1 /*
2  * Copyright 2002 Andi Kleen, SuSE Labs.
3  * Thanks to Ben LaHaise for precious feedback.
4  */
5 #include <linux/highmem.h>
6 #include <linux/bootmem.h>
7 #include <linux/module.h>
8 #include <linux/sched.h>
9 #include <linux/mm.h>
10 #include <linux/interrupt.h>
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/pfn.h>
14 #include <linux/percpu.h>
15 #include <linux/gfp.h>
16 #include <linux/pci.h>
17 
18 #include <asm/e820.h>
19 #include <asm/processor.h>
20 #include <asm/tlbflush.h>
21 #include <asm/sections.h>
22 #include <asm/setup.h>
23 #include <asm/uaccess.h>
24 #include <asm/pgalloc.h>
25 #include <asm/proto.h>
26 #include <asm/pat.h>
27 
28 /*
29  * The current flushing context - we pass it instead of 5 arguments:
30  */
31 struct cpa_data {
32 	unsigned long	*vaddr;
33 	pgd_t		*pgd;
34 	pgprot_t	mask_set;
35 	pgprot_t	mask_clr;
36 	unsigned long	numpages;
37 	int		flags;
38 	unsigned long	pfn;
39 	unsigned	force_split : 1;
40 	int		curpage;
41 	struct page	**pages;
42 };
43 
44 /*
45  * Serialize cpa() (for !DEBUG_PAGEALLOC which uses large identity mappings)
46  * using cpa_lock. So that we don't allow any other cpu, with stale large tlb
47  * entries change the page attribute in parallel to some other cpu
48  * splitting a large page entry along with changing the attribute.
49  */
50 static DEFINE_SPINLOCK(cpa_lock);
51 
52 #define CPA_FLUSHTLB 1
53 #define CPA_ARRAY 2
54 #define CPA_PAGES_ARRAY 4
55 
56 #ifdef CONFIG_PROC_FS
57 static unsigned long direct_pages_count[PG_LEVEL_NUM];
58 
update_page_count(int level,unsigned long pages)59 void update_page_count(int level, unsigned long pages)
60 {
61 	/* Protect against CPA */
62 	spin_lock(&pgd_lock);
63 	direct_pages_count[level] += pages;
64 	spin_unlock(&pgd_lock);
65 }
66 
split_page_count(int level)67 static void split_page_count(int level)
68 {
69 	direct_pages_count[level]--;
70 	direct_pages_count[level - 1] += PTRS_PER_PTE;
71 }
72 
arch_report_meminfo(struct seq_file * m)73 void arch_report_meminfo(struct seq_file *m)
74 {
75 	seq_printf(m, "DirectMap4k:    %8lu kB\n",
76 			direct_pages_count[PG_LEVEL_4K] << 2);
77 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
78 	seq_printf(m, "DirectMap2M:    %8lu kB\n",
79 			direct_pages_count[PG_LEVEL_2M] << 11);
80 #else
81 	seq_printf(m, "DirectMap4M:    %8lu kB\n",
82 			direct_pages_count[PG_LEVEL_2M] << 12);
83 #endif
84 	if (direct_gbpages)
85 		seq_printf(m, "DirectMap1G:    %8lu kB\n",
86 			direct_pages_count[PG_LEVEL_1G] << 20);
87 }
88 #else
split_page_count(int level)89 static inline void split_page_count(int level) { }
90 #endif
91 
92 #ifdef CONFIG_X86_64
93 
highmap_start_pfn(void)94 static inline unsigned long highmap_start_pfn(void)
95 {
96 	return __pa_symbol(_text) >> PAGE_SHIFT;
97 }
98 
highmap_end_pfn(void)99 static inline unsigned long highmap_end_pfn(void)
100 {
101 	return __pa_symbol(roundup(_brk_end, PMD_SIZE)) >> PAGE_SHIFT;
102 }
103 
104 #endif
105 
106 #ifdef CONFIG_DEBUG_PAGEALLOC
107 # define debug_pagealloc 1
108 #else
109 # define debug_pagealloc 0
110 #endif
111 
112 static inline int
within(unsigned long addr,unsigned long start,unsigned long end)113 within(unsigned long addr, unsigned long start, unsigned long end)
114 {
115 	return addr >= start && addr < end;
116 }
117 
118 /*
119  * Flushing functions
120  */
121 
122 /**
123  * clflush_cache_range - flush a cache range with clflush
124  * @vaddr:	virtual start address
125  * @size:	number of bytes to flush
126  *
127  * clflushopt is an unordered instruction which needs fencing with mfence or
128  * sfence to avoid ordering issues.
129  */
clflush_cache_range(void * vaddr,unsigned int size)130 void clflush_cache_range(void *vaddr, unsigned int size)
131 {
132 	void *vend = vaddr + size - 1;
133 
134 	mb();
135 
136 	for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
137 		clflushopt(vaddr);
138 	/*
139 	 * Flush any possible final partial cacheline:
140 	 */
141 	clflushopt(vend);
142 
143 	mb();
144 }
145 EXPORT_SYMBOL_GPL(clflush_cache_range);
146 
__cpa_flush_all(void * arg)147 static void __cpa_flush_all(void *arg)
148 {
149 	unsigned long cache = (unsigned long)arg;
150 
151 	/*
152 	 * Flush all to work around Errata in early athlons regarding
153 	 * large page flushing.
154 	 */
155 	__flush_tlb_all();
156 
157 	if (cache && boot_cpu_data.x86 >= 4)
158 		wbinvd();
159 }
160 
cpa_flush_all(unsigned long cache)161 static void cpa_flush_all(unsigned long cache)
162 {
163 	BUG_ON(irqs_disabled());
164 
165 	on_each_cpu(__cpa_flush_all, (void *) cache, 1);
166 }
167 
__cpa_flush_range(void * arg)168 static void __cpa_flush_range(void *arg)
169 {
170 	/*
171 	 * We could optimize that further and do individual per page
172 	 * tlb invalidates for a low number of pages. Caveat: we must
173 	 * flush the high aliases on 64bit as well.
174 	 */
175 	__flush_tlb_all();
176 }
177 
cpa_flush_range(unsigned long start,int numpages,int cache)178 static void cpa_flush_range(unsigned long start, int numpages, int cache)
179 {
180 	unsigned int i, level;
181 	unsigned long addr;
182 
183 	BUG_ON(irqs_disabled());
184 	WARN_ON(PAGE_ALIGN(start) != start);
185 
186 	on_each_cpu(__cpa_flush_range, NULL, 1);
187 
188 	if (!cache)
189 		return;
190 
191 	/*
192 	 * We only need to flush on one CPU,
193 	 * clflush is a MESI-coherent instruction that
194 	 * will cause all other CPUs to flush the same
195 	 * cachelines:
196 	 */
197 	for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
198 		pte_t *pte = lookup_address(addr, &level);
199 
200 		/*
201 		 * Only flush present addresses:
202 		 */
203 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
204 			clflush_cache_range((void *) addr, PAGE_SIZE);
205 	}
206 }
207 
cpa_flush_array(unsigned long * start,int numpages,int cache,int in_flags,struct page ** pages)208 static void cpa_flush_array(unsigned long *start, int numpages, int cache,
209 			    int in_flags, struct page **pages)
210 {
211 	unsigned int i, level;
212 	unsigned long do_wbinvd = cache && numpages >= 1024; /* 4M threshold */
213 
214 	BUG_ON(irqs_disabled());
215 
216 	on_each_cpu(__cpa_flush_all, (void *) do_wbinvd, 1);
217 
218 	if (!cache || do_wbinvd)
219 		return;
220 
221 	/*
222 	 * We only need to flush on one CPU,
223 	 * clflush is a MESI-coherent instruction that
224 	 * will cause all other CPUs to flush the same
225 	 * cachelines:
226 	 */
227 	for (i = 0; i < numpages; i++) {
228 		unsigned long addr;
229 		pte_t *pte;
230 
231 		if (in_flags & CPA_PAGES_ARRAY)
232 			addr = (unsigned long)page_address(pages[i]);
233 		else
234 			addr = start[i];
235 
236 		pte = lookup_address(addr, &level);
237 
238 		/*
239 		 * Only flush present addresses:
240 		 */
241 		if (pte && (pte_val(*pte) & _PAGE_PRESENT))
242 			clflush_cache_range((void *)addr, PAGE_SIZE);
243 	}
244 }
245 
246 /*
247  * Certain areas of memory on x86 require very specific protection flags,
248  * for example the BIOS area or kernel text. Callers don't always get this
249  * right (again, ioremap() on BIOS memory is not uncommon) so this function
250  * checks and fixes these known static required protection bits.
251  */
static_protections(pgprot_t prot,unsigned long address,unsigned long pfn)252 static inline pgprot_t static_protections(pgprot_t prot, unsigned long address,
253 				   unsigned long pfn)
254 {
255 	pgprot_t forbidden = __pgprot(0);
256 
257 	/*
258 	 * The BIOS area between 640k and 1Mb needs to be executable for
259 	 * PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
260 	 */
261 #ifdef CONFIG_PCI_BIOS
262 	if (pcibios_enabled && within(pfn, BIOS_BEGIN >> PAGE_SHIFT, BIOS_END >> PAGE_SHIFT))
263 		pgprot_val(forbidden) |= _PAGE_NX;
264 #endif
265 
266 	/*
267 	 * The kernel text needs to be executable for obvious reasons
268 	 * Does not cover __inittext since that is gone later on. On
269 	 * 64bit we do not enforce !NX on the low mapping
270 	 */
271 	if (within(address, (unsigned long)_text, (unsigned long)_etext))
272 		pgprot_val(forbidden) |= _PAGE_NX;
273 
274 	/*
275 	 * The .rodata section needs to be read-only. Using the pfn
276 	 * catches all aliases.
