1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * BSD LICENSE
22 *
23 * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
24 *
25 * Redistribution and use in source and binary forms, with or without
26 * modification, are permitted provided that the following conditions are met:
27 *
28 *   * Redistributions of source code must retain the above copyright
29 *     notice, this list of conditions and the following disclaimer.
30 *   * Redistributions in binary form must reproduce the above copyright
31 *     notice, this list of conditions and the following disclaimer in
32 *     the documentation and/or other materials provided with the
33 *     distribution.
34 *   * Neither the name of Intel Corporation nor the names of its
35 *     contributors may be used to endorse or promote products derived
36 *     from this software without specific prior written permission.
37 *
38 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
39 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
40 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
41 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
42 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
43 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
44 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
45 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
46 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
47 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
48 * POSSIBILITY OF SUCH DAMAGE.
49 */
50
51/*
52 * Support routines for v3+ hardware
53 */
54#include <linux/module.h>
55#include <linux/pci.h>
56#include <linux/gfp.h>
57#include <linux/dmaengine.h>
58#include <linux/dma-mapping.h>
59#include <linux/prefetch.h>
60#include "../dmaengine.h"
61#include "registers.h"
62#include "hw.h"
63#include "dma.h"
64#include "dma_v2.h"
65
66extern struct kmem_cache *ioat3_sed_cache;
67
68/* ioat hardware assumes at least two sources for raid operations */
69#define src_cnt_to_sw(x) ((x) + 2)
70#define src_cnt_to_hw(x) ((x) - 2)
71#define ndest_to_sw(x) ((x) + 1)
72#define ndest_to_hw(x) ((x) - 1)
73#define src16_cnt_to_sw(x) ((x) + 9)
74#define src16_cnt_to_hw(x) ((x) - 9)
75
76/* provide a lookup table for setting the source address in the base or
77 * extended descriptor of an xor or pq descriptor
78 */
79static const u8 xor_idx_to_desc = 0xe0;
80static const u8 xor_idx_to_field[] = { 1, 4, 5, 6, 7, 0, 1, 2 };
81static const u8 pq_idx_to_desc = 0xf8;
82static const u8 pq16_idx_to_desc[] = { 0, 0, 1, 1, 1, 1, 1, 1, 1,
83				       2, 2, 2, 2, 2, 2, 2 };
84static const u8 pq_idx_to_field[] = { 1, 4, 5, 0, 1, 2, 4, 5 };
85static const u8 pq16_idx_to_field[] = { 1, 4, 1, 2, 3, 4, 5, 6, 7,
86					0, 1, 2, 3, 4, 5, 6 };
87
88static void ioat3_eh(struct ioat2_dma_chan *ioat);
89
90static void xor_set_src(struct ioat_raw_descriptor *descs[2],
91			dma_addr_t addr, u32 offset, int idx)
92{
93	struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
94
95	raw->field[xor_idx_to_field[idx]] = addr + offset;
96}
97
98static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
99{
100	struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
101
102	return raw->field[pq_idx_to_field[idx]];
103}
104
105static dma_addr_t pq16_get_src(struct ioat_raw_descriptor *desc[3], int idx)
106{
107	struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
108
109	return raw->field[pq16_idx_to_field[idx]];
110}
111
112static void pq_set_src(struct ioat_raw_descriptor *descs[2],
113		       dma_addr_t addr, u32 offset, u8 coef, int idx)
114{
115	struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
116	struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
117
118	raw->field[pq_idx_to_field[idx]] = addr + offset;
119	pq->coef[idx] = coef;
120}
121
122static bool is_jf_ioat(struct pci_dev *pdev)
123{
124	switch (pdev->device) {
125	case PCI_DEVICE_ID_INTEL_IOAT_JSF0:
126	case PCI_DEVICE_ID_INTEL_IOAT_JSF1:
127	case PCI_DEVICE_ID_INTEL_IOAT_JSF2:
128	case PCI_DEVICE_ID_INTEL_IOAT_JSF3:
129	case PCI_DEVICE_ID_INTEL_IOAT_JSF4:
130	case PCI_DEVICE_ID_INTEL_IOAT_JSF5:
131	case PCI_DEVICE_ID_INTEL_IOAT_JSF6:
132	case PCI_DEVICE_ID_INTEL_IOAT_JSF7:
133	case PCI_DEVICE_ID_INTEL_IOAT_JSF8:
134	case PCI_DEVICE_ID_INTEL_IOAT_JSF9:
135		return true;
136	default:
137		return false;
138	}
139}
140
141static bool is_snb_ioat(struct pci_dev *pdev)
142{
143	switch (pdev->device) {
144	case PCI_DEVICE_ID_INTEL_IOAT_SNB0:
145	case PCI_DEVICE_ID_INTEL_IOAT_SNB1:
146	case PCI_DEVICE_ID_INTEL_IOAT_SNB2:
147	case PCI_DEVICE_ID_INTEL_IOAT_SNB3:
148	case PCI_DEVICE_ID_INTEL_IOAT_SNB4:
149	case PCI_DEVICE_ID_INTEL_IOAT_SNB5:
150	case PCI_DEVICE_ID_INTEL_IOAT_SNB6:
151	case PCI_DEVICE_ID_INTEL_IOAT_SNB7:
152	case PCI_DEVICE_ID_INTEL_IOAT_SNB8:
153	case PCI_DEVICE_ID_INTEL_IOAT_SNB9:
154		return true;
155	default:
156		return false;
157	}
158}
159
160static bool is_ivb_ioat(struct pci_dev *pdev)
161{
162	switch (pdev->device) {
163	case PCI_DEVICE_ID_INTEL_IOAT_IVB0:
164	case PCI_DEVICE_ID_INTEL_IOAT_IVB1:
165	case PCI_DEVICE_ID_INTEL_IOAT_IVB2:
166	case PCI_DEVICE_ID_INTEL_IOAT_IVB3:
167	case PCI_DEVICE_ID_INTEL_IOAT_IVB4:
168	case PCI_DEVICE_ID_INTEL_IOAT_IVB5:
169	case PCI_DEVICE_ID_INTEL_IOAT_IVB6:
170	case PCI_DEVICE_ID_INTEL_IOAT_IVB7:
171	case PCI_DEVICE_ID_INTEL_IOAT_IVB8:
172	case PCI_DEVICE_ID_INTEL_IOAT_IVB9:
173		return true;
174	default:
175		return false;
176	}
177
178}
179
180static bool is_hsw_ioat(struct pci_dev *pdev)
181{
182	switch (pdev->device) {
183	case PCI_DEVICE_ID_INTEL_IOAT_HSW0:
184	case PCI_DEVICE_ID_INTEL_IOAT_HSW1:
185	case PCI_DEVICE_ID_INTEL_IOAT_HSW2:
186	case PCI_DEVICE_ID_INTEL_IOAT_HSW3:
187	case PCI_DEVICE_ID_INTEL_IOAT_HSW4:
