1/*
2 * DRBG: Deterministic Random Bits Generator
3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
4 *       properties:
5 *		* CTR DRBG with DF with AES-128, AES-192, AES-256 cores
6 *		* Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
7 *		* HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
8 *		* with and without prediction resistance
9 *
10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
11 *
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 *    notice, and the entire permission notice in its entirety,
17 *    including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 *    notice, this list of conditions and the following disclaimer in the
20 *    documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 *    products derived from this software without specific prior
23 *    written permission.
24 *
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions.  (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
30 *
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
43 *
44 * DRBG Usage
45 * ==========
46 * The SP 800-90A DRBG allows the user to specify a personalization string
47 * for initialization as well as an additional information string for each
48 * random number request. The following code fragments show how a caller
49 * uses the kernel crypto API to use the full functionality of the DRBG.
50 *
51 * Usage without any additional data
52 * ---------------------------------
53 * struct crypto_rng *drng;
54 * int err;
55 * char data[DATALEN];
56 *
57 * drng = crypto_alloc_rng(drng_name, 0, 0);
58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
59 * crypto_free_rng(drng);
60 *
61 *
62 * Usage with personalization string during initialization
63 * -------------------------------------------------------
64 * struct crypto_rng *drng;
65 * int err;
66 * char data[DATALEN];
67 * struct drbg_string pers;
68 * char personalization[11] = "some-string";
69 *
70 * drbg_string_fill(&pers, personalization, strlen(personalization));
71 * drng = crypto_alloc_rng(drng_name, 0, 0);
72 * // The reset completely re-initializes the DRBG with the provided
73 * // personalization string
74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
76 * crypto_free_rng(drng);
77 *
78 *
79 * Usage with additional information string during random number request
80 * ---------------------------------------------------------------------
81 * struct crypto_rng *drng;
82 * int err;
83 * char data[DATALEN];
84 * char addtl_string[11] = "some-string";
85 * string drbg_string addtl;
86 *
87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
88 * drng = crypto_alloc_rng(drng_name, 0, 0);
89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
90 * // the same error codes.
91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
92 * crypto_free_rng(drng);
93 *
94 *
95 * Usage with personalization and additional information strings
96 * -------------------------------------------------------------
97 * Just mix both scenarios above.
98 */
99
100#include <crypto/drbg.h>
101
102/***************************************************************
103 * Backend cipher definitions available to DRBG
104 ***************************************************************/
105
106/*
107 * The order of the DRBG definitions here matter: every DRBG is registered
108 * as stdrng. Each DRBG receives an increasing cra_priority values the later
109 * they are defined in this array (see drbg_fill_array).
110 *
111 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
112 * the SHA256 / AES 256 over other ciphers. Thus, the favored
113 * DRBGs are the latest entries in this array.
114 */
115static const struct drbg_core drbg_cores[] = {
116#ifdef CONFIG_CRYPTO_DRBG_CTR
117	{
118		.flags = DRBG_CTR | DRBG_STRENGTH128,
119		.statelen = 32, /* 256 bits as defined in 10.2.1 */
120		.blocklen_bytes = 16,
121		.cra_name = "ctr_aes128",
122		.backend_cra_name = "aes",
123	}, {
124		.flags = DRBG_CTR | DRBG_STRENGTH192,
125		.statelen = 40, /* 320 bits as defined in 10.2.1 */
126		.blocklen_bytes = 16,
127		.cra_name = "ctr_aes192",
128		.backend_cra_name = "aes",
129	}, {
130		.flags = DRBG_CTR | DRBG_STRENGTH256,
131		.statelen = 48, /* 384 bits as defined in 10.2.1 */
132		.blocklen_bytes = 16,
133		.cra_name = "ctr_aes256",
134		.backend_cra_name = "aes",
135	},
136#endif /* CONFIG_CRYPTO_DRBG_CTR */
137#ifdef CONFIG_CRYPTO_DRBG_HASH
138	{
139		.flags = DRBG_HASH | DRBG_STRENGTH128,
140		.statelen = 55, /* 440 bits */
141		.blocklen_bytes = 20,
142		.cra_name = "sha1",
143		.backend_cra_name = "sha1",
144	}, {
145		.flags = DRBG_HASH | DRBG_STRENGTH256,
146		.statelen = 111, /* 888 bits */
147		.blocklen_bytes = 48,
148		.cra_name = "sha384",
149		.backend_cra_name = "sha384",
150	}, {
151		.flags = DRBG_HASH | DRBG_STRENGTH256,
152		.statelen = 111, /* 888 bits */
153		.blocklen_bytes = 64,
154		.cra_name = "sha512",
155		.backend_cra_name = "sha512",
156	}, {
157		.flags = DRBG_HASH | DRBG_STRENGTH256,
158		.statelen = 55, /* 440 bits */
159		.blocklen_bytes = 32,
160		.cra_name = "sha256",
161		.backend_cra_name = "sha256",
162	},
163#endif /* CONFIG_CRYPTO_DRBG_HASH */
164#ifdef CONFIG_CRYPTO_DRBG_HMAC
165	{
166		.flags = DRBG_HMAC | DRBG_STRENGTH128,
167		.statelen = 20, /* block length of cipher */
168		.blocklen_bytes = 20,
169		.cra_name = "hmac_sha1",
170		.backend_cra_name = "hmac(sha1)",
171	}, {
172		.flags = DRBG_HMAC | DRBG_STRENGTH256,
173		.statelen = 48, /* block length of cipher */
174		.blocklen_bytes = 48,
175		.cra_name = "hmac_sha384",
176		.backend_cra_name = "hmac(sha384)",
177	}, {
178		.flags = DRBG_HMAC | DRBG_STRENGTH256,
179		.statelen = 64, /* block length of cipher */
180		.blocklen_bytes = 64,
181		.cra_name = "hmac_sha512",
182		.backend_cra_name = "hmac(sha512)",
183	}, {
184		.flags = DRBG_HMAC | DRBG_STRENGTH256,
185		.statelen = 32, /* block length of cipher */
186		.blocklen_bytes = 32,
187		.cra_name = "hmac_sha256",
188		.backend_cra_name = "hmac(sha256)",
189	},
190#endif /* CONFIG_CRYPTO_DRBG_HMAC */
191};
192
193/******************************************************************
194 * Generic helper functions
195 ******************************************************************/
196
197/*
198 * Return strength of DRBG according to SP800-90A section 8.4
199 *
200 * @flags DRBG flags reference
201 *
202 * Return: normalized strength in *bytes* value or 32 as default
203 *	   to counter programming errors
204 */
205static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
206{
207	switch (flags & DRBG_STRENGTH_MASK) {
208	case DRBG_STRENGTH128:
209		return 16;
210	case DRBG_STRENGTH192:
211		return 24;
212	case DRBG_STRENGTH256:
213		return 32;
214	default:
215		return 32;
216	}
217}
218
219/*
220 * FIPS 140-2 continuous self test
221 * The test is performed on the result of one round of the output
222 * function. Thus, the function implicitly knows the size of the
223 * buffer.
224 *
225 * @drbg DRBG handle
226 * @buf output buffer of random data to be checked
227 *
228 * return:
229 *	true on success
230 *	false on error
231 */
232static bool drbg_fips_continuous_test(struct drbg_state *drbg,
233				      const unsigned char *buf)
234{
235#ifdef CONFIG_CRYPTO_FIPS
236	int ret = 0;
237	/* skip test if we test the overall system */
238	if (drbg->test_data)
239		return true;
240	/* only perform test in FIPS mode */
241	if (0 == fips_enabled)
242		return true;
243	if (!drbg->fips_primed) {
244		/* Priming of FIPS test */
245		memcpy(drbg->prev, buf, drbg_blocklen(drbg));
246		drbg->fips_primed = true;
247		/* return false due to priming, i.e. another round is needed */
248		return false;
249	}
250	ret = memcmp(drbg->prev, buf, drbg_blocklen(drbg));
251	if (!ret)
252		panic("DRBG continuous self test failed\n");
253	memcpy(drbg->prev, buf, drbg_blocklen(drbg));
254	/* the test shall pass when the two compared values are not equal */
255	return ret != 0;
256#else
257	return true;
258#endif /* CONFIG_CRYPTO_FIPS */
259}
260
261/*
262 * Convert an integer into a byte representation of this integer.
