1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 *
22 */
23
24#include <linux/slab.h>
25#include <linux/list.h>
26#include <linux/types.h>
27#include <linux/printk.h>
28#include <linux/bitops.h>
29#include <linux/sched.h>
30#include "kfd_priv.h"
31#include "kfd_device_queue_manager.h"
32#include "kfd_mqd_manager.h"
33#include "cik_regs.h"
34#include "kfd_kernel_queue.h"
35
36/* Size of the per-pipe EOP queue */
37#define CIK_HPD_EOP_BYTES_LOG2 11
38#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
39
40static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
41					unsigned int pasid, unsigned int vmid);
42
43static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
44					struct queue *q,
45					struct qcm_process_device *qpd);
46
47static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock);
48static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock);
49
50static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
51					struct queue *q,
52					struct qcm_process_device *qpd);
53
54static void deallocate_sdma_queue(struct device_queue_manager *dqm,
55				unsigned int sdma_queue_id);
56
57static inline
58enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
59{
60	if (type == KFD_QUEUE_TYPE_SDMA)
61		return KFD_MQD_TYPE_SDMA;
62	return KFD_MQD_TYPE_CP;
63}
64
65unsigned int get_first_pipe(struct device_queue_manager *dqm)
66{
67	BUG_ON(!dqm || !dqm->dev);
68	return dqm->dev->shared_resources.first_compute_pipe;
69}
70
71unsigned int get_pipes_num(struct device_queue_manager *dqm)
72{
73	BUG_ON(!dqm || !dqm->dev);
74	return dqm->dev->shared_resources.compute_pipe_count;
75}
76
77static inline unsigned int get_pipes_num_cpsch(void)
78{
79	return PIPE_PER_ME_CP_SCHEDULING;
80}
81
82void program_sh_mem_settings(struct device_queue_manager *dqm,
83					struct qcm_process_device *qpd)
84{
85	return dqm->dev->kfd2kgd->program_sh_mem_settings(
86						dqm->dev->kgd, qpd->vmid,
87						qpd->sh_mem_config,
88						qpd->sh_mem_ape1_base,
89						qpd->sh_mem_ape1_limit,
90						qpd->sh_mem_bases);
91}
92
93static int allocate_vmid(struct device_queue_manager *dqm,
94			struct qcm_process_device *qpd,
95			struct queue *q)
96{
97	int bit, allocated_vmid;
98
99	if (dqm->vmid_bitmap == 0)
100		return -ENOMEM;
101
102	bit = find_first_bit((unsigned long *)&dqm->vmid_bitmap, CIK_VMID_NUM);
103	clear_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
104
105	/* Kaveri kfd vmid's starts from vmid 8 */
106	allocated_vmid = bit + KFD_VMID_START_OFFSET;
107	pr_debug("kfd: vmid allocation %d\n", allocated_vmid);
108	qpd->vmid = allocated_vmid;
109	q->properties.vmid = allocated_vmid;
110
111	set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
112	program_sh_mem_settings(dqm, qpd);
113
114	return 0;
115}
116
117static void deallocate_vmid(struct device_queue_manager *dqm,
118				struct qcm_process_device *qpd,
119				struct queue *q)
120{
121	int bit = qpd->vmid - KFD_VMID_START_OFFSET;
122
123	/* Release the vmid mapping */
124	set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
125
126	set_bit(bit, (unsigned long *)&dqm->vmid_bitmap);
127	qpd->vmid = 0;
128	q->properties.vmid = 0;
129}
130
131static int create_queue_nocpsch(struct device_queue_manager *dqm,
132				struct queue *q,
133				struct qcm_process_device *qpd,
134				int *allocated_vmid)
135{
136	int retval;
137
138	BUG_ON(!dqm || !q || !qpd || !allocated_vmid);
139
140	pr_debug("kfd: In func %s\n", __func__);
141	print_queue(q);
142
143	mutex_lock(&dqm->lock);
144
145	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
146		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
147				dqm->total_queue_count);
148		mutex_unlock(&dqm->lock);
149		return -EPERM;
150	}
151
152	if (list_empty(&qpd->queues_list)) {
153		retval = allocate_vmid(dqm, qpd, q);
154		if (retval != 0) {
155			mutex_unlock(&dqm->lock);
156			return retval;
157		}
158	}
159	*allocated_vmid = qpd->vmid;
160	q->properties.vmid = qpd->vmid;
161
162	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
163		retval = create_compute_queue_nocpsch(dqm, q, qpd);
164	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
165		retval = create_sdma_queue_nocpsch(dqm, q, qpd);
166
167	if (retval != 0) {
168		if (list_empty(&qpd->queues_list)) {
169			deallocate_vmid(dqm, qpd, q);
170			*allocated_vmid = 0;
171		}
172		mutex_unlock(&dqm->lock);
173		return retval;
174	}
175
176	list_add(&q->list, &qpd->queues_list);
177	if (q->properties.is_active)
178		dqm->queue_count++;
179
180	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
181		dqm->sdma_queue_count++;
182
183	/*
184	 * Unconditionally increment this counter, regardless of the queue's
185	 * type or whether the queue is active.