277 	 */
278 	if (within(pfn, __pa_symbol(__start_rodata) >> PAGE_SHIFT,
279 		   __pa_symbol(__end_rodata) >> PAGE_SHIFT))
280 		pgprot_val(forbidden) |= _PAGE_RW;
281 
282 #if defined(CONFIG_X86_64) && defined(CONFIG_DEBUG_RODATA)
283 	/*
284 	 * Once the kernel maps the text as RO (kernel_set_to_readonly is set),
285 	 * kernel text mappings for the large page aligned text, rodata sections
286 	 * will be always read-only. For the kernel identity mappings covering
287 	 * the holes caused by this alignment can be anything that user asks.
288 	 *
289 	 * This will preserve the large page mappings for kernel text/data
290 	 * at no extra cost.
291 	 */
292 	if (kernel_set_to_readonly &&
293 	    within(address, (unsigned long)_text,
294 		   (unsigned long)__end_rodata_hpage_align)) {
295 		unsigned int level;
296 
297 		/*
298 		 * Don't enforce the !RW mapping for the kernel text mapping,
299 		 * if the current mapping is already using small page mapping.
300 		 * No need to work hard to preserve large page mappings in this
301 		 * case.
302 		 *
303 		 * This also fixes the Linux Xen paravirt guest boot failure
304 		 * (because of unexpected read-only mappings for kernel identity
305 		 * mappings). In this paravirt guest case, the kernel text
306 		 * mapping and the kernel identity mapping share the same
307 		 * page-table pages. Thus we can't really use different
308 		 * protections for the kernel text and identity mappings. Also,
309 		 * these shared mappings are made of small page mappings.
310 		 * Thus this don't enforce !RW mapping for small page kernel
311 		 * text mapping logic will help Linux Xen parvirt guest boot
312 		 * as well.
313 		 */
314 		if (lookup_address(address, &level) && (level != PG_LEVEL_4K))
315 			pgprot_val(forbidden) |= _PAGE_RW;
316 	}
317 #endif
318 
319 	prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
320 
321 	return prot;
322 }
323 
324 /*
325  * Lookup the page table entry for a virtual address in a specific pgd.
326  * Return a pointer to the entry and the level of the mapping.
327  */
lookup_address_in_pgd(pgd_t * pgd,unsigned long address,unsigned int * level)328 pte_t *lookup_address_in_pgd(pgd_t *pgd, unsigned long address,
329 			     unsigned int *level)
330 {
331 	pud_t *pud;
332 	pmd_t *pmd;
333 
334 	*level = PG_LEVEL_NONE;
335 
336 	if (pgd_none(*pgd))
337 		return NULL;
338 
339 	pud = pud_offset(pgd, address);
340 	if (pud_none(*pud))
341 		return NULL;
342 
343 	*level = PG_LEVEL_1G;
344 	if (pud_large(*pud) || !pud_present(*pud))
345 		return (pte_t *)pud;
346 
347 	pmd = pmd_offset(pud, address);
348 	if (pmd_none(*pmd))
349 		return NULL;
350 
351 	*level = PG_LEVEL_2M;
352 	if (pmd_large(*pmd) || !pmd_present(*pmd))
353 		return (pte_t *)pmd;
354 
355 	*level = PG_LEVEL_4K;
356 
357 	return pte_offset_kernel(pmd, address);
358 }
359 
360 /*
361  * Lookup the page table entry for a virtual address. Return a pointer
362  * to the entry and the level of the mapping.
363  *
364  * Note: We return pud and pmd either when the entry is marked large
365  * or when the present bit is not set. Otherwise we would return a
366  * pointer to a nonexisting mapping.
367  */
lookup_address(unsigned long address,unsigned int * level)368 pte_t *lookup_address(unsigned long address, unsigned int *level)
369 {
370         return lookup_address_in_pgd(pgd_offset_k(address), address, level);
371 }
372 EXPORT_SYMBOL_GPL(lookup_address);
373 
_lookup_address_cpa(struct cpa_data * cpa,unsigned long address,unsigned int * level)374 static pte_t *_lookup_address_cpa(struct cpa_data *cpa, unsigned long address,
375 				  unsigned int *level)
376 {
377         if (cpa->pgd)
378 		return lookup_address_in_pgd(cpa->pgd + pgd_index(address),
379 					       address, level);
380 
381         return lookup_address(address, level);
382 }
383 
384 /*
385  * Lookup the PMD entry for a virtual address. Return a pointer to the entry
386  * or NULL if not present.
387  */
lookup_pmd_address(unsigned long address)388 pmd_t *lookup_pmd_address(unsigned long address)
389 {
390 	pgd_t *pgd;
391 	pud_t *pud;
392 
393 	pgd = pgd_offset_k(address);
394 	if (pgd_none(*pgd))
395 		return NULL;
396 
397 	pud = pud_offset(pgd, address);
398 	if (pud_none(*pud) || pud_large(*pud) || !pud_present(*pud))
399 		return NULL;
400 
401 	return pmd_offset(pud, address);
402 }
403 
404 /*
405  * This is necessary because __pa() does not work on some
406  * kinds of memory, like vmalloc() or the alloc_remap()
407  * areas on 32-bit NUMA systems.  The percpu areas can
408  * end up in this kind of memory, for instance.
409  *
410  * This could be optimized, but it is only intended to be
411  * used at inititalization time, and keeping it
412  * unoptimized should increase the testing coverage for
413  * the more obscure platforms.
414  */
slow_virt_to_phys(void * __virt_addr)415 phys_addr_t slow_virt_to_phys(void *__virt_addr)
416 {
417 	unsigned long virt_addr = (unsigned long)__virt_addr;
418 	phys_addr_t phys_addr;
419 	unsigned long offset;
420 	enum pg_level level;
421 	unsigned long psize;
422 	unsigned long pmask;
423 	pte_t *pte;
424 
425 	pte = lookup_address(virt_addr, &level);
426 	BUG_ON(!pte);
427 	psize = page_level_size(level);
428 	pmask = page_level_mask(level);
429 	offset = virt_addr & ~pmask;
430 	phys_addr = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
431 	return (phys_addr | offset);
432 }
433 EXPORT_SYMBOL_GPL(slow_virt_to_phys);
434 
435 /*
436  * Set the new pmd in all the pgds we know about:
437  */
__set_pmd_pte(pte_t * kpte,unsigned long address,pte_t pte)438 static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
439 {
440 	/* change init_mm */
441 	set_pte_atomic(kpte, pte);
442 #ifdef CONFIG_X86_32
443 	if (!SHARED_KERNEL_PMD) {
444 		struct page *page;
445 
446 		list_for_each_entry(page, &pgd_list, lru) {
447 			pgd_t *pgd;
448 			pud_t *pud;
449 			pmd_t *pmd;
450 
451 			pgd = (pgd_t *)page_address(page) + pgd_index(address);
452 			pud = pud_offset(pgd, address);
453 			pmd = pmd_offset(pud, address);
454 			set_pte_atomic((pte_t *)pmd, pte);
455 		}
456 	}
457 #endif
458 }
459 
460 static int
try_preserve_large_page(pte_t * kpte,unsigned long address,struct cpa_data * cpa)461 try_preserve_large_page(pte_t *kpte, unsigned long address,
462 			struct cpa_data *cpa)
463 {
464 	unsigned long nextpage_addr, numpages, pmask, psize, addr, pfn;
465 	pte_t new_pte, old_pte, *tmp;
466 	pgprot_t old_prot, new_prot, req_prot;
467 	int i, do_split = 1;
468 	enum pg_level level;
469 
470 	if (cpa->force_split)
471 		return 1;
472 
473 	spin_lock(&pgd_lock);
474 	/*
475 	 * Check for races, another CPU might have split this page
476 	 * up already:
477 	 */
478 	tmp = _lookup_address_cpa(cpa, address, &level);
479 	if (tmp != kpte)
480 		goto out_unlock;
481 
482 	switch (level) {
483 	case PG_LEVEL_2M:
484 #ifdef CONFIG_X86_64
485 	case PG_LEVEL_1G:
486 #endif
487 		psize = page_level_size(level);
488 		pmask = page_level_mask(level);
489 		break;
490 	default:
491 		do_split = -EINVAL;
492 		goto out_unlock;
493 	}
494 
495 	/*
496 	 * Calculate the number of pages, which fit into this large
497 	 * page starting at address:
498 	 */
499 	nextpage_addr = (address + psize) & pmask;
500 	numpages = (nextpage_addr - address) >> PAGE_SHIFT;
501 	if (numpages < cpa->numpages)
502 		cpa->numpages = numpages;
503 
504 	/*
505 	 * We are safe now. Check whether the new pgprot is the same:
506 	 * Convert protection attributes to 4k-format, as cpa->mask* are set
507 	 * up accordingly.