188	case PCI_DEVICE_ID_INTEL_IOAT_HSW5:
189	case PCI_DEVICE_ID_INTEL_IOAT_HSW6:
190	case PCI_DEVICE_ID_INTEL_IOAT_HSW7:
191	case PCI_DEVICE_ID_INTEL_IOAT_HSW8:
192	case PCI_DEVICE_ID_INTEL_IOAT_HSW9:
193		return true;
194	default:
195		return false;
196	}
197
198}
199
200static bool is_xeon_cb32(struct pci_dev *pdev)
201{
202	return is_jf_ioat(pdev) || is_snb_ioat(pdev) || is_ivb_ioat(pdev) ||
203		is_hsw_ioat(pdev);
204}
205
206static bool is_bwd_ioat(struct pci_dev *pdev)
207{
208	switch (pdev->device) {
209	case PCI_DEVICE_ID_INTEL_IOAT_BWD0:
210	case PCI_DEVICE_ID_INTEL_IOAT_BWD1:
211	case PCI_DEVICE_ID_INTEL_IOAT_BWD2:
212	case PCI_DEVICE_ID_INTEL_IOAT_BWD3:
213	/* even though not Atom, BDX-DE has same DMA silicon */
214	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE0:
215	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE1:
216	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE2:
217	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE3:
218		return true;
219	default:
220		return false;
221	}
222}
223
224static bool is_bwd_noraid(struct pci_dev *pdev)
225{
226	switch (pdev->device) {
227	case PCI_DEVICE_ID_INTEL_IOAT_BWD2:
228	case PCI_DEVICE_ID_INTEL_IOAT_BWD3:
229	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE0:
230	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE1:
231	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE2:
232	case PCI_DEVICE_ID_INTEL_IOAT_BDXDE3:
233		return true;
234	default:
235		return false;
236	}
237
238}
239
240static void pq16_set_src(struct ioat_raw_descriptor *desc[3],
241			dma_addr_t addr, u32 offset, u8 coef, unsigned idx)
242{
243	struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *)desc[0];
244	struct ioat_pq16a_descriptor *pq16 =
245		(struct ioat_pq16a_descriptor *)desc[1];
246	struct ioat_raw_descriptor *raw = desc[pq16_idx_to_desc[idx]];
247
248	raw->field[pq16_idx_to_field[idx]] = addr + offset;
249
250	if (idx < 8)
251		pq->coef[idx] = coef;
252	else
253		pq16->coef[idx - 8] = coef;
254}
255
256static struct ioat_sed_ent *
257ioat3_alloc_sed(struct ioatdma_device *device, unsigned int hw_pool)
258{
259	struct ioat_sed_ent *sed;
260	gfp_t flags = __GFP_ZERO | GFP_ATOMIC;
261
262	sed = kmem_cache_alloc(ioat3_sed_cache, flags);
263	if (!sed)
264		return NULL;
265
266	sed->hw_pool = hw_pool;
267	sed->hw = dma_pool_alloc(device->sed_hw_pool[hw_pool],
268				 flags, &sed->dma);
269	if (!sed->hw) {
270		kmem_cache_free(ioat3_sed_cache, sed);
271		return NULL;
272	}
273
274	return sed;
275}
276
277static void ioat3_free_sed(struct ioatdma_device *device, struct ioat_sed_ent *sed)
278{
279	if (!sed)
280		return;
281
282	dma_pool_free(device->sed_hw_pool[sed->hw_pool], sed->hw, sed->dma);
283	kmem_cache_free(ioat3_sed_cache, sed);
284}
285
286static bool desc_has_ext(struct ioat_ring_ent *desc)
287{
288	struct ioat_dma_descriptor *hw = desc->hw;
289
290	if (hw->ctl_f.op == IOAT_OP_XOR ||
291	    hw->ctl_f.op == IOAT_OP_XOR_VAL) {
292		struct ioat_xor_descriptor *xor = desc->xor;
293
294		if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
295			return true;
296	} else if (hw->ctl_f.op == IOAT_OP_PQ ||
297		   hw->ctl_f.op == IOAT_OP_PQ_VAL) {
298		struct ioat_pq_descriptor *pq = desc->pq;
299
300		if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
301			return true;
302	}
303
304	return false;
305}
306
307static u64 ioat3_get_current_completion(struct ioat_chan_common *chan)
308{
309	u64 phys_complete;
310	u64 completion;
311
312	completion = *chan->completion;
313	phys_complete = ioat_chansts_to_addr(completion);
314
315	dev_dbg(to_dev(chan), "%s: phys_complete: %#llx\n", __func__,
316		(unsigned long long) phys_complete);
317
318	return phys_complete;
319}
320
321static bool ioat3_cleanup_preamble(struct ioat_chan_common *chan,
322				   u64 *phys_complete)
323{
324	*phys_complete = ioat3_get_current_completion(chan);
325	if (*phys_complete == chan->last_completion)
326		return false;
327
328	clear_bit(IOAT_COMPLETION_ACK, &chan->state);
329	mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
330
331	return true;
332}
333
334static void
335desc_get_errstat(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc)
336{
337	struct ioat_dma_descriptor *hw = desc->hw;
338
339	switch (hw->ctl_f.op) {
340	case IOAT_OP_PQ_VAL:
341	case IOAT_OP_PQ_VAL_16S:
342	{
343		struct ioat_pq_descriptor *pq = desc->pq;
344
345		/* check if there's error written */
346		if (!pq->dwbes_f.wbes)
347			return;
348
349		/* need to set a chanerr var for checking to clear later */
350
351		if (pq->dwbes_f.p_val_err)
352			*desc->result |= SUM_CHECK_P_RESULT;
353
354		if (pq->dwbes_f.q_val_err)
355			*desc->result |= SUM_CHECK_Q_RESULT;
356
357		return;
358	}
359	default:
360		return;
361	}
362}
363
364/**
365 * __cleanup - reclaim used descriptors
366 * @ioat: channel (ring) to clean
367 *
368 * The difference from the dma_v2.c __cleanup() is that this routine
369 * handles extended descriptors and dma-unmapping raid operations.
370 */
371static void __cleanup(struct ioat2_dma_chan *ioat, dma_addr_t phys_complete)
372{
373	struct ioat_chan_common *chan = &ioat->base;
374	struct ioatdma_device *device = chan->device;
375	struct ioat_ring_ent *desc;
376	bool seen_current = false;
377	int idx = ioat->tail, i;
378	u16 active;
379
380	dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
381		__func__, ioat->head, ioat->tail, ioat->issued);
382
383	/*
384	 * At restart of the channel, the completion address and the
385	 * channel status will be 0 due to starting a new chain. Since
386	 * it's new chain and the first descriptor "fails", there is
387	 * nothing to clean up. We do not want to reap the entire submitted
388	 * chain due to this 0 address value and then BUG.
