1 /*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License as published by the
16 * Free Software Foundation; either version 2 of the License, or (at your
17 * option) any later version.
18 *
19 *
20 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 *
31 * You should have received a copy of the GNU General Public License along
32 * with this program; if not, write to the Free Software Foundation, Inc.,
33 * 675 Mass Ave, Cambridge, MA 02139, USA.
34 */
35
36 /*
37 * This file holds the "policy" for the interface to the SMI state
38 * machine. It does the configuration, handles timers and interrupts,
39 * and drives the real SMI state machine.
40 */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/pnp.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72
73 #ifdef CONFIG_PARISC
74 #include <asm/hardware.h> /* for register_parisc_driver() stuff */
75 #include <asm/parisc-device.h>
76 #endif
77
78 #define PFX "ipmi_si: "
79
80 /* Measure times between events in the driver. */
81 #undef DEBUG_TIMING
82
83 /* Call every 10 ms. */
84 #define SI_TIMEOUT_TIME_USEC 10000
85 #define SI_USEC_PER_JIFFY (1000000/HZ)
86 #define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87 #define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
89
90 enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_GETTING_MESSAGES,
96 SI_CHECKING_ENABLES,
97 SI_SETTING_ENABLES
98 /* FIXME - add watchdog stuff. */
99 };
100
101 /* Some BT-specific defines we need here. */
102 #define IPMI_BT_INTMASK_REG 2
103 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
104 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
105
106 enum si_type {
107 SI_KCS, SI_SMIC, SI_BT
108 };
109 static char *si_to_str[] = { "kcs", "smic", "bt" };
110
111 #define DEVICE_NAME "ipmi_si"
112
113 static struct platform_driver ipmi_driver;
114
115 /*
116 * Indexes into stats[] in smi_info below.
117 */
118 enum si_stat_indexes {
119 /*
120 * Number of times the driver requested a timer while an operation
121 * was in progress.
122 */
123 SI_STAT_short_timeouts = 0,
124
125 /*
126 * Number of times the driver requested a timer while nothing was in
127 * progress.
128 */
129 SI_STAT_long_timeouts,
130
131 /* Number of times the interface was idle while being polled. */
132 SI_STAT_idles,
133
134 /* Number of interrupts the driver handled. */
135 SI_STAT_interrupts,
136
137 /* Number of time the driver got an ATTN from the hardware. */
138 SI_STAT_attentions,
139
140 /* Number of times the driver requested flags from the hardware. */
141 SI_STAT_flag_fetches,
142
143 /* Number of times the hardware didn't follow the state machine. */
144 SI_STAT_hosed_count,
145
146 /* Number of completed messages. */
147 SI_STAT_complete_transactions,
148
149 /* Number of IPMI events received from the hardware. */
150 SI_STAT_events,
151
152 /* Number of watchdog pretimeouts. */
153 SI_STAT_watchdog_pretimeouts,
154
155 /* Number of asynchronous messages received. */
156 SI_STAT_incoming_messages,
157
158
159 /* This *must* remain last, add new values above this. */
160 SI_NUM_STATS
161 };
162
163 struct smi_info {
164 int intf_num;
165 ipmi_smi_t intf;
166 struct si_sm_data *si_sm;
167 struct si_sm_handlers *handlers;
168 enum si_type si_type;
169 spinlock_t si_lock;
170 struct ipmi_smi_msg *waiting_msg;
171 struct ipmi_smi_msg *curr_msg;
172 enum si_intf_state si_state;
173
174 /*
175 * Used to handle the various types of I/O that can occur with
176 * IPMI
177 */
178 struct si_sm_io io;
179 int (*io_setup)(struct smi_info *info);
180 void (*io_cleanup)(struct smi_info *info);
181 int (*irq_setup)(struct smi_info *info);
182 void (*irq_cleanup)(struct smi_info *info);
183 unsigned int io_size;
184 enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
185 void (*addr_source_cleanup)(struct smi_info *info);
186 void *addr_source_data;
187
188 /*
189 * Per-OEM handler, called from handle_flags(). Returns 1
190 * when handle_flags() needs to be re-run or 0 indicating it
191 * set si_state itself.
192 */
193 int (*oem_data_avail_handler)(struct smi_info *smi_info);
194
195 /*
196 * Flags from the last GET_MSG_FLAGS command, used when an ATTN
197 * is set to hold the flags until we are done handling everything
198 * from the flags.
199 */
200 #define RECEIVE_MSG_AVAIL 0x01
201 #define EVENT_MSG_BUFFER_FULL 0x02
202 #define WDT_PRE_TIMEOUT_INT 0x08
203 #define OEM0_DATA_AVAIL 0x20
204 #define OEM1_DATA_AVAIL 0x40
205 #define OEM2_DATA_AVAIL 0x80
206 #define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
207 OEM1_DATA_AVAIL | \
208 OEM2_DATA_AVAIL)
209 unsigned char msg_flags;
210
211 /* Does the BMC have an event buffer? */
212 bool has_event_buffer;
213
214 /*
215 * If set to true, this will request events the next time the
216 * state machine is idle.
217 */
218 atomic_t req_events;
219
220 /*
221 * If true, run the state machine to completion on every send
222 * call. Generally used after a panic to make sure stuff goes
223 * out.
224 */
225 bool run_to_completion;
226
227 /* The I/O port of an SI interface. */
228 int port;
229
230 /*
231 * The space between start addresses of the two ports. For
232 * instance, if the first port is 0xca2 and the spacing is 4, then
233 * the second port is 0xca6.
234 */
235 unsigned int spacing;
236
237 /* zero if no irq; */
238 int irq;
239
240 /* The timer for this si. */
241 struct timer_list si_timer;
242
243 /* This flag is set, if the timer is running (timer_pending() isn't enough) */
244 bool timer_running;
245
246 /* The time (in jiffies) the last timeout occurred at. */
247 unsigned long last_timeout_jiffies;
248
249 /* Are we waiting for the events, pretimeouts, received msgs? */
250 atomic_t need_watch;
251
252 /*
253 * The driver will disable interrupts when it gets into a
254 * situation where it cannot handle messages due to lack of
255 * memory. Once that situation clears up, it will re-enable
256 * interrupts.
257 */
258 bool interrupt_disabled;
259
260 /*
261 * Does the BMC support events?
262 */
263 bool supports_event_msg_buff;
264
265 /*
266 * Can we clear the global enables receive irq bit?
267 */
268 bool cannot_clear_recv_irq_bit;
269
270 /*
271 * Did we get an attention that we did not handle?
272 */
273 bool got_attn;
274
275 /* From the get device id response... */
276 struct ipmi_device_id device_id;
277
278 /* Driver model stuff. */
279 struct device *dev;
280 struct platform_device *pdev;
281
282 /*
283 * True if we allocated the device, false if it came from
284 * someplace else (like PCI).
285 */
286 bool dev_registered;
287
288 /* Slave address, could be reported from DMI. */
289 unsigned char slave_addr;
290
291 /* Counters and things for the proc filesystem. */
292 atomic_t stats[SI_NUM_STATS];
293
294 struct task_struct *thread;
295
296 struct list_head link;
297 union ipmi_smi_info_union addr_info;
298 };
299
300 #define smi_inc_stat(smi, stat) \
301 atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
302 #define smi_get_stat(smi, stat) \
303 ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
304
305 #define SI_MAX_PARMS 4
306
307 static int force_kipmid[SI_MAX_PARMS];
308 static int num_force_kipmid;
309 #ifdef CONFIG_PCI
310 static bool pci_registered;
311 #endif
312 #ifdef CONFIG_ACPI
313 static bool pnp_registered;
314 #endif
315 #ifdef CONFIG_PARISC
316 static bool parisc_registered;
317 #endif
318
319 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
320 static int num_max_busy_us;
321
322 static bool unload_when_empty = true;
323
324 static int add_smi(struct smi_info *smi);
325 static int try_smi_init(struct smi_info *smi);
326 static void cleanup_one_si(struct smi_info *to_clean);
327 static void cleanup_ipmi_si(void);
328
329 #ifdef DEBUG_TIMING
debug_timestamp(char * msg)330 void debug_timestamp(char *msg)
331 {
332 struct timespec64 t;
333
334 getnstimeofday64(&t);
335 pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
336 }
337 #else
338 #define debug_timestamp(x)
339 #endif
340
341 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
register_xaction_notifier(struct notifier_block * nb)342 static int register_xaction_notifier(struct notifier_block *nb)
343 {
344 return atomic_notifier_chain_register(&xaction_notifier_list, nb);
345 }
346
deliver_recv_msg(struct smi_info * smi_info,struct ipmi_smi_msg * msg)347 static void deliver_recv_msg(struct smi_info *smi_info,
348 struct ipmi_smi_msg *msg)
349 {
350 /* Deliver the message to the upper layer. */
351 if (smi_info->intf)
352 ipmi_smi_msg_received(smi_info->intf, msg);
353 else
354 ipmi_free_smi_msg(msg);
355 }
356
return_hosed_msg(struct smi_info * smi_info,int cCode)357 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
358 {
359 struct ipmi_smi_msg *msg = smi_info->curr_msg;
360
361 if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
362 cCode = IPMI_ERR_UNSPECIFIED;
363 /* else use it as is */
364
365 /* Make it a response */
366 msg->rsp[0] = msg->data[0] | 4;
367 msg->rsp[1] = msg->data[1];
368 msg->rsp[2] = cCode;
369 msg->rsp_size = 3;
370
371 smi_info->curr_msg = NULL;
372 deliver_recv_msg(smi_info, msg);
373 }
374
start_next_msg(struct smi_info * smi_info)375 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
376 {
377 int rv;
378
379 if (!smi_info->waiting_msg) {
380 smi_info->curr_msg = NULL;
381 rv = SI_SM_IDLE;
382 } else {
383 int err;
384
385 smi_info->curr_msg = smi_info->waiting_msg;
386 smi_info->waiting_msg = NULL;
387 debug_timestamp("Start2");
388 err = atomic_notifier_call_chain(&xaction_notifier_list,
389 0, smi_info);
390 if (err & NOTIFY_STOP_MASK) {
391 rv = SI_SM_CALL_WITHOUT_DELAY;
392 goto out;
393 }
394 err = smi_info->handlers->start_transaction(
395 smi_info->si_sm,
396 smi_info->curr_msg->data,
397 smi_info->curr_msg->data_size);
398 if (err)
399 return_hosed_msg(smi_info, err);
400
401 rv = SI_SM_CALL_WITHOUT_DELAY;
402 }
403 out:
404 return rv;
405 }
406
smi_mod_timer(struct smi_info * smi_info,unsigned long new_val)407 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
408 {
409 smi_info->last_timeout_jiffies = jiffies;
410 mod_timer(&smi_info->si_timer, new_val);
411 smi_info->timer_running = true;
412 }
413
414 /*
415 * Start a new message and (re)start the timer and thread.
416 */
start_new_msg(struct smi_info * smi_info,unsigned char * msg,unsigned int size)417 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
418 unsigned int size)
419 {
420 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
421
422 if (smi_info->thread)
423 wake_up_process(smi_info->thread);
424
425 smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
426 }
427
start_check_enables(struct smi_info * smi_info,bool start_timer)428 static void start_check_enables(struct smi_info *smi_info, bool start_timer)
429 {
430 unsigned char msg[2];
431
432 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
433 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
434
435 if (start_timer)
436 start_new_msg(smi_info, msg, 2);
437 else
438 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
439 smi_info->si_state = SI_CHECKING_ENABLES;
440 }
441
start_clear_flags(struct smi_info * smi_info,bool start_timer)442 static void start_clear_flags(struct smi_info *smi_info, bool start_timer)
443 {
444 unsigned char msg[3];
445
446 /* Make sure the watchdog pre-timeout flag is not set at startup. */
447 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
448 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
449 msg[2] = WDT_PRE_TIMEOUT_INT;
450
451 if (start_timer)
452 start_new_msg(smi_info, msg, 3);
453 else
454 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
455 smi_info->si_state = SI_CLEARING_FLAGS;
456 }
457
start_getting_msg_queue(struct smi_info * smi_info)458 static void start_getting_msg_queue(struct smi_info *smi_info)
459 {
460 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
461 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
462 smi_info->curr_msg->data_size = 2;
463
464 start_new_msg(smi_info, smi_info->curr_msg->data,
465 smi_info->curr_msg->data_size);
466 smi_info->si_state = SI_GETTING_MESSAGES;
467 }
468
start_getting_events(struct smi_info * smi_info)469 static void start_getting_events(struct smi_info *smi_info)
470 {
471 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
472 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
473 smi_info->curr_msg->data_size = 2;
474
475 start_new_msg(smi_info, smi_info->curr_msg->data,
476 smi_info->curr_msg->data_size);
477 smi_info->si_state = SI_GETTING_EVENTS;
478 }
479
480 /*
481 * When we have a situtaion where we run out of memory and cannot
482 * allocate messages, we just leave them in the BMC and run the system
483 * polled until we can allocate some memory. Once we have some
484 * memory, we will re-enable the interrupt.
485 *
486 * Note that we cannot just use disable_irq(), since the interrupt may
487 * be shared.
488 */
disable_si_irq(struct smi_info * smi_info,bool start_timer)489 static inline bool disable_si_irq(struct smi_info *smi_info, bool start_timer)
490 {
491 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
492 smi_info->interrupt_disabled = true;
493 start_check_enables(smi_info, start_timer);
494 return true;
495 }
496 return false;
497 }
498
enable_si_irq(struct smi_info * smi_info)499 static inline bool enable_si_irq(struct smi_info *smi_info)
500 {
501 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
502 smi_info->interrupt_disabled = false;
503 start_check_enables(smi_info, true);
504 return true;
505 }
506 return false;
507 }
508
509 /*
510 * Allocate a message. If unable to allocate, start the interrupt
511 * disable process and return NULL. If able to allocate but
512 * interrupts are disabled, free the message and return NULL after
513 * starting the interrupt enable process.
514 */
alloc_msg_handle_irq(struct smi_info * smi_info)515 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
516 {
517 struct ipmi_smi_msg *msg;
518
519 msg = ipmi_alloc_smi_msg();
520 if (!msg) {
521 if (!disable_si_irq(smi_info, true))
522 smi_info->si_state = SI_NORMAL;
523 } else if (enable_si_irq(smi_info)) {
524 ipmi_free_smi_msg(msg);
525 msg = NULL;
526 }
527 return msg;
528 }
529
handle_flags(struct smi_info * smi_info)530 static void handle_flags(struct smi_info *smi_info)
531 {
532 retry:
533 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
534 /* Watchdog pre-timeout */
535 smi_inc_stat(smi_info, watchdog_pretimeouts);
536
537 start_clear_flags(smi_info, true);
538 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
539 if (smi_info->intf)
540 ipmi_smi_watchdog_pretimeout(smi_info->intf);
541 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
542 /* Messages available. */
543 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
544 if (!smi_info->curr_msg)
545 return;
546
547 start_getting_msg_queue(smi_info);
548 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
549 /* Events available. */
550 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
551 if (!smi_info->curr_msg)
552 return;
553
554 start_getting_events(smi_info);
555 } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
556 smi_info->oem_data_avail_handler) {
557 if (smi_info->oem_data_avail_handler(smi_info))
558 goto retry;
559 } else
560 smi_info->si_state = SI_NORMAL;
561 }
562
563 /*
564 * Global enables we care about.