508 	 */
509 	old_pte = *kpte;
510 	old_prot = req_prot = pgprot_large_2_4k(pte_pgprot(old_pte));
511 
512 	pgprot_val(req_prot) &= ~pgprot_val(cpa->mask_clr);
513 	pgprot_val(req_prot) |= pgprot_val(cpa->mask_set);
514 
515 	/*
516 	 * req_prot is in format of 4k pages. It must be converted to large
517 	 * page format: the caching mode includes the PAT bit located at
518 	 * different bit positions in the two formats.
519 	 */
520 	req_prot = pgprot_4k_2_large(req_prot);
521 
522 	/*
523 	 * Set the PSE and GLOBAL flags only if the PRESENT flag is
524 	 * set otherwise pmd_present/pmd_huge will return true even on
525 	 * a non present pmd. The canon_pgprot will clear _PAGE_GLOBAL
526 	 * for the ancient hardware that doesn't support it.
527 	 */
528 	if (pgprot_val(req_prot) & _PAGE_PRESENT)
529 		pgprot_val(req_prot) |= _PAGE_PSE | _PAGE_GLOBAL;
530 	else
531 		pgprot_val(req_prot) &= ~(_PAGE_PSE | _PAGE_GLOBAL);
532 
533 	req_prot = canon_pgprot(req_prot);
534 
535 	/*
536 	 * old_pte points to the large page base address. So we need
537 	 * to add the offset of the virtual address:
538 	 */
539 	pfn = pte_pfn(old_pte) + ((address & (psize - 1)) >> PAGE_SHIFT);
540 	cpa->pfn = pfn;
541 
542 	new_prot = static_protections(req_prot, address, pfn);
543 
544 	/*
545 	 * We need to check the full range, whether
546 	 * static_protection() requires a different pgprot for one of
547 	 * the pages in the range we try to preserve:
548 	 */
549 	addr = address & pmask;
550 	pfn = pte_pfn(old_pte);
551 	for (i = 0; i < (psize >> PAGE_SHIFT); i++, addr += PAGE_SIZE, pfn++) {
552 		pgprot_t chk_prot = static_protections(req_prot, addr, pfn);
553 
554 		if (pgprot_val(chk_prot) != pgprot_val(new_prot))
555 			goto out_unlock;
556 	}
557 
558 	/*
559 	 * If there are no changes, return. maxpages has been updated
560 	 * above:
561 	 */
562 	if (pgprot_val(new_prot) == pgprot_val(old_prot)) {
563 		do_split = 0;
564 		goto out_unlock;
565 	}
566 
567 	/*
568 	 * We need to change the attributes. Check, whether we can
569 	 * change the large page in one go. We request a split, when
570 	 * the address is not aligned and the number of pages is
571 	 * smaller than the number of pages in the large page. Note
572 	 * that we limited the number of possible pages already to
573 	 * the number of pages in the large page.
574 	 */
575 	if (address == (address & pmask) && cpa->numpages == (psize >> PAGE_SHIFT)) {
576 		/*
577 		 * The address is aligned and the number of pages
578 		 * covers the full page.
579 		 */
580 		new_pte = pfn_pte(pte_pfn(old_pte), new_prot);
581 		__set_pmd_pte(kpte, address, new_pte);
582 		cpa->flags |= CPA_FLUSHTLB;
583 		do_split = 0;
584 	}
585 
586 out_unlock:
587 	spin_unlock(&pgd_lock);
588 
589 	return do_split;
590 }
591 
592 static int
__split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address,struct page * base)593 __split_large_page(struct cpa_data *cpa, pte_t *kpte, unsigned long address,
594 		   struct page *base)
595 {
596 	pte_t *pbase = (pte_t *)page_address(base);
597 	unsigned long pfn, pfninc = 1;
598 	unsigned int i, level;
599 	pte_t *tmp;
600 	pgprot_t ref_prot;
601 
602 	spin_lock(&pgd_lock);
603 	/*
604 	 * Check for races, another CPU might have split this page
605 	 * up for us already:
606 	 */
607 	tmp = _lookup_address_cpa(cpa, address, &level);
608 	if (tmp != kpte) {
609 		spin_unlock(&pgd_lock);
610 		return 1;
611 	}
612 
613 	paravirt_alloc_pte(&init_mm, page_to_pfn(base));
614 	ref_prot = pte_pgprot(pte_clrhuge(*kpte));
615 
616 	/* promote PAT bit to correct position */
617 	if (level == PG_LEVEL_2M)
618 		ref_prot = pgprot_large_2_4k(ref_prot);
619 
620 #ifdef CONFIG_X86_64
621 	if (level == PG_LEVEL_1G) {
622 		pfninc = PMD_PAGE_SIZE >> PAGE_SHIFT;
623 		/*
624 		 * Set the PSE flags only if the PRESENT flag is set
625 		 * otherwise pmd_present/pmd_huge will return true
626 		 * even on a non present pmd.
627 		 */
628 		if (pgprot_val(ref_prot) & _PAGE_PRESENT)
629 			pgprot_val(ref_prot) |= _PAGE_PSE;
630 		else
631 			pgprot_val(ref_prot) &= ~_PAGE_PSE;
632 	}
633 #endif
634 
635 	/*
636 	 * Set the GLOBAL flags only if the PRESENT flag is set
637 	 * otherwise pmd/pte_present will return true even on a non
638 	 * present pmd/pte. The canon_pgprot will clear _PAGE_GLOBAL
639 	 * for the ancient hardware that doesn't support it.
640 	 */
641 	if (pgprot_val(ref_prot) & _PAGE_PRESENT)
642 		pgprot_val(ref_prot) |= _PAGE_GLOBAL;
643 	else
644 		pgprot_val(ref_prot) &= ~_PAGE_GLOBAL;
645 
646 	/*
647 	 * Get the target pfn from the original entry:
648 	 */
649 	pfn = pte_pfn(*kpte);
650 	for (i = 0; i < PTRS_PER_PTE; i++, pfn += pfninc)
651 		set_pte(&pbase[i], pfn_pte(pfn, canon_pgprot(ref_prot)));
652 
653 	if (pfn_range_is_mapped(PFN_DOWN(__pa(address)),
654 				PFN_DOWN(__pa(address)) + 1))
655 		split_page_count(level);
656 
657 	/*
658 	 * Install the new, split up pagetable.
659 	 *
660 	 * We use the standard kernel pagetable protections for the new
661 	 * pagetable protections, the actual ptes set above control the
662 	 * primary protection behavior:
663 	 */
664 	__set_pmd_pte(kpte, address, mk_pte(base, __pgprot(_KERNPG_TABLE)));
665 
666 	/*
667 	 * Intel Atom errata AAH41 workaround.
668 	 *
669 	 * The real fix should be in hw or in a microcode update, but
670 	 * we also probabilistically try to reduce the window of having
671 	 * a large TLB mixed with 4K TLBs while instruction fetches are
672 	 * going on.
673 	 */
674 	__flush_tlb_all();
675 	spin_unlock(&pgd_lock);
676 
677 	return 0;
678 }
679 
split_large_page(struct cpa_data * cpa,pte_t * kpte,unsigned long address)680 static int split_large_page(struct cpa_data *cpa, pte_t *kpte,
681 			    unsigned long address)
682 {
683 	struct page *base;
684 
685 	if (!debug_pagealloc)
686 		spin_unlock(&cpa_lock);
687 	base = alloc_pages(GFP_KERNEL | __GFP_NOTRACK, 0);
688 	if (!debug_pagealloc)
689 		spin_lock(&cpa_lock);
690 	if (!base)
691 		return -ENOMEM;
692 
693 	if (__split_large_page(cpa, kpte, address, base))
694 		__free_page(base);
695 
696 	return 0;
697 }
698 
try_to_free_pte_page(pte_t * pte)699 static bool try_to_free_pte_page(pte_t *pte)
700 {
701 	int i;
702 
703 	for (i = 0; i < PTRS_PER_PTE; i++)
704 		if (!pte_none(pte[i]))
705 			return false;
706 
707 	free_page((unsigned long)pte);
708 	return true;
709 }
710 
try_to_free_pmd_page(pmd_t * pmd)711 static bool try_to_free_pmd_page(pmd_t *pmd)
712 {
713 	int i;
714 
715 	for (i = 0; i < PTRS_PER_PMD; i++)
716 		if (!pmd_none(pmd[i]))
717 			return false;
718 
719 	free_page((unsigned long)pmd);
720 	return true;
721 }
722 
try_to_free_pud_page(pud_t * pud)723 static bool try_to_free_pud_page(pud_t *pud)
724 {
725 	int i;
726 
727 	for (i = 0; i < PTRS_PER_PUD; i++)
728 		if (!pud_none(pud[i]))
729 			return false;
730 
731 	free_page((unsigned long)pud);
732 	return true;
733 }
734 
unmap_pte_range(pmd_t * pmd,unsigned long start,unsigned long end)735 static bool unmap_pte_range(pmd_t *pmd, unsigned long start, unsigned long end)
736 {
737 	pte_t *pte = pte_offset_kernel(pmd, start);
738 
739 	while (start < end) {
740 		set_pte(pte, __pte(0));
741 
742 		start += PAGE_SIZE;
743 		pte++;
744 	}
745 
746 	if (try_to_free_pte_page((pte_t *)pmd_page_vaddr(*pmd))) {
747 		pmd_clear(pmd);
748 		return true;
749 	}
750 	return false;
751 }
752 
__unmap_pmd_range(pud_t * pud,pmd_t * pmd,unsigned long start,unsigned long end)753 static void __unmap_pmd_range(pud_t *pud, pmd_t *pmd,
754 			      unsigned long start, unsigned long end)
755 {
756 	if (unmap_pte_range(pmd, start, end))
757 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
758 			pud_clear(pud);
759 }
760 
unmap_pmd_range(pud_t * pud,unsigned long start,unsigned long end)761 static void unmap_pmd_range(pud_t *pud, unsigned long start, unsigned long end)
762 {
763 	pmd_t *pmd = pmd_offset(pud, start);
764 
765 	/*
766 	 * Not on a 2MB page boundary?