389	 */
390	if (!phys_complete)
391		return;
392
393	active = ioat2_ring_active(ioat);
394	for (i = 0; i < active && !seen_current; i++) {
395		struct dma_async_tx_descriptor *tx;
396
397		smp_read_barrier_depends();
398		prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
399		desc = ioat2_get_ring_ent(ioat, idx + i);
400		dump_desc_dbg(ioat, desc);
401
402		/* set err stat if we are using dwbes */
403		if (device->cap & IOAT_CAP_DWBES)
404			desc_get_errstat(ioat, desc);
405
406		tx = &desc->txd;
407		if (tx->cookie) {
408			dma_cookie_complete(tx);
409			dma_descriptor_unmap(tx);
410			if (tx->callback) {
411				tx->callback(tx->callback_param);
412				tx->callback = NULL;
413			}
414		}
415
416		if (tx->phys == phys_complete)
417			seen_current = true;
418
419		/* skip extended descriptors */
420		if (desc_has_ext(desc)) {
421			BUG_ON(i + 1 >= active);
422			i++;
423		}
424
425		/* cleanup super extended descriptors */
426		if (desc->sed) {
427			ioat3_free_sed(device, desc->sed);
428			desc->sed = NULL;
429		}
430	}
431	smp_mb(); /* finish all descriptor reads before incrementing tail */
432	ioat->tail = idx + i;
433	BUG_ON(active && !seen_current); /* no active descs have written a completion? */
434	chan->last_completion = phys_complete;
435
436	if (active - i == 0) {
437		dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
438			__func__);
439		clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
440		mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
441	}
442	/* 5 microsecond delay per pending descriptor */
443	writew(min((5 * (active - i)), IOAT_INTRDELAY_MASK),
444	       chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
445}
446
447static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
448{
449	struct ioat_chan_common *chan = &ioat->base;
450	u64 phys_complete;
451
452	spin_lock_bh(&chan->cleanup_lock);
453
454	if (ioat3_cleanup_preamble(chan, &phys_complete))
455		__cleanup(ioat, phys_complete);
456
457	if (is_ioat_halted(*chan->completion)) {
458		u32 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
459
460		if (chanerr & IOAT_CHANERR_HANDLE_MASK) {
461			mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
462			ioat3_eh(ioat);
463		}
464	}
465
466	spin_unlock_bh(&chan->cleanup_lock);
467}
468
469static void ioat3_cleanup_event(unsigned long data)
470{
471	struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
472	struct ioat_chan_common *chan = &ioat->base;
473
474	ioat3_cleanup(ioat);
475	if (!test_bit(IOAT_RUN, &chan->state))
476		return;
477	writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
478}
479
480static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
481{
482	struct ioat_chan_common *chan = &ioat->base;
483	u64 phys_complete;
484
485	ioat2_quiesce(chan, 0);
486	if (ioat3_cleanup_preamble(chan, &phys_complete))
487		__cleanup(ioat, phys_complete);
488
489	__ioat2_restart_chan(ioat);
490}
491
492static void ioat3_eh(struct ioat2_dma_chan *ioat)
493{
494	struct ioat_chan_common *chan = &ioat->base;
495	struct pci_dev *pdev = to_pdev(chan);
496	struct ioat_dma_descriptor *hw;
497	struct dma_async_tx_descriptor *tx;
498	u64 phys_complete;
499	struct ioat_ring_ent *desc;
500	u32 err_handled = 0;
501	u32 chanerr_int;
502	u32 chanerr;
503
504	/* cleanup so tail points to descriptor that caused the error */
505	if (ioat3_cleanup_preamble(chan, &phys_complete))
506		__cleanup(ioat, phys_complete);
507
508	chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
509	pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr_int);
510
511	dev_dbg(to_dev(chan), "%s: error = %x:%x\n",
512		__func__, chanerr, chanerr_int);
513
514	desc = ioat2_get_ring_ent(ioat, ioat->tail);
515	hw = desc->hw;
516	dump_desc_dbg(ioat, desc);
517
518	switch (hw->ctl_f.op) {
519	case IOAT_OP_XOR_VAL:
520		if (chanerr & IOAT_CHANERR_XOR_P_OR_CRC_ERR) {
521			*desc->result |= SUM_CHECK_P_RESULT;
522			err_handled |= IOAT_CHANERR_XOR_P_OR_CRC_ERR;
523		}
524		break;
525	case IOAT_OP_PQ_VAL:
526	case IOAT_OP_PQ_VAL_16S:
527		if (chanerr & IOAT_CHANERR_XOR_P_OR_CRC_ERR) {
528			*desc->result |= SUM_CHECK_P_RESULT;
529			err_handled |= IOAT_CHANERR_XOR_P_OR_CRC_ERR;
530		}
531		if (chanerr & IOAT_CHANERR_XOR_Q_ERR) {
532			*desc->result |= SUM_CHECK_Q_RESULT;
533			err_handled |= IOAT_CHANERR_XOR_Q_ERR;
534		}
535		break;
536	}
537
538	/* fault on unhandled error or spurious halt */
539	if (chanerr ^ err_handled || chanerr == 0) {
540		dev_err(to_dev(chan), "%s: fatal error (%x:%x)\n",
541			__func__, chanerr, err_handled);
542		BUG();
543	} else { /* cleanup the faulty descriptor */
544		tx = &desc->txd;
545		if (tx->cookie) {
546			dma_cookie_complete(tx);
547			dma_descriptor_unmap(tx);
548			if (tx->callback) {
549				tx->callback(tx->callback_param);
550				tx->callback = NULL;
551			}
552		}
553	}
554
555	writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
556	pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr_int);
557
558	/* mark faulting descriptor as complete */
559	*chan->completion = desc->txd.phys;
560
561	spin_lock_bh(&ioat->prep_lock);
562	ioat3_restart_channel(ioat);
563	spin_unlock_bh(&ioat->prep_lock);
564}
565
566static void check_active(struct ioat2_dma_chan *ioat)
567{
568	struct ioat_chan_common *chan = &ioat->base;
569
570	if (ioat2_ring_active(ioat)) {
571		mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
572		return;
573	}
574
575	if (test_and_clear_bit(IOAT_CHAN_ACTIVE, &chan->state))
576		mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
577	else if (ioat->alloc_order > ioat_get_alloc_order()) {
578		/* if the ring is idle, empty, and oversized try to step
579		 * down the size
580		 */
581		reshape_ring(ioat, ioat->alloc_order - 1);
582
583		/* keep shrinking until we get back to our minimum
584		 * default size
585		 */
586		if (ioat->alloc_order > ioat_get_alloc_order())
587			mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
588	}
589
590}
591
592static void ioat3_timer_event(unsigned long data)
593{
594	struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
595	struct ioat_chan_common *chan = &ioat->base;
596	dma_addr_t phys_complete;
597	u64 status;
598
599	status = ioat_chansts(chan);
600
601	/* when halted due to errors check for channel
602	 * programming errors before advancing the completion state
603	 */
604	if (is_ioat_halted(status)) {
605		u32 chanerr;
606
607		chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
608		dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
609			__func__, chanerr);
610		if (test_bit(IOAT_RUN, &chan->state))
611			BUG_ON(is_ioat_bug(chanerr));
612		else /* we never got off the ground */
613			return;
614	}
615
616	/* if we haven't made progress and we have already
617	 * acknowledged a pending completion once, then be more
618	 * forceful with a restart
619	 */
620	spin_lock_bh(&chan->cleanup_lock);
621	if (ioat_cleanup_preamble(chan, &phys_complete))
622		__cleanup(ioat, phys_complete);
623	else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
624		spin_lock_bh(&ioat->prep_lock);
625		ioat3_restart_channel(ioat);
626		spin_unlock_bh(&ioat->prep_lock);
627		spin_unlock_bh(&chan->cleanup_lock);
628		return;
629	} else {
630		set_bit(IOAT_COMPLETION_ACK, &chan->state);
631		mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
632	}
633
634
635	if (ioat2_ring_active(ioat))
636		mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
637	else {
638		spin_lock_bh(&ioat->prep_lock);
639		check_active(ioat);
640		spin_unlock_bh(&ioat->prep_lock);
641	}
642	spin_unlock_bh(&chan->cleanup_lock);
643}
644
645static enum dma_status
646ioat3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
647		struct dma_tx_state *txstate)
648{
649	struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
650	enum dma_status ret;
651
652	ret = dma_cookie_status(c, cookie, txstate);
653	if (ret == DMA_COMPLETE)
654		return ret;
655
656	ioat3_cleanup(ioat);
657
658	return dma_cookie_status(c, cookie, txstate);
659}
660
661static struct dma_async_tx_descriptor *
662__ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
663		      dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
664		      size_t len, unsigned long flags)
665{
666	struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
667	struct ioat_ring_ent *compl_desc;
668	struct ioat_ring_ent *desc;
669	struct ioat_ring_ent *ext;
670	size_t total_len = len;
671	struct ioat_xor_descriptor *xor;
672	struct ioat_xor_ext_descriptor *xor_ex = NULL;
673	struct ioat_dma_descriptor *hw;
674	int num_descs, with_ext, idx, i;
675	u32 offset = 0;
676	u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
677
678	BUG_ON(src_cnt < 2);
679
680	num_descs = ioat2_xferlen_to_descs(ioat, len);
681	/* we need 2x the number of descriptors to cover greater than 5
682	 * sources
683	 */
684	if (src_cnt > 5) {
685		with_ext = 1;
686		num_descs *= 2;
687	} else
688		with_ext = 0;
689
690	/* completion writes from the raid engine may pass completion
691	 * writes from the legacy engine, so we need one extra null
692	 * (legacy) descriptor to ensure all completion writes arrive in
693	 * order.