263 * The byte representation is big-endian
264 *
265 * @val value to be converted
266 * @buf buffer holding the converted integer -- caller must ensure that
267 *      buffer size is at least 32 bit
268 */
269#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
270static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
271{
272	struct s {
273		__be32 conv;
274	};
275	struct s *conversion = (struct s *) buf;
276
277	conversion->conv = cpu_to_be32(val);
278}
279#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
280
281/******************************************************************
282 * CTR DRBG callback functions
283 ******************************************************************/
284
285#ifdef CONFIG_CRYPTO_DRBG_CTR
286#define CRYPTO_DRBG_CTR_STRING "CTR "
287MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
288MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
289MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
290MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
291MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
292MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
293
294static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
295			  unsigned char *outval, const struct drbg_string *in);
296static int drbg_init_sym_kernel(struct drbg_state *drbg);
297static int drbg_fini_sym_kernel(struct drbg_state *drbg);
298
299/* BCC function for CTR DRBG as defined in 10.4.3 */
300static int drbg_ctr_bcc(struct drbg_state *drbg,
301			unsigned char *out, const unsigned char *key,
302			struct list_head *in)
303{
304	int ret = 0;
305	struct drbg_string *curr = NULL;
306	struct drbg_string data;
307	short cnt = 0;
308
309	drbg_string_fill(&data, out, drbg_blocklen(drbg));
310
311	/* 10.4.3 step 2 / 4 */
312	list_for_each_entry(curr, in, list) {
313		const unsigned char *pos = curr->buf;
314		size_t len = curr->len;
315		/* 10.4.3 step 4.1 */
316		while (len) {
317			/* 10.4.3 step 4.2 */
318			if (drbg_blocklen(drbg) == cnt) {
319				cnt = 0;
320				ret = drbg_kcapi_sym(drbg, key, out, &data);
321				if (ret)
322					return ret;
323			}
324			out[cnt] ^= *pos;
325			pos++;
326			cnt++;
327			len--;
328		}
329	}
330	/* 10.4.3 step 4.2 for last block */
331	if (cnt)
332		ret = drbg_kcapi_sym(drbg, key, out, &data);
333
334	return ret;
335}
336
337/*
338 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
339 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
340 * the scratchpad is used as follows:
341 * drbg_ctr_update:
342 *	temp
343 *		start: drbg->scratchpad
344 *		length: drbg_statelen(drbg) + drbg_blocklen(drbg)
345 *			note: the cipher writing into this variable works
346 *			blocklen-wise. Now, when the statelen is not a multiple
347 *			of blocklen, the generateion loop below "spills over"
348 *			by at most blocklen. Thus, we need to give sufficient
349 *			memory.
350 *	df_data
351 *		start: drbg->scratchpad +
352 *				drbg_statelen(drbg) + drbg_blocklen(drbg)
353 *		length: drbg_statelen(drbg)
354 *
355 * drbg_ctr_df:
356 *	pad
357 *		start: df_data + drbg_statelen(drbg)
358 *		length: drbg_blocklen(drbg)
359 *	iv
360 *		start: pad + drbg_blocklen(drbg)
361 *		length: drbg_blocklen(drbg)
362 *	temp
363 *		start: iv + drbg_blocklen(drbg)
364 *		length: drbg_satelen(drbg) + drbg_blocklen(drbg)
365 *			note: temp is the buffer that the BCC function operates
366 *			on. BCC operates blockwise. drbg_statelen(drbg)
367 *			is sufficient when the DRBG state length is a multiple
368 *			of the block size. For AES192 (and maybe other ciphers)
369 *			this is not correct and the length for temp is
370 *			insufficient (yes, that also means for such ciphers,
371 *			the final output of all BCC rounds are truncated).
372 *			Therefore, add drbg_blocklen(drbg) to cover all
373 *			possibilities.
374 */
375
376/* Derivation Function for CTR DRBG as defined in 10.4.2 */
377static int drbg_ctr_df(struct drbg_state *drbg,
378		       unsigned char *df_data, size_t bytes_to_return,
379		       struct list_head *seedlist)
380{
381	int ret = -EFAULT;
382	unsigned char L_N[8];
383	/* S3 is input */
384	struct drbg_string S1, S2, S4, cipherin;
385	LIST_HEAD(bcc_list);
386	unsigned char *pad = df_data + drbg_statelen(drbg);
387	unsigned char *iv = pad + drbg_blocklen(drbg);
388	unsigned char *temp = iv + drbg_blocklen(drbg);
389	size_t padlen = 0;
390	unsigned int templen = 0;
391	/* 10.4.2 step 7 */
392	unsigned int i = 0;
393	/* 10.4.2 step 8 */
394	const unsigned char *K = (unsigned char *)
395			   "\x00\x01\x02\x03\x04\x05\x06\x07"
396			   "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
397			   "\x10\x11\x12\x13\x14\x15\x16\x17"
398			   "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
399	unsigned char *X;
400	size_t generated_len = 0;
401	size_t inputlen = 0;
402	struct drbg_string *seed = NULL;
403
404	memset(pad, 0, drbg_blocklen(drbg));
405	memset(iv, 0, drbg_blocklen(drbg));
406
407	/* 10.4.2 step 1 is implicit as we work byte-wise */
408
409	/* 10.4.2 step 2 */
410	if ((512/8) < bytes_to_return)
411		return -EINVAL;
412
413	/* 10.4.2 step 2 -- calculate the entire length of all input data */
414	list_for_each_entry(seed, seedlist, list)
415		inputlen += seed->len;
416	drbg_cpu_to_be32(inputlen, &L_N[0]);
417
418	/* 10.4.2 step 3 */
419	drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
420
421	/* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
422	padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
423	/* wrap the padlen appropriately */
424	if (padlen)
425		padlen = drbg_blocklen(drbg) - padlen;
426	/*
427	 * pad / padlen contains the 0x80 byte and the following zero bytes.
428	 * As the calculated padlen value only covers the number of zero
429	 * bytes, this value has to be incremented by one for the 0x80 byte.
430	 */
431	padlen++;
432	pad[0] = 0x80;
433
434	/* 10.4.2 step 4 -- first fill the linked list and then order it */
435	drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
436	list_add_tail(&S1.list, &bcc_list);
437	drbg_string_fill(&S2, L_N, sizeof(L_N));
438	list_add_tail(&S2.list, &bcc_list);
439	list_splice_tail(seedlist, &bcc_list);
440	drbg_string_fill(&S4, pad, padlen);
441	list_add_tail(&S4.list, &bcc_list);
442
443	/* 10.4.2 step 9 */
444	while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
445		/*
446		 * 10.4.2 step 9.1 - the padding is implicit as the buffer
447		 * holds zeros after allocation -- even the increment of i
448		 * is irrelevant as the increment remains within length of i
449		 */
450		drbg_cpu_to_be32(i, iv);
451		/* 10.4.2 step 9.2 -- BCC and concatenation with temp */
452		ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
453		if (ret)
454			goto out;
455		/* 10.4.2 step 9.3 */
456		i++;
457		templen += drbg_blocklen(drbg);
458	}
459
460	/* 10.4.2 step 11 */
461	X = temp + (drbg_keylen(drbg));
462	drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
463
464	/* 10.4.2 step 12: overwriting of outval is implemented in next step */
465
466	/* 10.4.2 step 13 */
467	while (generated_len < bytes_to_return) {
468		short blocklen = 0;
469		/*
470		 * 10.4.2 step 13.1: the truncation of the key length is
471		 * implicit as the key is only drbg_blocklen in size based on
472		 * the implementation of the cipher function callback
473		 */
474		ret = drbg_kcapi_sym(drbg, temp, X, &cipherin);
475		if (ret)
476			goto out;
477		blocklen = (drbg_blocklen(drbg) <
478				(bytes_to_return - generated_len)) ?
479			    drbg_blocklen(drbg) :
480				(bytes_to_return - generated_len);
481		/* 10.4.2 step 13.2 and 14 */
482		memcpy(df_data + generated_len, X, blocklen);
483		generated_len += blocklen;
484	}
485
486	ret = 0;
487
488out:
489	memset(iv, 0, drbg_blocklen(drbg));
490	memset(temp, 0, drbg_statelen(drbg));
491	memset(pad, 0, drbg_blocklen(drbg));
492	return ret;
493}
494
495/*
496 * update function of CTR DRBG as defined in 10.2.1.2
497 *
498 * The reseed variable has an enhanced meaning compared to the update
499 * functions of the other DRBGs as follows:
500 * 0 => initial seed from initialization
501 * 1 => reseed via drbg_seed
502 * 2 => first invocation from drbg_ctr_update when addtl is present. In
503 *      this case, the df_data scratchpad is not deleted so that it is
504 *      available for another calls to prevent calling the DF function
505 *      again.