565 */
566 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
567 IPMI_BMC_EVT_MSG_INTR)
568
current_global_enables(struct smi_info * smi_info,u8 base,bool * irq_on)569 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
570 bool *irq_on)
571 {
572 u8 enables = 0;
573
574 if (smi_info->supports_event_msg_buff)
575 enables |= IPMI_BMC_EVT_MSG_BUFF;
576
577 if ((smi_info->irq && !smi_info->interrupt_disabled) ||
578 smi_info->cannot_clear_recv_irq_bit)
579 enables |= IPMI_BMC_RCV_MSG_INTR;
580
581 if (smi_info->supports_event_msg_buff &&
582 smi_info->irq && !smi_info->interrupt_disabled)
583
584 enables |= IPMI_BMC_EVT_MSG_INTR;
585
586 *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
587
588 return enables;
589 }
590
check_bt_irq(struct smi_info * smi_info,bool irq_on)591 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
592 {
593 u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
594
595 irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
596
597 if ((bool)irqstate == irq_on)
598 return;
599
600 if (irq_on)
601 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
602 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
603 else
604 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
605 }
606
handle_transaction_done(struct smi_info * smi_info)607 static void handle_transaction_done(struct smi_info *smi_info)
608 {
609 struct ipmi_smi_msg *msg;
610
611 debug_timestamp("Done");
612 switch (smi_info->si_state) {
613 case SI_NORMAL:
614 if (!smi_info->curr_msg)
615 break;
616
617 smi_info->curr_msg->rsp_size
618 = smi_info->handlers->get_result(
619 smi_info->si_sm,
620 smi_info->curr_msg->rsp,
621 IPMI_MAX_MSG_LENGTH);
622
623 /*
624 * Do this here becase deliver_recv_msg() releases the
625 * lock, and a new message can be put in during the
626 * time the lock is released.
627 */
628 msg = smi_info->curr_msg;
629 smi_info->curr_msg = NULL;
630 deliver_recv_msg(smi_info, msg);
631 break;
632
633 case SI_GETTING_FLAGS:
634 {
635 unsigned char msg[4];
636 unsigned int len;
637
638 /* We got the flags from the SMI, now handle them. */
639 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
640 if (msg[2] != 0) {
641 /* Error fetching flags, just give up for now. */
642 smi_info->si_state = SI_NORMAL;
643 } else if (len < 4) {
644 /*
645 * Hmm, no flags. That's technically illegal, but
646 * don't use uninitialized data.
647 */
648 smi_info->si_state = SI_NORMAL;
649 } else {
650 smi_info->msg_flags = msg[3];
651 handle_flags(smi_info);
652 }
653 break;
654 }
655
656 case SI_CLEARING_FLAGS:
657 {
658 unsigned char msg[3];
659
660 /* We cleared the flags. */
661 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
662 if (msg[2] != 0) {
663 /* Error clearing flags */
664 dev_warn(smi_info->dev,
665 "Error clearing flags: %2.2x\n", msg[2]);
666 }
667 smi_info->si_state = SI_NORMAL;
668 break;
669 }
670
671 case SI_GETTING_EVENTS:
672 {
673 smi_info->curr_msg->rsp_size
674 = smi_info->handlers->get_result(
675 smi_info->si_sm,
676 smi_info->curr_msg->rsp,
677 IPMI_MAX_MSG_LENGTH);
678
679 /*
680 * Do this here becase deliver_recv_msg() releases the
681 * lock, and a new message can be put in during the
682 * time the lock is released.
683 */
684 msg = smi_info->curr_msg;
685 smi_info->curr_msg = NULL;
686 if (msg->rsp[2] != 0) {
687 /* Error getting event, probably done. */
688 msg->done(msg);
689
690 /* Take off the event flag. */
691 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
692 handle_flags(smi_info);
693 } else {
694 smi_inc_stat(smi_info, events);
695
696 /*
697 * Do this before we deliver the message
698 * because delivering the message releases the
699 * lock and something else can mess with the
700 * state.
701 */
702 handle_flags(smi_info);
703
704 deliver_recv_msg(smi_info, msg);
705 }
706 break;
707 }
708
709 case SI_GETTING_MESSAGES:
710 {
711 smi_info->curr_msg->rsp_size
712 = smi_info->handlers->get_result(
713 smi_info->si_sm,
714 smi_info->curr_msg->rsp,
715 IPMI_MAX_MSG_LENGTH);
716
717 /*
718 * Do this here becase deliver_recv_msg() releases the
719 * lock, and a new message can be put in during the
720 * time the lock is released.
721 */
722 msg = smi_info->curr_msg;
723 smi_info->curr_msg = NULL;
724 if (msg->rsp[2] != 0) {
725 /* Error getting event, probably done. */
726 msg->done(msg);
727
728 /* Take off the msg flag. */
729 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
730 handle_flags(smi_info);
731 } else {
732 smi_inc_stat(smi_info, incoming_messages);
733
734 /*
735 * Do this before we deliver the message
736 * because delivering the message releases the
737 * lock and something else can mess with the
738 * state.
739 */
740 handle_flags(smi_info);
741
742 deliver_recv_msg(smi_info, msg);
743 }
744 break;
745 }
746
747 case SI_CHECKING_ENABLES:
748 {
749 unsigned char msg[4];
750 u8 enables;
751 bool irq_on;
752
753 /* We got the flags from the SMI, now handle them. */
754 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
755 if (msg[2] != 0) {
756 dev_warn(smi_info->dev,
757 "Couldn't get irq info: %x.\n", msg[2]);
758 dev_warn(smi_info->dev,
759 "Maybe ok, but ipmi might run very slowly.\n");
760 smi_info->si_state = SI_NORMAL;
761 break;
762 }
763 enables = current_global_enables(smi_info, 0, &irq_on);
764 if (smi_info->si_type == SI_BT)
765 /* BT has its own interrupt enable bit. */
766 check_bt_irq(smi_info, irq_on);
767 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
768 /* Enables are not correct, fix them. */
769 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
770 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
771 msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
772 smi_info->handlers->start_transaction(
773 smi_info->si_sm, msg, 3);
774 smi_info->si_state = SI_SETTING_ENABLES;
775 } else if (smi_info->supports_event_msg_buff) {
776 smi_info->curr_msg = ipmi_alloc_smi_msg();
777 if (!smi_info->curr_msg) {
778 smi_info->si_state = SI_NORMAL;
779 break;
780 }
781 start_getting_msg_queue(smi_info);
782 } else {
783 smi_info->si_state = SI_NORMAL;
784 }
785 break;
786 }
787
788 case SI_SETTING_ENABLES:
789 {
790 unsigned char msg[4];
791
792 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
793 if (msg[2] != 0)
794 dev_warn(smi_info->dev,
795 "Could not set the global enables: 0x%x.\n",
796 msg[2]);
797
798 if (smi_info->supports_event_msg_buff) {
799 smi_info->curr_msg = ipmi_alloc_smi_msg();
800 if (!smi_info->curr_msg) {
801 smi_info->si_state = SI_NORMAL;
802 break;
803 }
804 start_getting_msg_queue(smi_info);
805 } else {
806 smi_info->si_state = SI_NORMAL;
807 }
808 break;
809 }
810 }
811 }
812
813 /*
814 * Called on timeouts and events. Timeouts should pass the elapsed
815 * time, interrupts should pass in zero. Must be called with
816 * si_lock held and interrupts disabled.
817 */
smi_event_handler(struct smi_info * smi_info,int time)818 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
819 int time)
820 {
821 enum si_sm_result si_sm_result;
822
823 restart:
824 /*
825 * There used to be a loop here that waited a little while
826 * (around 25us) before giving up. That turned out to be
827 * pointless, the minimum delays I was seeing were in the 300us
828 * range, which is far too long to wait in an interrupt. So
829 * we just run until the state machine tells us something
830 * happened or it needs a delay.
831 */
832 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
833 time = 0;
834 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
835 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
836
837 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
838 smi_inc_stat(smi_info, complete_transactions);
839
840 handle_transaction_done(smi_info);
841 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
842 } else if (si_sm_result == SI_SM_HOSED) {
843 smi_inc_stat(smi_info, hosed_count);
844
845 /*
846 * Do the before return_hosed_msg, because that
847 * releases the lock.
848 */
849 smi_info->si_state = SI_NORMAL;
850 if (smi_info->curr_msg != NULL) {
851 /*
852 * If we were handling a user message, format
853 * a response to send to the upper layer to
854 * tell it about the error.
855 */
856 return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
857 }
858 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
859 }
860
861 /*
862 * We prefer handling attn over new messages. But don't do
863 * this if there is not yet an upper layer to handle anything.
864 */
865 if (likely(smi_info->intf) &&
866 (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
867 unsigned char msg[2];
868
869 if (smi_info->si_state != SI_NORMAL) {
870 /*
871 * We got an ATTN, but we are doing something else.
872 * Handle the ATTN later.
873 */
874 smi_info->got_attn = true;
875 } else {
876 smi_info->got_attn = false;
877 smi_inc_stat(smi_info, attentions);
878
879 /*
880 * Got a attn, send down a get message flags to see
881 * what's causing it. It would be better to handle
882 * this in the upper layer, but due to the way
883 * interrupts work with the SMI, that's not really
884 * possible.
885 */
886 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
887 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
888
889 start_new_msg(smi_info, msg, 2);
890 smi_info->si_state = SI_GETTING_FLAGS;
891 goto restart;
892 }
893 }
894
895 /* If we are currently idle, try to start the next message. */
896 if (si_sm_result == SI_SM_IDLE) {
897 smi_inc_stat(smi_info, idles);
898
899 si_sm_result = start_next_msg(smi_info);
900 if (si_sm_result != SI_SM_IDLE)
901 goto restart;
902 }
903
904 if ((si_sm_result == SI_SM_IDLE)
905 && (atomic_read(&smi_info->req_events))) {
906 /*
907 * We are idle and the upper layer requested that I fetch
908 * events, so do so.
909 */
910 atomic_set(&smi_info->req_events, 0);
911
912 /*
913 * Take this opportunity to check the interrupt and
914 * message enable state for the BMC. The BMC can be
915 * asynchronously reset, and may thus get interrupts
916 * disable and messages disabled.
917 */
918 if (smi_info->supports_event_msg_buff || smi_info->irq) {
919 start_check_enables(smi_info, true);
920 } else {
921 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
922 if (!smi_info->curr_msg)
923 goto out;
924
925 start_getting_events(smi_info);
926 }
927 goto restart;
928 }
929 out:
930 return si_sm_result;
931 }
932
check_start_timer_thread(struct smi_info * smi_info)933 static void check_start_timer_thread(struct smi_info *smi_info)
934 {
935 if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
936 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
937
938 if (smi_info->thread)
939 wake_up_process(smi_info->thread);
940
941 start_next_msg(smi_info);
942 smi_event_handler(smi_info, 0);
943 }
944 }
945
sender(void * send_info,struct ipmi_smi_msg * msg)946 static void sender(void *send_info,
947 struct ipmi_smi_msg *msg)
948 {
949 struct smi_info *smi_info = send_info;
950 enum si_sm_result result;
951 unsigned long flags;
952
953 debug_timestamp("Enqueue");
954
955 if (smi_info->run_to_completion) {
956 /*
957 * If we are running to completion, start it and run
958 * transactions until everything is clear.
959 */
960 smi_info->waiting_msg = msg;
961
962 /*
963 * Run to completion means we are single-threaded, no
964 * need for locks.
965 */
966
967 result = smi_event_handler(smi_info, 0);
968 while (result != SI_SM_IDLE) {
969 udelay(SI_SHORT_TIMEOUT_USEC);
970 result = smi_event_handler(smi_info,
971 SI_SHORT_TIMEOUT_USEC);
972 }
973 return;
974 }
975
976 spin_lock_irqsave(&smi_info->si_lock, flags);
977 /*
978 * The following two lines don't need to be under the lock for
979 * the lock's sake, but they do need SMP memory barriers to
980 * avoid getting things out of order. We are already claiming
981 * the lock, anyway, so just do it under the lock to avoid the
982 * ordering problem.
983 */
984 BUG_ON(smi_info->waiting_msg);
985 smi_info->waiting_msg = msg;
986 check_start_timer_thread(smi_info);
987 spin_unlock_irqrestore(&smi_info->si_lock, flags);
988 }
989
set_run_to_completion(void * send_info,bool i_run_to_completion)990 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
991 {
992 struct smi_info *smi_info = send_info;
993 enum si_sm_result result;
994
995 smi_info->run_to_completion = i_run_to_completion;
996 if (i_run_to_completion) {
997 result = smi_event_handler(smi_info, 0);
998 while (result != SI_SM_IDLE) {
999 udelay(SI_SHORT_TIMEOUT_USEC);
1000 result = smi_event_handler(smi_info,
1001 SI_SHORT_TIMEOUT_USEC);
1002 }
1003 }
1004 }
1005
1006 /*
1007 * Use -1 in the nsec value of the busy waiting timespec to tell that
1008 * we are spinning in kipmid looking for something and not delaying
1009 * between checks
1010 */
ipmi_si_set_not_busy(struct timespec64 * ts)1011 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1012 {
1013 ts->tv_nsec = -1;
1014 }
ipmi_si_is_busy(struct timespec64 * ts)1015 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1016 {
1017 return ts->tv_nsec != -1;
1018 }
1019
ipmi_thread_busy_wait(enum si_sm_result smi_result,const struct smi_info * smi_info,struct timespec64 * busy_until)1020 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1021 const struct smi_info *smi_info,
1022 struct timespec64 *busy_until)
1023 {
1024 unsigned int max_busy_us = 0;
1025
1026 if (smi_info->intf_num < num_max_busy_us)
1027 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1028 if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1029 ipmi_si_set_not_busy(busy_until);
1030 else if (!ipmi_si_is_busy(busy_until)) {
1031 getnstimeofday64(busy_until);
1032 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1033 } else {
1034 struct timespec64 now;
1035
1036 getnstimeofday64(&now);
1037 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1038 ipmi_si_set_not_busy(busy_until);
1039 return 0;
1040 }
1041 }
1042 return 1;
1043 }
1044
1045
1046 /*
1047 * A busy-waiting loop for speeding up IPMI operation.
1048 *
1049 * Lousy hardware makes this hard. This is only enabled for systems
1050 * that are not BT and do not have interrupts. It starts spinning
1051 * when an operation is complete or until max_busy tells it to stop
1052 * (if that is enabled). See the paragraph on kimid_max_busy_us in
1053 * Documentation/IPMI.txt for details.