694	 */
695	if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs+1) == 0)
696		idx = ioat->head;
697	else
698		return NULL;
699	i = 0;
700	do {
701		struct ioat_raw_descriptor *descs[2];
702		size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
703		int s;
704
705		desc = ioat2_get_ring_ent(ioat, idx + i);
706		xor = desc->xor;
707
708		/* save a branch by unconditionally retrieving the
709		 * extended descriptor xor_set_src() knows to not write
710		 * to it in the single descriptor case
711		 */
712		ext = ioat2_get_ring_ent(ioat, idx + i + 1);
713		xor_ex = ext->xor_ex;
714
715		descs[0] = (struct ioat_raw_descriptor *) xor;
716		descs[1] = (struct ioat_raw_descriptor *) xor_ex;
717		for (s = 0; s < src_cnt; s++)
718			xor_set_src(descs, src[s], offset, s);
719		xor->size = xfer_size;
720		xor->dst_addr = dest + offset;
721		xor->ctl = 0;
722		xor->ctl_f.op = op;
723		xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
724
725		len -= xfer_size;
726		offset += xfer_size;
727		dump_desc_dbg(ioat, desc);
728	} while ((i += 1 + with_ext) < num_descs);
729
730	/* last xor descriptor carries the unmap parameters and fence bit */
731	desc->txd.flags = flags;
732	desc->len = total_len;
733	if (result)
734		desc->result = result;
735	xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
736
737	/* completion descriptor carries interrupt bit */
738	compl_desc = ioat2_get_ring_ent(ioat, idx + i);
739	compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
740	hw = compl_desc->hw;
741	hw->ctl = 0;
742	hw->ctl_f.null = 1;
743	hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
744	hw->ctl_f.compl_write = 1;
745	hw->size = NULL_DESC_BUFFER_SIZE;
746	dump_desc_dbg(ioat, compl_desc);
747
748	/* we leave the channel locked to ensure in order submission */
749	return &compl_desc->txd;
750}
751
752static struct dma_async_tx_descriptor *
753ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
754	       unsigned int src_cnt, size_t len, unsigned long flags)
755{
756	return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
757}
758
759static struct dma_async_tx_descriptor *
760ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
761		    unsigned int src_cnt, size_t len,
762		    enum sum_check_flags *result, unsigned long flags)
763{
764	/* the cleanup routine only sets bits on validate failure, it
765	 * does not clear bits on validate success... so clear it here
766	 */
767	*result = 0;
768
769	return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
770				     src_cnt - 1, len, flags);
771}
772
773static void
774dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
775{
776	struct device *dev = to_dev(&ioat->base);
777	struct ioat_pq_descriptor *pq = desc->pq;
778	struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
779	struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
780	int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
781	int i;
782
783	dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
784		" sz: %#10.8x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
785		" src_cnt: %d)\n",
786		desc_id(desc), (unsigned long long) desc->txd.phys,
787		(unsigned long long) (pq_ex ? pq_ex->next : pq->next),
788		desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
789		pq->ctl_f.compl_write,
790		pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
791		pq->ctl_f.src_cnt);
792	for (i = 0; i < src_cnt; i++)
793		dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
794			(unsigned long long) pq_get_src(descs, i), pq->coef[i]);
795	dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
796	dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
797	dev_dbg(dev, "\tNEXT: %#llx\n", pq->next);
798}
799
800static void dump_pq16_desc_dbg(struct ioat2_dma_chan *ioat,
801			       struct ioat_ring_ent *desc)
802{
803	struct device *dev = to_dev(&ioat->base);
804	struct ioat_pq_descriptor *pq = desc->pq;
805	struct ioat_raw_descriptor *descs[] = { (void *)pq,
806						(void *)pq,
807						(void *)pq };
808	int src_cnt = src16_cnt_to_sw(pq->ctl_f.src_cnt);
809	int i;
810
811	if (desc->sed) {
812		descs[1] = (void *)desc->sed->hw;
813		descs[2] = (void *)desc->sed->hw + 64;
814	}
815
816	dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
817		" sz: %#x ctl: %#x (op: %#x int: %d compl: %d pq: '%s%s'"
818		" src_cnt: %d)\n",
819		desc_id(desc), (unsigned long long) desc->txd.phys,
820		(unsigned long long) pq->next,
821		desc->txd.flags, pq->size, pq->ctl,
822		pq->ctl_f.op, pq->ctl_f.int_en,
823		pq->ctl_f.compl_write,
824		pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
825		pq->ctl_f.src_cnt);
826	for (i = 0; i < src_cnt; i++) {
827		dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
828			(unsigned long long) pq16_get_src(descs, i),
829			pq->coef[i]);
830	}
831	dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
832	dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
833}
834
835static struct dma_async_tx_descriptor *
836__ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
837		     const dma_addr_t *dst, const dma_addr_t *src,
838		     unsigned int src_cnt, const unsigned char *scf,
839		     size_t len, unsigned long flags)
840{
841	struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
842	struct ioat_chan_common *chan = &ioat->base;
843	struct ioatdma_device *device = chan->device;
844	struct ioat_ring_ent *compl_desc;
845	struct ioat_ring_ent *desc;
846	struct ioat_ring_ent *ext;
847	size_t total_len = len;
848	struct ioat_pq_descriptor *pq;
849	struct ioat_pq_ext_descriptor *pq_ex = NULL;
850	struct ioat_dma_descriptor *hw;
851	u32 offset = 0;
852	u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
853	int i, s, idx, with_ext, num_descs;
854	int cb32 = (device->version < IOAT_VER_3_3) ? 1 : 0;
855
856	dev_dbg(to_dev(chan), "%s\n", __func__);
857	/* the engine requires at least two sources (we provide
858	 * at least 1 implied source in the DMA_PREP_CONTINUE case)
859	 */
860	BUG_ON(src_cnt + dmaf_continue(flags) < 2);
861
862	num_descs = ioat2_xferlen_to_descs(ioat, len);
863	/* we need 2x the number of descriptors to cover greater than 3
864	 * sources (we need 1 extra source in the q-only continuation
865	 * case and 3 extra sources in the p+q continuation case.