767 	 */
768 	if (start & (PMD_SIZE - 1)) {
769 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
770 		unsigned long pre_end = min_t(unsigned long, end, next_page);
771 
772 		__unmap_pmd_range(pud, pmd, start, pre_end);
773 
774 		start = pre_end;
775 		pmd++;
776 	}
777 
778 	/*
779 	 * Try to unmap in 2M chunks.
780 	 */
781 	while (end - start >= PMD_SIZE) {
782 		if (pmd_large(*pmd))
783 			pmd_clear(pmd);
784 		else
785 			__unmap_pmd_range(pud, pmd, start, start + PMD_SIZE);
786 
787 		start += PMD_SIZE;
788 		pmd++;
789 	}
790 
791 	/*
792 	 * 4K leftovers?
793 	 */
794 	if (start < end)
795 		return __unmap_pmd_range(pud, pmd, start, end);
796 
797 	/*
798 	 * Try again to free the PMD page if haven't succeeded above.
799 	 */
800 	if (!pud_none(*pud))
801 		if (try_to_free_pmd_page((pmd_t *)pud_page_vaddr(*pud)))
802 			pud_clear(pud);
803 }
804 
unmap_pud_range(pgd_t * pgd,unsigned long start,unsigned long end)805 static void unmap_pud_range(pgd_t *pgd, unsigned long start, unsigned long end)
806 {
807 	pud_t *pud = pud_offset(pgd, start);
808 
809 	/*
810 	 * Not on a GB page boundary?
811 	 */
812 	if (start & (PUD_SIZE - 1)) {
813 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
814 		unsigned long pre_end	= min_t(unsigned long, end, next_page);
815 
816 		unmap_pmd_range(pud, start, pre_end);
817 
818 		start = pre_end;
819 		pud++;
820 	}
821 
822 	/*
823 	 * Try to unmap in 1G chunks?
824 	 */
825 	while (end - start >= PUD_SIZE) {
826 
827 		if (pud_large(*pud))
828 			pud_clear(pud);
829 		else
830 			unmap_pmd_range(pud, start, start + PUD_SIZE);
831 
832 		start += PUD_SIZE;
833 		pud++;
834 	}
835 
836 	/*
837 	 * 2M leftovers?
838 	 */
839 	if (start < end)
840 		unmap_pmd_range(pud, start, end);
841 
842 	/*
843 	 * No need to try to free the PUD page because we'll free it in
844 	 * populate_pgd's error path
845 	 */
846 }
847 
unmap_pgd_range(pgd_t * root,unsigned long addr,unsigned long end)848 static void unmap_pgd_range(pgd_t *root, unsigned long addr, unsigned long end)
849 {
850 	pgd_t *pgd_entry = root + pgd_index(addr);
851 
852 	unmap_pud_range(pgd_entry, addr, end);
853 
854 	if (try_to_free_pud_page((pud_t *)pgd_page_vaddr(*pgd_entry)))
855 		pgd_clear(pgd_entry);
856 }
857 
alloc_pte_page(pmd_t * pmd)858 static int alloc_pte_page(pmd_t *pmd)
859 {
860 	pte_t *pte = (pte_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
861 	if (!pte)
862 		return -1;
863 
864 	set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
865 	return 0;
866 }
867 
alloc_pmd_page(pud_t * pud)868 static int alloc_pmd_page(pud_t *pud)
869 {
870 	pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
871 	if (!pmd)
872 		return -1;
873 
874 	set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
875 	return 0;
876 }
877 
populate_pte(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pmd_t * pmd,pgprot_t pgprot)878 static void populate_pte(struct cpa_data *cpa,
879 			 unsigned long start, unsigned long end,
880 			 unsigned num_pages, pmd_t *pmd, pgprot_t pgprot)
881 {
882 	pte_t *pte;
883 
884 	pte = pte_offset_kernel(pmd, start);
885 
886 	while (num_pages-- && start < end) {
887 
888 		/* deal with the NX bit */
889 		if (!(pgprot_val(pgprot) & _PAGE_NX))
890 			cpa->pfn &= ~_PAGE_NX;
891 
892 		set_pte(pte, pfn_pte(cpa->pfn >> PAGE_SHIFT, pgprot));
893 
894 		start	 += PAGE_SIZE;
895 		cpa->pfn += PAGE_SIZE;
896 		pte++;
897 	}
898 }
899 
populate_pmd(struct cpa_data * cpa,unsigned long start,unsigned long end,unsigned num_pages,pud_t * pud,pgprot_t pgprot)900 static int populate_pmd(struct cpa_data *cpa,
901 			unsigned long start, unsigned long end,
902 			unsigned num_pages, pud_t *pud, pgprot_t pgprot)
903 {
904 	unsigned int cur_pages = 0;
905 	pmd_t *pmd;
906 	pgprot_t pmd_pgprot;
907 
908 	/*
909 	 * Not on a 2M boundary?
910 	 */
911 	if (start & (PMD_SIZE - 1)) {
912 		unsigned long pre_end = start + (num_pages << PAGE_SHIFT);
913 		unsigned long next_page = (start + PMD_SIZE) & PMD_MASK;
914 
915 		pre_end   = min_t(unsigned long, pre_end, next_page);
916 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
917 		cur_pages = min_t(unsigned int, num_pages, cur_pages);
918 
919 		/*
920 		 * Need a PTE page?
921 		 */
922 		pmd = pmd_offset(pud, start);
923 		if (pmd_none(*pmd))
924 			if (alloc_pte_page(pmd))
925 				return -1;
926 
927 		populate_pte(cpa, start, pre_end, cur_pages, pmd, pgprot);
928 
929 		start = pre_end;
930 	}
931 
932 	/*
933 	 * We mapped them all?
934 	 */
935 	if (num_pages == cur_pages)
936 		return cur_pages;
937 
938 	pmd_pgprot = pgprot_4k_2_large(pgprot);
939 
940 	while (end - start >= PMD_SIZE) {
941 
942 		/*
943 		 * We cannot use a 1G page so allocate a PMD page if needed.
944 		 */
945 		if (pud_none(*pud))
946 			if (alloc_pmd_page(pud))
947 				return -1;
948 
949 		pmd = pmd_offset(pud, start);
950 
951 		set_pmd(pmd, __pmd(cpa->pfn | _PAGE_PSE |
952 				   massage_pgprot(pmd_pgprot)));
953 
954 		start	  += PMD_SIZE;
955 		cpa->pfn  += PMD_SIZE;
956 		cur_pages += PMD_SIZE >> PAGE_SHIFT;
957 	}
958 
959 	/*
960 	 * Map trailing 4K pages.
961 	 */
962 	if (start < end) {
963 		pmd = pmd_offset(pud, start);
964 		if (pmd_none(*pmd))
965 			if (alloc_pte_page(pmd))
966 				return -1;
967 
968 		populate_pte(cpa, start, end, num_pages - cur_pages,
969 			     pmd, pgprot);
970 	}
971 	return num_pages;
972 }
973 
populate_pud(struct cpa_data * cpa,unsigned long start,pgd_t * pgd,pgprot_t pgprot)974 static int populate_pud(struct cpa_data *cpa, unsigned long start, pgd_t *pgd,
975 			pgprot_t pgprot)
976 {
977 	pud_t *pud;
978 	unsigned long end;
979 	int cur_pages = 0;
980 	pgprot_t pud_pgprot;
981 
982 	end = start + (cpa->numpages << PAGE_SHIFT);
983 
984 	/*
985 	 * Not on a Gb page boundary? => map everything up to it with
986 	 * smaller pages.
987 	 */
988 	if (start & (PUD_SIZE - 1)) {
989 		unsigned long pre_end;
990 		unsigned long next_page = (start + PUD_SIZE) & PUD_MASK;
991 
992 		pre_end   = min_t(unsigned long, end, next_page);
993 		cur_pages = (pre_end - start) >> PAGE_SHIFT;
994 		cur_pages = min_t(int, (int)cpa->numpages, cur_pages);
995 
996 		pud = pud_offset(pgd, start);
997 
998 		/*
999 		 * Need a PMD page?