506 * 3 => second invocation from drbg_ctr_update. When the update function
507 *      was called with addtl, the df_data memory already contains the
508 *      DFed addtl information and we do not need to call DF again.
509 */
510static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
511			   int reseed)
512{
513	int ret = -EFAULT;
514	/* 10.2.1.2 step 1 */
515	unsigned char *temp = drbg->scratchpad;
516	unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
517				 drbg_blocklen(drbg);
518	unsigned char *temp_p, *df_data_p; /* pointer to iterate over buffers */
519	unsigned int len = 0;
520	struct drbg_string cipherin;
521
522	if (3 > reseed)
523		memset(df_data, 0, drbg_statelen(drbg));
524
525	/* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
526	if (seed) {
527		ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
528		if (ret)
529			goto out;
530	}
531
532	drbg_string_fill(&cipherin, drbg->V, drbg_blocklen(drbg));
533	/*
534	 * 10.2.1.3.2 steps 2 and 3 are already covered as the allocation
535	 * zeroizes all memory during initialization
536	 */
537	while (len < (drbg_statelen(drbg))) {
538		/* 10.2.1.2 step 2.1 */
539		crypto_inc(drbg->V, drbg_blocklen(drbg));
540		/*
541		 * 10.2.1.2 step 2.2 */
542		ret = drbg_kcapi_sym(drbg, drbg->C, temp + len, &cipherin);
543		if (ret)
544			goto out;
545		/* 10.2.1.2 step 2.3 and 3 */
546		len += drbg_blocklen(drbg);
547	}
548
549	/* 10.2.1.2 step 4 */
550	temp_p = temp;
551	df_data_p = df_data;
552	for (len = 0; len < drbg_statelen(drbg); len++) {
553		*temp_p ^= *df_data_p;
554		df_data_p++; temp_p++;
555	}
556
557	/* 10.2.1.2 step 5 */
558	memcpy(drbg->C, temp, drbg_keylen(drbg));
559	/* 10.2.1.2 step 6 */
560	memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
561	ret = 0;
562
563out:
564	memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
565	if (2 != reseed)
566		memset(df_data, 0, drbg_statelen(drbg));
567	return ret;
568}
569
570/*
571 * scratchpad use: drbg_ctr_update is called independently from
572 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
573 */
574/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
575static int drbg_ctr_generate(struct drbg_state *drbg,
576			     unsigned char *buf, unsigned int buflen,
577			     struct list_head *addtl)
578{
579	int len = 0;
580	int ret = 0;
581	struct drbg_string data;
582
583	/* 10.2.1.5.2 step 2 */
584	if (addtl && !list_empty(addtl)) {
585		ret = drbg_ctr_update(drbg, addtl, 2);
586		if (ret)
587			return 0;
588	}
589
590	/* 10.2.1.5.2 step 4.1 */
591	crypto_inc(drbg->V, drbg_blocklen(drbg));
592	drbg_string_fill(&data, drbg->V, drbg_blocklen(drbg));
593	while (len < buflen) {
594		int outlen = 0;
595		/* 10.2.1.5.2 step 4.2 */
596		ret = drbg_kcapi_sym(drbg, drbg->C, drbg->scratchpad, &data);
597		if (ret) {
598			len = ret;
599			goto out;
600		}
601		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
602			  drbg_blocklen(drbg) : (buflen - len);
603		if (!drbg_fips_continuous_test(drbg, drbg->scratchpad)) {
604			/* 10.2.1.5.2 step 6 */
605			crypto_inc(drbg->V, drbg_blocklen(drbg));
606			continue;
607		}
608		/* 10.2.1.5.2 step 4.3 */
609		memcpy(buf + len, drbg->scratchpad, outlen);
610		len += outlen;
611		/* 10.2.1.5.2 step 6 */
612		if (len < buflen)
613			crypto_inc(drbg->V, drbg_blocklen(drbg));
614	}
615
616	/* 10.2.1.5.2 step 6 */
617	ret = drbg_ctr_update(drbg, NULL, 3);
618	if (ret)
619		len = ret;
620
621out:
622	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
623	return len;
624}
625
626static struct drbg_state_ops drbg_ctr_ops = {
627	.update		= drbg_ctr_update,
628	.generate	= drbg_ctr_generate,
629	.crypto_init	= drbg_init_sym_kernel,
630	.crypto_fini	= drbg_fini_sym_kernel,
631};
632#endif /* CONFIG_CRYPTO_DRBG_CTR */
633
634/******************************************************************
635 * HMAC DRBG callback functions
636 ******************************************************************/
637
638#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
639static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
640			   unsigned char *outval, const struct list_head *in);
641static int drbg_init_hash_kernel(struct drbg_state *drbg);
642static int drbg_fini_hash_kernel(struct drbg_state *drbg);
643#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
644
645#ifdef CONFIG_CRYPTO_DRBG_HMAC
646#define CRYPTO_DRBG_HMAC_STRING "HMAC "
647MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
648MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
649MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
650MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
651MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
652MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
653MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
654MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
655
656/* update function of HMAC DRBG as defined in 10.1.2.2 */
657static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
658			    int reseed)
659{
660	int ret = -EFAULT;
661	int i = 0;
662	struct drbg_string seed1, seed2, vdata;
663	LIST_HEAD(seedlist);
664	LIST_HEAD(vdatalist);
665
666	if (!reseed)
667		/* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
668		memset(drbg->V, 1, drbg_statelen(drbg));
669
670	drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
671	list_add_tail(&seed1.list, &seedlist);
672	/* buffer of seed2 will be filled in for loop below with one byte */
673	drbg_string_fill(&seed2, NULL, 1);
674	list_add_tail(&seed2.list, &seedlist);
675	/* input data of seed is allowed to be NULL at this point */
676	if (seed)
677		list_splice_tail(seed, &seedlist);
678
679	drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
680	list_add_tail(&vdata.list, &vdatalist);
681	for (i = 2; 0 < i; i--) {
682		/* first round uses 0x0, second 0x1 */
683		unsigned char prefix = DRBG_PREFIX0;
684		if (1 == i)
685			prefix = DRBG_PREFIX1;
686		/* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
687		seed2.buf = &prefix;
688		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->C, &seedlist);
689		if (ret)
690			return ret;
691
692		/* 10.1.2.2 step 2 and 5 -- HMAC for V */
693		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &vdatalist);
694		if (ret)
695			return ret;
696
697		/* 10.1.2.2 step 3 */
698		if (!seed)
699			return ret;
700	}
701
702	return 0;
703}
704
705/* generate function of HMAC DRBG as defined in 10.1.2.5 */
706static int drbg_hmac_generate(struct drbg_state *drbg,
707			      unsigned char *buf,
708			      unsigned int buflen,
709			      struct list_head *addtl)
710{
711	int len = 0;
712	int ret = 0;
713	struct drbg_string data;
714	LIST_HEAD(datalist);
715
716	/* 10.1.2.5 step 2 */
717	if (addtl && !list_empty(addtl)) {
718		ret = drbg_hmac_update(drbg, addtl, 1);
719		if (ret)
720			return ret;
721	}
722
723	drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
724	list_add_tail(&data.list, &datalist);
725	while (len < buflen) {
726		unsigned int outlen = 0;
727		/* 10.1.2.5 step 4.1 */
728		ret = drbg_kcapi_hash(drbg, drbg->C, drbg->V, &datalist);
729		if (ret)
730			return ret;
731		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
732			  drbg_blocklen(drbg) : (buflen - len);
733		if (!drbg_fips_continuous_test(drbg, drbg->V))
734			continue;
735
736		/* 10.1.2.5 step 4.2 */
737		memcpy(buf + len, drbg->V, outlen);
738		len += outlen;
739	}
740
741	/* 10.1.2.5 step 6 */
742	if (addtl && !list_empty(addtl))
743		ret = drbg_hmac_update(drbg, addtl, 1);
744	else
745		ret = drbg_hmac_update(drbg, NULL, 1);
746	if (ret)
747		return ret;
748
749	return len;
750}
751
752static struct drbg_state_ops drbg_hmac_ops = {
753	.update		= drbg_hmac_update,
754	.generate	= drbg_hmac_generate,
755	.crypto_init	= drbg_init_hash_kernel,
756	.crypto_fini	= drbg_fini_hash_kernel,
757};
758#endif /* CONFIG_CRYPTO_DRBG_HMAC */
759
760/******************************************************************
761 * Hash DRBG callback functions
762 ******************************************************************/
763
764#ifdef CONFIG_CRYPTO_DRBG_HASH
765#define CRYPTO_DRBG_HASH_STRING "HASH "
766MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
767MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
768MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
769MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
770MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
771MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
772MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
773MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
774
775/*
776 * Increment buffer
777 *
778 * @dst buffer to increment
779 * @add value to add
780 */
781static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
782				const unsigned char *add, size_t addlen)
783{
784	/* implied: dstlen > addlen */
785	unsigned char *dstptr;
786	const unsigned char *addptr;
787	unsigned int remainder = 0;
788	size_t len = addlen;
789
790	dstptr = dst + (dstlen-1);
791	addptr = add + (addlen-1);
792	while (len) {
793		remainder += *dstptr + *addptr;
794		*dstptr = remainder & 0xff;
795		remainder >>= 8;
796		len--; dstptr--; addptr--;
797	}
798	len = dstlen - addlen;
799	while (len && remainder > 0) {
800		remainder = *dstptr + 1;
801		*dstptr = remainder & 0xff;
802		remainder >>= 8;
803		len--; dstptr--;
804	}
805}
806
807/*
808 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
809 * interlinked, the scratchpad is used as follows:
810 * drbg_hash_update
811 *	start: drbg->scratchpad
812 *	length: drbg_statelen(drbg)
813 * drbg_hash_df:
814 *	start: drbg->scratchpad + drbg_statelen(drbg)
815 *	length: drbg_blocklen(drbg)
816 *
817 * drbg_hash_process_addtl uses the scratchpad, but fully completes
818 * before either of the functions mentioned before are invoked. Therefore,
819 * drbg_hash_process_addtl does not need to be specifically considered.