866	 */
867	if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
868	    (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
869		with_ext = 1;
870		num_descs *= 2;
871	} else
872		with_ext = 0;
873
874	/* completion writes from the raid engine may pass completion
875	 * writes from the legacy engine, so we need one extra null
876	 * (legacy) descriptor to ensure all completion writes arrive in
877	 * order.
878	 */
879	if (likely(num_descs) &&
880	    ioat2_check_space_lock(ioat, num_descs + cb32) == 0)
881		idx = ioat->head;
882	else
883		return NULL;
884	i = 0;
885	do {
886		struct ioat_raw_descriptor *descs[2];
887		size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
888
889		desc = ioat2_get_ring_ent(ioat, idx + i);
890		pq = desc->pq;
891
892		/* save a branch by unconditionally retrieving the
893		 * extended descriptor pq_set_src() knows to not write
894		 * to it in the single descriptor case
895		 */
896		ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
897		pq_ex = ext->pq_ex;
898
899		descs[0] = (struct ioat_raw_descriptor *) pq;
900		descs[1] = (struct ioat_raw_descriptor *) pq_ex;
901
902		for (s = 0; s < src_cnt; s++)
903			pq_set_src(descs, src[s], offset, scf[s], s);
904
905		/* see the comment for dma_maxpq in include/linux/dmaengine.h */
906		if (dmaf_p_disabled_continue(flags))
907			pq_set_src(descs, dst[1], offset, 1, s++);
908		else if (dmaf_continue(flags)) {
909			pq_set_src(descs, dst[0], offset, 0, s++);
910			pq_set_src(descs, dst[1], offset, 1, s++);
911			pq_set_src(descs, dst[1], offset, 0, s++);
912		}
913		pq->size = xfer_size;
914		pq->p_addr = dst[0] + offset;
915		pq->q_addr = dst[1] + offset;
916		pq->ctl = 0;
917		pq->ctl_f.op = op;
918		/* we turn on descriptor write back error status */
919		if (device->cap & IOAT_CAP_DWBES)
920			pq->ctl_f.wb_en = result ? 1 : 0;
921		pq->ctl_f.src_cnt = src_cnt_to_hw(s);
922		pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
923		pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
924
925		len -= xfer_size;
926		offset += xfer_size;
927	} while ((i += 1 + with_ext) < num_descs);
928
929	/* last pq descriptor carries the unmap parameters and fence bit */
930	desc->txd.flags = flags;
931	desc->len = total_len;
932	if (result)
933		desc->result = result;
934	pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
935	dump_pq_desc_dbg(ioat, desc, ext);
936
937	if (!cb32) {
938		pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
939		pq->ctl_f.compl_write = 1;
940		compl_desc = desc;
941	} else {
942		/* completion descriptor carries interrupt bit */
943		compl_desc = ioat2_get_ring_ent(ioat, idx + i);
944		compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
945		hw = compl_desc->hw;
946		hw->ctl = 0;
947		hw->ctl_f.null = 1;
948		hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
949		hw->ctl_f.compl_write = 1;
950		hw->size = NULL_DESC_BUFFER_SIZE;
951		dump_desc_dbg(ioat, compl_desc);
952	}
953
954
955	/* we leave the channel locked to ensure in order submission */
956	return &compl_desc->txd;
957}
958
959static struct dma_async_tx_descriptor *
960__ioat3_prep_pq16_lock(struct dma_chan *c, enum sum_check_flags *result,
961		       const dma_addr_t *dst, const dma_addr_t *src,
962		       unsigned int src_cnt, const unsigned char *scf,
963		       size_t len, unsigned long flags)
964{
965	struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
966	struct ioat_chan_common *chan = &ioat->base;
967	struct ioatdma_device *device = chan->device;
968	struct ioat_ring_ent *desc;
969	size_t total_len = len;
970	struct ioat_pq_descriptor *pq;
971	u32 offset = 0;
972	u8 op;
973	int i, s, idx, num_descs;
974
975	/* this function is only called with 9-16 sources */
976	op = result ? IOAT_OP_PQ_VAL_16S : IOAT_OP_PQ_16S;
977
978	dev_dbg(to_dev(chan), "%s\n", __func__);
979
980	num_descs = ioat2_xferlen_to_descs(ioat, len);
981
982	/*
983	 * 16 source pq is only available on cb3.3 and has no completion
984	 * write hw bug.
985	 */
986	if (num_descs && ioat2_check_space_lock(ioat, num_descs) == 0)
987		idx = ioat->head;
988	else
989		return NULL;
990
991	i = 0;
992
993	do {
994		struct ioat_raw_descriptor *descs[4];
995		size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
996
997		desc = ioat2_get_ring_ent(ioat, idx + i);
998		pq = desc->pq;
999
1000		descs[0] = (struct ioat_raw_descriptor *) pq;
1001
1002		desc->sed = ioat3_alloc_sed(device, (src_cnt-2) >> 3);
1003		if (!desc->sed) {
1004			dev_err(to_dev(chan),
1005				"%s: no free sed entries\n", __func__);
1006			return NULL;
1007		}
1008
1009		pq->sed_addr = desc->sed->dma;
1010		desc->sed->parent = desc;
1011
1012		descs[1] = (struct ioat_raw_descriptor *)desc->sed->hw;
1013		descs[2] = (void *)descs[1] + 64;
1014
1015		for (s = 0; s < src_cnt; s++)
1016			pq16_set_src(descs, src[s], offset, scf[s], s);
1017
1018		/* see the comment for dma_maxpq in include/linux/dmaengine.h */
1019		if (dmaf_p_disabled_continue(flags))
1020			pq16_set_src(descs, dst[1], offset, 1, s++);
1021		else if (dmaf_continue(flags)) {
1022			pq16_set_src(descs, dst[0], offset, 0, s++);
1023			pq16_set_src(descs, dst[1], offset, 1, s++);
1024			pq16_set_src(descs, dst[1], offset, 0, s++);
1025		}
1026
1027		pq->size = xfer_size;
1028		pq->p_addr = dst[0] + offset;
1029		pq->q_addr = dst[1] + offset;
1030		pq->ctl = 0;
1031		pq->ctl_f.op = op;
1032		pq->ctl_f.src_cnt = src16_cnt_to_hw(s);
1033		/* we turn on descriptor write back error status */
1034		if (device->cap & IOAT_CAP_DWBES)
1035			pq->ctl_f.wb_en = result ? 1 : 0;
1036		pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
1037		pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
1038
1039		len -= xfer_size;
1040		offset += xfer_size;
1041	} while (++i < num_descs);
1042
1043	/* last pq descriptor carries the unmap parameters and fence bit */
1044	desc->txd.flags = flags;
1045	desc->len = total_len;
1046	if (result)
1047		desc->result = result;
1048	pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
1049
1050	/* with cb3.3 we should be able to do completion w/o a null desc */
1051	pq->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
1052	pq->ctl_f.compl_write = 1;
1053
1054	dump_pq16_desc_dbg(ioat, desc);
1055
1056	/* we leave the channel locked to ensure in order submission */
1057	return &desc->txd;
1058}
1059
1060static int src_cnt_flags(unsigned int src_cnt, unsigned long flags)
1061{
1062	if (dmaf_p_disabled_continue(flags))
1063		return src_cnt + 1;
1064	else if (dmaf_continue(flags))
1065		return src_cnt + 3;
1066	else
1067		return src_cnt;
1068}
1069
1070static struct dma_async_tx_descriptor *
1071ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
1072	      unsigned int src_cnt, const unsigned char *scf, size_t len,
1073	      unsigned long flags)
1074{
1075	/* specify valid address for disabled result */
1076	if (flags & DMA_PREP_PQ_DISABLE_P)
1077		dst[0] = dst[1];
1078	if (flags & DMA_PREP_PQ_DISABLE_Q)
1079		dst[1] = dst[0];
1080
1081	/* handle the single source multiply case from the raid6
1082	 * recovery path
1083	 */
1084	if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
1085		dma_addr_t single_source[2];
1086		unsigned char single_source_coef[2];
1087
1088		BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
1089		single_source[0] = src[0];
1090		single_source[1] = src[0];
1091		single_source_coef[0] = scf[0];
1092		single_source_coef[1] = 0;
1093
1094		return src_cnt_flags(src_cnt, flags) > 8 ?