1000 		 */
1001 		if (pud_none(*pud))
1002 			if (alloc_pmd_page(pud))
1003 				return -1;
1004 
1005 		cur_pages = populate_pmd(cpa, start, pre_end, cur_pages,
1006 					 pud, pgprot);
1007 		if (cur_pages < 0)
1008 			return cur_pages;
1009 
1010 		start = pre_end;
1011 	}
1012 
1013 	/* We mapped them all? */
1014 	if (cpa->numpages == cur_pages)
1015 		return cur_pages;
1016 
1017 	pud = pud_offset(pgd, start);
1018 	pud_pgprot = pgprot_4k_2_large(pgprot);
1019 
1020 	/*
1021 	 * Map everything starting from the Gb boundary, possibly with 1G pages
1022 	 */
1023 	while (end - start >= PUD_SIZE) {
1024 		set_pud(pud, __pud(cpa->pfn | _PAGE_PSE |
1025 				   massage_pgprot(pud_pgprot)));
1026 
1027 		start	  += PUD_SIZE;
1028 		cpa->pfn  += PUD_SIZE;
1029 		cur_pages += PUD_SIZE >> PAGE_SHIFT;
1030 		pud++;
1031 	}
1032 
1033 	/* Map trailing leftover */
1034 	if (start < end) {
1035 		int tmp;
1036 
1037 		pud = pud_offset(pgd, start);
1038 		if (pud_none(*pud))
1039 			if (alloc_pmd_page(pud))
1040 				return -1;
1041 
1042 		tmp = populate_pmd(cpa, start, end, cpa->numpages - cur_pages,
1043 				   pud, pgprot);
1044 		if (tmp < 0)
1045 			return cur_pages;
1046 
1047 		cur_pages += tmp;
1048 	}
1049 	return cur_pages;
1050 }
1051 
1052 /*
1053  * Restrictions for kernel page table do not necessarily apply when mapping in
1054  * an alternate PGD.
1055  */
populate_pgd(struct cpa_data * cpa,unsigned long addr)1056 static int populate_pgd(struct cpa_data *cpa, unsigned long addr)
1057 {
1058 	pgprot_t pgprot = __pgprot(_KERNPG_TABLE);
1059 	pud_t *pud = NULL;	/* shut up gcc */
1060 	pgd_t *pgd_entry;
1061 	int ret;
1062 
1063 	pgd_entry = cpa->pgd + pgd_index(addr);
1064 
1065 	/*
1066 	 * Allocate a PUD page and hand it down for mapping.
1067 	 */
1068 	if (pgd_none(*pgd_entry)) {
1069 		pud = (pud_t *)get_zeroed_page(GFP_KERNEL | __GFP_NOTRACK);
1070 		if (!pud)
1071 			return -1;
1072 
1073 		set_pgd(pgd_entry, __pgd(__pa(pud) | _KERNPG_TABLE));
1074 	}
1075 
1076 	pgprot_val(pgprot) &= ~pgprot_val(cpa->mask_clr);
1077 	pgprot_val(pgprot) |=  pgprot_val(cpa->mask_set);
1078 
1079 	ret = populate_pud(cpa, addr, pgd_entry, pgprot);
1080 	if (ret < 0) {
1081 		unmap_pgd_range(cpa->pgd, addr,
1082 				addr + (cpa->numpages << PAGE_SHIFT));
1083 		return ret;
1084 	}
1085 
1086 	cpa->numpages = ret;
1087 	return 0;
1088 }
1089 
__cpa_process_fault(struct cpa_data * cpa,unsigned long vaddr,int primary)1090 static int __cpa_process_fault(struct cpa_data *cpa, unsigned long vaddr,
1091 			       int primary)
1092 {
1093 	if (cpa->pgd)
1094 		return populate_pgd(cpa, vaddr);
1095 
1096 	/*
1097 	 * Ignore all non primary paths.
1098 	 */
1099 	if (!primary)
1100 		return 0;
1101 
1102 	/*
1103 	 * Ignore the NULL PTE for kernel identity mapping, as it is expected
1104 	 * to have holes.
1105 	 * Also set numpages to '1' indicating that we processed cpa req for
1106 	 * one virtual address page and its pfn. TBD: numpages can be set based
1107 	 * on the initial value and the level returned by lookup_address().
1108 	 */
1109 	if (within(vaddr, PAGE_OFFSET,
1110 		   PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT))) {
1111 		cpa->numpages = 1;
1112 		cpa->pfn = __pa(vaddr) >> PAGE_SHIFT;
1113 		return 0;
1114 	} else {
1115 		WARN(1, KERN_WARNING "CPA: called for zero pte. "
1116 			"vaddr = %lx cpa->vaddr = %lx\n", vaddr,
1117 			*cpa->vaddr);
1118 
1119 		return -EFAULT;
1120 	}
1121 }
1122 
__change_page_attr(struct cpa_data * cpa,int primary)1123 static int __change_page_attr(struct cpa_data *cpa, int primary)
1124 {
1125 	unsigned long address;
1126 	int do_split, err;
1127 	unsigned int level;
1128 	pte_t *kpte, old_pte;
1129 
1130 	if (cpa->flags & CPA_PAGES_ARRAY) {
1131 		struct page *page = cpa->pages[cpa->curpage];
1132 		if (unlikely(PageHighMem(page)))
1133 			return 0;
1134 		address = (unsigned long)page_address(page);
1135 	} else if (cpa->flags & CPA_ARRAY)
1136 		address = cpa->vaddr[cpa->curpage];
1137 	else
1138 		address = *cpa->vaddr;
1139 repeat:
1140 	kpte = _lookup_address_cpa(cpa, address, &level);
1141 	if (!kpte)
1142 		return __cpa_process_fault(cpa, address, primary);
1143 
1144 	old_pte = *kpte;
1145 	if (!pte_val(old_pte))
1146 		return __cpa_process_fault(cpa, address, primary);
1147 
1148 	if (level == PG_LEVEL_4K) {
1149 		pte_t new_pte;
1150 		pgprot_t new_prot = pte_pgprot(old_pte);
1151 		unsigned long pfn = pte_pfn(old_pte);
1152 
1153 		pgprot_val(new_prot) &= ~pgprot_val(cpa->mask_clr);
1154 		pgprot_val(new_prot) |= pgprot_val(cpa->mask_set);
1155 
1156 		new_prot = static_protections(new_prot, address, pfn);
1157 
1158 		/*
1159 		 * Set the GLOBAL flags only if the PRESENT flag is
1160 		 * set otherwise pte_present will return true even on
1161 		 * a non present pte. The canon_pgprot will clear
1162 		 * _PAGE_GLOBAL for the ancient hardware that doesn't
1163 		 * support it.
1164 		 */
1165 		if (pgprot_val(new_prot) & _PAGE_PRESENT)
1166 			pgprot_val(new_prot) |= _PAGE_GLOBAL;
1167 		else
1168 			pgprot_val(new_prot) &= ~_PAGE_GLOBAL;
1169 
1170 		/*
1171 		 * We need to keep the pfn from the existing PTE,
1172 		 * after all we're only going to change it's attributes
1173 		 * not the memory it points to
1174 		 */
1175 		new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
1176 		cpa->pfn = pfn;
1177 		/*
1178 		 * Do we really change anything ?
1179 		 */
1180 		if (pte_val(old_pte) != pte_val(new_pte)) {
1181 			set_pte_atomic(kpte, new_pte);
1182 			cpa->flags |= CPA_FLUSHTLB;
1183 		}
1184 		cpa->numpages = 1;
1185 		return 0;
1186 	}
1187 
1188 	/*
1189 	 * Check, whether we can keep the large page intact
1190 	 * and just change the pte:
1191 	 */
1192 	do_split = try_preserve_large_page(kpte, address, cpa);
1193 	/*
1194 	 * When the range fits into the existing large page,
1195 	 * return. cp->numpages and cpa->tlbflush have been updated in
1196 	 * try_large_page:
1197 	 */
1198 	if (do_split <= 0)
1199 		return do_split;
1200 
1201 	/*
1202 	 * We have to split the large page:
1203 	 */
1204 	err = split_large_page(cpa, kpte, address);
1205 	if (!err) {
1206 		/*
1207 	 	 * Do a global flush tlb after splitting the large page
1208 	 	 * and before we do the actual change page attribute in the PTE.
1209 	 	 *
1210 	 	 * With out this, we violate the TLB application note, that says
1211 	 	 * "The TLBs may contain both ordinary and large-page
1212 		 *  translations for a 4-KByte range of linear addresses. This
1213 		 *  may occur if software modifies the paging structures so that
1214 		 *  the page size used for the address range changes. If the two
1215 		 *  translations differ with respect to page frame or attributes
1216 		 *  (e.g., permissions), processor behavior is undefined and may
1217 		 *  be implementation-specific."
1218 	 	 *
1219 	 	 * We do this global tlb flush inside the cpa_lock, so that we
1220 		 * don't allow any other cpu, with stale tlb entries change the
1221 		 * page attribute in parallel, that also falls into the
1222 		 * just split large page entry.
