1/*
2 * linux/drivers/firmware/memmap.c
3 *  Copyright (C) 2008 SUSE LINUX Products GmbH
4 *  by Bernhard Walle <bernhard.walle@gmx.de>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License v2.0 as published by
8 * the Free Software Foundation
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13 * GNU General Public License for more details.
14 *
15 */
16
17#include <linux/string.h>
18#include <linux/firmware-map.h>
19#include <linux/kernel.h>
20#include <linux/module.h>
21#include <linux/types.h>
22#include <linux/bootmem.h>
23#include <linux/slab.h>
24#include <linux/mm.h>
25
26/*
27 * Data types ------------------------------------------------------------------
28 */
29
30/*
31 * Firmware map entry. Because firmware memory maps are flat and not
32 * hierarchical, it's ok to organise them in a linked list. No parent
33 * information is necessary as for the resource tree.
34 */
35struct firmware_map_entry {
36	/*
37	 * start and end must be u64 rather than resource_size_t, because e820
38	 * resources can lie at addresses above 4G.
39	 */
40	u64			start;	/* start of the memory range */
41	u64			end;	/* end of the memory range (incl.) */
42	const char		*type;	/* type of the memory range */
43	struct list_head	list;	/* entry for the linked list */
44	struct kobject		kobj;   /* kobject for each entry */
45};
46
47/*
48 * Forward declarations --------------------------------------------------------
49 */
50static ssize_t memmap_attr_show(struct kobject *kobj,
51				struct attribute *attr, char *buf);
52static ssize_t start_show(struct firmware_map_entry *entry, char *buf);
53static ssize_t end_show(struct firmware_map_entry *entry, char *buf);
54static ssize_t type_show(struct firmware_map_entry *entry, char *buf);
55
56static struct firmware_map_entry * __meminit
57firmware_map_find_entry(u64 start, u64 end, const char *type);
58
59/*
60 * Static data -----------------------------------------------------------------
61 */
62
63struct memmap_attribute {
64	struct attribute attr;
65	ssize_t (*show)(struct firmware_map_entry *entry, char *buf);
66};
67
68static struct memmap_attribute memmap_start_attr = __ATTR_RO(start);
69static struct memmap_attribute memmap_end_attr   = __ATTR_RO(end);
70static struct memmap_attribute memmap_type_attr  = __ATTR_RO(type);
71
72/*
73 * These are default attributes that are added for every memmap entry.
74 */
75static struct attribute *def_attrs[] = {
76	&memmap_start_attr.attr,
77	&memmap_end_attr.attr,
78	&memmap_type_attr.attr,
79	NULL
80};
81
82static const struct sysfs_ops memmap_attr_ops = {
83	.show = memmap_attr_show,
84};
85
86/* Firmware memory map entries. */
87static LIST_HEAD(map_entries);
88static DEFINE_SPINLOCK(map_entries_lock);
89
90/*
91 * For memory hotplug, there is no way to free memory map entries allocated
92 * by boot mem after the system is up. So when we hot-remove memory whose
93 * map entry is allocated by bootmem, we need to remember the storage and
94 * reuse it when the memory is hot-added again.
95 */
96static LIST_HEAD(map_entries_bootmem);
97static DEFINE_SPINLOCK(map_entries_bootmem_lock);
98
99
100static inline struct firmware_map_entry *
101to_memmap_entry(struct kobject *kobj)
102{
103	return container_of(kobj, struct firmware_map_entry, kobj);
104}
105
106static void __meminit release_firmware_map_entry(struct kobject *kobj)
107{
108	struct firmware_map_entry *entry = to_memmap_entry(kobj);
109
110	if (PageReserved(virt_to_page(entry))) {
111		/*
112		 * Remember the storage allocated by bootmem, and reuse it when
113		 * the memory is hot-added again. The entry will be added to
114		 * map_entries_bootmem here, and deleted from &map_entries in
115		 * firmware_map_remove_entry().
116		 */
117		spin_lock(&map_entries_bootmem_lock);
118		list_add(&entry->list, &map_entries_bootmem);
119		spin_unlock(&map_entries_bootmem_lock);
120
121		return;
122	}
123
124	kfree(entry);
125}
126
127static struct kobj_type __refdata memmap_ktype = {
128	.release	= release_firmware_map_entry,
129	.sysfs_ops	= &memmap_attr_ops,
130	.default_attrs	= def_attrs,
131};
132
133/*
134 * Registration functions ------------------------------------------------------
135 */
136
137/**
138 * firmware_map_add_entry() - Does the real work to add a firmware memmap entry.
139 * @start: Start of the memory range.
140 * @end:   End of the memory range (exclusive).
141 * @type:  Type of the memory range.
142 * @entry: Pre-allocated (either kmalloc() or bootmem allocator), uninitialised
143 *         entry.
