1 /*P:010
2  * A hypervisor allows multiple Operating Systems to run on a single machine.
3  * To quote David Wheeler: "Any problem in computer science can be solved with
4  * another layer of indirection."
5  *
6  * We keep things simple in two ways.  First, we start with a normal Linux
7  * kernel and insert a module (lg.ko) which allows us to run other Linux
8  * kernels the same way we'd run processes.  We call the first kernel the Host,
9  * and the others the Guests.  The program which sets up and configures Guests
10  * (such as the example in tools/lguest/lguest.c) is called the Launcher.
11  *
12  * Secondly, we only run specially modified Guests, not normal kernels: setting
13  * CONFIG_LGUEST_GUEST to "y" compiles this file into the kernel so it knows
14  * how to be a Guest at boot time.  This means that you can use the same kernel
15  * you boot normally (ie. as a Host) as a Guest.
16  *
17  * These Guests know that they cannot do privileged operations, such as disable
18  * interrupts, and that they have to ask the Host to do such things explicitly.
19  * This file consists of all the replacements for such low-level native
20  * hardware operations: these special Guest versions call the Host.
21  *
22  * So how does the kernel know it's a Guest?  We'll see that later, but let's
23  * just say that we end up here where we replace the native functions various
24  * "paravirt" structures with our Guest versions, then boot like normal.
25 :*/
26 
27 /*
28  * Copyright (C) 2006, Rusty Russell <rusty@rustcorp.com.au> IBM Corporation.
29  *
30  * This program is free software; you can redistribute it and/or modify
31  * it under the terms of the GNU General Public License as published by
32  * the Free Software Foundation; either version 2 of the License, or
33  * (at your option) any later version.
34  *
35  * This program is distributed in the hope that it will be useful, but
36  * WITHOUT ANY WARRANTY; without even the implied warranty of
37  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
38  * NON INFRINGEMENT.  See the GNU General Public License for more
39  * details.
40  *
41  * You should have received a copy of the GNU General Public License
42  * along with this program; if not, write to the Free Software
43  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
44  */
45 #include <linux/kernel.h>
46 #include <linux/start_kernel.h>
47 #include <linux/string.h>
48 #include <linux/console.h>
49 #include <linux/screen_info.h>
50 #include <linux/irq.h>
51 #include <linux/interrupt.h>
52 #include <linux/clocksource.h>
53 #include <linux/clockchips.h>
54 #include <linux/lguest.h>
55 #include <linux/lguest_launcher.h>
56 #include <linux/virtio_console.h>
57 #include <linux/pm.h>
58 #include <linux/export.h>
59 #include <linux/pci.h>
60 #include <linux/virtio_pci.h>
61 #include <asm/acpi.h>
62 #include <asm/apic.h>
63 #include <asm/lguest.h>
64 #include <asm/paravirt.h>
65 #include <asm/param.h>
66 #include <asm/page.h>
67 #include <asm/pgtable.h>
68 #include <asm/desc.h>
69 #include <asm/setup.h>
70 #include <asm/e820.h>
71 #include <asm/mce.h>
72 #include <asm/io.h>
73 #include <asm/i387.h>
74 #include <asm/stackprotector.h>
75 #include <asm/reboot.h>		/* for struct machine_ops */
76 #include <asm/kvm_para.h>
77 #include <asm/pci_x86.h>
78 #include <asm/pci-direct.h>
79 
80 /*G:010
81  * Welcome to the Guest!
82  *
83  * The Guest in our tale is a simple creature: identical to the Host but
84  * behaving in simplified but equivalent ways.  In particular, the Guest is the
85  * same kernel as the Host (or at least, built from the same source code).