1223 	 	 */
1224 		flush_tlb_all();
1225 		goto repeat;
1226 	}
1227 
1228 	return err;
1229 }
1230 
1231 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias);
1232 
cpa_process_alias(struct cpa_data * cpa)1233 static int cpa_process_alias(struct cpa_data *cpa)
1234 {
1235 	struct cpa_data alias_cpa;
1236 	unsigned long laddr = (unsigned long)__va(cpa->pfn << PAGE_SHIFT);
1237 	unsigned long vaddr;
1238 	int ret;
1239 
1240 	if (!pfn_range_is_mapped(cpa->pfn, cpa->pfn + 1))
1241 		return 0;
1242 
1243 	/*
1244 	 * No need to redo, when the primary call touched the direct
1245 	 * mapping already:
1246 	 */
1247 	if (cpa->flags & CPA_PAGES_ARRAY) {
1248 		struct page *page = cpa->pages[cpa->curpage];
1249 		if (unlikely(PageHighMem(page)))
1250 			return 0;
1251 		vaddr = (unsigned long)page_address(page);
1252 	} else if (cpa->flags & CPA_ARRAY)
1253 		vaddr = cpa->vaddr[cpa->curpage];
1254 	else
1255 		vaddr = *cpa->vaddr;
1256 
1257 	if (!(within(vaddr, PAGE_OFFSET,
1258 		    PAGE_OFFSET + (max_pfn_mapped << PAGE_SHIFT)))) {
1259 
1260 		alias_cpa = *cpa;
1261 		alias_cpa.vaddr = &laddr;
1262 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1263 
1264 		ret = __change_page_attr_set_clr(&alias_cpa, 0);
1265 		if (ret)
1266 			return ret;
1267 	}
1268 
1269 #ifdef CONFIG_X86_64
1270 	/*
1271 	 * If the primary call didn't touch the high mapping already
1272 	 * and the physical address is inside the kernel map, we need
1273 	 * to touch the high mapped kernel as well:
1274 	 */
1275 	if (!within(vaddr, (unsigned long)_text, _brk_end) &&
1276 	    within(cpa->pfn, highmap_start_pfn(), highmap_end_pfn())) {
1277 		unsigned long temp_cpa_vaddr = (cpa->pfn << PAGE_SHIFT) +
1278 					       __START_KERNEL_map - phys_base;
1279 		alias_cpa = *cpa;
1280 		alias_cpa.vaddr = &temp_cpa_vaddr;
1281 		alias_cpa.flags &= ~(CPA_PAGES_ARRAY | CPA_ARRAY);
1282 
1283 		/*
1284 		 * The high mapping range is imprecise, so ignore the
1285 		 * return value.
1286 		 */
1287 		__change_page_attr_set_clr(&alias_cpa, 0);
1288 	}
1289 #endif
1290 
1291 	return 0;
1292 }
1293 
__change_page_attr_set_clr(struct cpa_data * cpa,int checkalias)1294 static int __change_page_attr_set_clr(struct cpa_data *cpa, int checkalias)
1295 {
1296 	int ret, numpages = cpa->numpages;
1297 
1298 	while (numpages) {
1299 		/*
1300 		 * Store the remaining nr of pages for the large page
1301 		 * preservation check.
1302 		 */
1303 		cpa->numpages = numpages;
1304 		/* for array changes, we can't use large page */
1305 		if (cpa->flags & (CPA_ARRAY | CPA_PAGES_ARRAY))
1306 			cpa->numpages = 1;
1307 
1308 		if (!debug_pagealloc)
1309 			spin_lock(&cpa_lock);
1310 		ret = __change_page_attr(cpa, checkalias);
1311 		if (!debug_pagealloc)
1312 			spin_unlock(&cpa_lock);
1313 		if (ret)
1314 			return ret;
1315 
1316 		if (checkalias) {
1317 			ret = cpa_process_alias(cpa);
1318 			if (ret)
1319 				return ret;
1320 		}
1321 
1322 		/*
1323 		 * Adjust the number of pages with the result of the
1324 		 * CPA operation. Either a large page has been
1325 		 * preserved or a single page update happened.
1326 		 */
1327 		BUG_ON(cpa->numpages > numpages || !cpa->numpages);
1328 		numpages -= cpa->numpages;
1329 		if (cpa->flags & (CPA_PAGES_ARRAY | CPA_ARRAY))
1330 			cpa->curpage++;
1331 		else
1332 			*cpa->vaddr += cpa->numpages * PAGE_SIZE;
1333 
1334 	}
1335 	return 0;
1336 }
1337 
change_page_attr_set_clr(unsigned long * addr,int numpages,pgprot_t mask_set,pgprot_t mask_clr,int force_split,int in_flag,struct page ** pages)1338 static int change_page_attr_set_clr(unsigned long *addr, int numpages,
1339 				    pgprot_t mask_set, pgprot_t mask_clr,
1340 				    int force_split, int in_flag,
1341 				    struct page **pages)
1342 {
1343 	struct cpa_data cpa;
1344 	int ret, cache, checkalias;
1345 	unsigned long baddr = 0;
1346 
1347 	memset(&cpa, 0, sizeof(cpa));
1348 
1349 	/*
1350 	 * Check, if we are requested to change a not supported
1351 	 * feature:
1352 	 */
1353 	mask_set = canon_pgprot(mask_set);
1354 	mask_clr = canon_pgprot(mask_clr);
1355 	if (!pgprot_val(mask_set) && !pgprot_val(mask_clr) && !force_split)
1356 		return 0;
1357 
1358 	/* Ensure we are PAGE_SIZE aligned */
1359 	if (in_flag & CPA_ARRAY) {
1360 		int i;
1361 		for (i = 0; i < numpages; i++) {
1362 			if (addr[i] & ~PAGE_MASK) {
1363 				addr[i] &= PAGE_MASK;
1364 				WARN_ON_ONCE(1);
1365 			}
1366 		}
1367 	} else if (!(in_flag & CPA_PAGES_ARRAY)) {
1368 		/*
1369 		 * in_flag of CPA_PAGES_ARRAY implies it is aligned.
1370 		 * No need to cehck in that case
1371 		 */
1372 		if (*addr & ~PAGE_MASK) {
1373 			*addr &= PAGE_MASK;
1374 			/*
1375 			 * People should not be passing in unaligned addresses:
1376 			 */
1377 			WARN_ON_ONCE(1);
1378 		}
1379 		/*
1380 		 * Save address for cache flush. *addr is modified in the call
1381 		 * to __change_page_attr_set_clr() below.
1382 		 */
1383 		baddr = *addr;
1384 	}
1385 
1386 	/* Must avoid aliasing mappings in the highmem code */
1387 	kmap_flush_unused();
1388 
1389 	vm_unmap_aliases();
1390 
1391 	cpa.vaddr = addr;
1392 	cpa.pages = pages;
1393 	cpa.numpages = numpages;
1394 	cpa.mask_set = mask_set;
1395 	cpa.mask_clr = mask_clr;
1396 	cpa.flags = 0;
1397 	cpa.curpage = 0;
1398 	cpa.force_split = force_split;
1399 
1400 	if (in_flag & (CPA_ARRAY | CPA_PAGES_ARRAY))
1401 		cpa.flags |= in_flag;
1402 
1403 	/* No alias checking for _NX bit modifications */
1404 	checkalias = (pgprot_val(mask_set) | pgprot_val(mask_clr)) != _PAGE_NX;
1405 
1406 	ret = __change_page_attr_set_clr(&cpa, checkalias);
1407 
1408 	/*
1409 	 * Check whether we really changed something:
1410 	 */
1411 	if (!(cpa.flags & CPA_FLUSHTLB))
1412 		goto out;
1413 
1414 	/*
1415 	 * No need to flush, when we did not set any of the caching
1416 	 * attributes:
1417 	 */
1418 	cache = !!pgprot2cachemode(mask_set);
1419 
1420 	/*
1421 	 * On success we use CLFLUSH, when the CPU supports it to
1422 	 * avoid the WBINVD. If the CPU does not support it and in the
1423 	 * error case we fall back to cpa_flush_all (which uses
1424 	 * WBINVD):
1425 	 */
1426 	if (!ret && cpu_has_clflush) {
1427 		if (cpa.flags & (CPA_PAGES_ARRAY | CPA_ARRAY)) {
1428 			cpa_flush_array(addr, numpages, cache,
1429 					cpa.flags, pages);
1430 		} else
1431 			cpa_flush_range(baddr, numpages, cache);
1432 	} else
1433 		cpa_flush_all(cache);
1434 
1435 out:
1436 	return ret;
1437 }
1438 
change_page_attr_set(unsigned long * addr,int numpages,pgprot_t mask,int array)1439 static inline int change_page_attr_set(unsigned long *addr, int numpages,
1440 				       pgprot_t mask, int array)
1441 {
1442 	return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0), 0,
1443 		(array ? CPA_ARRAY : 0), NULL);
1444 }
1445 
change_page_attr_clear(unsigned long * addr,int numpages,pgprot_t mask,int array)1446 static inline int change_page_attr_clear(unsigned long *addr, int numpages,
1447 					 pgprot_t mask, int array)
1448 {
1449 	return change_page_attr_set_clr(addr, numpages, __pgprot(0), mask, 0,
1450 		(array ? CPA_ARRAY : 0), NULL);
1451 }
1452 
cpa_set_pages_array(struct page ** pages,int numpages,pgprot_t mask)1453 static inline int cpa_set_pages_array(struct page **pages, int numpages,
1454 				       pgprot_t mask)
1455 {
1456 	return change_page_attr_set_clr(NULL, numpages, mask, __pgprot(0), 0,
1457 		CPA_PAGES_ARRAY, pages);
1458 }
1459 