144 *
145 * Common implementation of firmware_map_add() and firmware_map_add_early()
146 * which expects a pre-allocated struct firmware_map_entry.
147 **/
148static int firmware_map_add_entry(u64 start, u64 end,
149				  const char *type,
150				  struct firmware_map_entry *entry)
151{
152	BUG_ON(start > end);
153
154	entry->start = start;
155	entry->end = end - 1;
156	entry->type = type;
157	INIT_LIST_HEAD(&entry->list);
158	kobject_init(&entry->kobj, &memmap_ktype);
159
160	spin_lock(&map_entries_lock);
161	list_add_tail(&entry->list, &map_entries);
162	spin_unlock(&map_entries_lock);
163
164	return 0;
165}
166
167/**
168 * firmware_map_remove_entry() - Does the real work to remove a firmware
169 * memmap entry.
170 * @entry: removed entry.
171 *
172 * The caller must hold map_entries_lock, and release it properly.
173 **/
174static inline void firmware_map_remove_entry(struct firmware_map_entry *entry)
175{
176	list_del(&entry->list);
177}
178
179/*
180 * Add memmap entry on sysfs
181 */
182static int add_sysfs_fw_map_entry(struct firmware_map_entry *entry)
183{
184	static int map_entries_nr;
185	static struct kset *mmap_kset;
186
187	if (entry->kobj.state_in_sysfs)
188		return -EEXIST;
189
190	if (!mmap_kset) {
191		mmap_kset = kset_create_and_add("memmap", NULL, firmware_kobj);
192		if (!mmap_kset)
193			return -ENOMEM;
194	}
195
196	entry->kobj.kset = mmap_kset;
197	if (kobject_add(&entry->kobj, NULL, "%d", map_entries_nr++))
198		kobject_put(&entry->kobj);
199
200	return 0;
201}
202
203/*
204 * Remove memmap entry on sysfs
205 */
206static inline void remove_sysfs_fw_map_entry(struct firmware_map_entry *entry)
207{
208	kobject_put(&entry->kobj);
209}
210
211/*
212 * firmware_map_find_entry_in_list() - Search memmap entry in a given list.
213 * @start: Start of the memory range.
214 * @end:   End of the memory range (exclusive).
215 * @type:  Type of the memory range.
216 * @list:  In which to find the entry.
217 *
218 * This function is to find the memmap entey of a given memory range in a
219 * given list. The caller must hold map_entries_lock, and must not release
220 * the lock until the processing of the returned entry has completed.
221 *
222 * Return: Pointer to the entry to be found on success, or NULL on failure.
223 */
224static struct firmware_map_entry * __meminit
225firmware_map_find_entry_in_list(u64 start, u64 end, const char *type,
226				struct list_head *list)
227{
228	struct firmware_map_entry *entry;
229
230	list_for_each_entry(entry, list, list)
231		if ((entry->start == start) && (entry->end == end) &&
232		    (!strcmp(entry->type, type))) {
233			return entry;
234		}
235
236	return NULL;
237}
238
239/*
240 * firmware_map_find_entry() - Search memmap entry in map_entries.
241 * @start: Start of the memory range.
242 * @end:   End of the memory range (exclusive).
243 * @type:  Type of the memory range.
244 *
245 * This function is to find the memmap entey of a given memory range.
246 * The caller must hold map_entries_lock, and must not release the lock
247 * until the processing of the returned entry has completed.
248 *
249 * Return: Pointer to the entry to be found on success, or NULL on failure.
250 */
251static struct firmware_map_entry * __meminit
252firmware_map_find_entry(u64 start, u64 end, const char *type)
253{
254	return firmware_map_find_entry_in_list(start, end, type, &map_entries);
255}
256
257/*
258 * firmware_map_find_entry_bootmem() - Search memmap entry in map_entries_bootmem.
259 * @start: Start of the memory range.
260 * @end:   End of the memory range (exclusive).
261 * @type:  Type of the memory range.
262 *
263 * This function is similar to firmware_map_find_entry except that it find the
264 * given entry in map_entries_bootmem.
265 *
266 * Return: Pointer to the entry to be found on success, or NULL on failure.
267 */
268static struct firmware_map_entry * __meminit
269firmware_map_find_entry_bootmem(u64 start, u64 end, const char *type)
270{
271	return firmware_map_find_entry_in_list(start, end, type,
272					       &map_entries_bootmem);
273}
274
275/**
276 * firmware_map_add_hotplug() - Adds a firmware mapping entry when we do
277 * memory hotplug.
278 * @start: Start of the memory range.
279 * @end:   End of the memory range (exclusive)
280 * @type:  Type of the memory range.