820 */
821
822/* Derivation Function for Hash DRBG as defined in 10.4.1 */
823static int drbg_hash_df(struct drbg_state *drbg,
824			unsigned char *outval, size_t outlen,
825			struct list_head *entropylist)
826{
827	int ret = 0;
828	size_t len = 0;
829	unsigned char input[5];
830	unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
831	struct drbg_string data;
832
833	/* 10.4.1 step 3 */
834	input[0] = 1;
835	drbg_cpu_to_be32((outlen * 8), &input[1]);
836
837	/* 10.4.1 step 4.1 -- concatenation of data for input into hash */
838	drbg_string_fill(&data, input, 5);
839	list_add(&data.list, entropylist);
840
841	/* 10.4.1 step 4 */
842	while (len < outlen) {
843		short blocklen = 0;
844		/* 10.4.1 step 4.1 */
845		ret = drbg_kcapi_hash(drbg, NULL, tmp, entropylist);
846		if (ret)
847			goto out;
848		/* 10.4.1 step 4.2 */
849		input[0]++;
850		blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
851			    drbg_blocklen(drbg) : (outlen - len);
852		memcpy(outval + len, tmp, blocklen);
853		len += blocklen;
854	}
855
856out:
857	memset(tmp, 0, drbg_blocklen(drbg));
858	return ret;
859}
860
861/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
862static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
863			    int reseed)
864{
865	int ret = 0;
866	struct drbg_string data1, data2;
867	LIST_HEAD(datalist);
868	LIST_HEAD(datalist2);
869	unsigned char *V = drbg->scratchpad;
870	unsigned char prefix = DRBG_PREFIX1;
871
872	if (!seed)
873		return -EINVAL;
874
875	if (reseed) {
876		/* 10.1.1.3 step 1 */
877		memcpy(V, drbg->V, drbg_statelen(drbg));
878		drbg_string_fill(&data1, &prefix, 1);
879		list_add_tail(&data1.list, &datalist);
880		drbg_string_fill(&data2, V, drbg_statelen(drbg));
881		list_add_tail(&data2.list, &datalist);
882	}
883	list_splice_tail(seed, &datalist);
884
885	/* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
886	ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
887	if (ret)
888		goto out;
889
890	/* 10.1.1.2 / 10.1.1.3 step 4  */
891	prefix = DRBG_PREFIX0;
892	drbg_string_fill(&data1, &prefix, 1);
893	list_add_tail(&data1.list, &datalist2);
894	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
895	list_add_tail(&data2.list, &datalist2);
896	/* 10.1.1.2 / 10.1.1.3 step 4 */
897	ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
898
899out:
900	memset(drbg->scratchpad, 0, drbg_statelen(drbg));
901	return ret;
902}
903
904/* processing of additional information string for Hash DRBG */
905static int drbg_hash_process_addtl(struct drbg_state *drbg,
906				   struct list_head *addtl)
907{
908	int ret = 0;
909	struct drbg_string data1, data2;
910	LIST_HEAD(datalist);
911	unsigned char prefix = DRBG_PREFIX2;
912
913	/* 10.1.1.4 step 2 */
914	if (!addtl || list_empty(addtl))
915		return 0;
916
917	/* 10.1.1.4 step 2a */
918	drbg_string_fill(&data1, &prefix, 1);
919	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
920	list_add_tail(&data1.list, &datalist);
921	list_add_tail(&data2.list, &datalist);
922	list_splice_tail(addtl, &datalist);
923	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
924	if (ret)
925		goto out;
926
927	/* 10.1.1.4 step 2b */
928	drbg_add_buf(drbg->V, drbg_statelen(drbg),
929		     drbg->scratchpad, drbg_blocklen(drbg));
930
931out:
932	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
933	return ret;
934}
935
936/* Hashgen defined in 10.1.1.4 */
937static int drbg_hash_hashgen(struct drbg_state *drbg,
938			     unsigned char *buf,
939			     unsigned int buflen)
940{
941	int len = 0;
942	int ret = 0;
943	unsigned char *src = drbg->scratchpad;
944	unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
945	struct drbg_string data;
946	LIST_HEAD(datalist);
947
948	/* 10.1.1.4 step hashgen 2 */
949	memcpy(src, drbg->V, drbg_statelen(drbg));
950
951	drbg_string_fill(&data, src, drbg_statelen(drbg));
952	list_add_tail(&data.list, &datalist);
953	while (len < buflen) {
954		unsigned int outlen = 0;
955		/* 10.1.1.4 step hashgen 4.1 */
956		ret = drbg_kcapi_hash(drbg, NULL, dst, &datalist);
957		if (ret) {
958			len = ret;
959			goto out;
960		}
961		outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
962			  drbg_blocklen(drbg) : (buflen - len);
963		if (!drbg_fips_continuous_test(drbg, dst)) {
964			crypto_inc(src, drbg_statelen(drbg));
965			continue;
966		}
967		/* 10.1.1.4 step hashgen 4.2 */
968		memcpy(buf + len, dst, outlen);
969		len += outlen;
970		/* 10.1.1.4 hashgen step 4.3 */
971		if (len < buflen)
972			crypto_inc(src, drbg_statelen(drbg));
973	}
974
975out:
976	memset(drbg->scratchpad, 0,
977	       (drbg_statelen(drbg) + drbg_blocklen(drbg)));
978	return len;
979}
980
981/* generate function for Hash DRBG as defined in  10.1.1.4 */
982static int drbg_hash_generate(struct drbg_state *drbg,
983			      unsigned char *buf, unsigned int buflen,
984			      struct list_head *addtl)
985{
986	int len = 0;
987	int ret = 0;
988	union {
989		unsigned char req[8];
990		__be64 req_int;
991	} u;
992	unsigned char prefix = DRBG_PREFIX3;
993	struct drbg_string data1, data2;
994	LIST_HEAD(datalist);
995
996	/* 10.1.1.4 step 2 */
997	ret = drbg_hash_process_addtl(drbg, addtl);
998	if (ret)
999		return ret;
1000	/* 10.1.1.4 step 3 */
1001	len = drbg_hash_hashgen(drbg, buf, buflen);
1002
1003	/* this is the value H as documented in 10.1.1.4 */
1004	/* 10.1.1.4 step 4 */
1005	drbg_string_fill(&data1, &prefix, 1);
1006	list_add_tail(&data1.list, &datalist);
1007	drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
1008	list_add_tail(&data2.list, &datalist);
1009	ret = drbg_kcapi_hash(drbg, NULL, drbg->scratchpad, &datalist);
1010	if (ret) {
1011		len = ret;
1012		goto out;
1013	}
1014
1015	/* 10.1.1.4 step 5 */
1016	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1017		     drbg->scratchpad, drbg_blocklen(drbg));
1018	drbg_add_buf(drbg->V, drbg_statelen(drbg),
1019		     drbg->C, drbg_statelen(drbg));
1020	u.req_int = cpu_to_be64(drbg->reseed_ctr);
1021	drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
1022
1023out:
1024	memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
1025	return len;
1026}
1027
1028/*
1029 * scratchpad usage: as update and generate are used isolated, both
1030 * can use the scratchpad
1031 */
1032static struct drbg_state_ops drbg_hash_ops = {
1033	.update		= drbg_hash_update,
1034	.generate	= drbg_hash_generate,
1035	.crypto_init	= drbg_init_hash_kernel,
1036	.crypto_fini	= drbg_fini_hash_kernel,
1037};
1038#endif /* CONFIG_CRYPTO_DRBG_HASH */
1039
1040/******************************************************************
1041 * Functions common for DRBG implementations
1042 ******************************************************************/
1043
1044/*
1045 * Seeding or reseeding of the DRBG
1046 *
1047 * @drbg: DRBG state struct
1048 * @pers: personalization / additional information buffer
1049 * @reseed: 0 for initial seed process, 1 for reseeding
1050 *
1051 * return:
1052 *	0 on success
1053 *	error value otherwise
1054 */
1055static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1056		     bool reseed)
1057{
1058	int ret = 0;
1059	unsigned char *entropy = NULL;
1060	size_t entropylen = 0;
1061	struct drbg_string data1;
1062	LIST_HEAD(seedlist);
1063
1064	/* 9.1 / 9.2 / 9.3.1 step 3 */
1065	if (pers && pers->len > (drbg_max_addtl(drbg))) {
1066		pr_devel("DRBG: personalization string too long %zu\n",
1067			 pers->len);
1068		return -EINVAL;
1069	}
1070
1071	if (drbg->test_data && drbg->test_data->testentropy) {
1072		drbg_string_fill(&data1, drbg->test_data->testentropy->buf,
1073				 drbg->test_data->testentropy->len);
1074		pr_devel("DRBG: using test entropy\n");
1075	} else {
1076		/*
1077		 * Gather entropy equal to the security strength of the DRBG.