186	 */
187	dqm->total_queue_count++;
188	pr_debug("Total of %d queues are accountable so far\n",
189			dqm->total_queue_count);
190
191	mutex_unlock(&dqm->lock);
192	return 0;
193}
194
195static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
196{
197	bool set;
198	int pipe, bit, i;
199
200	set = false;
201
202	for (pipe = dqm->next_pipe_to_allocate, i = 0; i < get_pipes_num(dqm);
203			pipe = ((pipe + 1) % get_pipes_num(dqm)), ++i) {
204		if (dqm->allocated_queues[pipe] != 0) {
205			bit = find_first_bit(
206				(unsigned long *)&dqm->allocated_queues[pipe],
207				QUEUES_PER_PIPE);
208
209			clear_bit(bit,
210				(unsigned long *)&dqm->allocated_queues[pipe]);
211			q->pipe = pipe;
212			q->queue = bit;
213			set = true;
214			break;
215		}
216	}
217
218	if (set == false)
219		return -EBUSY;
220
221	pr_debug("kfd: DQM %s hqd slot - pipe (%d) queue(%d)\n",
222				__func__, q->pipe, q->queue);
223	/* horizontal hqd allocation */
224	dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_num(dqm);
225
226	return 0;
227}
228
229static inline void deallocate_hqd(struct device_queue_manager *dqm,
230				struct queue *q)
231{
232	set_bit(q->queue, (unsigned long *)&dqm->allocated_queues[q->pipe]);
233}
234
235static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
236					struct queue *q,
237					struct qcm_process_device *qpd)
238{
239	int retval;
240	struct mqd_manager *mqd;
241
242	BUG_ON(!dqm || !q || !qpd);
243
244	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
245	if (mqd == NULL)
246		return -ENOMEM;
247
248	retval = allocate_hqd(dqm, q);
249	if (retval != 0)
250		return retval;
251
252	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
253				&q->gart_mqd_addr, &q->properties);
254	if (retval != 0) {
255		deallocate_hqd(dqm, q);
256		return retval;
257	}
258
259	pr_debug("kfd: loading mqd to hqd on pipe (%d) queue (%d)\n",
260			q->pipe,
261			q->queue);
262
263	retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
264			q->queue, (uint32_t __user *) q->properties.write_ptr);
265	if (retval != 0) {
266		deallocate_hqd(dqm, q);
267		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
268		return retval;
269	}
270
271	return 0;
272}
273
274static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
275				struct qcm_process_device *qpd,
276				struct queue *q)
277{
278	int retval;
279	struct mqd_manager *mqd;
280
281	BUG_ON(!dqm || !q || !q->mqd || !qpd);
282
283	retval = 0;
284
285	pr_debug("kfd: In Func %s\n", __func__);
286
287	mutex_lock(&dqm->lock);
288
289	if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
290		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
291		if (mqd == NULL) {
292			retval = -ENOMEM;
293			goto out;
294		}
295		deallocate_hqd(dqm, q);
296	} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
297		mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
298		if (mqd == NULL) {
299			retval = -ENOMEM;
300			goto out;
301		}
302		dqm->sdma_queue_count--;
303		deallocate_sdma_queue(dqm, q->sdma_id);
304	} else {
305		pr_debug("q->properties.type is invalid (%d)\n",
306				q->properties.type);
307		retval = -EINVAL;
308		goto out;
309	}
310
311	retval = mqd->destroy_mqd(mqd, q->mqd,
312				KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
313				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS,
314				q->pipe, q->queue);
315
316	if (retval != 0)
317		goto out;
318
319	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
320
321	list_del(&q->list);
322	if (list_empty(&qpd->queues_list))
323		deallocate_vmid(dqm, qpd, q);
324	if (q->properties.is_active)
325		dqm->queue_count--;
326
327	/*
328	 * Unconditionally decrement this counter, regardless of the queue's
329	 * type
330	 */
331	dqm->total_queue_count--;
332	pr_debug("Total of %d queues are accountable so far\n",
333			dqm->total_queue_count);
334