86 :*/
87 
88 struct lguest_data lguest_data = {
89 	.hcall_status = { [0 ... LHCALL_RING_SIZE-1] = 0xFF },
90 	.noirq_iret = (u32)lguest_noirq_iret,
91 	.kernel_address = PAGE_OFFSET,
92 	.blocked_interrupts = { 1 }, /* Block timer interrupts */
93 	.syscall_vec = SYSCALL_VECTOR,
94 };
95 
96 /*G:037
97  * async_hcall() is pretty simple: I'm quite proud of it really.  We have a
98  * ring buffer of stored hypercalls which the Host will run though next time we
99  * do a normal hypercall.  Each entry in the ring has 5 slots for the hypercall
100  * arguments, and a "hcall_status" word which is 0 if the call is ready to go,
101  * and 255 once the Host has finished with it.
102  *
103  * If we come around to a slot which hasn't been finished, then the table is
104  * full and we just make the hypercall directly.  This has the nice side
105  * effect of causing the Host to run all the stored calls in the ring buffer
106  * which empties it for next time!
107  */
async_hcall(unsigned long call,unsigned long arg1,unsigned long arg2,unsigned long arg3,unsigned long arg4)108 static void async_hcall(unsigned long call, unsigned long arg1,
109 			unsigned long arg2, unsigned long arg3,
110 			unsigned long arg4)
111 {
112 	/* Note: This code assumes we're uniprocessor. */
113 	static unsigned int next_call;
114 	unsigned long flags;
115 
116 	/*
117 	 * Disable interrupts if not already disabled: we don't want an
118 	 * interrupt handler making a hypercall while we're already doing
119 	 * one!
120 	 */
121 	local_irq_save(flags);
122 	if (lguest_data.hcall_status[next_call] != 0xFF) {
123 		/* Table full, so do normal hcall which will flush table. */
124 		hcall(call, arg1, arg2, arg3, arg4);
125 	} else {
126 		lguest_data.hcalls[next_call].arg0 = call;
127 		lguest_data.hcalls[next_call].arg1 = arg1;
128 		lguest_data.hcalls[next_call].arg2 = arg2;
129 		lguest_data.hcalls[next_call].arg3 = arg3;
130 		lguest_data.hcalls[next_call].arg4 = arg4;
131 		/* Arguments must all be written before we mark it to go */
132 		wmb();
133 		lguest_data.hcall_status[next_call] = 0;
134 		if (++next_call == LHCALL_RING_SIZE)
135 			next_call = 0;
136 	}
137 	local_irq_restore(flags);
138 }
139 
140 /*G:035
141  * Notice the lazy_hcall() above, rather than hcall().  This is our first real
142  * optimization trick!
143  *
144  * When lazy_mode is set, it means we're allowed to defer all hypercalls and do
145  * them as a batch when lazy_mode is eventually turned off.  Because hypercalls
146  * are reasonably expensive, batching them up makes sense.  For example, a
147  * large munmap might update dozens of page table entries: that code calls
148  * paravirt_enter_lazy_mmu(), does the dozen updates, then calls
149  * lguest_leave_lazy_mode().