1054 */
ipmi_thread(void * data)1055 static int ipmi_thread(void *data)
1056 {
1057 struct smi_info *smi_info = data;
1058 unsigned long flags;
1059 enum si_sm_result smi_result;
1060 struct timespec64 busy_until;
1061
1062 ipmi_si_set_not_busy(&busy_until);
1063 set_user_nice(current, MAX_NICE);
1064 while (!kthread_should_stop()) {
1065 int busy_wait;
1066
1067 spin_lock_irqsave(&(smi_info->si_lock), flags);
1068 smi_result = smi_event_handler(smi_info, 0);
1069
1070 /*
1071 * If the driver is doing something, there is a possible
1072 * race with the timer. If the timer handler see idle,
1073 * and the thread here sees something else, the timer
1074 * handler won't restart the timer even though it is
1075 * required. So start it here if necessary.
1076 */
1077 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1078 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1079
1080 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1081 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1082 &busy_until);
1083 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1084 ; /* do nothing */
1085 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1086 schedule();
1087 else if (smi_result == SI_SM_IDLE) {
1088 if (atomic_read(&smi_info->need_watch)) {
1089 schedule_timeout_interruptible(100);
1090 } else {
1091 /* Wait to be woken up when we are needed. */
1092 __set_current_state(TASK_INTERRUPTIBLE);
1093 schedule();
1094 }
1095 } else
1096 schedule_timeout_interruptible(1);
1097 }
1098 return 0;
1099 }
1100
1101
poll(void * send_info)1102 static void poll(void *send_info)
1103 {
1104 struct smi_info *smi_info = send_info;
1105 unsigned long flags = 0;
1106 bool run_to_completion = smi_info->run_to_completion;
1107
1108 /*
1109 * Make sure there is some delay in the poll loop so we can
1110 * drive time forward and timeout things.
1111 */
1112 udelay(10);
1113 if (!run_to_completion)
1114 spin_lock_irqsave(&smi_info->si_lock, flags);
1115 smi_event_handler(smi_info, 10);
1116 if (!run_to_completion)
1117 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1118 }
1119
request_events(void * send_info)1120 static void request_events(void *send_info)
1121 {
1122 struct smi_info *smi_info = send_info;
1123
1124 if (!smi_info->has_event_buffer)
1125 return;
1126
1127 atomic_set(&smi_info->req_events, 1);
1128 }
1129
set_need_watch(void * send_info,bool enable)1130 static void set_need_watch(void *send_info, bool enable)
1131 {
1132 struct smi_info *smi_info = send_info;
1133 unsigned long flags;
1134
1135 atomic_set(&smi_info->need_watch, enable);
1136 spin_lock_irqsave(&smi_info->si_lock, flags);
1137 check_start_timer_thread(smi_info);
1138 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1139 }
1140
1141 static int initialized;
1142
smi_timeout(unsigned long data)1143 static void smi_timeout(unsigned long data)
1144 {
1145 struct smi_info *smi_info = (struct smi_info *) data;
1146 enum si_sm_result smi_result;
1147 unsigned long flags;
1148 unsigned long jiffies_now;
1149 long time_diff;
1150 long timeout;
1151
1152 spin_lock_irqsave(&(smi_info->si_lock), flags);
1153 debug_timestamp("Timer");
1154
1155 jiffies_now = jiffies;
1156 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1157 * SI_USEC_PER_JIFFY);
1158 smi_result = smi_event_handler(smi_info, time_diff);
1159
1160 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1161 /* Running with interrupts, only do long timeouts. */
1162 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1163 smi_inc_stat(smi_info, long_timeouts);
1164 goto do_mod_timer;
1165 }
1166
1167 /*
1168 * If the state machine asks for a short delay, then shorten
1169 * the timer timeout.
1170 */
1171 if (smi_result == SI_SM_CALL_WITH_DELAY) {
1172 smi_inc_stat(smi_info, short_timeouts);
1173 timeout = jiffies + 1;
1174 } else {
1175 smi_inc_stat(smi_info, long_timeouts);
1176 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177 }
1178
1179 do_mod_timer:
1180 if (smi_result != SI_SM_IDLE)
1181 smi_mod_timer(smi_info, timeout);
1182 else
1183 smi_info->timer_running = false;
1184 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1185 }
1186
si_irq_handler(int irq,void * data)1187 static irqreturn_t si_irq_handler(int irq, void *data)
1188 {
1189 struct smi_info *smi_info = data;
1190 unsigned long flags;
1191
1192 spin_lock_irqsave(&(smi_info->si_lock), flags);
1193
1194 smi_inc_stat(smi_info, interrupts);
1195
1196 debug_timestamp("Interrupt");
1197
1198 smi_event_handler(smi_info, 0);
1199 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1200 return IRQ_HANDLED;
1201 }
1202
si_bt_irq_handler(int irq,void * data)1203 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1204 {
1205 struct smi_info *smi_info = data;
1206 /* We need to clear the IRQ flag for the BT interface. */
1207 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1208 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1209 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1210 return si_irq_handler(irq, data);
1211 }
1212
smi_start_processing(void * send_info,ipmi_smi_t intf)1213 static int smi_start_processing(void *send_info,
1214 ipmi_smi_t intf)
1215 {
1216 struct smi_info *new_smi = send_info;
1217 int enable = 0;
1218
1219 new_smi->intf = intf;
1220
1221 /* Set up the timer that drives the interface. */
1222 setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1223 smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1224
1225 /* Try to claim any interrupts. */
1226 if (new_smi->irq_setup)
1227 new_smi->irq_setup(new_smi);
1228
1229 /*
1230 * Check if the user forcefully enabled the daemon.
1231 */
1232 if (new_smi->intf_num < num_force_kipmid)
1233 enable = force_kipmid[new_smi->intf_num];
1234 /*
1235 * The BT interface is efficient enough to not need a thread,
1236 * and there is no need for a thread if we have interrupts.
1237 */
1238 else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1239 enable = 1;
1240
1241 if (enable) {
1242 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1243 "kipmi%d", new_smi->intf_num);
1244 if (IS_ERR(new_smi->thread)) {
1245 dev_notice(new_smi->dev, "Could not start"
1246 " kernel thread due to error %ld, only using"
1247 " timers to drive the interface\n",
1248 PTR_ERR(new_smi->thread));
1249 new_smi->thread = NULL;
1250 }
1251 }
1252
1253 return 0;
1254 }
1255
get_smi_info(void * send_info,struct ipmi_smi_info * data)1256 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1257 {
1258 struct smi_info *smi = send_info;
1259
1260 data->addr_src = smi->addr_source;
1261 data->dev = smi->dev;
1262 data->addr_info = smi->addr_info;
1263 get_device(smi->dev);
1264
1265 return 0;
1266 }
1267
set_maintenance_mode(void * send_info,bool enable)1268 static void set_maintenance_mode(void *send_info, bool enable)
1269 {
1270 struct smi_info *smi_info = send_info;
1271
1272 if (!enable)
1273 atomic_set(&smi_info->req_events, 0);
1274 }
1275
1276 static struct ipmi_smi_handlers handlers = {
1277 .owner = THIS_MODULE,
1278 .start_processing = smi_start_processing,
1279 .get_smi_info = get_smi_info,
1280 .sender = sender,
1281 .request_events = request_events,
1282 .set_need_watch = set_need_watch,
1283 .set_maintenance_mode = set_maintenance_mode,
1284 .set_run_to_completion = set_run_to_completion,
1285 .poll = poll,
1286 };
1287
1288 /*
1289 * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1290 * a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS.
1291 */
1292
1293 static LIST_HEAD(smi_infos);
1294 static DEFINE_MUTEX(smi_infos_lock);
1295 static int smi_num; /* Used to sequence the SMIs */
1296
1297 #define DEFAULT_REGSPACING 1
1298 #define DEFAULT_REGSIZE 1
1299
1300 #ifdef CONFIG_ACPI
1301 static bool si_tryacpi = 1;
1302 #endif
1303 #ifdef CONFIG_DMI
1304 static bool si_trydmi = 1;
1305 #endif
1306 static bool si_tryplatform = 1;
1307 #ifdef CONFIG_PCI
1308 static bool si_trypci = 1;
1309 #endif
1310 static bool si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1311 static char *si_type[SI_MAX_PARMS];
1312 #define MAX_SI_TYPE_STR 30
1313 static char si_type_str[MAX_SI_TYPE_STR];
1314 static unsigned long addrs[SI_MAX_PARMS];
1315 static unsigned int num_addrs;
1316 static unsigned int ports[SI_MAX_PARMS];
1317 static unsigned int num_ports;
1318 static int irqs[SI_MAX_PARMS];
1319 static unsigned int num_irqs;
1320 static int regspacings[SI_MAX_PARMS];
1321 static unsigned int num_regspacings;
1322 static int regsizes[SI_MAX_PARMS];
1323 static unsigned int num_regsizes;
1324 static int regshifts[SI_MAX_PARMS];
1325 static unsigned int num_regshifts;
1326 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1327 static unsigned int num_slave_addrs;
1328
1329 #define IPMI_IO_ADDR_SPACE 0
1330 #define IPMI_MEM_ADDR_SPACE 1
1331 static char *addr_space_to_str[] = { "i/o", "mem" };
1332
1333 static int hotmod_handler(const char *val, struct kernel_param *kp);
1334
1335 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1336 MODULE_PARM_DESC(hotmod, "Add and remove interfaces. See"
1337 " Documentation/IPMI.txt in the kernel sources for the"
1338 " gory details.");
1339
1340 #ifdef CONFIG_ACPI
1341 module_param_named(tryacpi, si_tryacpi, bool, 0);
1342 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1343 " default scan of the interfaces identified via ACPI");
1344 #endif
1345 #ifdef CONFIG_DMI
1346 module_param_named(trydmi, si_trydmi, bool, 0);
1347 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1348 " default scan of the interfaces identified via DMI");
1349 #endif
1350 module_param_named(tryplatform, si_tryplatform, bool, 0);
1351 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1352 " default scan of the interfaces identified via platform"
1353 " interfaces like openfirmware");
1354 #ifdef CONFIG_PCI
1355 module_param_named(trypci, si_trypci, bool, 0);
1356 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1357 " default scan of the interfaces identified via pci");
1358 #endif
1359 module_param_named(trydefaults, si_trydefaults, bool, 0);
1360 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1361 " default scan of the KCS and SMIC interface at the standard"
1362 " address");
1363 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1364 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1365 " interface separated by commas. The types are 'kcs',"
1366 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1367 " the first interface to kcs and the second to bt");
1368 module_param_array(addrs, ulong, &num_addrs, 0);
1369 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1370 " addresses separated by commas. Only use if an interface"
1371 " is in memory. Otherwise, set it to zero or leave"
1372 " it blank.");
1373 module_param_array(ports, uint, &num_ports, 0);
1374 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1375 " addresses separated by commas. Only use if an interface"
1376 " is a port. Otherwise, set it to zero or leave"
1377 " it blank.");
1378 module_param_array(irqs, int, &num_irqs, 0);
1379 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1380 " addresses separated by commas. Only use if an interface"
1381 " has an interrupt. Otherwise, set it to zero or leave"
1382 " it blank.");
1383 module_param_array(regspacings, int, &num_regspacings, 0);
1384 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1385 " and each successive register used by the interface. For"
1386 " instance, if the start address is 0xca2 and the spacing"
1387 " is 2, then the second address is at 0xca4. Defaults"
1388 " to 1.");
1389 module_param_array(regsizes, int, &num_regsizes, 0);
1390 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1391 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1392 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1393 " the 8-bit IPMI register has to be read from a larger"
1394 " register.");
1395 module_param_array(regshifts, int, &num_regshifts, 0);
1396 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1397 " IPMI register, in bits. For instance, if the data"
1398 " is read from a 32-bit word and the IPMI data is in"
1399 " bit 8-15, then the shift would be 8");
1400 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1401 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1402 " the controller. Normally this is 0x20, but can be"
1403 " overridden by this parm. This is an array indexed"
1404 " by interface number.");
1405 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1406 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1407 " disabled(0). Normally the IPMI driver auto-detects"
1408 " this, but the value may be overridden by this parm.");
1409 module_param(unload_when_empty, bool, 0);
1410 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1411 " specified or found, default is 1. Setting to 0"
1412 " is useful for hot add of devices using hotmod.");
1413 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1414 MODULE_PARM_DESC(kipmid_max_busy_us,
1415 "Max time (in microseconds) to busy-wait for IPMI data before"
1416 " sleeping. 0 (default) means to wait forever. Set to 100-500"
1417 " if kipmid is using up a lot of CPU time.");
1418
1419
std_irq_cleanup(struct smi_info * info)1420 static void std_irq_cleanup(struct smi_info *info)
1421 {
1422 if (info->si_type == SI_BT)
1423 /* Disable the interrupt in the BT interface. */
1424 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1425 free_irq(info->irq, info);
1426 }
1427
std_irq_setup(struct smi_info * info)1428 static int std_irq_setup(struct smi_info *info)
1429 {
1430 int rv;
1431
1432 if (!info->irq)
1433 return 0;
1434
1435 if (info->si_type == SI_BT) {
1436 rv = request_irq(info->irq,
1437 si_bt_irq_handler,
1438 IRQF_SHARED,
1439 DEVICE_NAME,
1440 info);
1441 if (!rv)
1442 /* Enable the interrupt in the BT interface. */
1443 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1444 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1445 } else
1446 rv = request_irq(info->irq,
1447 si_irq_handler,
1448 IRQF_SHARED,
1449 DEVICE_NAME,
1450 info);
1451 if (rv) {
1452 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1453 " running polled\n",
1454 DEVICE_NAME, info->irq);
1455 info->irq = 0;
1456 } else {
1457 info->irq_cleanup = std_irq_cleanup;
1458 dev_info(info->dev, "Using irq %d\n", info->irq);
1459 }
1460
1461 return rv;
1462 }
1463
port_inb(struct si_sm_io * io,unsigned int offset)1464 static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1465 {
1466 unsigned int addr = io->addr_data;
1467
1468 return inb(addr + (offset * io->regspacing));
1469 }
1470
port_outb(struct si_sm_io * io,unsigned int offset,unsigned char b)1471 static void port_outb(struct si_sm_io *io, unsigned int offset,
1472 unsigned char b)
1473 {
1474 unsigned int addr = io->addr_data;
1475
1476 outb(b, addr + (offset * io->regspacing));
1477 }
1478
port_inw(struct si_sm_io * io,unsigned int offset)1479 static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1480 {
1481 unsigned int addr = io->addr_data;
1482
1483 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1484 }
1485
port_outw(struct si_sm_io * io,unsigned int offset,unsigned char b)1486 static void port_outw(struct si_sm_io *io, unsigned int offset,
1487 unsigned char b)
1488 {
1489 unsigned int addr = io->addr_data;
1490
1491 outw(b << io->regshift, addr + (offset * io->regspacing));
1492 }
1493
port_inl(struct si_sm_io * io,unsigned int offset)1494 static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1495 {
1496 unsigned int addr = io->addr_data;
1497
1498 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1499 }
1500
port_outl(struct si_sm_io * io,unsigned int offset,unsigned char b)1501 static void port_outl(struct si_sm_io *io, unsigned int offset,
1502 unsigned char b)
1503 {
1504 unsigned int addr = io->addr_data;
1505
1506 outl(b << io->regshift, addr+(offset * io->regspacing));
1507 }
1508
port_cleanup(struct smi_info * info)1509 static void port_cleanup(struct smi_info *info)
1510 {
1511 unsigned int addr = info->io.addr_data;
1512 int idx;
1513
1514 if (addr) {
1515 for (idx = 0; idx < info->io_size; idx++)
1516 release_region(addr + idx * info->io.regspacing,
1517 info->io.regsize);
1518 }
1519 }
1520
port_setup(struct smi_info * info)1521 static int port_setup(struct smi_info *info)
1522 {
1523 unsigned int addr = info->io.addr_data;
1524 int idx;
1525
1526 if (!addr)
1527 return -ENODEV;
1528
1529 info->io_cleanup = port_cleanup;
1530
1531 /*
1532 * Figure out the actual inb/inw/inl/etc routine to use based
1533 * upon the register size.