cpa_clear_pages_array(struct page ** pages,int numpages,pgprot_t mask)1460 static inline int cpa_clear_pages_array(struct page **pages, int numpages,
1461 					 pgprot_t mask)
1462 {
1463 	return change_page_attr_set_clr(NULL, numpages, __pgprot(0), mask, 0,
1464 		CPA_PAGES_ARRAY, pages);
1465 }
1466 
_set_memory_uc(unsigned long addr,int numpages)1467 int _set_memory_uc(unsigned long addr, int numpages)
1468 {
1469 	/*
1470 	 * for now UC MINUS. see comments in ioremap_nocache()
1471 	 */
1472 	return change_page_attr_set(&addr, numpages,
1473 				    cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1474 				    0);
1475 }
1476 
set_memory_uc(unsigned long addr,int numpages)1477 int set_memory_uc(unsigned long addr, int numpages)
1478 {
1479 	int ret;
1480 
1481 	/*
1482 	 * for now UC MINUS. see comments in ioremap_nocache()
1483 	 */
1484 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1485 			      _PAGE_CACHE_MODE_UC_MINUS, NULL);
1486 	if (ret)
1487 		goto out_err;
1488 
1489 	ret = _set_memory_uc(addr, numpages);
1490 	if (ret)
1491 		goto out_free;
1492 
1493 	return 0;
1494 
1495 out_free:
1496 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1497 out_err:
1498 	return ret;
1499 }
1500 EXPORT_SYMBOL(set_memory_uc);
1501 
_set_memory_array(unsigned long * addr,int addrinarray,enum page_cache_mode new_type)1502 static int _set_memory_array(unsigned long *addr, int addrinarray,
1503 		enum page_cache_mode new_type)
1504 {
1505 	int i, j;
1506 	int ret;
1507 
1508 	/*
1509 	 * for now UC MINUS. see comments in ioremap_nocache()
1510 	 */
1511 	for (i = 0; i < addrinarray; i++) {
1512 		ret = reserve_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE,
1513 					new_type, NULL);
1514 		if (ret)
1515 			goto out_free;
1516 	}
1517 
1518 	ret = change_page_attr_set(addr, addrinarray,
1519 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1520 				   1);
1521 
1522 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1523 		ret = change_page_attr_set_clr(addr, addrinarray,
1524 					       cachemode2pgprot(
1525 						_PAGE_CACHE_MODE_WC),
1526 					       __pgprot(_PAGE_CACHE_MASK),
1527 					       0, CPA_ARRAY, NULL);
1528 	if (ret)
1529 		goto out_free;
1530 
1531 	return 0;
1532 
1533 out_free:
1534 	for (j = 0; j < i; j++)
1535 		free_memtype(__pa(addr[j]), __pa(addr[j]) + PAGE_SIZE);
1536 
1537 	return ret;
1538 }
1539 
set_memory_array_uc(unsigned long * addr,int addrinarray)1540 int set_memory_array_uc(unsigned long *addr, int addrinarray)
1541 {
1542 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1543 }
1544 EXPORT_SYMBOL(set_memory_array_uc);
1545 
set_memory_array_wc(unsigned long * addr,int addrinarray)1546 int set_memory_array_wc(unsigned long *addr, int addrinarray)
1547 {
1548 	return _set_memory_array(addr, addrinarray, _PAGE_CACHE_MODE_WC);
1549 }
1550 EXPORT_SYMBOL(set_memory_array_wc);
1551 
_set_memory_wc(unsigned long addr,int numpages)1552 int _set_memory_wc(unsigned long addr, int numpages)
1553 {
1554 	int ret;
1555 	unsigned long addr_copy = addr;
1556 
1557 	ret = change_page_attr_set(&addr, numpages,
1558 				   cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS),
1559 				   0);
1560 	if (!ret) {
1561 		ret = change_page_attr_set_clr(&addr_copy, numpages,
1562 					       cachemode2pgprot(
1563 						_PAGE_CACHE_MODE_WC),
1564 					       __pgprot(_PAGE_CACHE_MASK),
1565 					       0, 0, NULL);
1566 	}
1567 	return ret;
1568 }
1569 
set_memory_wc(unsigned long addr,int numpages)1570 int set_memory_wc(unsigned long addr, int numpages)
1571 {
1572 	int ret;
1573 
1574 	if (!pat_enabled)
1575 		return set_memory_uc(addr, numpages);
1576 
1577 	ret = reserve_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE,
1578 		_PAGE_CACHE_MODE_WC, NULL);
1579 	if (ret)
1580 		goto out_err;
1581 
1582 	ret = _set_memory_wc(addr, numpages);
1583 	if (ret)
1584 		goto out_free;
1585 
1586 	return 0;
1587 
1588 out_free:
1589 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1590 out_err:
1591 	return ret;
1592 }
1593 EXPORT_SYMBOL(set_memory_wc);
1594 
_set_memory_wb(unsigned long addr,int numpages)1595 int _set_memory_wb(unsigned long addr, int numpages)
1596 {
1597 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1598 	return change_page_attr_clear(&addr, numpages,
1599 				      __pgprot(_PAGE_CACHE_MASK), 0);
1600 }
1601 
set_memory_wb(unsigned long addr,int numpages)1602 int set_memory_wb(unsigned long addr, int numpages)
1603 {
1604 	int ret;
1605 
1606 	ret = _set_memory_wb(addr, numpages);
1607 	if (ret)
1608 		return ret;
1609 
1610 	free_memtype(__pa(addr), __pa(addr) + numpages * PAGE_SIZE);
1611 	return 0;
1612 }
1613 EXPORT_SYMBOL(set_memory_wb);
1614 
set_memory_array_wb(unsigned long * addr,int addrinarray)1615 int set_memory_array_wb(unsigned long *addr, int addrinarray)
1616 {
1617 	int i;
1618 	int ret;
1619 
1620 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1621 	ret = change_page_attr_clear(addr, addrinarray,
1622 				      __pgprot(_PAGE_CACHE_MASK), 1);
1623 	if (ret)
1624 		return ret;
1625 
1626 	for (i = 0; i < addrinarray; i++)
1627 		free_memtype(__pa(addr[i]), __pa(addr[i]) + PAGE_SIZE);
1628 
1629 	return 0;
1630 }
1631 EXPORT_SYMBOL(set_memory_array_wb);
1632 
set_memory_x(unsigned long addr,int numpages)1633 int set_memory_x(unsigned long addr, int numpages)
1634 {
1635 	if (!(__supported_pte_mask & _PAGE_NX))
1636 		return 0;
1637 
1638 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_NX), 0);
1639 }
1640 EXPORT_SYMBOL(set_memory_x);
1641 
set_memory_nx(unsigned long addr,int numpages)1642 int set_memory_nx(unsigned long addr, int numpages)
1643 {
1644 	if (!(__supported_pte_mask & _PAGE_NX))
1645 		return 0;
1646 
1647 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_NX), 0);
1648 }
1649 EXPORT_SYMBOL(set_memory_nx);
1650 
set_memory_ro(unsigned long addr,int numpages)1651 int set_memory_ro(unsigned long addr, int numpages)
1652 {
1653 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_RW), 0);
1654 }
1655 
set_memory_rw(unsigned long addr,int numpages)1656 int set_memory_rw(unsigned long addr, int numpages)
1657 {
1658 	return change_page_attr_set(&addr, numpages, __pgprot(_PAGE_RW), 0);
1659 }
1660 
set_memory_np(unsigned long addr,int numpages)1661 int set_memory_np(unsigned long addr, int numpages)
1662 {
1663 	return change_page_attr_clear(&addr, numpages, __pgprot(_PAGE_PRESENT), 0);
1664 }
1665 
set_memory_4k(unsigned long addr,int numpages)1666 int set_memory_4k(unsigned long addr, int numpages)
1667 {
1668 	return change_page_attr_set_clr(&addr, numpages, __pgprot(0),
1669 					__pgprot(0), 1, 0, NULL);
1670 }
1671 
set_pages_uc(struct page * page,int numpages)1672 int set_pages_uc(struct page *page, int numpages)
1673 {
1674 	unsigned long addr = (unsigned long)page_address(page);
1675 
1676 	return set_memory_uc(addr, numpages);
1677 }
1678 EXPORT_SYMBOL(set_pages_uc);
1679 
_set_pages_array(struct page ** pages,int addrinarray,enum page_cache_mode new_type)1680 static int _set_pages_array(struct page **pages, int addrinarray,
1681 		enum page_cache_mode new_type)
1682 {
1683 	unsigned long start;
1684 	unsigned long end;
1685 	int i;
1686 	int free_idx;
1687 	int ret;
1688 
1689 	for (i = 0; i < addrinarray; i++) {
1690 		if (PageHighMem(pages[i]))
1691 			continue;
1692 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1693 		end = start + PAGE_SIZE;
1694 		if (reserve_memtype(start, end, new_type, NULL))
1695 			goto err_out;
1696 	}
1697 