1078		 * With a derivation function, a nonce is required in addition
1079		 * to the entropy. A nonce must be at least 1/2 of the security
1080		 * strength of the DRBG in size. Thus, entropy * nonce is 3/2
1081		 * of the strength. The consideration of a nonce is only
1082		 * applicable during initial seeding.
1083		 */
1084		entropylen = drbg_sec_strength(drbg->core->flags);
1085		if (!entropylen)
1086			return -EFAULT;
1087		if (!reseed)
1088			entropylen = ((entropylen + 1) / 2) * 3;
1089		pr_devel("DRBG: (re)seeding with %zu bytes of entropy\n",
1090			 entropylen);
1091		entropy = kzalloc(entropylen, GFP_KERNEL);
1092		if (!entropy)
1093			return -ENOMEM;
1094		get_random_bytes(entropy, entropylen);
1095		drbg_string_fill(&data1, entropy, entropylen);
1096	}
1097	list_add_tail(&data1.list, &seedlist);
1098
1099	/*
1100	 * concatenation of entropy with personalization str / addtl input)
1101	 * the variable pers is directly handed in by the caller, so check its
1102	 * contents whether it is appropriate
1103	 */
1104	if (pers && pers->buf && 0 < pers->len) {
1105		list_add_tail(&pers->list, &seedlist);
1106		pr_devel("DRBG: using personalization string\n");
1107	}
1108
1109	if (!reseed) {
1110		memset(drbg->V, 0, drbg_statelen(drbg));
1111		memset(drbg->C, 0, drbg_statelen(drbg));
1112	}
1113
1114	ret = drbg->d_ops->update(drbg, &seedlist, reseed);
1115	if (ret)
1116		goto out;
1117
1118	drbg->seeded = true;
1119	/* 10.1.1.2 / 10.1.1.3 step 5 */
1120	drbg->reseed_ctr = 1;
1121
1122out:
1123	kzfree(entropy);
1124	return ret;
1125}
1126
1127/* Free all substructures in a DRBG state without the DRBG state structure */
1128static inline void drbg_dealloc_state(struct drbg_state *drbg)
1129{
1130	if (!drbg)
1131		return;
1132	kzfree(drbg->V);
1133	drbg->V = NULL;
1134	kzfree(drbg->C);
1135	drbg->C = NULL;
1136	kzfree(drbg->scratchpad);
1137	drbg->scratchpad = NULL;
1138	drbg->reseed_ctr = 0;
1139#ifdef CONFIG_CRYPTO_FIPS
1140	kzfree(drbg->prev);
1141	drbg->prev = NULL;
1142	drbg->fips_primed = false;
1143#endif
1144}
1145
1146/*
1147 * Allocate all sub-structures for a DRBG state.
1148 * The DRBG state structure must already be allocated.
1149 */
1150static inline int drbg_alloc_state(struct drbg_state *drbg)
1151{
1152	int ret = -ENOMEM;
1153	unsigned int sb_size = 0;
1154
1155	drbg->V = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1156	if (!drbg->V)
1157		goto err;
1158	drbg->C = kmalloc(drbg_statelen(drbg), GFP_KERNEL);
1159	if (!drbg->C)
1160		goto err;
1161#ifdef CONFIG_CRYPTO_FIPS
1162	drbg->prev = kmalloc(drbg_blocklen(drbg), GFP_KERNEL);
1163	if (!drbg->prev)
1164		goto err;
1165	drbg->fips_primed = false;
1166#endif
1167	/* scratchpad is only generated for CTR and Hash */
1168	if (drbg->core->flags & DRBG_HMAC)
1169		sb_size = 0;
1170	else if (drbg->core->flags & DRBG_CTR)
1171		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1172			  drbg_statelen(drbg) +	/* df_data */
1173			  drbg_blocklen(drbg) +	/* pad */
1174			  drbg_blocklen(drbg) +	/* iv */
1175			  drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1176	else
1177		sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1178
1179	if (0 < sb_size) {
1180		drbg->scratchpad = kzalloc(sb_size, GFP_KERNEL);
1181		if (!drbg->scratchpad)
1182			goto err;
1183	}
1184	spin_lock_init(&drbg->drbg_lock);
1185	return 0;
1186
1187err:
1188	drbg_dealloc_state(drbg);
1189	return ret;
1190}
1191
1192/*
1193 * Strategy to avoid holding long term locks: generate a shadow copy of DRBG
1194 * and perform all operations on this shadow copy. After finishing, restore
1195 * the updated state of the shadow copy into original drbg state. This way,
1196 * only the read and write operations of the original drbg state must be
1197 * locked
1198 */
1199static inline void drbg_copy_drbg(struct drbg_state *src,
1200				  struct drbg_state *dst)
1201{
1202	if (!src || !dst)
1203		return;
1204	memcpy(dst->V, src->V, drbg_statelen(src));
1205	memcpy(dst->C, src->C, drbg_statelen(src));
1206	dst->reseed_ctr = src->reseed_ctr;
1207	dst->seeded = src->seeded;
1208	dst->pr = src->pr;
1209#ifdef CONFIG_CRYPTO_FIPS
1210	dst->fips_primed = src->fips_primed;
1211	memcpy(dst->prev, src->prev, drbg_blocklen(src));
1212#endif
1213	/*
1214	 * Not copied:
1215	 * scratchpad is initialized drbg_alloc_state;
1216	 * priv_data is initialized with call to crypto_init;
1217	 * d_ops and core are set outside, as these parameters are const;
1218	 * test_data is set outside to prevent it being copied back.
1219	 */
1220}
1221
1222static int drbg_make_shadow(struct drbg_state *drbg, struct drbg_state **shadow)
1223{
1224	int ret = -ENOMEM;
1225	struct drbg_state *tmp = NULL;
1226
1227	tmp = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1228	if (!tmp)
1229		return -ENOMEM;
1230
1231	/* read-only data as they are defined as const, no lock needed */
1232	tmp->core = drbg->core;
1233	tmp->d_ops = drbg->d_ops;
1234
1235	ret = drbg_alloc_state(tmp);
1236	if (ret)
1237		goto err;
1238
1239	spin_lock_bh(&drbg->drbg_lock);
1240	drbg_copy_drbg(drbg, tmp);
1241	/* only make a link to the test buffer, as we only read that data */
1242	tmp->test_data = drbg->test_data;
1243	spin_unlock_bh(&drbg->drbg_lock);
1244	*shadow = tmp;
1245	return 0;
1246
1247err:
1248	kzfree(tmp);
1249	return ret;
1250}
1251
1252static void drbg_restore_shadow(struct drbg_state *drbg,
1253				struct drbg_state **shadow)
1254{
1255	struct drbg_state *tmp = *shadow;
1256
1257	spin_lock_bh(&drbg->drbg_lock);
1258	drbg_copy_drbg(tmp, drbg);
1259	spin_unlock_bh(&drbg->drbg_lock);
1260	drbg_dealloc_state(tmp);
1261	kzfree(tmp);
1262	*shadow = NULL;
1263}
1264
1265/*************************************************************************
1266 * DRBG interface functions
1267 *************************************************************************/
1268
1269/*
1270 * DRBG generate function as required by SP800-90A - this function
1271 * generates random numbers
1272 *
1273 * @drbg DRBG state handle
1274 * @buf Buffer where to store the random numbers -- the buffer must already
1275 *      be pre-allocated by caller
1276 * @buflen Length of output buffer - this value defines the number of random
1277 *	   bytes pulled from DRBG
1278 * @addtl Additional input that is mixed into state, may be NULL -- note
1279 *	  the entropy is pulled by the DRBG internally unconditionally
1280 *	  as defined in SP800-90A. The additional input is mixed into
1281 *	  the state in addition to the pulled entropy.