1534 */
1535 switch (info->io.regsize) {
1536 case 1:
1537 info->io.inputb = port_inb;
1538 info->io.outputb = port_outb;
1539 break;
1540 case 2:
1541 info->io.inputb = port_inw;
1542 info->io.outputb = port_outw;
1543 break;
1544 case 4:
1545 info->io.inputb = port_inl;
1546 info->io.outputb = port_outl;
1547 break;
1548 default:
1549 dev_warn(info->dev, "Invalid register size: %d\n",
1550 info->io.regsize);
1551 return -EINVAL;
1552 }
1553
1554 /*
1555 * Some BIOSes reserve disjoint I/O regions in their ACPI
1556 * tables. This causes problems when trying to register the
1557 * entire I/O region. Therefore we must register each I/O
1558 * port separately.
1559 */
1560 for (idx = 0; idx < info->io_size; idx++) {
1561 if (request_region(addr + idx * info->io.regspacing,
1562 info->io.regsize, DEVICE_NAME) == NULL) {
1563 /* Undo allocations */
1564 while (idx--) {
1565 release_region(addr + idx * info->io.regspacing,
1566 info->io.regsize);
1567 }
1568 return -EIO;
1569 }
1570 }
1571 return 0;
1572 }
1573
intf_mem_inb(struct si_sm_io * io,unsigned int offset)1574 static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1575 {
1576 return readb((io->addr)+(offset * io->regspacing));
1577 }
1578
intf_mem_outb(struct si_sm_io * io,unsigned int offset,unsigned char b)1579 static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1580 unsigned char b)
1581 {
1582 writeb(b, (io->addr)+(offset * io->regspacing));
1583 }
1584
intf_mem_inw(struct si_sm_io * io,unsigned int offset)1585 static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1586 {
1587 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1588 & 0xff;
1589 }
1590
intf_mem_outw(struct si_sm_io * io,unsigned int offset,unsigned char b)1591 static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1592 unsigned char b)
1593 {
1594 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1595 }
1596
intf_mem_inl(struct si_sm_io * io,unsigned int offset)1597 static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1598 {
1599 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600 & 0xff;
1601 }
1602
intf_mem_outl(struct si_sm_io * io,unsigned int offset,unsigned char b)1603 static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1604 unsigned char b)
1605 {
1606 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607 }
1608
1609 #ifdef readq
mem_inq(struct si_sm_io * io,unsigned int offset)1610 static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1611 {
1612 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613 & 0xff;
1614 }
1615
mem_outq(struct si_sm_io * io,unsigned int offset,unsigned char b)1616 static void mem_outq(struct si_sm_io *io, unsigned int offset,
1617 unsigned char b)
1618 {
1619 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621 #endif
1622
mem_cleanup(struct smi_info * info)1623 static void mem_cleanup(struct smi_info *info)
1624 {
1625 unsigned long addr = info->io.addr_data;
1626 int mapsize;
1627
1628 if (info->io.addr) {
1629 iounmap(info->io.addr);
1630
1631 mapsize = ((info->io_size * info->io.regspacing)
1632 - (info->io.regspacing - info->io.regsize));
1633
1634 release_mem_region(addr, mapsize);
1635 }
1636 }
1637
mem_setup(struct smi_info * info)1638 static int mem_setup(struct smi_info *info)
1639 {
1640 unsigned long addr = info->io.addr_data;
1641 int mapsize;
1642
1643 if (!addr)
1644 return -ENODEV;
1645
1646 info->io_cleanup = mem_cleanup;
1647
1648 /*
1649 * Figure out the actual readb/readw/readl/etc routine to use based
1650 * upon the register size.
1651 */
1652 switch (info->io.regsize) {
1653 case 1:
1654 info->io.inputb = intf_mem_inb;
1655 info->io.outputb = intf_mem_outb;
1656 break;
1657 case 2:
1658 info->io.inputb = intf_mem_inw;
1659 info->io.outputb = intf_mem_outw;
1660 break;
1661 case 4:
1662 info->io.inputb = intf_mem_inl;
1663 info->io.outputb = intf_mem_outl;
1664 break;
1665 #ifdef readq
1666 case 8:
1667 info->io.inputb = mem_inq;
1668 info->io.outputb = mem_outq;
1669 break;
1670 #endif
1671 default:
1672 dev_warn(info->dev, "Invalid register size: %d\n",
1673 info->io.regsize);
1674 return -EINVAL;
1675 }
1676
1677 /*
1678 * Calculate the total amount of memory to claim. This is an
1679 * unusual looking calculation, but it avoids claiming any
1680 * more memory than it has to. It will claim everything
1681 * between the first address to the end of the last full
1682 * register.
1683 */
1684 mapsize = ((info->io_size * info->io.regspacing)
1685 - (info->io.regspacing - info->io.regsize));
1686
1687 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1688 return -EIO;
1689
1690 info->io.addr = ioremap(addr, mapsize);
1691 if (info->io.addr == NULL) {
1692 release_mem_region(addr, mapsize);
1693 return -EIO;
1694 }
1695 return 0;
1696 }
1697
1698 /*
1699 * Parms come in as <op1>[:op2[:op3...]]. ops are:
1700 * add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1701 * Options are:
1702 * rsp=<regspacing>
1703 * rsi=<regsize>
1704 * rsh=<regshift>
1705 * irq=<irq>
1706 * ipmb=<ipmb addr>
1707 */
1708 enum hotmod_op { HM_ADD, HM_REMOVE };
1709 struct hotmod_vals {
1710 char *name;
1711 int val;
1712 };
1713 static struct hotmod_vals hotmod_ops[] = {
1714 { "add", HM_ADD },
1715 { "remove", HM_REMOVE },
1716 { NULL }
1717 };
1718 static struct hotmod_vals hotmod_si[] = {
1719 { "kcs", SI_KCS },
1720 { "smic", SI_SMIC },
1721 { "bt", SI_BT },
1722 { NULL }
1723 };
1724 static struct hotmod_vals hotmod_as[] = {
1725 { "mem", IPMI_MEM_ADDR_SPACE },
1726 { "i/o", IPMI_IO_ADDR_SPACE },
1727 { NULL }
1728 };
1729
parse_str(struct hotmod_vals * v,int * val,char * name,char ** curr)1730 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1731 {
1732 char *s;
1733 int i;
1734
1735 s = strchr(*curr, ',');
1736 if (!s) {
1737 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1738 return -EINVAL;
1739 }
1740 *s = '\0';
1741 s++;
1742 for (i = 0; v[i].name; i++) {
1743 if (strcmp(*curr, v[i].name) == 0) {
1744 *val = v[i].val;
1745 *curr = s;
1746 return 0;
1747 }
1748 }
1749
1750 printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1751 return -EINVAL;
1752 }
1753
check_hotmod_int_op(const char * curr,const char * option,const char * name,int * val)1754 static int check_hotmod_int_op(const char *curr, const char *option,
1755 const char *name, int *val)
1756 {
1757 char *n;
1758
1759 if (strcmp(curr, name) == 0) {
1760 if (!option) {
1761 printk(KERN_WARNING PFX
1762 "No option given for '%s'\n",
1763 curr);
1764 return -EINVAL;
1765 }
1766 *val = simple_strtoul(option, &n, 0);
1767 if ((*n != '\0') || (*option == '\0')) {
1768 printk(KERN_WARNING PFX
1769 "Bad option given for '%s'\n",
1770 curr);
1771 return -EINVAL;
1772 }
1773 return 1;
1774 }
1775 return 0;
1776 }
1777
smi_info_alloc(void)1778 static struct smi_info *smi_info_alloc(void)
1779 {
1780 struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1781
1782 if (info)
1783 spin_lock_init(&info->si_lock);
1784 return info;
1785 }
1786
hotmod_handler(const char * val,struct kernel_param * kp)1787 static int hotmod_handler(const char *val, struct kernel_param *kp)
1788 {
1789 char *str = kstrdup(val, GFP_KERNEL);
1790 int rv;
1791 char *next, *curr, *s, *n, *o;
1792 enum hotmod_op op;
1793 enum si_type si_type;
1794 int addr_space;
1795 unsigned long addr;
1796 int regspacing;
1797 int regsize;
1798 int regshift;
1799 int irq;
1800 int ipmb;
1801 int ival;
1802 int len;
1803 struct smi_info *info;
1804
1805 if (!str)
1806 return -ENOMEM;
1807
1808 /* Kill any trailing spaces, as we can get a "\n" from echo. */
1809 len = strlen(str);
1810 ival = len - 1;
1811 while ((ival >= 0) && isspace(str[ival])) {
1812 str[ival] = '\0';
1813 ival--;
1814 }
1815
1816 for (curr = str; curr; curr = next) {
1817 regspacing = 1;
1818 regsize = 1;
1819 regshift = 0;
1820 irq = 0;
1821 ipmb = 0; /* Choose the default if not specified */
1822
1823 next = strchr(curr, ':');
1824 if (next) {
1825 *next = '\0';
1826 next++;
1827 }
1828
1829 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1830 if (rv)
1831 break;
1832 op = ival;
1833
1834 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1835 if (rv)
1836 break;
1837 si_type = ival;
1838
1839 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1840 if (rv)
1841 break;
1842
1843 s = strchr(curr, ',');
1844 if (s) {
1845 *s = '\0';
1846 s++;
1847 }
1848 addr = simple_strtoul(curr, &n, 0);
1849 if ((*n != '\0') || (*curr == '\0')) {
1850 printk(KERN_WARNING PFX "Invalid hotmod address"
1851 " '%s'\n", curr);
1852 break;
1853 }
1854
1855 while (s) {
1856 curr = s;
1857 s = strchr(curr, ',');
1858 if (s) {
1859 *s = '\0';
1860 s++;
1861 }
1862 o = strchr(curr, '=');
1863 if (o) {
1864 *o = '\0';
1865 o++;
1866 }
1867 rv = check_hotmod_int_op(curr, o, "rsp", ®spacing);
1868 if (rv < 0)
1869 goto out;
1870 else if (rv)
1871 continue;
1872 rv = check_hotmod_int_op(curr, o, "rsi", ®size);
1873 if (rv < 0)
1874 goto out;
1875 else if (rv)
1876 continue;
1877 rv = check_hotmod_int_op(curr, o, "rsh", ®shift);
1878 if (rv < 0)
1879 goto out;
1880 else if (rv)
1881 continue;
1882 rv = check_hotmod_int_op(curr, o, "irq", &irq);
1883 if (rv < 0)
1884 goto out;
1885 else if (rv)
1886 continue;
1887 rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1888 if (rv < 0)
1889 goto out;
1890 else if (rv)
1891 continue;
1892
1893 rv = -EINVAL;
1894 printk(KERN_WARNING PFX
1895 "Invalid hotmod option '%s'\n",
1896 curr);
1897 goto out;
1898 }
1899
1900 if (op == HM_ADD) {
1901 info = smi_info_alloc();
1902 if (!info) {
1903 rv = -ENOMEM;
1904 goto out;
1905 }
1906
1907 info->addr_source = SI_HOTMOD;
1908 info->si_type = si_type;
1909 info->io.addr_data = addr;
1910 info->io.addr_type = addr_space;
1911 if (addr_space == IPMI_MEM_ADDR_SPACE)
1912 info->io_setup = mem_setup;
1913 else
1914 info->io_setup = port_setup;
1915
1916 info->io.addr = NULL;
1917 info->io.regspacing = regspacing;
1918 if (!info->io.regspacing)
1919 info->io.regspacing = DEFAULT_REGSPACING;
1920 info->io.regsize = regsize;
1921 if (!info->io.regsize)
1922 info->io.regsize = DEFAULT_REGSPACING;
1923 info->io.regshift = regshift;
1924 info->irq = irq;
1925 if (info->irq)
1926 info->irq_setup = std_irq_setup;
1927 info->slave_addr = ipmb;
1928
1929 rv = add_smi(info);
1930 if (rv) {
1931 kfree(info);
1932 goto out;
1933 }
1934 rv = try_smi_init(info);
1935 if (rv) {
1936 cleanup_one_si(info);
1937 goto out;
1938 }
1939 } else {
1940 /* remove */
1941 struct smi_info *e, *tmp_e;
1942
1943 mutex_lock(&smi_infos_lock);
1944 list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1945 if (e->io.addr_type != addr_space)
1946 continue;
1947 if (e->si_type != si_type)
1948 continue;
1949 if (e->io.addr_data == addr)
1950 cleanup_one_si(e);
1951 }
1952 mutex_unlock(&smi_infos_lock);
1953 }
1954 }
1955 rv = len;
1956 out:
1957 kfree(str);
1958 return rv;
1959 }
1960
hardcode_find_bmc(void)1961 static int hardcode_find_bmc(void)
1962 {
1963 int ret = -ENODEV;
1964 int i;
1965 struct smi_info *info;
1966
1967 for (i = 0; i < SI_MAX_PARMS; i++) {
1968 if (!ports[i] && !addrs[i])
1969 continue;
1970
1971 info = smi_info_alloc();
1972 if (!info)
1973 return -ENOMEM;
1974
1975 info->addr_source = SI_HARDCODED;
1976 printk(KERN_INFO PFX "probing via hardcoded address\n");
1977
1978 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1979 info->si_type = SI_KCS;
1980 } else if (strcmp(si_type[i], "smic") == 0) {
1981 info->si_type = SI_SMIC;
1982 } else if (strcmp(si_type[i], "bt") == 0) {
1983 info->si_type = SI_BT;
1984 } else {
1985 printk(KERN_WARNING PFX "Interface type specified "
1986 "for interface %d, was invalid: %s\n",
1987 i, si_type[i]);
1988 kfree(info);
1989 continue;
1990 }
1991
1992 if (ports[i]) {
1993 /* An I/O port */
1994 info->io_setup = port_setup;
1995 info->io.addr_data = ports[i];
1996 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1997 } else if (addrs[i]) {
1998 /* A memory port */
1999 info->io_setup = mem_setup;
2000 info->io.addr_data = addrs[i];
2001 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2002 } else {
2003 printk(KERN_WARNING PFX "Interface type specified "
2004 "for interface %d, but port and address were "
2005 "not set or set to zero.\n", i);
2006 kfree(info);
2007 continue;
2008 }
2009
2010 info->io.addr = NULL;
2011 info->io.regspacing = regspacings[i];
2012 if (!info->io.regspacing)
2013 info->io.regspacing = DEFAULT_REGSPACING;
2014 info->io.regsize = regsizes[i];
2015 if (!info->io.regsize)
2016 info->io.regsize = DEFAULT_REGSPACING;
2017 info->io.regshift = regshifts[i];
2018 info->irq = irqs[i];
2019 if (info->irq)
2020 info->irq_setup = std_irq_setup;
2021 info->slave_addr = slave_addrs[i];
2022
2023 if (!add_smi(info)) {
2024 if (try_smi_init(info))
2025 cleanup_one_si(info);
2026 ret = 0;
2027 } else {
2028 kfree(info);
2029 }
2030 }
2031 return ret;
2032 }
2033
2034 #ifdef CONFIG_ACPI
2035
2036 #include <linux/acpi.h>
2037
2038 /*
2039 * Once we get an ACPI failure, we don't try any more, because we go
2040 * through the tables sequentially. Once we don't find a table, there
2041 * are no more.