1698 	ret = cpa_set_pages_array(pages, addrinarray,
1699 			cachemode2pgprot(_PAGE_CACHE_MODE_UC_MINUS));
1700 	if (!ret && new_type == _PAGE_CACHE_MODE_WC)
1701 		ret = change_page_attr_set_clr(NULL, addrinarray,
1702 					       cachemode2pgprot(
1703 						_PAGE_CACHE_MODE_WC),
1704 					       __pgprot(_PAGE_CACHE_MASK),
1705 					       0, CPA_PAGES_ARRAY, pages);
1706 	if (ret)
1707 		goto err_out;
1708 	return 0; /* Success */
1709 err_out:
1710 	free_idx = i;
1711 	for (i = 0; i < free_idx; i++) {
1712 		if (PageHighMem(pages[i]))
1713 			continue;
1714 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1715 		end = start + PAGE_SIZE;
1716 		free_memtype(start, end);
1717 	}
1718 	return -EINVAL;
1719 }
1720 
set_pages_array_uc(struct page ** pages,int addrinarray)1721 int set_pages_array_uc(struct page **pages, int addrinarray)
1722 {
1723 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_UC_MINUS);
1724 }
1725 EXPORT_SYMBOL(set_pages_array_uc);
1726 
set_pages_array_wc(struct page ** pages,int addrinarray)1727 int set_pages_array_wc(struct page **pages, int addrinarray)
1728 {
1729 	return _set_pages_array(pages, addrinarray, _PAGE_CACHE_MODE_WC);
1730 }
1731 EXPORT_SYMBOL(set_pages_array_wc);
1732 
set_pages_wb(struct page * page,int numpages)1733 int set_pages_wb(struct page *page, int numpages)
1734 {
1735 	unsigned long addr = (unsigned long)page_address(page);
1736 
1737 	return set_memory_wb(addr, numpages);
1738 }
1739 EXPORT_SYMBOL(set_pages_wb);
1740 
set_pages_array_wb(struct page ** pages,int addrinarray)1741 int set_pages_array_wb(struct page **pages, int addrinarray)
1742 {
1743 	int retval;
1744 	unsigned long start;
1745 	unsigned long end;
1746 	int i;
1747 
1748 	/* WB cache mode is hard wired to all cache attribute bits being 0 */
1749 	retval = cpa_clear_pages_array(pages, addrinarray,
1750 			__pgprot(_PAGE_CACHE_MASK));
1751 	if (retval)
1752 		return retval;
1753 
1754 	for (i = 0; i < addrinarray; i++) {
1755 		if (PageHighMem(pages[i]))
1756 			continue;
1757 		start = page_to_pfn(pages[i]) << PAGE_SHIFT;
1758 		end = start + PAGE_SIZE;
1759 		free_memtype(start, end);
1760 	}
1761 
1762 	return 0;
1763 }
1764 EXPORT_SYMBOL(set_pages_array_wb);
1765 
set_pages_x(struct page * page,int numpages)1766 int set_pages_x(struct page *page, int numpages)
1767 {
1768 	unsigned long addr = (unsigned long)page_address(page);
1769 
1770 	return set_memory_x(addr, numpages);
1771 }
1772 EXPORT_SYMBOL(set_pages_x);
1773 
set_pages_nx(struct page * page,int numpages)1774 int set_pages_nx(struct page *page, int numpages)
1775 {
1776 	unsigned long addr = (unsigned long)page_address(page);
1777 
1778 	return set_memory_nx(addr, numpages);
1779 }
1780 EXPORT_SYMBOL(set_pages_nx);
1781 
set_pages_ro(struct page * page,int numpages)1782 int set_pages_ro(struct page *page, int numpages)
1783 {
1784 	unsigned long addr = (unsigned long)page_address(page);
1785 
1786 	return set_memory_ro(addr, numpages);
1787 }
1788 
set_pages_rw(struct page * page,int numpages)1789 int set_pages_rw(struct page *page, int numpages)
1790 {
1791 	unsigned long addr = (unsigned long)page_address(page);
1792 
1793 	return set_memory_rw(addr, numpages);
1794 }
1795 
1796 #ifdef CONFIG_DEBUG_PAGEALLOC
1797 
__set_pages_p(struct page * page,int numpages)1798 static int __set_pages_p(struct page *page, int numpages)
1799 {
1800 	unsigned long tempaddr = (unsigned long) page_address(page);
1801 	struct cpa_data cpa = { .vaddr = &tempaddr,
1802 				.pgd = NULL,
1803 				.numpages = numpages,
1804 				.mask_set = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1805 				.mask_clr = __pgprot(0),
1806 				.flags = 0};
1807 
1808 	/*
1809 	 * No alias checking needed for setting present flag. otherwise,
1810 	 * we may need to break large pages for 64-bit kernel text
1811 	 * mappings (this adds to complexity if we want to do this from
1812 	 * atomic context especially). Let's keep it simple!
1813 	 */
1814 	return __change_page_attr_set_clr(&cpa, 0);
1815 }
1816 
__set_pages_np(struct page * page,int numpages)1817 static int __set_pages_np(struct page *page, int numpages)
1818 {
1819 	unsigned long tempaddr = (unsigned long) page_address(page);
1820 	struct cpa_data cpa = { .vaddr = &tempaddr,
1821 				.pgd = NULL,
1822 				.numpages = numpages,
1823 				.mask_set = __pgprot(0),
1824 				.mask_clr = __pgprot(_PAGE_PRESENT | _PAGE_RW),
1825 				.flags = 0};
1826 
1827 	/*
1828 	 * No alias checking needed for setting not present flag. otherwise,
1829 	 * we may need to break large pages for 64-bit kernel text
1830 	 * mappings (this adds to complexity if we want to do this from
1831 	 * atomic context especially). Let's keep it simple!
1832 	 */
1833 	return __change_page_attr_set_clr(&cpa, 0);
1834 }
1835 
__kernel_map_pages(struct page * page,int numpages,int enable)1836 void __kernel_map_pages(struct page *page, int numpages, int enable)
1837 {
1838 	if (PageHighMem(page))
1839 		return;
1840 	if (!enable) {
1841 		debug_check_no_locks_freed(page_address(page),
1842 					   numpages * PAGE_SIZE);
1843 	}
1844 
1845 	/*
1846 	 * The return value is ignored as the calls cannot fail.
1847 	 * Large pages for identity mappings are not used at boot time
1848 	 * and hence no memory allocations during large page split.
1849 	 */
1850 	if (enable)
1851 		__set_pages_p(page, numpages);
1852 	else
1853 		__set_pages_np(page, numpages);
1854 
1855 	/*
1856 	 * We should perform an IPI and flush all tlbs,
1857 	 * but that can deadlock->flush only current cpu:
1858 	 */
1859 	__flush_tlb_all();
1860 
1861 	arch_flush_lazy_mmu_mode();
1862 }
1863 
1864 #ifdef CONFIG_HIBERNATION
1865 
kernel_page_present(struct page * page)1866 bool kernel_page_present(struct page *page)
1867 {
1868 	unsigned int level;
1869 	pte_t *pte;
1870 
1871 	if (PageHighMem(page))
1872 		return false;
1873 
1874 	pte = lookup_address((unsigned long)page_address(page), &level);
1875 	return (pte_val(*pte) & _PAGE_PRESENT);
1876 }
1877 
1878 #endif /* CONFIG_HIBERNATION */
1879 
1880 #endif /* CONFIG_DEBUG_PAGEALLOC */
1881 
kernel_map_pages_in_pgd(pgd_t * pgd,u64 pfn,unsigned long address,unsigned numpages,unsigned long page_flags)1882 int kernel_map_pages_in_pgd(pgd_t *pgd, u64 pfn, unsigned long address,
1883 			    unsigned numpages, unsigned long page_flags)
1884 {
1885 	int retval = -EINVAL;
1886 
1887 	struct cpa_data cpa = {
1888 		.vaddr = &address,
1889 		.pfn = pfn,
1890 		.pgd = pgd,
1891 		.numpages = numpages,
1892 		.mask_set = __pgprot(0),
1893 		.mask_clr = __pgprot(0),
1894 		.flags = 0,
1895 	};
1896 
1897 	if (!(__supported_pte_mask & _PAGE_NX))
1898 		goto out;
1899 
1900 	if (!(page_flags & _PAGE_NX))
1901 		cpa.mask_clr = __pgprot(_PAGE_NX);
1902 
1903 	cpa.mask_set = __pgprot(_PAGE_PRESENT | page_flags);
1904 
1905 	retval = __change_page_attr_set_clr(&cpa, 0);
1906 	__flush_tlb_all();
1907 
1908 out:
1909 	return retval;
1910 }
1911 
kernel_unmap_pages_in_pgd(pgd_t * root,unsigned long address,unsigned numpages)1912 void kernel_unmap_pages_in_pgd(pgd_t *root, unsigned long address,
1913 			       unsigned numpages)
1914 {
1915 	unmap_pgd_range(root, address, address + (numpages << PAGE_SHIFT));
1916 }
1917 
1918 /*
1919  * The testcases use internal knowledge of the implementation that shouldn't
1920  * be exposed to the rest of the kernel. Include these directly here.
1921  */
1922 #ifdef CONFIG_CPA_DEBUG
1923 #include "pageattr-test.c"
1924 #endif
1925