150  *
151  * So, when we're in lazy mode, we call async_hcall() to store the call for
152  * future processing:
153  */
lazy_hcall1(unsigned long call,unsigned long arg1)154 static void lazy_hcall1(unsigned long call, unsigned long arg1)
155 {
156 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
157 		hcall(call, arg1, 0, 0, 0);
158 	else
159 		async_hcall(call, arg1, 0, 0, 0);
160 }
161 
162 /* You can imagine what lazy_hcall2, 3 and 4 look like. :*/
lazy_hcall2(unsigned long call,unsigned long arg1,unsigned long arg2)163 static void lazy_hcall2(unsigned long call,
164 			unsigned long arg1,
165 			unsigned long arg2)
166 {
167 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
168 		hcall(call, arg1, arg2, 0, 0);
169 	else
170 		async_hcall(call, arg1, arg2, 0, 0);
171 }
172 
lazy_hcall3(unsigned long call,unsigned long arg1,unsigned long arg2,unsigned long arg3)173 static void lazy_hcall3(unsigned long call,
174 			unsigned long arg1,
175 			unsigned long arg2,
176 			unsigned long arg3)
177 {
178 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
179 		hcall(call, arg1, arg2, arg3, 0);
180 	else
181 		async_hcall(call, arg1, arg2, arg3, 0);
182 }
183 
184 #ifdef CONFIG_X86_PAE
lazy_hcall4(unsigned long call,unsigned long arg1,unsigned long arg2,unsigned long arg3,unsigned long arg4)185 static void lazy_hcall4(unsigned long call,
186 			unsigned long arg1,
187 			unsigned long arg2,
188 			unsigned long arg3,
189 			unsigned long arg4)
190 {
191 	if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_NONE)
192 		hcall(call, arg1, arg2, arg3, arg4);
193 	else
194 		async_hcall(call, arg1, arg2, arg3, arg4);
195 }
196 #endif
197 
198 /*G:036
199  * When lazy mode is turned off, we issue the do-nothing hypercall to
200  * flush any stored calls, and call the generic helper to reset the
201  * per-cpu lazy mode variable.
202  */
lguest_leave_lazy_mmu_mode(void)203 static void lguest_leave_lazy_mmu_mode(void)
204 {
205 	hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
206 	paravirt_leave_lazy_mmu();
207 }
208 
209 /*
210  * We also catch the end of context switch; we enter lazy mode for much of
211  * that too, so again we need to flush here.
212  *
213  * (Technically, this is lazy CPU mode, and normally we're in lazy MMU
214  * mode, but unlike Xen, lguest doesn't care about the difference).
215  */
lguest_end_context_switch(struct task_struct * next)216 static void lguest_end_context_switch(struct task_struct *next)
217 {
218 	hcall(LHCALL_FLUSH_ASYNC, 0, 0, 0, 0);
219 	paravirt_end_context_switch(next);
220 }
221 
222 /*G:032
223  * After that diversion we return to our first native-instruction
224  * replacements: four functions for interrupt control.
225  *
226  * The simplest way of implementing these would be to have "turn interrupts
227  * off" and "turn interrupts on" hypercalls.  Unfortunately, this is too slow:
228  * these are by far the most commonly called functions of those we override.
229  *
230  * So instead we keep an "irq_enabled" field inside our "struct lguest_data",
231  * which the Guest can update with a single instruction.  The Host knows to
232  * check there before it tries to deliver an interrupt.
233  */
234 
235 /*
236  * save_flags() is expected to return the processor state (ie. "flags").  The
237  * flags word contains all kind of stuff, but in practice Linux only cares
238  * about the interrupt flag.  Our "save_flags()" just returns that.
239  */
lguest_save_fl(void)240 asmlinkage __visible unsigned long lguest_save_fl(void)
241 {
242 	return lguest_data.irq_enabled;
243 }
244 
245 /* Interrupts go off... */
lguest_irq_disable(void)246 asmlinkage __visible void lguest_irq_disable(void)
247 {
248 	lguest_data.irq_enabled = 0;
249 }
250 
251 /*
252  * Let's pause a moment.  Remember how I said these are called so often?
253  * Jeremy Fitzhardinge optimized them so hard early in 2009 that he had to
254  * break some rules.  In particular, these functions are assumed to save their
255  * own registers if they need to: normal C functions assume they can trash the
256  * eax register.  To use normal C functions, we use
257  * PV_CALLEE_SAVE_REGS_THUNK(), which pushes %eax onto the stack, calls the
258  * C function, then restores it.
259  */
260 PV_CALLEE_SAVE_REGS_THUNK(lguest_save_fl);
261 PV_CALLEE_SAVE_REGS_THUNK(lguest_irq_disable);
262 /*:*/
263 
264 /* These are in head_32.S */
265 extern void lg_irq_enable(void);
266 extern void lg_restore_fl(unsigned long flags);
267 
268 /*M:003
269  * We could be more efficient in our checking of outstanding interrupts, rather
270  * than using a branch.  One way would be to put the "irq_enabled" field in a
271  * page by itself, and have the Host write-protect it when an interrupt comes
272  * in when irqs are disabled.  There will then be a page fault as soon as
273  * interrupts are re-enabled.