2042 */
2043 static int acpi_failure;
2044
2045 /* For GPE-type interrupts. */
ipmi_acpi_gpe(acpi_handle gpe_device,u32 gpe_number,void * context)2046 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2047 u32 gpe_number, void *context)
2048 {
2049 struct smi_info *smi_info = context;
2050 unsigned long flags;
2051
2052 spin_lock_irqsave(&(smi_info->si_lock), flags);
2053
2054 smi_inc_stat(smi_info, interrupts);
2055
2056 debug_timestamp("ACPI_GPE");
2057
2058 smi_event_handler(smi_info, 0);
2059 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2060
2061 return ACPI_INTERRUPT_HANDLED;
2062 }
2063
acpi_gpe_irq_cleanup(struct smi_info * info)2064 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2065 {
2066 if (!info->irq)
2067 return;
2068
2069 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2070 }
2071
acpi_gpe_irq_setup(struct smi_info * info)2072 static int acpi_gpe_irq_setup(struct smi_info *info)
2073 {
2074 acpi_status status;
2075
2076 if (!info->irq)
2077 return 0;
2078
2079 status = acpi_install_gpe_handler(NULL,
2080 info->irq,
2081 ACPI_GPE_LEVEL_TRIGGERED,
2082 &ipmi_acpi_gpe,
2083 info);
2084 if (status != AE_OK) {
2085 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2086 " running polled\n", DEVICE_NAME, info->irq);
2087 info->irq = 0;
2088 return -EINVAL;
2089 } else {
2090 info->irq_cleanup = acpi_gpe_irq_cleanup;
2091 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2092 return 0;
2093 }
2094 }
2095
2096 /*
2097 * Defined at
2098 * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2099 */
2100 struct SPMITable {
2101 s8 Signature[4];
2102 u32 Length;
2103 u8 Revision;
2104 u8 Checksum;
2105 s8 OEMID[6];
2106 s8 OEMTableID[8];
2107 s8 OEMRevision[4];
2108 s8 CreatorID[4];
2109 s8 CreatorRevision[4];
2110 u8 InterfaceType;
2111 u8 IPMIlegacy;
2112 s16 SpecificationRevision;
2113
2114 /*
2115 * Bit 0 - SCI interrupt supported
2116 * Bit 1 - I/O APIC/SAPIC
2117 */
2118 u8 InterruptType;
2119
2120 /*
2121 * If bit 0 of InterruptType is set, then this is the SCI
2122 * interrupt in the GPEx_STS register.
2123 */
2124 u8 GPE;
2125
2126 s16 Reserved;
2127
2128 /*
2129 * If bit 1 of InterruptType is set, then this is the I/O
2130 * APIC/SAPIC interrupt.
2131 */
2132 u32 GlobalSystemInterrupt;
2133
2134 /* The actual register address. */
2135 struct acpi_generic_address addr;
2136
2137 u8 UID[4];
2138
2139 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
2140 };
2141
try_init_spmi(struct SPMITable * spmi)2142 static int try_init_spmi(struct SPMITable *spmi)
2143 {
2144 struct smi_info *info;
2145 int rv;
2146
2147 if (spmi->IPMIlegacy != 1) {
2148 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2149 return -ENODEV;
2150 }
2151
2152 info = smi_info_alloc();
2153 if (!info) {
2154 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2155 return -ENOMEM;
2156 }
2157
2158 info->addr_source = SI_SPMI;
2159 printk(KERN_INFO PFX "probing via SPMI\n");
2160
2161 /* Figure out the interface type. */
2162 switch (spmi->InterfaceType) {
2163 case 1: /* KCS */
2164 info->si_type = SI_KCS;
2165 break;
2166 case 2: /* SMIC */
2167 info->si_type = SI_SMIC;
2168 break;
2169 case 3: /* BT */
2170 info->si_type = SI_BT;
2171 break;
2172 case 4: /* SSIF, just ignore */
2173 kfree(info);
2174 return -EIO;
2175 default:
2176 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2177 spmi->InterfaceType);
2178 kfree(info);
2179 return -EIO;
2180 }
2181
2182 if (spmi->InterruptType & 1) {
2183 /* We've got a GPE interrupt. */
2184 info->irq = spmi->GPE;
2185 info->irq_setup = acpi_gpe_irq_setup;
2186 } else if (spmi->InterruptType & 2) {
2187 /* We've got an APIC/SAPIC interrupt. */
2188 info->irq = spmi->GlobalSystemInterrupt;
2189 info->irq_setup = std_irq_setup;
2190 } else {
2191 /* Use the default interrupt setting. */
2192 info->irq = 0;
2193 info->irq_setup = NULL;
2194 }
2195
2196 if (spmi->addr.bit_width) {
2197 /* A (hopefully) properly formed register bit width. */
2198 info->io.regspacing = spmi->addr.bit_width / 8;
2199 } else {
2200 info->io.regspacing = DEFAULT_REGSPACING;
2201 }
2202 info->io.regsize = info->io.regspacing;
2203 info->io.regshift = spmi->addr.bit_offset;
2204
2205 if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2206 info->io_setup = mem_setup;
2207 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2208 } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2209 info->io_setup = port_setup;
2210 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2211 } else {
2212 kfree(info);
2213 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2214 return -EIO;
2215 }
2216 info->io.addr_data = spmi->addr.address;
2217
2218 pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2219 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2220 info->io.addr_data, info->io.regsize, info->io.regspacing,
2221 info->irq);
2222
2223 rv = add_smi(info);
2224 if (rv)
2225 kfree(info);
2226
2227 return rv;
2228 }
2229
spmi_find_bmc(void)2230 static void spmi_find_bmc(void)
2231 {
2232 acpi_status status;
2233 struct SPMITable *spmi;
2234 int i;
2235
2236 if (acpi_disabled)
2237 return;
2238
2239 if (acpi_failure)
2240 return;
2241
2242 for (i = 0; ; i++) {
2243 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2244 (struct acpi_table_header **)&spmi);
2245 if (status != AE_OK)
2246 return;
2247
2248 try_init_spmi(spmi);
2249 }
2250 }
2251
ipmi_pnp_probe(struct pnp_dev * dev,const struct pnp_device_id * dev_id)2252 static int ipmi_pnp_probe(struct pnp_dev *dev,
2253 const struct pnp_device_id *dev_id)
2254 {
2255 struct acpi_device *acpi_dev;
2256 struct smi_info *info;
2257 struct resource *res, *res_second;
2258 acpi_handle handle;
2259 acpi_status status;
2260 unsigned long long tmp;
2261 int rv = -EINVAL;
2262
2263 acpi_dev = pnp_acpi_device(dev);
2264 if (!acpi_dev)
2265 return -ENODEV;
2266
2267 info = smi_info_alloc();
2268 if (!info)
2269 return -ENOMEM;
2270
2271 info->addr_source = SI_ACPI;
2272 printk(KERN_INFO PFX "probing via ACPI\n");
2273
2274 handle = acpi_dev->handle;
2275 info->addr_info.acpi_info.acpi_handle = handle;
2276
2277 /* _IFT tells us the interface type: KCS, BT, etc */
2278 status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2279 if (ACPI_FAILURE(status)) {
2280 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2281 goto err_free;
2282 }
2283
2284 switch (tmp) {
2285 case 1:
2286 info->si_type = SI_KCS;
2287 break;
2288 case 2:
2289 info->si_type = SI_SMIC;
2290 break;
2291 case 3:
2292 info->si_type = SI_BT;
2293 break;
2294 case 4: /* SSIF, just ignore */
2295 rv = -ENODEV;
2296 goto err_free;
2297 default:
2298 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2299 goto err_free;
2300 }
2301
2302 res = pnp_get_resource(dev, IORESOURCE_IO, 0);
2303 if (res) {
2304 info->io_setup = port_setup;
2305 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2306 } else {
2307 res = pnp_get_resource(dev, IORESOURCE_MEM, 0);
2308 if (res) {
2309 info->io_setup = mem_setup;
2310 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2311 }
2312 }
2313 if (!res) {
2314 dev_err(&dev->dev, "no I/O or memory address\n");
2315 goto err_free;
2316 }
2317 info->io.addr_data = res->start;
2318
2319 info->io.regspacing = DEFAULT_REGSPACING;
2320 res_second = pnp_get_resource(dev,
2321 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2322 IORESOURCE_IO : IORESOURCE_MEM,
2323 1);
2324 if (res_second) {
2325 if (res_second->start > info->io.addr_data)
2326 info->io.regspacing = res_second->start - info->io.addr_data;
2327 }
2328 info->io.regsize = DEFAULT_REGSPACING;
2329 info->io.regshift = 0;
2330
2331 /* If _GPE exists, use it; otherwise use standard interrupts */
2332 status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2333 if (ACPI_SUCCESS(status)) {
2334 info->irq = tmp;
2335 info->irq_setup = acpi_gpe_irq_setup;
2336 } else if (pnp_irq_valid(dev, 0)) {
2337 info->irq = pnp_irq(dev, 0);
2338 info->irq_setup = std_irq_setup;
2339 }
2340
2341 info->dev = &dev->dev;
2342 pnp_set_drvdata(dev, info);
2343
2344 dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2345 res, info->io.regsize, info->io.regspacing,
2346 info->irq);
2347
2348 rv = add_smi(info);
2349 if (rv)
2350 kfree(info);
2351
2352 return rv;
2353
2354 err_free:
2355 kfree(info);
2356 return rv;
2357 }
2358
ipmi_pnp_remove(struct pnp_dev * dev)2359 static void ipmi_pnp_remove(struct pnp_dev *dev)
2360 {
2361 struct smi_info *info = pnp_get_drvdata(dev);
2362
2363 cleanup_one_si(info);
2364 }
2365
2366 static const struct pnp_device_id pnp_dev_table[] = {
2367 {"IPI0001", 0},
2368 {"", 0},
2369 };
2370
2371 static struct pnp_driver ipmi_pnp_driver = {
2372 .name = DEVICE_NAME,
2373 .probe = ipmi_pnp_probe,
2374 .remove = ipmi_pnp_remove,
2375 .id_table = pnp_dev_table,
2376 };
2377
2378 MODULE_DEVICE_TABLE(pnp, pnp_dev_table);
2379 #endif
2380
2381 #ifdef CONFIG_DMI
2382 struct dmi_ipmi_data {
2383 u8 type;
2384 u8 addr_space;
2385 unsigned long base_addr;
2386 u8 irq;
2387 u8 offset;
2388 u8 slave_addr;
2389 };
2390
decode_dmi(const struct dmi_header * dm,struct dmi_ipmi_data * dmi)2391 static int decode_dmi(const struct dmi_header *dm,
2392 struct dmi_ipmi_data *dmi)
2393 {
2394 const u8 *data = (const u8 *)dm;
2395 unsigned long base_addr;
2396 u8 reg_spacing;
2397 u8 len = dm->length;
2398
2399 dmi->type = data[4];
2400
2401 memcpy(&base_addr, data+8, sizeof(unsigned long));
2402 if (len >= 0x11) {
2403 if (base_addr & 1) {
2404 /* I/O */
2405 base_addr &= 0xFFFE;
2406 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2407 } else
2408 /* Memory */
2409 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2410
2411 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2412 is odd. */
2413 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2414
2415 dmi->irq = data[0x11];
2416
2417 /* The top two bits of byte 0x10 hold the register spacing. */
2418 reg_spacing = (data[0x10] & 0xC0) >> 6;
2419 switch (reg_spacing) {
2420 case 0x00: /* Byte boundaries */
2421 dmi->offset = 1;
2422 break;
2423 case 0x01: /* 32-bit boundaries */
2424 dmi->offset = 4;
2425 break;
2426 case 0x02: /* 16-byte boundaries */
2427 dmi->offset = 16;
2428 break;
2429 default:
2430 /* Some other interface, just ignore it. */
2431 return -EIO;
2432 }
2433 } else {
2434 /* Old DMI spec. */
2435 /*
2436 * Note that technically, the lower bit of the base
2437 * address should be 1 if the address is I/O and 0 if
2438 * the address is in memory. So many systems get that
2439 * wrong (and all that I have seen are I/O) so we just
2440 * ignore that bit and assume I/O. Systems that use
2441 * memory should use the newer spec, anyway.