335out:
336	mutex_unlock(&dqm->lock);
337	return retval;
338}
339
340static int update_queue(struct device_queue_manager *dqm, struct queue *q)
341{
342	int retval;
343	struct mqd_manager *mqd;
344	bool prev_active = false;
345
346	BUG_ON(!dqm || !q || !q->mqd);
347
348	mutex_lock(&dqm->lock);
349	mqd = dqm->ops.get_mqd_manager(dqm,
350			get_mqd_type_from_queue_type(q->properties.type));
351	if (mqd == NULL) {
352		mutex_unlock(&dqm->lock);
353		return -ENOMEM;
354	}
355
356	if (q->properties.is_active == true)
357		prev_active = true;
358
359	/*
360	 *
361	 * check active state vs. the previous state
362	 * and modify counter accordingly
363	 */
364	retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
365	if ((q->properties.is_active == true) && (prev_active == false))
366		dqm->queue_count++;
367	else if ((q->properties.is_active == false) && (prev_active == true))
368		dqm->queue_count--;
369
370	if (sched_policy != KFD_SCHED_POLICY_NO_HWS)
371		retval = execute_queues_cpsch(dqm, false);
372
373	mutex_unlock(&dqm->lock);
374	return retval;
375}
376
377static struct mqd_manager *get_mqd_manager_nocpsch(
378		struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
379{
380	struct mqd_manager *mqd;
381
382	BUG_ON(!dqm || type >= KFD_MQD_TYPE_MAX);
383
384	pr_debug("kfd: In func %s mqd type %d\n", __func__, type);
385
386	mqd = dqm->mqds[type];
387	if (!mqd) {
388		mqd = mqd_manager_init(type, dqm->dev);
389		if (mqd == NULL)
390			pr_err("kfd: mqd manager is NULL");
391		dqm->mqds[type] = mqd;
392	}
393
394	return mqd;
395}
396
397static int register_process_nocpsch(struct device_queue_manager *dqm,
398					struct qcm_process_device *qpd)
399{
400	struct device_process_node *n;
401	int retval;
402
403	BUG_ON(!dqm || !qpd);
404
405	pr_debug("kfd: In func %s\n", __func__);
406
407	n = kzalloc(sizeof(struct device_process_node), GFP_KERNEL);
408	if (!n)
409		return -ENOMEM;
410
411	n->qpd = qpd;
412
413	mutex_lock(&dqm->lock);
414	list_add(&n->list, &dqm->queues);
415
416	retval = dqm->ops_asic_specific.register_process(dqm, qpd);
417
418	dqm->processes_count++;
419
420	mutex_unlock(&dqm->lock);
421
422	return retval;
423}
424
425static int unregister_process_nocpsch(struct device_queue_manager *dqm,
426					struct qcm_process_device *qpd)
427{
428	int retval;
429	struct device_process_node *cur, *next;
430
431	BUG_ON(!dqm || !qpd);
432
433	pr_debug("In func %s\n", __func__);
434
435	pr_debug("qpd->queues_list is %s\n",
436			list_empty(&qpd->queues_list) ? "empty" : "not empty");
437
438	retval = 0;
439	mutex_lock(&dqm->lock);
440
441	list_for_each_entry_safe(cur, next, &dqm->queues, list) {
442		if (qpd == cur->qpd) {
443			list_del(&cur->list);
444			kfree(cur);
445			dqm->processes_count--;
446			goto out;
447		}
448	}
449	/* qpd not found in dqm list */
450	retval = 1;
451out:
452	mutex_unlock(&dqm->lock);
453	return retval;
454}
455
456static int
457set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
458			unsigned int vmid)
459{
460	uint32_t pasid_mapping;
461
462	pasid_mapping = (pasid == 0) ? 0 :
463		(uint32_t)pasid |
464		ATC_VMID_PASID_MAPPING_VALID;
465
466	return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
467						dqm->dev->kgd, pasid_mapping,
468						vmid);
469}
470
471int init_pipelines(struct device_queue_manager *dqm,
472			unsigned int pipes_num, unsigned int first_pipe)
473{
474	void *hpdptr;
475	struct mqd_manager *mqd;
476	unsigned int i, err, inx;
477	uint64_t pipe_hpd_addr;
478
479	BUG_ON(!dqm || !dqm->dev);
480
481	pr_debug("kfd: In func %s\n", __func__);
482
483	/*
484	 * Allocate memory for the HPDs. This is hardware-owned per-pipe data.
485	 * The driver never accesses this memory after zeroing it.
486	 * It doesn't even have to be saved/restored on suspend/resume
487	 * because it contains no data when there are no active queues.