274  *
275  * A better method is to implement soft interrupt disable generally for x86:
276  * instead of disabling interrupts, we set a flag.  If an interrupt does come
277  * in, we then disable them for real.  This is uncommon, so we could simply use
278  * a hypercall for interrupt control and not worry about efficiency.
279 :*/
280 
281 /*G:034
282  * The Interrupt Descriptor Table (IDT).
283  *
284  * The IDT tells the processor what to do when an interrupt comes in.  Each
285  * entry in the table is a 64-bit descriptor: this holds the privilege level,
286  * address of the handler, and... well, who cares?  The Guest just asks the
287  * Host to make the change anyway, because the Host controls the real IDT.
288  */
lguest_write_idt_entry(gate_desc * dt,int entrynum,const gate_desc * g)289 static void lguest_write_idt_entry(gate_desc *dt,
290 				   int entrynum, const gate_desc *g)
291 {
292 	/*
293 	 * The gate_desc structure is 8 bytes long: we hand it to the Host in
294 	 * two 32-bit chunks.  The whole 32-bit kernel used to hand descriptors
295 	 * around like this; typesafety wasn't a big concern in Linux's early
296 	 * years.
297 	 */
298 	u32 *desc = (u32 *)g;
299 	/* Keep the local copy up to date. */
300 	native_write_idt_entry(dt, entrynum, g);
301 	/* Tell Host about this new entry. */
302 	hcall(LHCALL_LOAD_IDT_ENTRY, entrynum, desc[0], desc[1], 0);
303 }
304 
305 /*
306  * Changing to a different IDT is very rare: we keep the IDT up-to-date every
307  * time it is written, so we can simply loop through all entries and tell the
308  * Host about them.
309  */
lguest_load_idt(const struct desc_ptr * desc)310 static void lguest_load_idt(const struct desc_ptr *desc)
311 {
312 	unsigned int i;
313 	struct desc_struct *idt = (void *)desc->address;
314 
315 	for (i = 0; i < (desc->size+1)/8; i++)
316 		hcall(LHCALL_LOAD_IDT_ENTRY, i, idt[i].a, idt[i].b, 0);
317 }
318 
319 /*
320  * The Global Descriptor Table.
321  *
322  * The Intel architecture defines another table, called the Global Descriptor
323  * Table (GDT).  You tell the CPU where it is (and its size) using the "lgdt"
324  * instruction, and then several other instructions refer to entries in the
325  * table.  There are three entries which the Switcher needs, so the Host simply
326  * controls the entire thing and the Guest asks it to make changes using the
327  * LOAD_GDT hypercall.
328  *
329  * This is the exactly like the IDT code.
330  */
lguest_load_gdt(const struct desc_ptr * desc)331 static void lguest_load_gdt(const struct desc_ptr *desc)
332 {
333 	unsigned int i;
334 	struct desc_struct *gdt = (void *)desc->address;
335 
336 	for (i = 0; i < (desc->size+1)/8; i++)
337 		hcall(LHCALL_LOAD_GDT_ENTRY, i, gdt[i].a, gdt[i].b, 0);
338 }
339 
340 /*
341  * For a single GDT entry which changes, we simply change our copy and
342  * then tell the host about it.
343  */
lguest_write_gdt_entry(struct desc_struct * dt,int entrynum,const void * desc,int type)344 static void lguest_write_gdt_entry(struct desc_struct *dt, int entrynum,
345 				   const void *desc, int type)
346 {
347 	native_write_gdt_entry(dt, entrynum, desc, type);
348 	/* Tell Host about this new entry. */
349 	hcall(LHCALL_LOAD_GDT_ENTRY, entrynum,
350 	      dt[entrynum].a, dt[entrynum].b, 0);
351 }
352 
353 /*
354  * There are three "thread local storage" GDT entries which change
355  * on every context switch (these three entries are how glibc implements
356  * __thread variables).  As an optimization, we have a hypercall
357  * specifically for this case.