1095			__ioat3_prep_pq16_lock(chan, NULL, dst, single_source,
1096					       2, single_source_coef, len,
1097					       flags) :
1098			__ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
1099					     single_source_coef, len, flags);
1100
1101	} else {
1102		return src_cnt_flags(src_cnt, flags) > 8 ?
1103			__ioat3_prep_pq16_lock(chan, NULL, dst, src, src_cnt,
1104					       scf, len, flags) :
1105			__ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt,
1106					     scf, len, flags);
1107	}
1108}
1109
1110static struct dma_async_tx_descriptor *
1111ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
1112		  unsigned int src_cnt, const unsigned char *scf, size_t len,
1113		  enum sum_check_flags *pqres, unsigned long flags)
1114{
1115	/* specify valid address for disabled result */
1116	if (flags & DMA_PREP_PQ_DISABLE_P)
1117		pq[0] = pq[1];
1118	if (flags & DMA_PREP_PQ_DISABLE_Q)
1119		pq[1] = pq[0];
1120
1121	/* the cleanup routine only sets bits on validate failure, it
1122	 * does not clear bits on validate success... so clear it here
1123	 */
1124	*pqres = 0;
1125
1126	return src_cnt_flags(src_cnt, flags) > 8 ?
1127		__ioat3_prep_pq16_lock(chan, pqres, pq, src, src_cnt, scf, len,
1128				       flags) :
1129		__ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
1130				     flags);
1131}
1132
1133static struct dma_async_tx_descriptor *
1134ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
1135		 unsigned int src_cnt, size_t len, unsigned long flags)
1136{
1137	unsigned char scf[src_cnt];
1138	dma_addr_t pq[2];
1139
1140	memset(scf, 0, src_cnt);
1141	pq[0] = dst;
1142	flags |= DMA_PREP_PQ_DISABLE_Q;
1143	pq[1] = dst; /* specify valid address for disabled result */
1144
1145	return src_cnt_flags(src_cnt, flags) > 8 ?
1146		__ioat3_prep_pq16_lock(chan, NULL, pq, src, src_cnt, scf, len,
1147				       flags) :
1148		__ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
1149				     flags);
1150}
1151
1152static struct dma_async_tx_descriptor *
1153ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
1154		     unsigned int src_cnt, size_t len,
1155		     enum sum_check_flags *result, unsigned long flags)
1156{
1157	unsigned char scf[src_cnt];
1158	dma_addr_t pq[2];
1159
1160	/* the cleanup routine only sets bits on validate failure, it
1161	 * does not clear bits on validate success... so clear it here
1162	 */
1163	*result = 0;
1164
1165	memset(scf, 0, src_cnt);
1166	pq[0] = src[0];
1167	flags |= DMA_PREP_PQ_DISABLE_Q;
1168	pq[1] = pq[0]; /* specify valid address for disabled result */
1169
1170	return src_cnt_flags(src_cnt, flags) > 8 ?
1171		__ioat3_prep_pq16_lock(chan, result, pq, &src[1], src_cnt - 1,
1172				       scf, len, flags) :
1173		__ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1,
1174				     scf, len, flags);
1175}
1176
1177static struct dma_async_tx_descriptor *
1178ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
1179{
1180	struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
1181	struct ioat_ring_ent *desc;
1182	struct ioat_dma_descriptor *hw;
1183
1184	if (ioat2_check_space_lock(ioat, 1) == 0)
1185		desc = ioat2_get_ring_ent(ioat, ioat->head);
1186	else
1187		return NULL;
1188
1189	hw = desc->hw;
1190	hw->ctl = 0;
1191	hw->ctl_f.null = 1;
1192	hw->ctl_f.int_en = 1;
1193	hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
1194	hw->ctl_f.compl_write = 1;
1195	hw->size = NULL_DESC_BUFFER_SIZE;
1196	hw->src_addr = 0;
1197	hw->dst_addr = 0;
1198
1199	desc->txd.flags = flags;
1200	desc->len = 1;
1201
1202	dump_desc_dbg(ioat, desc);
1203
1204	/* we leave the channel locked to ensure in order submission */
1205	return &desc->txd;
1206}
1207
1208static void ioat3_dma_test_callback(void *dma_async_param)
1209{
1210	struct completion *cmp = dma_async_param;
1211
1212	complete(cmp);
1213}
1214
1215#define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
1216static int ioat_xor_val_self_test(struct ioatdma_device *device)
1217{
1218	int i, src_idx;
1219	struct page *dest;
1220	struct page *xor_srcs[IOAT_NUM_SRC_TEST];
1221	struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
1222	dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
1223	dma_addr_t dest_dma;
1224	struct dma_async_tx_descriptor *tx;
1225	struct dma_chan *dma_chan;
1226	dma_cookie_t cookie;
1227	u8 cmp_byte = 0;
1228	u32 cmp_word;
1229	u32 xor_val_result;
1230	int err = 0;
1231	struct completion cmp;
1232	unsigned long tmo;
1233	struct device *dev = &device->pdev->dev;
1234	struct dma_device *dma = &device->common;
1235	u8 op = 0;
1236
1237	dev_dbg(dev, "%s\n", __func__);
1238
1239	if (!dma_has_cap(DMA_XOR, dma->cap_mask))
1240		return 0;
1241
1242	for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
1243		xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1244		if (!xor_srcs[src_idx]) {
1245			while (src_idx--)
1246				__free_page(xor_srcs[src_idx]);
1247			return -ENOMEM;
1248		}
1249	}
1250
1251	dest = alloc_page(GFP_KERNEL);
1252	if (!dest) {
1253		while (src_idx--)
1254			__free_page(xor_srcs[src_idx]);
1255		return -ENOMEM;
1256	}
1257
1258	/* Fill in src buffers */
1259	for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
1260		u8 *ptr = page_address(xor_srcs[src_idx]);
1261		for (i = 0; i < PAGE_SIZE; i++)
1262			ptr[i] = (1 << src_idx);
1263	}
1264
1265	for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
1266		cmp_byte ^= (u8) (1 << src_idx);
1267
1268	cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1269			(cmp_byte << 8) | cmp_byte;
1270
1271	memset(page_address(dest), 0, PAGE_SIZE);
1272
1273	dma_chan = container_of(dma->channels.next, struct dma_chan,
1274				device_node);
1275	if (dma->device_alloc_chan_resources(dma_chan) < 1) {
1276		err = -ENODEV;
1277		goto out;
1278	}
1279
1280	/* test xor */
1281	op = IOAT_OP_XOR;
1282
1283	dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1284	if (dma_mapping_error(dev, dest_dma))
1285		goto dma_unmap;
1286
1287	for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1288		dma_srcs[i] = DMA_ERROR_CODE;
1289	for (i = 0; i < IOAT_NUM_SRC_TEST; i++) {
1290		dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
1291					   DMA_TO_DEVICE);
1292		if (dma_mapping_error(dev, dma_srcs[i]))
1293			goto dma_unmap;
1294	}
1295	tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1296				      IOAT_NUM_SRC_TEST, PAGE_SIZE,
1297				      DMA_PREP_INTERRUPT);
