		SDMA_RB_SIZE((ffs(q->queue_size / sizeof(unsigned int)))) |
219		SDMA_RB_VMID(q->vmid) |
220		SDMA_RPTR_WRITEBACK_ENABLE |
221		SDMA_RPTR_WRITEBACK_TIMER(6);
222
223	m->sdma_rlc_rb_base = lower_32_bits(q->queue_address >> 8);
224	m->sdma_rlc_rb_base_hi = upper_32_bits(q->queue_address >> 8);
225	m->sdma_rlc_rb_rptr_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
226	m->sdma_rlc_rb_rptr_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
227	m->sdma_rlc_doorbell = SDMA_OFFSET(q->doorbell_off) | SDMA_DB_ENABLE;
228	m->sdma_rlc_virtual_addr = q->sdma_vm_addr;
229
230	m->sdma_engine_id = q->sdma_engine_id;
231	m->sdma_queue_id = q->sdma_queue_id;
232
233	q->is_active = false;
234	if (q->queue_size > 0 &&
235			q->queue_address != 0 &&
236			q->queue_percent > 0) {
237		m->sdma_rlc_rb_cntl |= SDMA_RB_ENABLE;
238		q->is_active = true;
239	}
240
241	return 0;
242}
243
244static int destroy_mqd(struct mqd_manager *mm, void *mqd,
245			enum kfd_preempt_type type,
246			unsigned int timeout, uint32_t pipe_id,
247			uint32_t queue_id)
248{
249	return mm->dev->kfd2kgd->hqd_destroy(mm->dev->kgd, type, timeout,
250					pipe_id, queue_id);
251}
252
253/*
254 * preempt type here is ignored because there is only one way
255 * to preempt sdma queue
256 */
257static int destroy_mqd_sdma(struct mqd_manager *mm, void *mqd,
258				enum kfd_preempt_type type,
259				unsigned int timeout, uint32_t pipe_id,
260				uint32_t queue_id)
261{
262	return mm->dev->kfd2kgd->hqd_sdma_destroy(mm->dev->kgd, mqd, timeout);
263}
264
265static bool is_occupied(struct mqd_manager *mm, void *mqd,
266			uint64_t queue_address,	uint32_t pipe_id,
267			uint32_t queue_id)
268{
269
270	return mm->dev->kfd2kgd->hqd_is_occupied(mm->dev->kgd, queue_address,
271					pipe_id, queue_id);
272
273}
274
275static bool is_occupied_sdma(struct mqd_manager *mm, void *mqd,
276			uint64_t queue_address,	uint32_t pipe_id,
277			uint32_t queue_id)
278{
279	return mm->dev->kfd2kgd->hqd_sdma_is_occupied(mm->dev->kgd, mqd);
280}
281
282/*
283 * HIQ MQD Implementation, concrete implementation for HIQ MQD implementation.
284 * The HIQ queue in Kaveri is using the same MQD structure as all the user mode
285 * queues but with different initial values.
286 */
287
288static int init_mqd_hiq(struct mqd_manager *mm, void **mqd,
289		struct kfd_mem_obj **mqd_mem_obj, uint64_t *gart_addr,
290		struct queue_properties *q)
291{
292	uint64_t addr;
293	struct cik_mqd *m;
294	int retval;
295
296	BUG_ON(!mm || !q || !mqd || !mqd_mem_obj);
297
298	pr_debug("kfd: In func %s\n", __func__);
299
300	retval = kfd_gtt_sa_allocate(mm->dev, sizeof(struct cik_mqd),
301					mqd_mem_obj);
302
303	if (retval != 0)
304		return -ENOMEM;
305
306	m = (struct cik_mqd *) (*mqd_mem_obj)->cpu_ptr;
307	addr = (*mqd_mem_obj)->gpu_addr;
308
309	memset(m, 0, ALIGN(sizeof(struct cik_mqd), 256));
310
311	m->header = 0xC0310800;
312	m->compute_pipelinestat_enable = 1;
313	m->compute_static_thread_mgmt_se0 = 0xFFFFFFFF;
314	m->compute_static_thread_mgmt_se1 = 0xFFFFFFFF;
315	m->compute_static_thread_mgmt_se2 = 0xFFFFFFFF;
316	m->compute_static_thread_mgmt_se3 = 0xFFFFFFFF;
317
318	m->cp_hqd_persistent_state = DEFAULT_CP_HQD_PERSISTENT_STATE |
319					PRELOAD_REQ;
320	m->cp_hqd_quantum = QUANTUM_EN | QUANTUM_SCALE_1MS |
321				QUANTUM_DURATION(10);
322
323	m->cp_mqd_control             = MQD_CONTROL_PRIV_STATE_EN;
324	m->cp_mqd_base_addr_lo        = lower_32_bits(addr);
325	m->cp_mqd_base_addr_hi        = upper_32_bits(addr);
326
327	m->cp_hqd_ib_control = DEFAULT_MIN_IB_AVAIL_SIZE;
328
329	/*
330	 * Pipe Priority
331	 * Identifies the pipe relative priority when this queue is connected
332	 * to the pipeline. The pipe priority is against the GFX pipe and HP3D.