281 *
282 * Adds a firmware mapping entry. This function is for memory hotplug, it is
283 * similar to function firmware_map_add_early(). The only difference is that
284 * it will create the syfs entry dynamically.
285 *
286 * Returns 0 on success, or -ENOMEM if no memory could be allocated.
287 **/
288int __meminit firmware_map_add_hotplug(u64 start, u64 end, const char *type)
289{
290	struct firmware_map_entry *entry;
291
292	entry = firmware_map_find_entry(start, end - 1, type);
293	if (entry)
294		return 0;
295
296	entry = firmware_map_find_entry_bootmem(start, end - 1, type);
297	if (!entry) {
298		entry = kzalloc(sizeof(struct firmware_map_entry), GFP_ATOMIC);
299		if (!entry)
300			return -ENOMEM;
301	} else {
302		/* Reuse storage allocated by bootmem. */
303		spin_lock(&map_entries_bootmem_lock);
304		list_del(&entry->list);
305		spin_unlock(&map_entries_bootmem_lock);
306
307		memset(entry, 0, sizeof(*entry));
308	}
309
310	firmware_map_add_entry(start, end, type, entry);
311	/* create the memmap entry */
312	add_sysfs_fw_map_entry(entry);
313
314	return 0;
315}
316
317/**
318 * firmware_map_add_early() - Adds a firmware mapping entry.
319 * @start: Start of the memory range.
320 * @end:   End of the memory range.
321 * @type:  Type of the memory range.
322 *
323 * Adds a firmware mapping entry. This function uses the bootmem allocator
324 * for memory allocation.
325 *
326 * That function must be called before late_initcall.
327 *
328 * Returns 0 on success, or -ENOMEM if no memory could be allocated.
329 **/
330int __init firmware_map_add_early(u64 start, u64 end, const char *type)
331{
332	struct firmware_map_entry *entry;
333
334	entry = memblock_virt_alloc(sizeof(struct firmware_map_entry), 0);
335	if (WARN_ON(!entry))
336		return -ENOMEM;
337
338	return firmware_map_add_entry(start, end, type, entry);
339}
340
341/**
342 * firmware_map_remove() - remove a firmware mapping entry
343 * @start: Start of the memory range.
344 * @end:   End of the memory range.
345 * @type:  Type of the memory range.
346 *
347 * removes a firmware mapping entry.
348 *
349 * Returns 0 on success, or -EINVAL if no entry.
350 **/
351int __meminit firmware_map_remove(u64 start, u64 end, const char *type)
352{
353	struct firmware_map_entry *entry;
354
355	spin_lock(&map_entries_lock);
356	entry = firmware_map_find_entry(start, end - 1, type);
357	if (!entry) {
358		spin_unlock(&map_entries_lock);
359		return -EINVAL;
360	}
361
362	firmware_map_remove_entry(entry);
363	spin_unlock(&map_entries_lock);
364
365	/* remove the memmap entry */
366	remove_sysfs_fw_map_entry(entry);
367
368	return 0;
369}
370
371/*
372 * Sysfs functions -------------------------------------------------------------
373 */
374
375static ssize_t start_show(struct firmware_map_entry *entry, char *buf)
376{
377	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
378		(unsigned long long)entry->start);
379}
380
381static ssize_t end_show(struct firmware_map_entry *entry, char *buf)
382{
383	return snprintf(buf, PAGE_SIZE, "0x%llx\n",
384		(unsigned long long)entry->end);
385}
386
387static ssize_t type_show(struct firmware_map_entry *entry, char *buf)
388{
389	return snprintf(buf, PAGE_SIZE, "%s\n", entry->type);
390}
391
392static inline struct memmap_attribute *to_memmap_attr(struct attribute *attr)
393{
394	return container_of(attr, struct memmap_attribute, attr);
395}
396
397static ssize_t memmap_attr_show(struct kobject *kobj,
398				struct attribute *attr, char *buf)
399{
400	struct firmware_map_entry *entry = to_memmap_entry(kobj);
401	struct memmap_attribute *memmap_attr = to_memmap_attr(attr);
402
403	return memmap_attr->show(entry, buf);
404}
405
406/*
407 * Initialises stuff and adds the entries in the map_entries list to
408 * sysfs. Important is that firmware_map_add() and firmware_map_add_early()
409 * must be called before late_initcall. That's just because that function
410 * is called as late_initcall() function, which means that if you call
411 * firmware_map_add() or firmware_map_add_early() afterwards, the entries
412 * are not added to sysfs.
413 */
414static int __init firmware_memmap_init(void)
415{
416	struct firmware_map_entry *entry;
417
418	list_for_each_entry(entry, &map_entries, list)
419		add_sysfs_fw_map_entry(entry);
420
421	return 0;
422}
423late_initcall(firmware_memmap_init);
424
425