1282 *
1283 * return: 0 when all bytes are generated; < 0 in case of an error
1284 */
1285static int drbg_generate(struct drbg_state *drbg,
1286			 unsigned char *buf, unsigned int buflen,
1287			 struct drbg_string *addtl)
1288{
1289	int len = 0;
1290	struct drbg_state *shadow = NULL;
1291	LIST_HEAD(addtllist);
1292	struct drbg_string timestamp;
1293	union {
1294		cycles_t cycles;
1295		unsigned char char_cycles[sizeof(cycles_t)];
1296	} now;
1297
1298	if (0 == buflen || !buf) {
1299		pr_devel("DRBG: no output buffer provided\n");
1300		return -EINVAL;
1301	}
1302	if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1303		pr_devel("DRBG: wrong format of additional information\n");
1304		return -EINVAL;
1305	}
1306
1307	len = drbg_make_shadow(drbg, &shadow);
1308	if (len) {
1309		pr_devel("DRBG: shadow copy cannot be generated\n");
1310		return len;
1311	}
1312
1313	/* 9.3.1 step 2 */
1314	len = -EINVAL;
1315	if (buflen > (drbg_max_request_bytes(shadow))) {
1316		pr_devel("DRBG: requested random numbers too large %u\n",
1317			 buflen);
1318		goto err;
1319	}
1320
1321	/* 9.3.1 step 3 is implicit with the chosen DRBG */
1322
1323	/* 9.3.1 step 4 */
1324	if (addtl && addtl->len > (drbg_max_addtl(shadow))) {
1325		pr_devel("DRBG: additional information string too long %zu\n",
1326			 addtl->len);
1327		goto err;
1328	}
1329	/* 9.3.1 step 5 is implicit with the chosen DRBG */
1330
1331	/*
1332	 * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1333	 * here. The spec is a bit convoluted here, we make it simpler.
1334	 */
1335	if ((drbg_max_requests(shadow)) < shadow->reseed_ctr)
1336		shadow->seeded = false;
1337
1338	/* allocate cipher handle */
1339	len = shadow->d_ops->crypto_init(shadow);
1340	if (len)
1341		goto err;
1342
1343	if (shadow->pr || !shadow->seeded) {
1344		pr_devel("DRBG: reseeding before generation (prediction "
1345			 "resistance: %s, state %s)\n",
1346			 drbg->pr ? "true" : "false",
1347			 drbg->seeded ? "seeded" : "unseeded");
1348		/* 9.3.1 steps 7.1 through 7.3 */
1349		len = drbg_seed(shadow, addtl, true);
1350		if (len)
1351			goto err;
1352		/* 9.3.1 step 7.4 */
1353		addtl = NULL;
1354	}
1355
1356	/*
1357	 * Mix the time stamp into the DRBG state if the DRBG is not in
1358	 * test mode. If there are two callers invoking the DRBG at the same
1359	 * time, i.e. before the first caller merges its shadow state back,
1360	 * both callers would obtain the same random number stream without
1361	 * changing the state here.
1362	 */
1363	if (!drbg->test_data) {
1364		now.cycles = random_get_entropy();
1365		drbg_string_fill(&timestamp, now.char_cycles, sizeof(cycles_t));
1366		list_add_tail(&timestamp.list, &addtllist);
1367	}
1368	if (addtl && 0 < addtl->len)
1369		list_add_tail(&addtl->list, &addtllist);
1370	/* 9.3.1 step 8 and 10 */
1371	len = shadow->d_ops->generate(shadow, buf, buflen, &addtllist);
1372
1373	/* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1374	shadow->reseed_ctr++;
1375	if (0 >= len)
1376		goto err;
1377
1378	/*
1379	 * Section 11.3.3 requires to re-perform self tests after some
1380	 * generated random numbers. The chosen value after which self
1381	 * test is performed is arbitrary, but it should be reasonable.
1382	 * However, we do not perform the self tests because of the following
1383	 * reasons: it is mathematically impossible that the initial self tests
1384	 * were successfully and the following are not. If the initial would
1385	 * pass and the following would not, the kernel integrity is violated.
1386	 * In this case, the entire kernel operation is questionable and it
1387	 * is unlikely that the integrity violation only affects the
1388	 * correct operation of the DRBG.
1389	 *
1390	 * Albeit the following code is commented out, it is provided in
1391	 * case somebody has a need to implement the test of 11.3.3.
1392	 */
1393#if 0
1394	if (shadow->reseed_ctr && !(shadow->reseed_ctr % 4096)) {
1395		int err = 0;
1396		pr_devel("DRBG: start to perform self test\n");
1397		if (drbg->core->flags & DRBG_HMAC)
1398			err = alg_test("drbg_pr_hmac_sha256",
1399				       "drbg_pr_hmac_sha256", 0, 0);
1400		else if (drbg->core->flags & DRBG_CTR)
1401			err = alg_test("drbg_pr_ctr_aes128",
1402				       "drbg_pr_ctr_aes128", 0, 0);
1403		else
1404			err = alg_test("drbg_pr_sha256",
1405				       "drbg_pr_sha256", 0, 0);
1406		if (err) {
1407			pr_err("DRBG: periodical self test failed\n");
1408			/*
1409			 * uninstantiate implies that from now on, only errors
1410			 * are returned when reusing this DRBG cipher handle
1411			 */
1412			drbg_uninstantiate(drbg);
1413			drbg_dealloc_state(shadow);
1414			kzfree(shadow);
1415			return 0;
1416		} else {
1417			pr_devel("DRBG: self test successful\n");
1418		}
1419	}
1420#endif
1421
1422	/*
1423	 * All operations were successful, return 0 as mandated by
1424	 * the kernel crypto API interface.
1425	 */
1426	len = 0;
1427err:
1428	shadow->d_ops->crypto_fini(shadow);
1429	drbg_restore_shadow(drbg, &shadow);
1430	return len;
1431}
1432
1433/*
1434 * Wrapper around drbg_generate which can pull arbitrary long strings
1435 * from the DRBG without hitting the maximum request limitation.
1436 *
1437 * Parameters: see drbg_generate
1438 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1439 *		 the entire drbg_generate_long request fails
1440 */
1441static int drbg_generate_long(struct drbg_state *drbg,
1442			      unsigned char *buf, unsigned int buflen,
1443			      struct drbg_string *addtl)
1444{
1445	int len = 0;
1446	unsigned int slice = 0;
1447	do {
1448		int tmplen = 0;
1449		unsigned int chunk = 0;
1450		slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1451		chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1452		tmplen = drbg_generate(drbg, buf + len, chunk, addtl);
1453		if (0 >= tmplen)
1454			return tmplen;
1455		len += tmplen;
1456	} while (slice > 0 && (len < buflen));
1457	return len;
1458}
1459
1460/*
1461 * DRBG instantiation function as required by SP800-90A - this function
1462 * sets up the DRBG handle, performs the initial seeding and all sanity
1463 * checks required by SP800-90A
1464 *
1465 * @drbg memory of state -- if NULL, new memory is allocated
1466 * @pers Personalization string that is mixed into state, may be NULL -- note
1467 *	 the entropy is pulled by the DRBG internally unconditionally
1468 *	 as defined in SP800-90A. The additional input is mixed into
1469 *	 the state in addition to the pulled entropy.