488	 */
489
490	err = kfd_gtt_sa_allocate(dqm->dev, CIK_HPD_EOP_BYTES * pipes_num,
491					&dqm->pipeline_mem);
492
493	if (err) {
494		pr_err("kfd: error allocate vidmem num pipes: %d\n",
495			pipes_num);
496		return -ENOMEM;
497	}
498
499	hpdptr = dqm->pipeline_mem->cpu_ptr;
500	dqm->pipelines_addr = dqm->pipeline_mem->gpu_addr;
501
502	memset(hpdptr, 0, CIK_HPD_EOP_BYTES * pipes_num);
503
504	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
505	if (mqd == NULL) {
506		kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
507		return -ENOMEM;
508	}
509
510	for (i = 0; i < pipes_num; i++) {
511		inx = i + first_pipe;
512		/*
513		 * HPD buffer on GTT is allocated by amdkfd, no need to waste
514		 * space in GTT for pipelines we don't initialize
515		 */
516		pipe_hpd_addr = dqm->pipelines_addr + i * CIK_HPD_EOP_BYTES;
517		pr_debug("kfd: pipeline address %llX\n", pipe_hpd_addr);
518		/* = log2(bytes/4)-1 */
519		dqm->dev->kfd2kgd->init_pipeline(dqm->dev->kgd, inx,
520				CIK_HPD_EOP_BYTES_LOG2 - 3, pipe_hpd_addr);
521	}
522
523	return 0;
524}
525
526static int init_scheduler(struct device_queue_manager *dqm)
527{
528	int retval;
529
530	BUG_ON(!dqm);
531
532	pr_debug("kfd: In %s\n", __func__);
533
534	retval = init_pipelines(dqm, get_pipes_num(dqm), get_first_pipe(dqm));
535	return retval;
536}
537
538static int initialize_nocpsch(struct device_queue_manager *dqm)
539{
540	int i;
541
542	BUG_ON(!dqm);
543
544	pr_debug("kfd: In func %s num of pipes: %d\n",
545			__func__, get_pipes_num(dqm));
546
547	mutex_init(&dqm->lock);
548	INIT_LIST_HEAD(&dqm->queues);
549	dqm->queue_count = dqm->next_pipe_to_allocate = 0;
550	dqm->sdma_queue_count = 0;
551	dqm->allocated_queues = kcalloc(get_pipes_num(dqm),
552					sizeof(unsigned int), GFP_KERNEL);
553	if (!dqm->allocated_queues) {
554		mutex_destroy(&dqm->lock);
555		return -ENOMEM;
556	}
557
558	for (i = 0; i < get_pipes_num(dqm); i++)
559		dqm->allocated_queues[i] = (1 << QUEUES_PER_PIPE) - 1;
560
561	dqm->vmid_bitmap = (1 << VMID_PER_DEVICE) - 1;
562	dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
563
564	init_scheduler(dqm);
565	return 0;
566}
567
568static void uninitialize_nocpsch(struct device_queue_manager *dqm)
569{
570	int i;
571
572	BUG_ON(!dqm);
573
574	BUG_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
575
576	kfree(dqm->allocated_queues);
577	for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
578		kfree(dqm->mqds[i]);
579	mutex_destroy(&dqm->lock);
580	kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
581}
582
583static int start_nocpsch(struct device_queue_manager *dqm)
584{
585	return 0;
586}
587
588static int stop_nocpsch(struct device_queue_manager *dqm)
589{
590	return 0;
591}
592
593static int allocate_sdma_queue(struct device_queue_manager *dqm,
594				unsigned int *sdma_queue_id)
595{
596	int bit;
597
598	if (dqm->sdma_bitmap == 0)
599		return -ENOMEM;
600
601	bit = find_first_bit((unsigned long *)&dqm->sdma_bitmap,
602				CIK_SDMA_QUEUES);
603
604	clear_bit(bit, (unsigned long *)&dqm->sdma_bitmap);
605	*sdma_queue_id = bit;
606
607	return 0;
608}
609
610static void deallocate_sdma_queue(struct device_queue_manager *dqm,
611				unsigned int sdma_queue_id)
612{
613	if (sdma_queue_id >= CIK_SDMA_QUEUES)
614		return;
615	set_bit(sdma_queue_id, (unsigned long *)&dqm->sdma_bitmap);
616}
617
618static void init_sdma_vm(struct device_queue_manager *dqm, struct queue *q,
619				struct qcm_process_device *qpd)
620{
621	uint32_t value = SDMA_ATC;
622
623	if (q->process->is_32bit_user_mode)
624		value |= SDMA_VA_PTR32 | get_sh_mem_bases_32(qpd_to_pdd(qpd));
625	else
626		value |= SDMA_VA_SHARED_BASE(get_sh_mem_bases_nybble_64(
627							qpd_to_pdd(qpd)));
628	q->properties.sdma_vm_addr = value;
629}
630
631static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
632					struct queue *q,
633					struct qcm_process_device *qpd)
634{
635	struct mqd_manager *mqd;
636	int retval;
637
638	mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
639	if (!mqd)
640		return -ENOMEM;
641
642	retval = allocate_sdma_queue(dqm, &q->sdma_id);
643	if (retval != 0)
644		return retval;
645
646	q->properties.sdma_queue_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
647	q->properties.sdma_engine_id = q->sdma_id / CIK_SDMA_ENGINE_NUM;
648