2442 */
2443 dmi->base_addr = base_addr & 0xfffe;
2444 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2445 dmi->offset = 1;
2446 }
2447
2448 dmi->slave_addr = data[6];
2449
2450 return 0;
2451 }
2452
try_init_dmi(struct dmi_ipmi_data * ipmi_data)2453 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2454 {
2455 struct smi_info *info;
2456
2457 info = smi_info_alloc();
2458 if (!info) {
2459 printk(KERN_ERR PFX "Could not allocate SI data\n");
2460 return;
2461 }
2462
2463 info->addr_source = SI_SMBIOS;
2464 printk(KERN_INFO PFX "probing via SMBIOS\n");
2465
2466 switch (ipmi_data->type) {
2467 case 0x01: /* KCS */
2468 info->si_type = SI_KCS;
2469 break;
2470 case 0x02: /* SMIC */
2471 info->si_type = SI_SMIC;
2472 break;
2473 case 0x03: /* BT */
2474 info->si_type = SI_BT;
2475 break;
2476 default:
2477 kfree(info);
2478 return;
2479 }
2480
2481 switch (ipmi_data->addr_space) {
2482 case IPMI_MEM_ADDR_SPACE:
2483 info->io_setup = mem_setup;
2484 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2485 break;
2486
2487 case IPMI_IO_ADDR_SPACE:
2488 info->io_setup = port_setup;
2489 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2490 break;
2491
2492 default:
2493 kfree(info);
2494 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2495 ipmi_data->addr_space);
2496 return;
2497 }
2498 info->io.addr_data = ipmi_data->base_addr;
2499
2500 info->io.regspacing = ipmi_data->offset;
2501 if (!info->io.regspacing)
2502 info->io.regspacing = DEFAULT_REGSPACING;
2503 info->io.regsize = DEFAULT_REGSPACING;
2504 info->io.regshift = 0;
2505
2506 info->slave_addr = ipmi_data->slave_addr;
2507
2508 info->irq = ipmi_data->irq;
2509 if (info->irq)
2510 info->irq_setup = std_irq_setup;
2511
2512 pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2513 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2514 info->io.addr_data, info->io.regsize, info->io.regspacing,
2515 info->irq);
2516
2517 if (add_smi(info))
2518 kfree(info);
2519 }
2520
dmi_find_bmc(void)2521 static void dmi_find_bmc(void)
2522 {
2523 const struct dmi_device *dev = NULL;
2524 struct dmi_ipmi_data data;
2525 int rv;
2526
2527 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2528 memset(&data, 0, sizeof(data));
2529 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2530 &data);
2531 if (!rv)
2532 try_init_dmi(&data);
2533 }
2534 }
2535 #endif /* CONFIG_DMI */
2536
2537 #ifdef CONFIG_PCI
2538
2539 #define PCI_ERMC_CLASSCODE 0x0C0700
2540 #define PCI_ERMC_CLASSCODE_MASK 0xffffff00
2541 #define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
2542 #define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
2543 #define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
2544 #define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
2545
2546 #define PCI_HP_VENDOR_ID 0x103C
2547 #define PCI_MMC_DEVICE_ID 0x121A
2548 #define PCI_MMC_ADDR_CW 0x10
2549
ipmi_pci_cleanup(struct smi_info * info)2550 static void ipmi_pci_cleanup(struct smi_info *info)
2551 {
2552 struct pci_dev *pdev = info->addr_source_data;
2553
2554 pci_disable_device(pdev);
2555 }
2556
ipmi_pci_probe_regspacing(struct smi_info * info)2557 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2558 {
2559 if (info->si_type == SI_KCS) {
2560 unsigned char status;
2561 int regspacing;
2562
2563 info->io.regsize = DEFAULT_REGSIZE;
2564 info->io.regshift = 0;
2565 info->io_size = 2;
2566 info->handlers = &kcs_smi_handlers;
2567
2568 /* detect 1, 4, 16byte spacing */
2569 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2570 info->io.regspacing = regspacing;
2571 if (info->io_setup(info)) {
2572 dev_err(info->dev,
2573 "Could not setup I/O space\n");
2574 return DEFAULT_REGSPACING;
2575 }
2576 /* write invalid cmd */
2577 info->io.outputb(&info->io, 1, 0x10);
2578 /* read status back */
2579 status = info->io.inputb(&info->io, 1);
2580 info->io_cleanup(info);
2581 if (status)
2582 return regspacing;
2583 regspacing *= 4;
2584 }
2585 }
2586 return DEFAULT_REGSPACING;
2587 }
2588
ipmi_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)2589 static int ipmi_pci_probe(struct pci_dev *pdev,
2590 const struct pci_device_id *ent)
2591 {
2592 int rv;
2593 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2594 struct smi_info *info;
2595
2596 info = smi_info_alloc();
2597 if (!info)
2598 return -ENOMEM;
2599
2600 info->addr_source = SI_PCI;
2601 dev_info(&pdev->dev, "probing via PCI");
2602
2603 switch (class_type) {
2604 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2605 info->si_type = SI_SMIC;
2606 break;
2607
2608 case PCI_ERMC_CLASSCODE_TYPE_KCS:
2609 info->si_type = SI_KCS;
2610 break;
2611
2612 case PCI_ERMC_CLASSCODE_TYPE_BT:
2613 info->si_type = SI_BT;
2614 break;
2615
2616 default:
2617 kfree(info);
2618 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2619 return -ENOMEM;
2620 }
2621
2622 rv = pci_enable_device(pdev);
2623 if (rv) {
2624 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2625 kfree(info);
2626 return rv;
2627 }
2628
2629 info->addr_source_cleanup = ipmi_pci_cleanup;
2630 info->addr_source_data = pdev;
2631
2632 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2633 info->io_setup = port_setup;
2634 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2635 } else {
2636 info->io_setup = mem_setup;
2637 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2638 }
2639 info->io.addr_data = pci_resource_start(pdev, 0);
2640
2641 info->io.regspacing = ipmi_pci_probe_regspacing(info);
2642 info->io.regsize = DEFAULT_REGSIZE;
2643 info->io.regshift = 0;
2644
2645 info->irq = pdev->irq;
2646 if (info->irq)
2647 info->irq_setup = std_irq_setup;
2648
2649 info->dev = &pdev->dev;
2650 pci_set_drvdata(pdev, info);
2651
2652 dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2653 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2654 info->irq);
2655
2656 rv = add_smi(info);
2657 if (rv) {
2658 kfree(info);
2659 pci_disable_device(pdev);
2660 }
2661
2662 return rv;
2663 }
2664
ipmi_pci_remove(struct pci_dev * pdev)2665 static void ipmi_pci_remove(struct pci_dev *pdev)
2666 {
2667 struct smi_info *info = pci_get_drvdata(pdev);
2668 cleanup_one_si(info);
2669 pci_disable_device(pdev);
2670 }
2671
2672 static struct pci_device_id ipmi_pci_devices[] = {
2673 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2674 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2675 { 0, }
2676 };
2677 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2678
2679 static struct pci_driver ipmi_pci_driver = {
2680 .name = DEVICE_NAME,
2681 .id_table = ipmi_pci_devices,
2682 .probe = ipmi_pci_probe,
2683 .remove = ipmi_pci_remove,
2684 };
2685 #endif /* CONFIG_PCI */
2686
2687 static const struct of_device_id ipmi_match[];
ipmi_probe(struct platform_device * dev)2688 static int ipmi_probe(struct platform_device *dev)
2689 {
2690 #ifdef CONFIG_OF
2691 const struct of_device_id *match;
2692 struct smi_info *info;
2693 struct resource resource;
2694 const __be32 *regsize, *regspacing, *regshift;
2695 struct device_node *np = dev->dev.of_node;
2696 int ret;
2697 int proplen;
2698
2699 dev_info(&dev->dev, "probing via device tree\n");
2700
2701 match = of_match_device(ipmi_match, &dev->dev);
2702 if (!match)
2703 return -EINVAL;
2704
2705 if (!of_device_is_available(np))
2706 return -EINVAL;
2707
2708 ret = of_address_to_resource(np, 0, &resource);
2709 if (ret) {
2710 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2711 return ret;
2712 }
2713
2714 regsize = of_get_property(np, "reg-size", &proplen);
2715 if (regsize && proplen != 4) {
2716 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2717 return -EINVAL;
2718 }
2719
2720 regspacing = of_get_property(np, "reg-spacing", &proplen);
2721 if (regspacing && proplen != 4) {
2722 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2723 return -EINVAL;
2724 }
2725
2726 regshift = of_get_property(np, "reg-shift", &proplen);
2727 if (regshift && proplen != 4) {
2728 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2729 return -EINVAL;
2730 }
2731
2732 info = smi_info_alloc();
2733
2734 if (!info) {
2735 dev_err(&dev->dev,
2736 "could not allocate memory for OF probe\n");
2737 return -ENOMEM;
2738 }
2739
2740 info->si_type = (enum si_type) match->data;
2741 info->addr_source = SI_DEVICETREE;
2742 info->irq_setup = std_irq_setup;
2743
2744 if (resource.flags & IORESOURCE_IO) {
2745 info->io_setup = port_setup;
2746 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2747 } else {
2748 info->io_setup = mem_setup;
2749 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2750 }
2751
2752 info->io.addr_data = resource.start;
2753
2754 info->io.regsize = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2755 info->io.regspacing = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2756 info->io.regshift = regshift ? be32_to_cpup(regshift) : 0;
2757
2758 info->irq = irq_of_parse_and_map(dev->dev.of_node, 0);
2759 info->dev = &dev->dev;
2760
2761 dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2762 info->io.addr_data, info->io.regsize, info->io.regspacing,
2763 info->irq);
2764
2765 dev_set_drvdata(&dev->dev, info);
2766
2767 ret = add_smi(info);
2768 if (ret) {
2769 kfree(info);
2770 return ret;
2771 }
2772 #endif
2773 return 0;
2774 }
2775
ipmi_remove(struct platform_device * dev)2776 static int ipmi_remove(struct platform_device *dev)
2777 {
2778 #ifdef CONFIG_OF
2779 cleanup_one_si(dev_get_drvdata(&dev->dev));
2780 #endif
2781 return 0;
2782 }
2783
2784 static const struct of_device_id ipmi_match[] =
2785 {
2786 { .type = "ipmi", .compatible = "ipmi-kcs",
2787 .data = (void *)(unsigned long) SI_KCS },
2788 { .type = "ipmi", .compatible = "ipmi-smic",
2789 .data = (void *)(unsigned long) SI_SMIC },
2790 { .type = "ipmi", .compatible = "ipmi-bt",
2791 .data = (void *)(unsigned long) SI_BT },
2792 {},
2793 };
2794
2795 static struct platform_driver ipmi_driver = {
2796 .driver = {
2797 .name = DEVICE_NAME,
2798 .of_match_table = ipmi_match,
2799 },
2800 .probe = ipmi_probe,
2801 .remove = ipmi_remove,
2802 };
2803
2804 #ifdef CONFIG_PARISC
ipmi_parisc_probe(struct parisc_device * dev)2805 static int ipmi_parisc_probe(struct parisc_device *dev)
2806 {
2807 struct smi_info *info;
2808 int rv;
2809
2810 info = smi_info_alloc();
2811
2812 if (!info) {
2813 dev_err(&dev->dev,
2814 "could not allocate memory for PARISC probe\n");
2815 return -ENOMEM;
2816 }
2817
2818 info->si_type = SI_KCS;
2819 info->addr_source = SI_DEVICETREE;
2820 info->io_setup = mem_setup;
2821 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2822 info->io.addr_data = dev->hpa.start;
2823 info->io.regsize = 1;
2824 info->io.regspacing = 1;
2825 info->io.regshift = 0;
2826 info->irq = 0; /* no interrupt */
2827 info->irq_setup = NULL;
2828 info->dev = &dev->dev;
2829
2830 dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2831
2832 dev_set_drvdata(&dev->dev, info);
2833
2834 rv = add_smi(info);
2835 if (rv) {
2836 kfree(info);
2837 return rv;
2838 }
2839
2840 return 0;
2841 }
2842
ipmi_parisc_remove(struct parisc_device * dev)2843 static int ipmi_parisc_remove(struct parisc_device *dev)
2844 {
2845 cleanup_one_si(dev_get_drvdata(&dev->dev));
2846 return 0;
2847 }
2848
2849 static struct parisc_device_id ipmi_parisc_tbl[] = {
2850 { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2851 { 0, }
2852 };
2853
2854 static struct parisc_driver ipmi_parisc_driver = {
2855 .name = "ipmi",
2856 .id_table = ipmi_parisc_tbl,
2857 .probe = ipmi_parisc_probe,
2858 .remove = ipmi_parisc_remove,
2859 };
2860 #endif /* CONFIG_PARISC */
2861
wait_for_msg_done(struct smi_info * smi_info)2862 static int wait_for_msg_done(struct smi_info *smi_info)
2863 {
2864 enum si_sm_result smi_result;
2865
2866 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2867 for (;;) {
2868 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2869 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2870 schedule_timeout_uninterruptible(1);
2871 smi_result = smi_info->handlers->event(
2872 smi_info->si_sm, jiffies_to_usecs(1));
2873 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2874 smi_result = smi_info->handlers->event(
2875 smi_info->si_sm, 0);
2876 } else
2877 break;
2878 }
2879 if (smi_result == SI_SM_HOSED)
2880 /*
2881 * We couldn't get the state machine to run, so whatever's at
2882 * the port is probably not an IPMI SMI interface.
2883 */
2884 return -ENODEV;
2885
2886 return 0;
2887 }
2888
try_get_dev_id(struct smi_info * smi_info)2889 static int try_get_dev_id(struct smi_info *smi_info)
2890 {
2891 unsigned char msg[2];
2892 unsigned char *resp;
2893 unsigned long resp_len;
2894 int rv = 0;
2895
2896 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2897 if (!resp)
2898 return -ENOMEM;
2899
2900 /*
2901 * Do a Get Device ID command, since it comes back with some
2902 * useful info.
2903 */
2904 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2905 msg[1] = IPMI_GET_DEVICE_ID_CMD;
2906 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2907
2908 rv = wait_for_msg_done(smi_info);
2909 if (rv)
2910 goto out;
2911
2912 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2913 resp, IPMI_MAX_MSG_LENGTH);
2914
2915 /* Check and record info from the get device id, in case we need it. */
2916 rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2917
2918 out:
2919 kfree(resp);
2920 return rv;
2921 }
2922
2923 /*
2924 * Some BMCs do not support clearing the receive irq bit in the global
2925 * enables (even if they don't support interrupts on the BMC). Check
2926 * for this and handle it properly.
2927 */
check_clr_rcv_irq(struct smi_info * smi_info)2928 static void check_clr_rcv_irq(struct smi_info *smi_info)
2929 {
2930 unsigned char msg[3];
2931 unsigned char *resp;
2932 unsigned long resp_len;
2933 int rv;
2934
2935 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2936 if (!resp) {
2937 printk(KERN_WARNING PFX "Out of memory allocating response for"
2938 " global enables command, cannot check recv irq bit"
2939 " handling.\n");
2940 return;
2941 }
2942
2943 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2944 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2945 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2946
2947 rv = wait_for_msg_done(smi_info);
2948 if (rv) {
2949 printk(KERN_WARNING PFX "Error getting response from get"
2950 " global enables command, cannot check recv irq bit"
2951 " handling.\n");
2952 goto out;
2953 }
2954
2955 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2956 resp, IPMI_MAX_MSG_LENGTH);
2957
2958 if (resp_len < 4 ||
2959 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2960 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
2961 resp[2] != 0) {
2962 printk(KERN_WARNING PFX "Invalid return from get global"
2963 " enables command, cannot check recv irq bit"
2964 " handling.\n");
2965 rv = -EINVAL;
2966 goto out;
2967 }
2968
2969 if ((resp[3] & IPMI_BMC_RCV_MSG_INTR) == 0)
2970 /* Already clear, should work ok. */
2971 goto out;
2972
2973 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2974 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
2975 msg[2] = resp[3] & ~IPMI_BMC_RCV_MSG_INTR;
2976 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
2977
2978 rv = wait_for_msg_done(smi_info);
2979 if (rv) {
2980 printk(KERN_WARNING PFX "Error getting response from set"
2981 " global enables command, cannot check recv irq bit"
2982 " handling.\n");
2983 goto out;
2984 }
2985
2986 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2987 resp, IPMI_MAX_MSG_LENGTH);
2988
2989 if (resp_len < 3 ||
2990 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2991 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
2992 printk(KERN_WARNING PFX "Invalid return from get global"
2993 " enables command, cannot check recv irq bit"
2994 " handling.\n");
2995 rv = -EINVAL;
2996 goto out;
2997 }
2998
2999 if (resp[2] != 0) {
3000 /*
3001 * An error when setting the event buffer bit means
3002 * clearing the bit is not supported.