1470 * @coreref reference to core
1471 * @pr prediction resistance enabled
1472 *
1473 * return
1474 *	0 on success
1475 *	error value otherwise
1476 */
1477static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1478			    int coreref, bool pr)
1479{
1480	int ret = -ENOMEM;
1481
1482	pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1483		 "%s\n", coreref, pr ? "enabled" : "disabled");
1484	drbg->core = &drbg_cores[coreref];
1485	drbg->pr = pr;
1486	drbg->seeded = false;
1487	switch (drbg->core->flags & DRBG_TYPE_MASK) {
1488#ifdef CONFIG_CRYPTO_DRBG_HMAC
1489	case DRBG_HMAC:
1490		drbg->d_ops = &drbg_hmac_ops;
1491		break;
1492#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1493#ifdef CONFIG_CRYPTO_DRBG_HASH
1494	case DRBG_HASH:
1495		drbg->d_ops = &drbg_hash_ops;
1496		break;
1497#endif /* CONFIG_CRYPTO_DRBG_HASH */
1498#ifdef CONFIG_CRYPTO_DRBG_CTR
1499	case DRBG_CTR:
1500		drbg->d_ops = &drbg_ctr_ops;
1501		break;
1502#endif /* CONFIG_CRYPTO_DRBG_CTR */
1503	default:
1504		return -EOPNOTSUPP;
1505	}
1506
1507	/* 9.1 step 1 is implicit with the selected DRBG type */
1508
1509	/*
1510	 * 9.1 step 2 is implicit as caller can select prediction resistance
1511	 * and the flag is copied into drbg->flags --
1512	 * all DRBG types support prediction resistance
1513	 */
1514
1515	/* 9.1 step 4 is implicit in  drbg_sec_strength */
1516
1517	ret = drbg_alloc_state(drbg);
1518	if (ret)
1519		return ret;
1520
1521	ret = -EFAULT;
1522	if (drbg->d_ops->crypto_init(drbg))
1523		goto err;
1524	ret = drbg_seed(drbg, pers, false);
1525	drbg->d_ops->crypto_fini(drbg);
1526	if (ret)
1527		goto err;
1528
1529	return 0;
1530
1531err:
1532	drbg_dealloc_state(drbg);
1533	return ret;
1534}
1535
1536/*
1537 * DRBG uninstantiate function as required by SP800-90A - this function
1538 * frees all buffers and the DRBG handle
1539 *
1540 * @drbg DRBG state handle
1541 *
1542 * return
1543 *	0 on success
1544 */
1545static int drbg_uninstantiate(struct drbg_state *drbg)
1546{
1547	spin_lock_bh(&drbg->drbg_lock);
1548	drbg_dealloc_state(drbg);
1549	/* no scrubbing of test_data -- this shall survive an uninstantiate */
1550	spin_unlock_bh(&drbg->drbg_lock);
1551	return 0;
1552}
1553
1554/*
1555 * Helper function for setting the test data in the DRBG
1556 *
1557 * @drbg DRBG state handle
1558 * @test_data test data to sets
1559 */
1560static inline void drbg_set_testdata(struct drbg_state *drbg,
1561				     struct drbg_test_data *test_data)
1562{
1563	if (!test_data || !test_data->testentropy)
1564		return;
1565	spin_lock_bh(&drbg->drbg_lock);
1566	drbg->test_data = test_data;
1567	spin_unlock_bh(&drbg->drbg_lock);
1568}
1569
1570/***************************************************************
1571 * Kernel crypto API cipher invocations requested by DRBG
1572 ***************************************************************/
1573
1574#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1575struct sdesc {
1576	struct shash_desc shash;
1577	char ctx[];
1578};
1579
1580static int drbg_init_hash_kernel(struct drbg_state *drbg)
1581{
1582	struct sdesc *sdesc;
1583	struct crypto_shash *tfm;
1584
1585	tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1586	if (IS_ERR(tfm)) {
1587		pr_info("DRBG: could not allocate digest TFM handle\n");
1588		return PTR_ERR(tfm);
1589	}
1590	BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1591	sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1592			GFP_KERNEL);
1593	if (!sdesc) {
1594		crypto_free_shash(tfm);
1595		return -ENOMEM;
1596	}
1597
1598	sdesc->shash.tfm = tfm;
1599	sdesc->shash.flags = 0;
1600	drbg->priv_data = sdesc;
1601	return 0;
1602}
1603
1604static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1605{
1606	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1607	if (sdesc) {
1608		crypto_free_shash(sdesc->shash.tfm);
1609		kzfree(sdesc);
1610	}
1611	drbg->priv_data = NULL;
1612	return 0;
1613}
1614
1615static int drbg_kcapi_hash(struct drbg_state *drbg, const unsigned char *key,
1616			   unsigned char *outval, const struct list_head *in)
1617{
1618	struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1619	struct drbg_string *input = NULL;
1620
1621	if (key)
1622		crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1623	crypto_shash_init(&sdesc->shash);
1624	list_for_each_entry(input, in, list)
1625		crypto_shash_update(&sdesc->shash, input->buf, input->len);
1626	return crypto_shash_final(&sdesc->shash, outval);
1627}
1628#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1629
1630#ifdef CONFIG_CRYPTO_DRBG_CTR
1631static int drbg_init_sym_kernel(struct drbg_state *drbg)
1632{
1633	int ret = 0;
1634	struct crypto_cipher *tfm;
1635
1636	tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1637	if (IS_ERR(tfm)) {
1638		pr_info("DRBG: could not allocate cipher TFM handle\n");
1639		return PTR_ERR(tfm);
1640	}
1641	BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1642	drbg->priv_data = tfm;
1643	return ret;
1644}
1645
1646static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1647{
1648	struct crypto_cipher *tfm =
1649		(struct crypto_cipher *)drbg->priv_data;
1650	if (tfm)
1651		crypto_free_cipher(tfm);
1652	drbg->priv_data = NULL;
1653	return 0;
1654}
1655
1656static int drbg_kcapi_sym(struct drbg_state *drbg, const unsigned char *key,
1657			  unsigned char *outval, const struct drbg_string *in)
1658{
1659	struct crypto_cipher *tfm =
1660		(struct crypto_cipher *)drbg->priv_data;
1661
1662	crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1663	/* there is only component in *in */
1664	BUG_ON(in->len < drbg_blocklen(drbg));
1665	crypto_cipher_encrypt_one(tfm, outval, in->buf);
1666	return 0;
1667}
1668#endif /* CONFIG_CRYPTO_DRBG_CTR */
1669
1670/***************************************************************
1671 * Kernel crypto API interface to register DRBG
1672 ***************************************************************/
1673
1674/*
1675 * Look up the DRBG flags by given kernel crypto API cra_name
1676 * The code uses the drbg_cores definition to do this
1677 *
1678 * @cra_name kernel crypto API cra_name
1679 * @coreref reference to integer which is filled with the pointer to
1680 *  the applicable core
1681 * @pr reference for setting prediction resistance
1682 *
1683 * return: flags
1684 */
1685static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1686					 int *coreref, bool *pr)
1687{
1688	int i = 0;
1689	size_t start = 0;
1690	int len = 0;
1691
1692	*pr = true;
1693	/* disassemble the names */
1694	if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1695		start = 10;
1696		*pr = false;
1697	} else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1698		start = 8;
1699	} else {
1700		return;
1701	}
1702
1703	/* remove the first part */
1704	len = strlen(cra_driver_name) - start;
1705	for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1706		if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1707			    len)) {
1708			*coreref = i;
1709			return;
1710		}
1711	}
1712}
1713
1714static int drbg_kcapi_init(struct crypto_tfm *tfm)
1715{
1716	struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1717	bool pr = false;
1718	int coreref = 0;
1719
1720	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm), &coreref, &pr);
1721	/*
1722	 * when personalization string is needed, the caller must call reset
1723	 * and provide the personalization string as seed information
1724	 */
1725	return drbg_instantiate(drbg, NULL, coreref, pr);
1726}
1727
1728static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1729{
1730	drbg_uninstantiate(crypto_tfm_ctx(tfm));
1731}
1732
1733/*
1734 * Generate random numbers invoked by the kernel crypto API:
1735 * The API of the kernel crypto API is extended as follows:
1736 *
1737 * If dlen is larger than zero, rdata is interpreted as the output buffer
1738 * where random data is to be stored.
1739 *
1740 * If dlen is zero, rdata is interpreted as a pointer to a struct drbg_gen
1741 * which holds the additional information string that is used for the
1742 * DRBG generation process. The output buffer that is to be used to store
1743 * data is also pointed to by struct drbg_gen.