649	pr_debug("kfd: sdma id is:    %d\n", q->sdma_id);
650	pr_debug("     sdma queue id: %d\n", q->properties.sdma_queue_id);
651	pr_debug("     sdma engine id: %d\n", q->properties.sdma_engine_id);
652
653	init_sdma_vm(dqm, q, qpd);
654	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
655				&q->gart_mqd_addr, &q->properties);
656	if (retval != 0) {
657		deallocate_sdma_queue(dqm, q->sdma_id);
658		return retval;
659	}
660
661	retval = mqd->load_mqd(mqd, q->mqd, 0,
662				0, NULL);
663	if (retval != 0) {
664		deallocate_sdma_queue(dqm, q->sdma_id);
665		mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
666		return retval;
667	}
668
669	return 0;
670}
671
672/*
673 * Device Queue Manager implementation for cp scheduler
674 */
675
676static int set_sched_resources(struct device_queue_manager *dqm)
677{
678	struct scheduling_resources res;
679	unsigned int queue_num, queue_mask;
680
681	BUG_ON(!dqm);
682
683	pr_debug("kfd: In func %s\n", __func__);
684
685	queue_num = get_pipes_num_cpsch() * QUEUES_PER_PIPE;
686	queue_mask = (1 << queue_num) - 1;
687	res.vmid_mask = (1 << VMID_PER_DEVICE) - 1;
688	res.vmid_mask <<= KFD_VMID_START_OFFSET;
689	res.queue_mask = queue_mask << (get_first_pipe(dqm) * QUEUES_PER_PIPE);
690	res.gws_mask = res.oac_mask = res.gds_heap_base =
691						res.gds_heap_size = 0;
692
693	pr_debug("kfd: scheduling resources:\n"
694			"      vmid mask: 0x%8X\n"
695			"      queue mask: 0x%8llX\n",
696			res.vmid_mask, res.queue_mask);
697
698	return pm_send_set_resources(&dqm->packets, &res);
699}
700
701static int initialize_cpsch(struct device_queue_manager *dqm)
702{
703	int retval;
704
705	BUG_ON(!dqm);
706
707	pr_debug("kfd: In func %s num of pipes: %d\n",
708			__func__, get_pipes_num_cpsch());
709
710	mutex_init(&dqm->lock);
711	INIT_LIST_HEAD(&dqm->queues);
712	dqm->queue_count = dqm->processes_count = 0;
713	dqm->sdma_queue_count = 0;
714	dqm->active_runlist = false;
715	retval = dqm->ops_asic_specific.initialize(dqm);
716	if (retval != 0)
717		goto fail_init_pipelines;
718
719	return 0;
720
721fail_init_pipelines:
722	mutex_destroy(&dqm->lock);
723	return retval;
724}
725
726static int start_cpsch(struct device_queue_manager *dqm)
727{
728	struct device_process_node *node;
729	int retval;
730
731	BUG_ON(!dqm);
732
733	retval = 0;
734
735	retval = pm_init(&dqm->packets, dqm);
736	if (retval != 0)
737		goto fail_packet_manager_init;
738
739	retval = set_sched_resources(dqm);
740	if (retval != 0)
741		goto fail_set_sched_resources;
742
743	pr_debug("kfd: allocating fence memory\n");
744
745	/* allocate fence memory on the gart */
746	retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
747					&dqm->fence_mem);
748
749	if (retval != 0)
750		goto fail_allocate_vidmem;
751
752	dqm->fence_addr = dqm->fence_mem->cpu_ptr;
753	dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
754	list_for_each_entry(node, &dqm->queues, list)
755		if (node->qpd->pqm->process && dqm->dev)
756			kfd_bind_process_to_device(dqm->dev,
757						node->qpd->pqm->process);
758
759	execute_queues_cpsch(dqm, true);
760
761	return 0;
762fail_allocate_vidmem:
763fail_set_sched_resources:
764	pm_uninit(&dqm->packets);
765fail_packet_manager_init:
766	return retval;
767}
768
769static int stop_cpsch(struct device_queue_manager *dqm)
770{
771	struct device_process_node *node;
772	struct kfd_process_device *pdd;
773
774	BUG_ON(!dqm);
775
776	destroy_queues_cpsch(dqm, true);
777
778	list_for_each_entry(node, &dqm->queues, list) {
779		pdd = qpd_to_pdd(node->qpd);
780		pdd->bound = false;
781	}
782	kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
783	pm_uninit(&dqm->packets);
784
785	return 0;
786}
787
788static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
789					struct kernel_queue *kq,
790					struct qcm_process_device *qpd)
791{
792	BUG_ON(!dqm || !kq || !qpd);
793
794	pr_debug("kfd: In func %s\n", __func__);
795
796	mutex_lock(&dqm->lock);
797	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
798		pr_warn("amdkfd: Can't create new kernel queue because %d queues were already created\n",
799				dqm->total_queue_count);
800		mutex_unlock(&dqm->lock);
801		return -EPERM;
802	}
803
804	/*
805	 * Unconditionally increment this counter, regardless of the queue's
806	 * type or whether the queue is active.