333	 * In KFD we are using a fixed pipe priority set to CS_MEDIUM.
334	 * 0 = CS_LOW (typically below GFX)
335	 * 1 = CS_MEDIUM (typically between HP3D and GFX
336	 * 2 = CS_HIGH (typically above HP3D)
337	 */
338	m->cp_hqd_pipe_priority = 1;
339	m->cp_hqd_queue_priority = 15;
340
341	*mqd = m;
342	if (gart_addr)
343		*gart_addr = addr;
344	retval = mm->update_mqd(mm, m, q);
345
346	return retval;
347}
348
349static int update_mqd_hiq(struct mqd_manager *mm, void *mqd,
350				struct queue_properties *q)
351{
352	struct cik_mqd *m;
353
354	BUG_ON(!mm || !q || !mqd);
355
356	pr_debug("kfd: In func %s\n", __func__);
357
358	m = get_mqd(mqd);
359	m->cp_hqd_pq_control = DEFAULT_RPTR_BLOCK_SIZE |
360				DEFAULT_MIN_AVAIL_SIZE |
361				PRIV_STATE |
362				KMD_QUEUE;
363
364	/*
365	 * Calculating queue size which is log base 2 of actual queue
366	 * size -1 dwords
367	 */
368	m->cp_hqd_pq_control |= ffs(q->queue_size / sizeof(unsigned int))
369								- 1 - 1;
370	m->cp_hqd_pq_base_lo = lower_32_bits((uint64_t)q->queue_address >> 8);
371	m->cp_hqd_pq_base_hi = upper_32_bits((uint64_t)q->queue_address >> 8);
372	m->cp_hqd_pq_rptr_report_addr_lo = lower_32_bits((uint64_t)q->read_ptr);
373	m->cp_hqd_pq_rptr_report_addr_hi = upper_32_bits((uint64_t)q->read_ptr);
374	m->cp_hqd_pq_doorbell_control = DOORBELL_EN |
375					DOORBELL_OFFSET(q->doorbell_off);
376
377	m->cp_hqd_vmid = q->vmid;
378
379	m->cp_hqd_active = 0;
380	q->is_active = false;
381	if (q->queue_size > 0 &&
382			q->queue_address != 0 &&
383			q->queue_percent > 0) {
384		m->cp_hqd_active = 1;
385		q->is_active = true;
386	}
387
388	return 0;
389}
390
391struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
392{
393	struct cik_sdma_rlc_registers *m;
394
395	BUG_ON(!mqd);
396
397	m = (struct cik_sdma_rlc_registers *)mqd;
398
399	return m;
400}
401
402struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
403		struct kfd_dev *dev)
404{
405	struct mqd_manager *mqd;
406
407	BUG_ON(!dev);
408	BUG_ON(type >= KFD_MQD_TYPE_MAX);
409
410	pr_debug("kfd: In func %s\n", __func__);
411
412	mqd = kzalloc(sizeof(struct mqd_manager), GFP_KERNEL);
413	if (!mqd)
414		return NULL;
415
416	mqd->dev = dev;
417
418	switch (type) {
419	case KFD_MQD_TYPE_CP:
420	case KFD_MQD_TYPE_COMPUTE:
421		mqd->init_mqd = init_mqd;
422		mqd->uninit_mqd = uninit_mqd;
423		mqd->load_mqd = load_mqd;
424		mqd->update_mqd = update_mqd;
425		mqd->destroy_mqd = destroy_mqd;
426		mqd->is_occupied = is_occupied;
427		break;
428	case KFD_MQD_TYPE_HIQ:
429		mqd->init_mqd = init_mqd_hiq;
430		mqd->uninit_mqd = uninit_mqd;
431		mqd->load_mqd = load_mqd;
432		mqd->update_mqd = update_mqd_hiq;
433		mqd->destroy_mqd = destroy_mqd;
434		mqd->is_occupied = is_occupied;
435		break;
436	case KFD_MQD_TYPE_SDMA:
437		mqd->init_mqd = init_mqd_sdma;
438		mqd->uninit_mqd = uninit_mqd_sdma;
439		mqd->load_mqd = load_mqd_sdma;
440		mqd->update_mqd = update_mqd_sdma;
441		mqd->destroy_mqd = destroy_mqd_sdma;
442		mqd->is_occupied = is_occupied_sdma;
443		break;
444	default:
445		kfree(mqd);
446		return NULL;
447	}
448
449	return mqd;
450}
451
452