1298
1299	if (!tx) {
1300		dev_err(dev, "Self-test xor prep failed\n");
1301		err = -ENODEV;
1302		goto dma_unmap;
1303	}
1304
1305	async_tx_ack(tx);
1306	init_completion(&cmp);
1307	tx->callback = ioat3_dma_test_callback;
1308	tx->callback_param = &cmp;
1309	cookie = tx->tx_submit(tx);
1310	if (cookie < 0) {
1311		dev_err(dev, "Self-test xor setup failed\n");
1312		err = -ENODEV;
1313		goto dma_unmap;
1314	}
1315	dma->device_issue_pending(dma_chan);
1316
1317	tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1318
1319	if (tmo == 0 ||
1320	    dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1321		dev_err(dev, "Self-test xor timed out\n");
1322		err = -ENODEV;
1323		goto dma_unmap;
1324	}
1325
1326	for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1327		dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
1328
1329	dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1330	for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1331		u32 *ptr = page_address(dest);
1332		if (ptr[i] != cmp_word) {
1333			dev_err(dev, "Self-test xor failed compare\n");
1334			err = -ENODEV;
1335			goto free_resources;
1336		}
1337	}
1338	dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1339
1340	dma_unmap_page(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
1341
1342	/* skip validate if the capability is not present */
1343	if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
1344		goto free_resources;
1345
1346	op = IOAT_OP_XOR_VAL;
1347
1348	/* validate the sources with the destintation page */
1349	for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1350		xor_val_srcs[i] = xor_srcs[i];
1351	xor_val_srcs[i] = dest;
1352
1353	xor_val_result = 1;
1354
1355	for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1356		dma_srcs[i] = DMA_ERROR_CODE;
1357	for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) {
1358		dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1359					   DMA_TO_DEVICE);
1360		if (dma_mapping_error(dev, dma_srcs[i]))
1361			goto dma_unmap;
1362	}
1363	tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1364					  IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1365					  &xor_val_result, DMA_PREP_INTERRUPT);
1366	if (!tx) {
1367		dev_err(dev, "Self-test zero prep failed\n");
1368		err = -ENODEV;
1369		goto dma_unmap;
1370	}
1371
1372	async_tx_ack(tx);
1373	init_completion(&cmp);
1374	tx->callback = ioat3_dma_test_callback;
1375	tx->callback_param = &cmp;
1376	cookie = tx->tx_submit(tx);
1377	if (cookie < 0) {
1378		dev_err(dev, "Self-test zero setup failed\n");
1379		err = -ENODEV;
1380		goto dma_unmap;
1381	}
1382	dma->device_issue_pending(dma_chan);
1383
1384	tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1385
1386	if (tmo == 0 ||
1387	    dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1388		dev_err(dev, "Self-test validate timed out\n");
1389		err = -ENODEV;
1390		goto dma_unmap;
1391	}
1392
1393	for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1394		dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
1395
1396	if (xor_val_result != 0) {
1397		dev_err(dev, "Self-test validate failed compare\n");
1398		err = -ENODEV;
1399		goto free_resources;
1400	}
1401
1402	memset(page_address(dest), 0, PAGE_SIZE);
1403
1404	/* test for non-zero parity sum */
1405	op = IOAT_OP_XOR_VAL;
1406
1407	xor_val_result = 0;
1408	for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1409		dma_srcs[i] = DMA_ERROR_CODE;
1410	for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++) {
1411		dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1412					   DMA_TO_DEVICE);
1413		if (dma_mapping_error(dev, dma_srcs[i]))
1414			goto dma_unmap;
1415	}
1416	tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1417					  IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1418					  &xor_val_result, DMA_PREP_INTERRUPT);
1419	if (!tx) {
1420		dev_err(dev, "Self-test 2nd zero prep failed\n");
1421		err = -ENODEV;
1422		goto dma_unmap;
1423	}
1424
1425	async_tx_ack(tx);
1426	init_completion(&cmp);
1427	tx->callback = ioat3_dma_test_callback;
1428	tx->callback_param = &cmp;
1429	cookie = tx->tx_submit(tx);
1430	if (cookie < 0) {
1431		dev_err(dev, "Self-test  2nd zero setup failed\n");
1432		err = -ENODEV;
1433		goto dma_unmap;
1434	}
1435	dma->device_issue_pending(dma_chan);
1436
1437	tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1438
1439	if (tmo == 0 ||
1440	    dma->device_tx_status(dma_chan, cookie, NULL) != DMA_COMPLETE) {
1441		dev_err(dev, "Self-test 2nd validate timed out\n");
1442		err = -ENODEV;
1443		goto dma_unmap;
1444	}
1445
1446	if (xor_val_result != SUM_CHECK_P_RESULT) {
1447		dev_err(dev, "Self-test validate failed compare\n");
1448		err = -ENODEV;
1449		goto dma_unmap;
1450	}
1451
1452	for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1453		dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE, DMA_TO_DEVICE);
1454
1455	goto free_resources;
1456dma_unmap:
1457	if (op == IOAT_OP_XOR) {
1458		if (dest_dma != DMA_ERROR_CODE)
1459			dma_unmap_page(dev, dest_dma, PAGE_SIZE,
1460				       DMA_FROM_DEVICE);
1461		for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
1462			if (dma_srcs[i] != DMA_ERROR_CODE)
1463				dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE,
1464					       DMA_TO_DEVICE);
1465	} else if (op == IOAT_OP_XOR_VAL) {
1466		for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1467			if (dma_srcs[i] != DMA_ERROR_CODE)
1468				dma_unmap_page(dev, dma_srcs[i], PAGE_SIZE,
1469					       DMA_TO_DEVICE);
1470	}
1471free_resources:
1472	dma->device_free_chan_resources(dma_chan);
1473out:
1474	src_idx = IOAT_NUM_SRC_TEST;
1475	while (src_idx--)
1476		__free_page(xor_srcs[src_idx]);
1477	__free_page(dest);
1478	return err;
1479}
1480
1481static int ioat3_dma_self_test(struct ioatdma_device *device)
1482{
1483	int rc = ioat_dma_self_test(device);
1484
1485	if (rc)
1486		return rc;
1487
1488	rc = ioat_xor_val_self_test(device);
1489	if (rc)
1490		return rc;
1491
1492	return 0;
1493}
1494
1495static int ioat3_irq_reinit(struct ioatdma_device *device)
1496{
1497	struct pci_dev *pdev = device->pdev;
1498	int irq = pdev->irq, i;
1499
1500	if (!is_bwd_ioat(pdev))
1501		return 0;
1502
1503	switch (device->irq_mode) {
1504	case IOAT_MSIX:
1505		for (i = 0; i < device->common.chancnt; i++) {
1506			struct msix_entry *msix = &device->msix_entries[i];