807	 */
808	dqm->total_queue_count++;
809	pr_debug("Total of %d queues are accountable so far\n",
810			dqm->total_queue_count);
811
812	list_add(&kq->list, &qpd->priv_queue_list);
813	dqm->queue_count++;
814	qpd->is_debug = true;
815	execute_queues_cpsch(dqm, false);
816	mutex_unlock(&dqm->lock);
817
818	return 0;
819}
820
821static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
822					struct kernel_queue *kq,
823					struct qcm_process_device *qpd)
824{
825	BUG_ON(!dqm || !kq);
826
827	pr_debug("kfd: In %s\n", __func__);
828
829	mutex_lock(&dqm->lock);
830	destroy_queues_cpsch(dqm, false);
831	list_del(&kq->list);
832	dqm->queue_count--;
833	qpd->is_debug = false;
834	execute_queues_cpsch(dqm, false);
835	/*
836	 * Unconditionally decrement this counter, regardless of the queue's
837	 * type.
838	 */
839	dqm->total_queue_count--;
840	pr_debug("Total of %d queues are accountable so far\n",
841			dqm->total_queue_count);
842	mutex_unlock(&dqm->lock);
843}
844
845static void select_sdma_engine_id(struct queue *q)
846{
847	static int sdma_id;
848
849	q->sdma_id = sdma_id;
850	sdma_id = (sdma_id + 1) % 2;
851}
852
853static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
854			struct qcm_process_device *qpd, int *allocate_vmid)
855{
856	int retval;
857	struct mqd_manager *mqd;
858
859	BUG_ON(!dqm || !q || !qpd);
860
861	retval = 0;
862
863	if (allocate_vmid)
864		*allocate_vmid = 0;
865
866	mutex_lock(&dqm->lock);
867
868	if (dqm->total_queue_count >= max_num_of_queues_per_device) {
869		pr_warn("amdkfd: Can't create new usermode queue because %d queues were already created\n",
870				dqm->total_queue_count);
871		retval = -EPERM;
872		goto out;
873	}
874
875	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
876		select_sdma_engine_id(q);
877
878	mqd = dqm->ops.get_mqd_manager(dqm,
879			get_mqd_type_from_queue_type(q->properties.type));
880
881	if (mqd == NULL) {
882		mutex_unlock(&dqm->lock);
883		return -ENOMEM;
884	}
885
886	init_sdma_vm(dqm, q, qpd);
887
888	retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
889				&q->gart_mqd_addr, &q->properties);
890	if (retval != 0)
891		goto out;
892
893	list_add(&q->list, &qpd->queues_list);
894	if (q->properties.is_active) {
895		dqm->queue_count++;
896		retval = execute_queues_cpsch(dqm, false);
897	}
898
899	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
900			dqm->sdma_queue_count++;
901	/*
902	 * Unconditionally increment this counter, regardless of the queue's
903	 * type or whether the queue is active.