3003 */
3004 printk(KERN_WARNING PFX "The BMC does not support clearing"
3005 " the recv irq bit, compensating, but the BMC needs to"
3006 " be fixed.\n");
3007 smi_info->cannot_clear_recv_irq_bit = true;
3008 }
3009 out:
3010 kfree(resp);
3011 }
3012
try_enable_event_buffer(struct smi_info * smi_info)3013 static int try_enable_event_buffer(struct smi_info *smi_info)
3014 {
3015 unsigned char msg[3];
3016 unsigned char *resp;
3017 unsigned long resp_len;
3018 int rv = 0;
3019
3020 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3021 if (!resp)
3022 return -ENOMEM;
3023
3024 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3025 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3026 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3027
3028 rv = wait_for_msg_done(smi_info);
3029 if (rv) {
3030 printk(KERN_WARNING PFX "Error getting response from get"
3031 " global enables command, the event buffer is not"
3032 " enabled.\n");
3033 goto out;
3034 }
3035
3036 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3037 resp, IPMI_MAX_MSG_LENGTH);
3038
3039 if (resp_len < 4 ||
3040 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3041 resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD ||
3042 resp[2] != 0) {
3043 printk(KERN_WARNING PFX "Invalid return from get global"
3044 " enables command, cannot enable the event buffer.\n");
3045 rv = -EINVAL;
3046 goto out;
3047 }
3048
3049 if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3050 /* buffer is already enabled, nothing to do. */
3051 smi_info->supports_event_msg_buff = true;
3052 goto out;
3053 }
3054
3055 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3056 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3057 msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3058 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3059
3060 rv = wait_for_msg_done(smi_info);
3061 if (rv) {
3062 printk(KERN_WARNING PFX "Error getting response from set"
3063 " global, enables command, the event buffer is not"
3064 " enabled.\n");
3065 goto out;
3066 }
3067
3068 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3069 resp, IPMI_MAX_MSG_LENGTH);
3070
3071 if (resp_len < 3 ||
3072 resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3073 resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3074 printk(KERN_WARNING PFX "Invalid return from get global,"
3075 "enables command, not enable the event buffer.\n");
3076 rv = -EINVAL;
3077 goto out;
3078 }
3079
3080 if (resp[2] != 0)
3081 /*
3082 * An error when setting the event buffer bit means
3083 * that the event buffer is not supported.
3084 */
3085 rv = -ENOENT;
3086 else
3087 smi_info->supports_event_msg_buff = true;
3088
3089 out:
3090 kfree(resp);
3091 return rv;
3092 }
3093
smi_type_proc_show(struct seq_file * m,void * v)3094 static int smi_type_proc_show(struct seq_file *m, void *v)
3095 {
3096 struct smi_info *smi = m->private;
3097
3098 seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3099
3100 return 0;
3101 }
3102
smi_type_proc_open(struct inode * inode,struct file * file)3103 static int smi_type_proc_open(struct inode *inode, struct file *file)
3104 {
3105 return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3106 }
3107
3108 static const struct file_operations smi_type_proc_ops = {
3109 .open = smi_type_proc_open,
3110 .read = seq_read,
3111 .llseek = seq_lseek,
3112 .release = single_release,
3113 };
3114
smi_si_stats_proc_show(struct seq_file * m,void * v)3115 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3116 {
3117 struct smi_info *smi = m->private;
3118
3119 seq_printf(m, "interrupts_enabled: %d\n",
3120 smi->irq && !smi->interrupt_disabled);
3121 seq_printf(m, "short_timeouts: %u\n",
3122 smi_get_stat(smi, short_timeouts));
3123 seq_printf(m, "long_timeouts: %u\n",
3124 smi_get_stat(smi, long_timeouts));
3125 seq_printf(m, "idles: %u\n",
3126 smi_get_stat(smi, idles));
3127 seq_printf(m, "interrupts: %u\n",
3128 smi_get_stat(smi, interrupts));
3129 seq_printf(m, "attentions: %u\n",
3130 smi_get_stat(smi, attentions));
3131 seq_printf(m, "flag_fetches: %u\n",
3132 smi_get_stat(smi, flag_fetches));
3133 seq_printf(m, "hosed_count: %u\n",
3134 smi_get_stat(smi, hosed_count));
3135 seq_printf(m, "complete_transactions: %u\n",
3136 smi_get_stat(smi, complete_transactions));
3137 seq_printf(m, "events: %u\n",
3138 smi_get_stat(smi, events));
3139 seq_printf(m, "watchdog_pretimeouts: %u\n",
3140 smi_get_stat(smi, watchdog_pretimeouts));
3141 seq_printf(m, "incoming_messages: %u\n",
3142 smi_get_stat(smi, incoming_messages));
3143 return 0;
3144 }
3145
smi_si_stats_proc_open(struct inode * inode,struct file * file)3146 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3147 {
3148 return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3149 }
3150
3151 static const struct file_operations smi_si_stats_proc_ops = {
3152 .open = smi_si_stats_proc_open,
3153 .read = seq_read,
3154 .llseek = seq_lseek,
3155 .release = single_release,
3156 };
3157
smi_params_proc_show(struct seq_file * m,void * v)3158 static int smi_params_proc_show(struct seq_file *m, void *v)
3159 {
3160 struct smi_info *smi = m->private;
3161
3162 seq_printf(m,
3163 "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3164 si_to_str[smi->si_type],
3165 addr_space_to_str[smi->io.addr_type],
3166 smi->io.addr_data,
3167 smi->io.regspacing,
3168 smi->io.regsize,
3169 smi->io.regshift,
3170 smi->irq,
3171 smi->slave_addr);
3172
3173 return 0;
3174 }
3175
smi_params_proc_open(struct inode * inode,struct file * file)3176 static int smi_params_proc_open(struct inode *inode, struct file *file)
3177 {
3178 return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3179 }
3180
3181 static const struct file_operations smi_params_proc_ops = {
3182 .open = smi_params_proc_open,
3183 .read = seq_read,
3184 .llseek = seq_lseek,
3185 .release = single_release,
3186 };
3187
3188 /*
3189 * oem_data_avail_to_receive_msg_avail
3190 * @info - smi_info structure with msg_flags set
3191 *
3192 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3193 * Returns 1 indicating need to re-run handle_flags().
3194 */
oem_data_avail_to_receive_msg_avail(struct smi_info * smi_info)3195 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3196 {
3197 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3198 RECEIVE_MSG_AVAIL);
3199 return 1;
3200 }
3201
3202 /*
3203 * setup_dell_poweredge_oem_data_handler
3204 * @info - smi_info.device_id must be populated
3205 *
3206 * Systems that match, but have firmware version < 1.40 may assert
3207 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3208 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
3209 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3210 * as RECEIVE_MSG_AVAIL instead.
3211 *
3212 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3213 * assert the OEM[012] bits, and if it did, the driver would have to
3214 * change to handle that properly, we don't actually check for the
3215 * firmware version.
3216 * Device ID = 0x20 BMC on PowerEdge 8G servers
3217 * Device Revision = 0x80
3218 * Firmware Revision1 = 0x01 BMC version 1.40
3219 * Firmware Revision2 = 0x40 BCD encoded
3220 * IPMI Version = 0x51 IPMI 1.5
3221 * Manufacturer ID = A2 02 00 Dell IANA
3222 *
3223 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3224 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3225 *
3226 */
3227 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
3228 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3229 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3230 #define DELL_IANA_MFR_ID 0x0002a2
setup_dell_poweredge_oem_data_handler(struct smi_info * smi_info)3231 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3232 {
3233 struct ipmi_device_id *id = &smi_info->device_id;
3234 if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3235 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
3236 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3237 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3238 smi_info->oem_data_avail_handler =
3239 oem_data_avail_to_receive_msg_avail;
3240 } else if (ipmi_version_major(id) < 1 ||
3241 (ipmi_version_major(id) == 1 &&
3242 ipmi_version_minor(id) < 5)) {
3243 smi_info->oem_data_avail_handler =
3244 oem_data_avail_to_receive_msg_avail;
3245 }
3246 }
3247 }
3248
3249 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
return_hosed_msg_badsize(struct smi_info * smi_info)3250 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3251 {
3252 struct ipmi_smi_msg *msg = smi_info->curr_msg;
3253
3254 /* Make it a response */
3255 msg->rsp[0] = msg->data[0] | 4;
3256 msg->rsp[1] = msg->data[1];
3257 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3258 msg->rsp_size = 3;
3259 smi_info->curr_msg = NULL;
3260 deliver_recv_msg(smi_info, msg);
3261 }
3262
3263 /*
3264 * dell_poweredge_bt_xaction_handler
3265 * @info - smi_info.device_id must be populated
3266 *
3267 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3268 * not respond to a Get SDR command if the length of the data
3269 * requested is exactly 0x3A, which leads to command timeouts and no
3270 * data returned. This intercepts such commands, and causes userspace
3271 * callers to try again with a different-sized buffer, which succeeds.
3272 */
3273
3274 #define STORAGE_NETFN 0x0A
3275 #define STORAGE_CMD_GET_SDR 0x23
dell_poweredge_bt_xaction_handler(struct notifier_block * self,unsigned long unused,void * in)3276 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3277 unsigned long unused,
3278 void *in)
3279 {
3280 struct smi_info *smi_info = in;
3281 unsigned char *data = smi_info->curr_msg->data;
3282 unsigned int size = smi_info->curr_msg->data_size;
3283 if (size >= 8 &&
3284 (data[0]>>2) == STORAGE_NETFN &&
3285 data[1] == STORAGE_CMD_GET_SDR &&
3286 data[7] == 0x3A) {
3287 return_hosed_msg_badsize(smi_info);
3288 return NOTIFY_STOP;
3289 }
3290 return NOTIFY_DONE;
3291 }
3292
3293 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3294 .notifier_call = dell_poweredge_bt_xaction_handler,
3295 };
3296
3297 /*
3298 * setup_dell_poweredge_bt_xaction_handler
3299 * @info - smi_info.device_id must be filled in already
3300 *
3301 * Fills in smi_info.device_id.start_transaction_pre_hook
3302 * when we know what function to use there.
3303 */
3304 static void
setup_dell_poweredge_bt_xaction_handler(struct smi_info * smi_info)3305 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3306 {
3307 struct ipmi_device_id *id = &smi_info->device_id;
3308 if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3309 smi_info->si_type == SI_BT)
3310 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3311 }
3312
3313 /*
3314 * setup_oem_data_handler
3315 * @info - smi_info.device_id must be filled in already
3316 *
3317 * Fills in smi_info.device_id.oem_data_available_handler
3318 * when we know what function to use there.
3319 */
3320
setup_oem_data_handler(struct smi_info * smi_info)3321 static void setup_oem_data_handler(struct smi_info *smi_info)
3322 {
3323 setup_dell_poweredge_oem_data_handler(smi_info);
3324 }
3325
setup_xaction_handlers(struct smi_info * smi_info)3326 static void setup_xaction_handlers(struct smi_info *smi_info)
3327 {
3328 setup_dell_poweredge_bt_xaction_handler(smi_info);
3329 }
3330
wait_for_timer_and_thread(struct smi_info * smi_info)3331 static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
3332 {
3333 if (smi_info->thread != NULL)
3334 kthread_stop(smi_info->thread);
3335 if (smi_info->timer_running)
3336 del_timer_sync(&smi_info->si_timer);
3337 }
3338
3339 static struct ipmi_default_vals
3340 {
3341 int type;
3342 int port;
3343 } ipmi_defaults[] =
3344 {
3345 { .type = SI_KCS, .port = 0xca2 },
3346 { .type = SI_SMIC, .port = 0xca9 },
3347 { .type = SI_BT, .port = 0xe4 },
3348 { .port = 0 }
3349 };
3350
default_find_bmc(void)3351 static void default_find_bmc(void)
3352 {
3353 struct smi_info *info;
3354 int i;
3355
3356 for (i = 0; ; i++) {
3357 if (!ipmi_defaults[i].port)
3358 break;
3359 #ifdef CONFIG_PPC
3360 if (check_legacy_ioport(ipmi_defaults[i].port))
3361 continue;
3362 #endif
3363 info = smi_info_alloc();
3364 if (!info)
3365 return;
3366
3367 info->addr_source = SI_DEFAULT;
3368
3369 info->si_type = ipmi_defaults[i].type;
3370 info->io_setup = port_setup;
3371 info->io.addr_data = ipmi_defaults[i].port;
3372 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3373
3374 info->io.addr = NULL;
3375 info->io.regspacing = DEFAULT_REGSPACING;
3376 info->io.regsize = DEFAULT_REGSPACING;
3377 info->io.regshift = 0;
3378
3379 if (add_smi(info) == 0) {
3380 if ((try_smi_init(info)) == 0) {
3381 /* Found one... */
3382 printk(KERN_INFO PFX "Found default %s"
3383 " state machine at %s address 0x%lx\n",
3384 si_to_str[info->si_type],
3385 addr_space_to_str[info->io.addr_type],
3386 info->io.addr_data);
3387 } else
3388 cleanup_one_si(info);
3389 } else {
3390 kfree(info);
3391 }
3392 }
3393 }
3394
is_new_interface(struct smi_info * info)3395 static int is_new_interface(struct smi_info *info)
3396 {
3397 struct smi_info *e;
3398
3399 list_for_each_entry(e, &smi_infos, link) {
3400 if (e->io.addr_type != info->io.addr_type)
3401 continue;
3402 if (e->io.addr_data == info->io.addr_data)
3403 return 0;
3404 }
3405
3406 return 1;
3407 }
3408
add_smi(struct smi_info * new_smi)3409 static int add_smi(struct smi_info *new_smi)
3410 {
3411 int rv = 0;
3412
3413 printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3414 ipmi_addr_src_to_str(new_smi->addr_source),
3415 si_to_str[new_smi->si_type]);
3416 mutex_lock(&smi_infos_lock);
3417 if (!is_new_interface(new_smi)) {
3418 printk(KERN_CONT " duplicate interface\n");
3419 rv = -EBUSY;
3420 goto out_err;
3421 }
3422
3423 printk(KERN_CONT "\n");
3424
3425 /* So we know not to free it unless we have allocated one. */
3426 new_smi->intf = NULL;
3427 new_smi->si_sm = NULL;
3428 new_smi->handlers = NULL;
3429
3430 list_add_tail(&new_smi->link, &smi_infos);
3431
3432 out_err:
3433 mutex_unlock(&smi_infos_lock);
3434 return rv;
3435 }
3436
try_smi_init(struct smi_info * new_smi)3437 static int try_smi_init(struct smi_info *new_smi)
3438 {
3439 int rv = 0;
3440 int i;
3441
3442 printk(KERN_INFO PFX "Trying %s-specified %s state"
3443 " machine at %s address 0x%lx, slave address 0x%x,"
3444 " irq %d\n",
3445 ipmi_addr_src_to_str(new_smi->addr_source),
3446 si_to_str[new_smi->si_type],
3447 addr_space_to_str[new_smi->io.addr_type],
3448 new_smi->io.addr_data,
3449 new_smi->slave_addr, new_smi->irq);
3450
3451 switch (new_smi->si_type) {
3452 case SI_KCS:
3453 new_smi->handlers = &kcs_smi_handlers;
3454 break;
3455
3456 case SI_SMIC:
3457 new_smi->handlers = &smic_smi_handlers;
3458 break;
3459
3460 case SI_BT:
3461 new_smi->handlers = &bt_smi_handlers;
3462 break;
3463
3464 default:
3465 /* No support for anything else yet. */
3466 rv = -EIO;
3467 goto out_err;
3468 }
3469
3470 /* Allocate the state machine's data and initialize it. */
3471 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3472 if (!new_smi->si_sm) {
3473 printk(KERN_ERR PFX
3474 "Could not allocate state machine memory\n");
3475 rv = -ENOMEM;
3476 goto out_err;
3477 }
3478 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3479 &new_smi->io);
3480
3481 /* Now that we know the I/O size, we can set up the I/O. */
3482 rv = new_smi->io_setup(new_smi);
3483 if (rv) {
3484 printk(KERN_ERR PFX "Could not set up I/O space\n");
3485 goto out_err;
3486 }
3487
3488 /* Do low-level detection first. */
3489 if (new_smi->handlers->detect(new_smi->si_sm)) {
3490 if (new_smi->addr_source)
3491 printk(KERN_INFO PFX "Interface detection failed\n");
3492 rv = -ENODEV;
3493 goto out_err;
3494 }
3495
3496 /*
3497 * Attempt a get device id command. If it fails, we probably
3498 * don't have a BMC here.