1507			struct ioat_chan_common *chan;
1508
1509			chan = ioat_chan_by_index(device, i);
1510			devm_free_irq(&pdev->dev, msix->vector, chan);
1511		}
1512
1513		pci_disable_msix(pdev);
1514		break;
1515	case IOAT_MSI:
1516		pci_disable_msi(pdev);
1517		/* fall through */
1518	case IOAT_INTX:
1519		devm_free_irq(&pdev->dev, irq, device);
1520		break;
1521	default:
1522		return 0;
1523	}
1524	device->irq_mode = IOAT_NOIRQ;
1525
1526	return ioat_dma_setup_interrupts(device);
1527}
1528
1529static int ioat3_reset_hw(struct ioat_chan_common *chan)
1530{
1531	/* throw away whatever the channel was doing and get it
1532	 * initialized, with ioat3 specific workarounds
1533	 */
1534	struct ioatdma_device *device = chan->device;
1535	struct pci_dev *pdev = device->pdev;
1536	u32 chanerr;
1537	u16 dev_id;
1538	int err;
1539
1540	ioat2_quiesce(chan, msecs_to_jiffies(100));
1541
1542	chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
1543	writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
1544
1545	if (device->version < IOAT_VER_3_3) {
1546		/* clear any pending errors */
1547		err = pci_read_config_dword(pdev,
1548				IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
1549		if (err) {
1550			dev_err(&pdev->dev,
1551				"channel error register unreachable\n");
1552			return err;
1553		}
1554		pci_write_config_dword(pdev,
1555				IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
1556
1557		/* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
1558		 * (workaround for spurious config parity error after restart)
1559		 */
1560		pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
1561		if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0) {
1562			pci_write_config_dword(pdev,
1563					       IOAT_PCI_DMAUNCERRSTS_OFFSET,
1564					       0x10);
1565		}
1566	}
1567
1568	err = ioat2_reset_sync(chan, msecs_to_jiffies(200));
1569	if (!err)
1570		err = ioat3_irq_reinit(device);
1571
1572	if (err)
1573		dev_err(&pdev->dev, "Failed to reset: %d\n", err);
1574
1575	return err;
1576}
1577
1578static void ioat3_intr_quirk(struct ioatdma_device *device)
1579{
1580	struct dma_device *dma;
1581	struct dma_chan *c;
1582	struct ioat_chan_common *chan;
1583	u32 errmask;
1584
1585	dma = &device->common;
1586
1587	/*
1588	 * if we have descriptor write back error status, we mask the
1589	 * error interrupts
1590	 */
1591	if (device->cap & IOAT_CAP_DWBES) {
1592		list_for_each_entry(c, &dma->channels, device_node) {
1593			chan = to_chan_common(c);
1594			errmask = readl(chan->reg_base +
1595					IOAT_CHANERR_MASK_OFFSET);
1596			errmask |= IOAT_CHANERR_XOR_P_OR_CRC_ERR |
1597				   IOAT_CHANERR_XOR_Q_ERR;
1598			writel(errmask, chan->reg_base +
1599					IOAT_CHANERR_MASK_OFFSET);
1600		}
1601	}
1602}
1603
1604int ioat3_dma_probe(struct ioatdma_device *device, int dca)
1605{
1606	struct pci_dev *pdev = device->pdev;
1607	int dca_en = system_has_dca_enabled(pdev);
1608	struct dma_device *dma;
1609	struct dma_chan *c;
1610	struct ioat_chan_common *chan;
1611	bool is_raid_device = false;
1612	int err;
1613
1614	device->enumerate_channels = ioat2_enumerate_channels;
1615	device->reset_hw = ioat3_reset_hw;
1616	device->self_test = ioat3_dma_self_test;
1617	device->intr_quirk = ioat3_intr_quirk;
1618	dma = &device->common;
1619	dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
1620	dma->device_issue_pending = ioat2_issue_pending;
1621	dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
1622	dma->device_free_chan_resources = ioat2_free_chan_resources;
1623
1624	dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
1625	dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
1626
1627	device->cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
1628
1629	if (is_xeon_cb32(pdev) || is_bwd_noraid(pdev))
1630		device->cap &= ~(IOAT_CAP_XOR | IOAT_CAP_PQ | IOAT_CAP_RAID16SS);
1631
1632	/* dca is incompatible with raid operations */
1633	if (dca_en && (device->cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
1634		device->cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
1635
1636	if (device->cap & IOAT_CAP_XOR) {
1637		is_raid_device = true;
1638		dma->max_xor = 8;
1639
1640		dma_cap_set(DMA_XOR, dma->cap_mask);
1641		dma->device_prep_dma_xor = ioat3_prep_xor;
1642
1643		dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1644		dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
1645	}
1646
1647	if (device->cap & IOAT_CAP_PQ) {
1648		is_raid_device = true;
1649
1650		dma->device_prep_dma_pq = ioat3_prep_pq;
1651		dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
1652		dma_cap_set(DMA_PQ, dma->cap_mask);
1653		dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
1654
1655		if (device->cap & IOAT_CAP_RAID16SS) {
1656			dma_set_maxpq(dma, 16, 0);
1657		} else {
1658			dma_set_maxpq(dma, 8, 0);
1659		}
1660
1661		if (!(device->cap & IOAT_CAP_XOR)) {
1662			dma->device_prep_dma_xor = ioat3_prep_pqxor;
1663			dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
1664			dma_cap_set(DMA_XOR, dma->cap_mask);
1665			dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1666
1667			if (device->cap & IOAT_CAP_RAID16SS) {
1668				dma->max_xor = 16;
1669			} else {
1670				dma->max_xor = 8;
1671			}
1672		}
1673	}
1674
1675	dma->device_tx_status = ioat3_tx_status;
1676	device->cleanup_fn = ioat3_cleanup_event;
1677	device->timer_fn = ioat3_timer_event;
1678
1679	/* starting with CB3.3 super extended descriptors are supported */
1680	if (device->cap & IOAT_CAP_RAID16SS) {
1681		char pool_name[14];
1682		int i;
1683
1684		for (i = 0; i < MAX_SED_POOLS; i++) {
1685			snprintf(pool_name, 14, "ioat_hw%d_sed", i);
1686
1687			/* allocate SED DMA pool */
1688			device->sed_hw_pool[i] = dmam_pool_create(pool_name,
1689					&pdev->dev,
1690					SED_SIZE * (i + 1), 64, 0);
1691			if (!device->sed_hw_pool[i])
1692				return -ENOMEM;
1693
1694		}
1695	}
1696
1697	err = ioat_probe(device);
1698	if (err)
1699		return err;
1700
1701	list_for_each_entry(c, &dma->channels, device_node) {
1702		chan = to_chan_common(c);
1703		writel(IOAT_DMA_DCA_ANY_CPU,
1704		       chan->reg_base + IOAT_DCACTRL_OFFSET);
1705	}
1706
1707	err = ioat_register(device);
1708	if (err)
1709		return err;
1710
1711	ioat_kobject_add(device, &ioat2_ktype);
1712
1713	if (dca)
1714		device->dca = ioat3_dca_init(pdev, device->reg_base);
1715
1716	return 0;
1717}
1718