904	 */
905	dqm->total_queue_count++;
906
907	pr_debug("Total of %d queues are accountable so far\n",
908			dqm->total_queue_count);
909
910out:
911	mutex_unlock(&dqm->lock);
912	return retval;
913}
914
915static int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
916				unsigned int fence_value,
917				unsigned long timeout)
918{
919	BUG_ON(!fence_addr);
920	timeout += jiffies;
921
922	while (*fence_addr != fence_value) {
923		if (time_after(jiffies, timeout)) {
924			pr_err("kfd: qcm fence wait loop timeout expired\n");
925			return -ETIME;
926		}
927		schedule();
928	}
929
930	return 0;
931}
932
933static int destroy_sdma_queues(struct device_queue_manager *dqm,
934				unsigned int sdma_engine)
935{
936	return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
937			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false,
938			sdma_engine);
939}
940
941static int destroy_queues_cpsch(struct device_queue_manager *dqm, bool lock)
942{
943	int retval;
944
945	BUG_ON(!dqm);
946
947	retval = 0;
948
949	if (lock)
950		mutex_lock(&dqm->lock);
951	if (dqm->active_runlist == false)
952		goto out;
953
954	pr_debug("kfd: Before destroying queues, sdma queue count is : %u\n",
955		dqm->sdma_queue_count);
956
957	if (dqm->sdma_queue_count > 0) {
958		destroy_sdma_queues(dqm, 0);
959		destroy_sdma_queues(dqm, 1);
960	}
961
962	retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
963			KFD_PREEMPT_TYPE_FILTER_ALL_QUEUES, 0, false, 0);
964	if (retval != 0)
965		goto out;
966
967	*dqm->fence_addr = KFD_FENCE_INIT;
968	pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
969				KFD_FENCE_COMPLETED);
970	/* should be timed out */
971	amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
972				QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
973	pm_release_ib(&dqm->packets);
974	dqm->active_runlist = false;
975
976out:
977	if (lock)
978		mutex_unlock(&dqm->lock);
979	return retval;
980}
981
982static int execute_queues_cpsch(struct device_queue_manager *dqm, bool lock)
983{
984	int retval;
985
986	BUG_ON(!dqm);
987
988	if (lock)
989		mutex_lock(&dqm->lock);
990
991	retval = destroy_queues_cpsch(dqm, false);
992	if (retval != 0) {
993		pr_err("kfd: the cp might be in an unrecoverable state due to an unsuccessful queues preemption");
994		goto out;
995	}
996
997	if (dqm->queue_count <= 0 || dqm->processes_count <= 0) {
998		retval = 0;
999		goto out;
1000	}
1001
1002	if (dqm->active_runlist) {
1003		retval = 0;
1004		goto out;
1005	}
1006
1007	retval = pm_send_runlist(&dqm->packets, &dqm->queues);
1008	if (retval != 0) {
1009		pr_err("kfd: failed to execute runlist");
1010		goto out;
1011	}
1012	dqm->active_runlist = true;
1013
1014out:
1015	if (lock)
1016		mutex_unlock(&dqm->lock);
1017	return retval;
1018}
1019
1020static int destroy_queue_cpsch(struct device_queue_manager *dqm,
1021				struct qcm_process_device *qpd,
1022				struct queue *q)
1023{
1024	int retval;
1025	struct mqd_manager *mqd;
1026
1027	BUG_ON(!dqm || !qpd || !q);
1028
1029	retval = 0;
1030
1031	/* remove queue from list to prevent rescheduling after preemption */
1032	mutex_lock(&dqm->lock);
1033	mqd = dqm->ops.get_mqd_manager(dqm,
1034			get_mqd_type_from_queue_type(q->properties.type));
1035	if (!mqd) {
1036		retval = -ENOMEM;
1037		goto failed;
1038	}
1039
1040	if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
1041		dqm->sdma_queue_count--;
1042
1043	list_del(&q->list);
1044	if (q->properties.is_active)
1045		dqm->queue_count--;
1046
1047	execute_queues_cpsch(dqm, false);
1048
1049	mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
1050
1051	/*
1052	 * Unconditionally decrement this counter, regardless of the queue's
1053	 * type
1054	 */
1055	dqm->total_queue_count--;
1056	pr_debug("Total of %d queues are accountable so far\n",
1057			dqm->total_queue_count);
1058
1059	mutex_unlock(&dqm->lock);
1060
1061	return 0;
1062
1063failed:
1064	mutex_unlock(&dqm->lock);
1065	return retval;
1066}
1067
1068/*
1069 * Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
1070 * stay in user mode.
1071 */
1072#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
1073/* APE1 limit is inclusive and 64K aligned. */
1074#define APE1_LIMIT_ALIGNMENT 0xFFFF
1075
1076static bool set_cache_memory_policy(struct device_queue_manager *dqm,
1077				   struct qcm_process_device *qpd,
1078				   enum cache_policy default_policy,
1079				   enum cache_policy alternate_policy,
1080				   void __user *alternate_aperture_base,
1081				   uint64_t alternate_aperture_size)
1082{
1083	bool retval;
1084
1085	pr_debug("kfd: In func %s\n", __func__);
1086
1087	mutex_lock(&dqm->lock);
1088
1089	if (alternate_aperture_size == 0) {
1090		/* base > limit disables APE1 */
1091		qpd->sh_mem_ape1_base = 1;
1092		qpd->sh_mem_ape1_limit = 0;
1093	} else {
1094		/*
1095		 * In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
1096		 *			SH_MEM_APE1_BASE[31:0], 0x0000 }
1097		 * APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
1098		 *			SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
1099		 * Verify that the base and size parameters can be
1100		 * represented in this format and convert them.