3499 */
3500 rv = try_get_dev_id(new_smi);
3501 if (rv) {
3502 if (new_smi->addr_source)
3503 printk(KERN_INFO PFX "There appears to be no BMC"
3504 " at this location\n");
3505 goto out_err;
3506 }
3507
3508 check_clr_rcv_irq(new_smi);
3509
3510 setup_oem_data_handler(new_smi);
3511 setup_xaction_handlers(new_smi);
3512
3513 new_smi->waiting_msg = NULL;
3514 new_smi->curr_msg = NULL;
3515 atomic_set(&new_smi->req_events, 0);
3516 new_smi->run_to_completion = false;
3517 for (i = 0; i < SI_NUM_STATS; i++)
3518 atomic_set(&new_smi->stats[i], 0);
3519
3520 new_smi->interrupt_disabled = true;
3521 atomic_set(&new_smi->need_watch, 0);
3522 new_smi->intf_num = smi_num;
3523 smi_num++;
3524
3525 rv = try_enable_event_buffer(new_smi);
3526 if (rv == 0)
3527 new_smi->has_event_buffer = true;
3528
3529 /*
3530 * Start clearing the flags before we enable interrupts or the
3531 * timer to avoid racing with the timer.
3532 */
3533 start_clear_flags(new_smi, false);
3534
3535 /*
3536 * IRQ is defined to be set when non-zero. req_events will
3537 * cause a global flags check that will enable interrupts.
3538 */
3539 if (new_smi->irq) {
3540 new_smi->interrupt_disabled = false;
3541 atomic_set(&new_smi->req_events, 1);
3542 }
3543
3544 if (!new_smi->dev) {
3545 /*
3546 * If we don't already have a device from something
3547 * else (like PCI), then register a new one.
3548 */
3549 new_smi->pdev = platform_device_alloc("ipmi_si",
3550 new_smi->intf_num);
3551 if (!new_smi->pdev) {
3552 printk(KERN_ERR PFX
3553 "Unable to allocate platform device\n");
3554 goto out_err;
3555 }
3556 new_smi->dev = &new_smi->pdev->dev;
3557 new_smi->dev->driver = &ipmi_driver.driver;
3558
3559 rv = platform_device_add(new_smi->pdev);
3560 if (rv) {
3561 printk(KERN_ERR PFX
3562 "Unable to register system interface device:"
3563 " %d\n",
3564 rv);
3565 goto out_err;
3566 }
3567 new_smi->dev_registered = true;
3568 }
3569
3570 rv = ipmi_register_smi(&handlers,
3571 new_smi,
3572 &new_smi->device_id,
3573 new_smi->dev,
3574 new_smi->slave_addr);
3575 if (rv) {
3576 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3577 rv);
3578 goto out_err_stop_timer;
3579 }
3580
3581 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3582 &smi_type_proc_ops,
3583 new_smi);
3584 if (rv) {
3585 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3586 goto out_err_stop_timer;
3587 }
3588
3589 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3590 &smi_si_stats_proc_ops,
3591 new_smi);
3592 if (rv) {
3593 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3594 goto out_err_stop_timer;
3595 }
3596
3597 rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3598 &smi_params_proc_ops,
3599 new_smi);
3600 if (rv) {
3601 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3602 goto out_err_stop_timer;
3603 }
3604
3605 dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3606 si_to_str[new_smi->si_type]);
3607
3608 return 0;
3609
3610 out_err_stop_timer:
3611 wait_for_timer_and_thread(new_smi);
3612
3613 out_err:
3614 new_smi->interrupt_disabled = true;
3615
3616 if (new_smi->intf) {
3617 ipmi_smi_t intf = new_smi->intf;
3618 new_smi->intf = NULL;
3619 ipmi_unregister_smi(intf);
3620 }
3621
3622 if (new_smi->irq_cleanup) {
3623 new_smi->irq_cleanup(new_smi);
3624 new_smi->irq_cleanup = NULL;
3625 }
3626
3627 /*
3628 * Wait until we know that we are out of any interrupt
3629 * handlers might have been running before we freed the
3630 * interrupt.
3631 */
3632 synchronize_sched();
3633
3634 if (new_smi->si_sm) {
3635 if (new_smi->handlers)
3636 new_smi->handlers->cleanup(new_smi->si_sm);
3637 kfree(new_smi->si_sm);
3638 new_smi->si_sm = NULL;
3639 }
3640 if (new_smi->addr_source_cleanup) {
3641 new_smi->addr_source_cleanup(new_smi);
3642 new_smi->addr_source_cleanup = NULL;
3643 }
3644 if (new_smi->io_cleanup) {
3645 new_smi->io_cleanup(new_smi);
3646 new_smi->io_cleanup = NULL;
3647 }
3648
3649 if (new_smi->dev_registered) {
3650 platform_device_unregister(new_smi->pdev);
3651 new_smi->dev_registered = false;
3652 }
3653
3654 return rv;
3655 }
3656
init_ipmi_si(void)3657 static int init_ipmi_si(void)
3658 {
3659 int i;
3660 char *str;
3661 int rv;
3662 struct smi_info *e;
3663 enum ipmi_addr_src type = SI_INVALID;
3664
3665 if (initialized)
3666 return 0;
3667 initialized = 1;
3668
3669 if (si_tryplatform) {
3670 rv = platform_driver_register(&ipmi_driver);
3671 if (rv) {
3672 printk(KERN_ERR PFX "Unable to register "
3673 "driver: %d\n", rv);
3674 return rv;
3675 }
3676 }
3677
3678 /* Parse out the si_type string into its components. */
3679 str = si_type_str;
3680 if (*str != '\0') {
3681 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3682 si_type[i] = str;
3683 str = strchr(str, ',');
3684 if (str) {
3685 *str = '\0';
3686 str++;
3687 } else {
3688 break;
3689 }
3690 }
3691 }
3692
3693 printk(KERN_INFO "IPMI System Interface driver.\n");
3694
3695 /* If the user gave us a device, they presumably want us to use it */
3696 if (!hardcode_find_bmc())
3697 return 0;
3698
3699 #ifdef CONFIG_PCI
3700 if (si_trypci) {
3701 rv = pci_register_driver(&ipmi_pci_driver);
3702 if (rv)
3703 printk(KERN_ERR PFX "Unable to register "
3704 "PCI driver: %d\n", rv);
3705 else
3706 pci_registered = true;
3707 }
3708 #endif
3709
3710 #ifdef CONFIG_ACPI
3711 if (si_tryacpi) {
3712 pnp_register_driver(&ipmi_pnp_driver);
3713 pnp_registered = true;
3714 }
3715 #endif
3716
3717 #ifdef CONFIG_DMI
3718 if (si_trydmi)
3719 dmi_find_bmc();
3720 #endif
3721
3722 #ifdef CONFIG_ACPI
3723 if (si_tryacpi)
3724 spmi_find_bmc();
3725 #endif
3726
3727 #ifdef CONFIG_PARISC
3728 register_parisc_driver(&ipmi_parisc_driver);
3729 parisc_registered = true;
3730 /* poking PC IO addresses will crash machine, don't do it */
3731 si_trydefaults = 0;
3732 #endif
3733
3734 /* We prefer devices with interrupts, but in the case of a machine
3735 with multiple BMCs we assume that there will be several instances
3736 of a given type so if we succeed in registering a type then also
3737 try to register everything else of the same type */
3738
3739 mutex_lock(&smi_infos_lock);
3740 list_for_each_entry(e, &smi_infos, link) {
3741 /* Try to register a device if it has an IRQ and we either
3742 haven't successfully registered a device yet or this
3743 device has the same type as one we successfully registered */
3744 if (e->irq && (!type || e->addr_source == type)) {
3745 if (!try_smi_init(e)) {
3746 type = e->addr_source;
3747 }
3748 }
3749 }
3750
3751 /* type will only have been set if we successfully registered an si */
3752 if (type) {
3753 mutex_unlock(&smi_infos_lock);
3754 return 0;
3755 }
3756
3757 /* Fall back to the preferred device */
3758
3759 list_for_each_entry(e, &smi_infos, link) {
3760 if (!e->irq && (!type || e->addr_source == type)) {
3761 if (!try_smi_init(e)) {
3762 type = e->addr_source;
3763 }
3764 }
3765 }
3766 mutex_unlock(&smi_infos_lock);
3767
3768 if (type)
3769 return 0;
3770
3771 if (si_trydefaults) {
3772 mutex_lock(&smi_infos_lock);
3773 if (list_empty(&smi_infos)) {
3774 /* No BMC was found, try defaults. */
3775 mutex_unlock(&smi_infos_lock);
3776 default_find_bmc();
3777 } else
3778 mutex_unlock(&smi_infos_lock);
3779 }
3780
3781 mutex_lock(&smi_infos_lock);
3782 if (unload_when_empty && list_empty(&smi_infos)) {
3783 mutex_unlock(&smi_infos_lock);
3784 cleanup_ipmi_si();
3785 printk(KERN_WARNING PFX
3786 "Unable to find any System Interface(s)\n");
3787 return -ENODEV;
3788 } else {
3789 mutex_unlock(&smi_infos_lock);
3790 return 0;
3791 }
3792 }
3793 module_init(init_ipmi_si);
3794
cleanup_one_si(struct smi_info * to_clean)3795 static void cleanup_one_si(struct smi_info *to_clean)
3796 {
3797 int rv = 0;
3798
3799 if (!to_clean)
3800 return;
3801
3802 if (to_clean->intf) {
3803 ipmi_smi_t intf = to_clean->intf;
3804
3805 to_clean->intf = NULL;
3806 rv = ipmi_unregister_smi(intf);
3807 if (rv) {
3808 pr_err(PFX "Unable to unregister device: errno=%d\n",
3809 rv);
3810 }
3811 }
3812
3813 if (to_clean->dev)
3814 dev_set_drvdata(to_clean->dev, NULL);
3815
3816 list_del(&to_clean->link);
3817
3818 /*
3819 * Make sure that interrupts, the timer and the thread are
3820 * stopped and will not run again.
3821 */
3822 if (to_clean->irq_cleanup)
3823 to_clean->irq_cleanup(to_clean);
3824 wait_for_timer_and_thread(to_clean);
3825
3826 /*
3827 * Timeouts are stopped, now make sure the interrupts are off
3828 * in the BMC. Note that timers and CPU interrupts are off,
3829 * so no need for locks.
3830 */
3831 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3832 poll(to_clean);
3833 schedule_timeout_uninterruptible(1);
3834 }
3835 disable_si_irq(to_clean, false);
3836 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3837 poll(to_clean);
3838 schedule_timeout_uninterruptible(1);
3839 }
3840
3841 if (to_clean->handlers)
3842 to_clean->handlers->cleanup(to_clean->si_sm);
3843
3844 kfree(to_clean->si_sm);
3845
3846 if (to_clean->addr_source_cleanup)
3847 to_clean->addr_source_cleanup(to_clean);
3848 if (to_clean->io_cleanup)
3849 to_clean->io_cleanup(to_clean);
3850
3851 if (to_clean->dev_registered)
3852 platform_device_unregister(to_clean->pdev);
3853
3854 kfree(to_clean);
3855 }
3856
cleanup_ipmi_si(void)3857 static void cleanup_ipmi_si(void)
3858 {
3859 struct smi_info *e, *tmp_e;
3860
3861 if (!initialized)
3862 return;
3863
3864 #ifdef CONFIG_PCI
3865 if (pci_registered)
3866 pci_unregister_driver(&ipmi_pci_driver);
3867 #endif
3868 #ifdef CONFIG_ACPI
3869 if (pnp_registered)
3870 pnp_unregister_driver(&ipmi_pnp_driver);
3871 #endif
3872 #ifdef CONFIG_PARISC
3873 if (parisc_registered)
3874 unregister_parisc_driver(&ipmi_parisc_driver);
3875 #endif
3876
3877 platform_driver_unregister(&ipmi_driver);
3878
3879 mutex_lock(&smi_infos_lock);
3880 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3881 cleanup_one_si(e);
3882 mutex_unlock(&smi_infos_lock);
3883 }
3884 module_exit(cleanup_ipmi_si);
3885
3886 MODULE_LICENSE("GPL");
3887 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3888 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3889 " system interfaces.");
3890