1744 */
1745static int drbg_kcapi_random(struct crypto_rng *tfm, u8 *rdata,
1746			     unsigned int dlen)
1747{
1748	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1749	if (0 < dlen) {
1750		return drbg_generate_long(drbg, rdata, dlen, NULL);
1751	} else {
1752		struct drbg_gen *data = (struct drbg_gen *)rdata;
1753		struct drbg_string addtl;
1754		/* catch NULL pointer */
1755		if (!data)
1756			return 0;
1757		drbg_set_testdata(drbg, data->test_data);
1758		/* linked list variable is now local to allow modification */
1759		drbg_string_fill(&addtl, data->addtl->buf, data->addtl->len);
1760		return drbg_generate_long(drbg, data->outbuf, data->outlen,
1761					  &addtl);
1762	}
1763}
1764
1765/*
1766 * Reset the DRBG invoked by the kernel crypto API
1767 * The reset implies a full re-initialization of the DRBG. Similar to the
1768 * generate function of drbg_kcapi_random, this function extends the
1769 * kernel crypto API interface with struct drbg_gen
1770 */
1771static int drbg_kcapi_reset(struct crypto_rng *tfm, u8 *seed, unsigned int slen)
1772{
1773	struct drbg_state *drbg = crypto_rng_ctx(tfm);
1774	struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1775	bool pr = false;
1776	struct drbg_string seed_string;
1777	int coreref = 0;
1778
1779	drbg_uninstantiate(drbg);
1780	drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1781			      &pr);
1782	if (0 < slen) {
1783		drbg_string_fill(&seed_string, seed, slen);
1784		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1785	} else {
1786		struct drbg_gen *data = (struct drbg_gen *)seed;
1787		/* allow invocation of API call with NULL, 0 */
1788		if (!data)
1789			return drbg_instantiate(drbg, NULL, coreref, pr);
1790		drbg_set_testdata(drbg, data->test_data);
1791		/* linked list variable is now local to allow modification */
1792		drbg_string_fill(&seed_string, data->addtl->buf,
1793				 data->addtl->len);
1794		return drbg_instantiate(drbg, &seed_string, coreref, pr);
1795	}
1796}
1797
1798/***************************************************************
1799 * Kernel module: code to load the module
1800 ***************************************************************/
1801
1802/*
1803 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1804 * of the error handling.
1805 *
1806 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1807 * as seed source of get_random_bytes does not fail.
1808 *
1809 * Note 2: There is no sensible way of testing the reseed counter
1810 * enforcement, so skip it.
1811 */
1812static inline int __init drbg_healthcheck_sanity(void)
1813{
1814#ifdef CONFIG_CRYPTO_FIPS
1815	int len = 0;
1816#define OUTBUFLEN 16
1817	unsigned char buf[OUTBUFLEN];
1818	struct drbg_state *drbg = NULL;
1819	int ret = -EFAULT;
1820	int rc = -EFAULT;
1821	bool pr = false;
1822	int coreref = 0;
1823	struct drbg_string addtl;
1824	size_t max_addtllen, max_request_bytes;
1825
1826	/* only perform test in FIPS mode */
1827	if (!fips_enabled)
1828		return 0;
1829
1830#ifdef CONFIG_CRYPTO_DRBG_CTR
1831	drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1832#elif defined CONFIG_CRYPTO_DRBG_HASH
1833	drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1834#else
1835	drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1836#endif
1837
1838	drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1839	if (!drbg)
1840		return -ENOMEM;
1841
1842	/*
1843	 * if the following tests fail, it is likely that there is a buffer
1844	 * overflow as buf is much smaller than the requested or provided
1845	 * string lengths -- in case the error handling does not succeed
1846	 * we may get an OOPS. And we want to get an OOPS as this is a
1847	 * grave bug.
1848	 */
1849
1850	/* get a valid instance of DRBG for following tests */
1851	ret = drbg_instantiate(drbg, NULL, coreref, pr);
1852	if (ret) {
1853		rc = ret;
1854		goto outbuf;
1855	}
1856	max_addtllen = drbg_max_addtl(drbg);
1857	max_request_bytes = drbg_max_request_bytes(drbg);
1858	drbg_string_fill(&addtl, buf, max_addtllen + 1);
1859	/* overflow addtllen with additonal info string */
1860	len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1861	BUG_ON(0 < len);
1862	/* overflow max_bits */
1863	len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1864	BUG_ON(0 < len);
1865	drbg_uninstantiate(drbg);
1866
1867	/* overflow max addtllen with personalization string */
1868	ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1869	BUG_ON(0 == ret);
1870	/* all tests passed */
1871	rc = 0;
1872
1873	pr_devel("DRBG: Sanity tests for failure code paths successfully "
1874		 "completed\n");
1875
1876	drbg_uninstantiate(drbg);
1877outbuf:
1878	kzfree(drbg);
1879	return rc;
1880#else /* CONFIG_CRYPTO_FIPS */
1881	return 0;
1882#endif /* CONFIG_CRYPTO_FIPS */
1883}
1884
1885static struct crypto_alg drbg_algs[22];
1886
1887/*
1888 * Fill the array drbg_algs used to register the different DRBGs
1889 * with the kernel crypto API. To fill the array, the information
1890 * from drbg_cores[] is used.
1891 */
1892static inline void __init drbg_fill_array(struct crypto_alg *alg,
1893					  const struct drbg_core *core, int pr)
1894{
1895	int pos = 0;
1896	static int priority = 100;
1897
1898	memset(alg, 0, sizeof(struct crypto_alg));
1899	memcpy(alg->cra_name, "stdrng", 6);
1900	if (pr) {
1901		memcpy(alg->cra_driver_name, "drbg_pr_", 8);
1902		pos = 8;
1903	} else {
1904		memcpy(alg->cra_driver_name, "drbg_nopr_", 10);
1905		pos = 10;
1906	}
1907	memcpy(alg->cra_driver_name + pos, core->cra_name,
1908	       strlen(core->cra_name));
1909
1910	alg->cra_priority = priority;
1911	priority++;
1912	/*
1913	 * If FIPS mode enabled, the selected DRBG shall have the
1914	 * highest cra_priority over other stdrng instances to ensure
1915	 * it is selected.
1916	 */
1917	if (fips_enabled)
1918		alg->cra_priority += 200;
1919
1920	alg->cra_flags		= CRYPTO_ALG_TYPE_RNG;
1921	alg->cra_ctxsize 	= sizeof(struct drbg_state);
1922	alg->cra_type		= &crypto_rng_type;
1923	alg->cra_module		= THIS_MODULE;
1924	alg->cra_init		= drbg_kcapi_init;
1925	alg->cra_exit		= drbg_kcapi_cleanup;
1926	alg->cra_u.rng.rng_make_random	= drbg_kcapi_random;
1927	alg->cra_u.rng.rng_reset	= drbg_kcapi_reset;
1928	alg->cra_u.rng.seedsize	= 0;
1929}
1930
1931static int __init drbg_init(void)
1932{
1933	unsigned int i = 0; /* pointer to drbg_algs */
1934	unsigned int j = 0; /* pointer to drbg_cores */
1935	int ret = -EFAULT;
1936
1937	ret = drbg_healthcheck_sanity();
1938	if (ret)
1939		return ret;
1940
1941	if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
1942		pr_info("DRBG: Cannot register all DRBG types"
1943			"(slots needed: %zu, slots available: %zu)\n",
1944			ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
1945		return ret;
1946	}
1947
1948	/*
1949	 * each DRBG definition can be used with PR and without PR, thus
1950	 * we instantiate each DRBG in drbg_cores[] twice.
1951	 *
1952	 * As the order of placing them into the drbg_algs array matters
1953	 * (the later DRBGs receive a higher cra_priority) we register the
1954	 * prediction resistance DRBGs first as the should not be too
1955	 * interesting.
1956	 */
1957	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1958		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
1959	for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
1960		drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
1961	return crypto_register_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1962}
1963
1964static void __exit drbg_exit(void)
1965{
1966	crypto_unregister_algs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
1967}
1968
1969module_init(drbg_init);
1970module_exit(drbg_exit);
1971#ifndef CRYPTO_DRBG_HASH_STRING
1972#define CRYPTO_DRBG_HASH_STRING ""
1973#endif
1974#ifndef CRYPTO_DRBG_HMAC_STRING
1975#define CRYPTO_DRBG_HMAC_STRING ""
1976#endif
1977#ifndef CRYPTO_DRBG_CTR_STRING
1978#define CRYPTO_DRBG_CTR_STRING ""
1979#endif
1980MODULE_LICENSE("GPL");
1981MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
1982MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
1983		   "using following cores: "
1984		   CRYPTO_DRBG_HASH_STRING
1985		   CRYPTO_DRBG_HMAC_STRING
1986		   CRYPTO_DRBG_CTR_STRING);
1987