1101		 * Additionally restrict APE1 to user-mode addresses.
1102		 */
1103
1104		uint64_t base = (uintptr_t)alternate_aperture_base;
1105		uint64_t limit = base + alternate_aperture_size - 1;
1106
1107		if (limit <= base)
1108			goto out;
1109
1110		if ((base & APE1_FIXED_BITS_MASK) != 0)
1111			goto out;
1112
1113		if ((limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT)
1114			goto out;
1115
1116		qpd->sh_mem_ape1_base = base >> 16;
1117		qpd->sh_mem_ape1_limit = limit >> 16;
1118	}
1119
1120	retval = dqm->ops_asic_specific.set_cache_memory_policy(
1121			dqm,
1122			qpd,
1123			default_policy,
1124			alternate_policy,
1125			alternate_aperture_base,
1126			alternate_aperture_size);
1127
1128	if ((sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
1129		program_sh_mem_settings(dqm, qpd);
1130
1131	pr_debug("kfd: sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
1132		qpd->sh_mem_config, qpd->sh_mem_ape1_base,
1133		qpd->sh_mem_ape1_limit);
1134
1135	mutex_unlock(&dqm->lock);
1136	return retval;
1137
1138out:
1139	mutex_unlock(&dqm->lock);
1140	return false;
1141}
1142
1143struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
1144{
1145	struct device_queue_manager *dqm;
1146
1147	BUG_ON(!dev);
1148
1149	pr_debug("kfd: loading device queue manager\n");
1150
1151	dqm = kzalloc(sizeof(struct device_queue_manager), GFP_KERNEL);
1152	if (!dqm)
1153		return NULL;
1154
1155	dqm->dev = dev;
1156	switch (sched_policy) {
1157	case KFD_SCHED_POLICY_HWS:
1158	case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
1159		/* initialize dqm for cp scheduling */
1160		dqm->ops.create_queue = create_queue_cpsch;
1161		dqm->ops.initialize = initialize_cpsch;
1162		dqm->ops.start = start_cpsch;
1163		dqm->ops.stop = stop_cpsch;
1164		dqm->ops.destroy_queue = destroy_queue_cpsch;
1165		dqm->ops.update_queue = update_queue;
1166		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1167		dqm->ops.register_process = register_process_nocpsch;
1168		dqm->ops.unregister_process = unregister_process_nocpsch;
1169		dqm->ops.uninitialize = uninitialize_nocpsch;
1170		dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
1171		dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
1172		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1173		break;
1174	case KFD_SCHED_POLICY_NO_HWS:
1175		/* initialize dqm for no cp scheduling */
1176		dqm->ops.start = start_nocpsch;
1177		dqm->ops.stop = stop_nocpsch;
1178		dqm->ops.create_queue = create_queue_nocpsch;
1179		dqm->ops.destroy_queue = destroy_queue_nocpsch;
1180		dqm->ops.update_queue = update_queue;
1181		dqm->ops.get_mqd_manager = get_mqd_manager_nocpsch;
1182		dqm->ops.register_process = register_process_nocpsch;
1183		dqm->ops.unregister_process = unregister_process_nocpsch;
1184		dqm->ops.initialize = initialize_nocpsch;
1185		dqm->ops.uninitialize = uninitialize_nocpsch;
1186		dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
1187		break;
1188	default:
1189		BUG();
1190		break;
1191	}
1192
1193	switch (dev->device_info->asic_family) {
1194	case CHIP_CARRIZO:
1195		device_queue_manager_init_vi(&dqm->ops_asic_specific);
1196		break;
1197
1198	case CHIP_KAVERI:
1199		device_queue_manager_init_cik(&dqm->ops_asic_specific);
1200		break;
1201	}
1202
1203	if (dqm->ops.initialize(dqm) != 0) {
1204		kfree(dqm);
1205		return NULL;
1206	}
1207
1208	return dqm;
1209}
1210
1211void device_queue_manager_uninit(struct device_queue_manager *dqm)
1212{
1213	BUG_ON(!dqm);
1214
1215	dqm->ops.uninitialize(dqm);
1216	kfree(dqm);
1217}
1218