358  *
359  * Wouldn't it be nicer to have a general LOAD_GDT_ENTRIES hypercall
360  * which took a range of entries?
361  */
lguest_load_tls(struct thread_struct * t,unsigned int cpu)362 static void lguest_load_tls(struct thread_struct *t, unsigned int cpu)
363 {
364 	/*
365 	 * There's one problem which normal hardware doesn't have: the Host
366 	 * can't handle us removing entries we're currently using.  So we clear
367 	 * the GS register here: if it's needed it'll be reloaded anyway.
368 	 */
369 	lazy_load_gs(0);
370 	lazy_hcall2(LHCALL_LOAD_TLS, __pa(&t->tls_array), cpu);
371 }
372 
373 /*G:038
374  * That's enough excitement for now, back to ploughing through each of the
375  * different pv_ops structures (we're about 1/3 of the way through).
376  *
377  * This is the Local Descriptor Table, another weird Intel thingy.  Linux only
378  * uses this for some strange applications like Wine.  We don't do anything
379  * here, so they'll get an informative and friendly Segmentation Fault.
380  */
lguest_set_ldt(const void * addr,unsigned entries)381 static void lguest_set_ldt(const void *addr, unsigned entries)
382 {
383 }
384 
385 /*
386  * This loads a GDT entry into the "Task Register": that entry points to a
387  * structure called the Task State Segment.  Some comments scattered though the
388  * kernel code indicate that this used for task switching in ages past, along
389  * with blood sacrifice and astrology.
390  *
391  * Now there's nothing interesting in here that we don't get told elsewhere.
392  * But the native version uses the "ltr" instruction, which makes the Host
393  * complain to the Guest about a Segmentation Fault and it'll oops.  So we
394  * override the native version with a do-nothing version.
395  */
lguest_load_tr_desc(void)396 static void lguest_load_tr_desc(void)
397 {
398 }
399 
400 /*
401  * The "cpuid" instruction is a way of querying both the CPU identity
402  * (manufacturer, model, etc) and its features.  It was introduced before the
403  * Pentium in 1993 and keeps getting extended by both Intel, AMD and others.
404  * As you might imagine, after a decade and a half this treatment, it is now a
405  * giant ball of hair.  Its entry in the current Intel manual runs to 28 pages.
406  *
407  * This instruction even it has its own Wikipedia entry.  The Wikipedia entry
408  * has been translated into 6 languages.  I am not making this up!
409  *
410  * We could get funky here and identify ourselves as "GenuineLguest", but
411  * instead we just use the real "cpuid" instruction.  Then I pretty much turned
412  * off feature bits until the Guest booted.  (Don't say that: you'll damage
413  * lguest sales!)  Shut up, inner voice!  (Hey, just pointing out that this is
414  * hardly future proof.)  No one's listening!  They don't like you anyway,
415  * parenthetic weirdo!
416  *
417  * Replacing the cpuid so we can turn features off is great for the kernel, but
418  * anyone (including userspace) can just use the raw "cpuid" instruction and
419  * the Host won't even notice since it isn't privileged.  So we try not to get
420  * too worked up about it.
421  */
lguest_cpuid(unsigned int * ax,unsigned int * bx,unsigned int * cx,unsigned int * dx)422 static void lguest_cpuid(unsigned int *ax, unsigned int *bx,
423 			 unsigned int *cx, unsigned int *dx)
424 {
425 	int function = *ax;
426 
427 	native_cpuid(ax, bx, cx, dx);
428 	switch (function) {
429 	/*
430 	 * CPUID 0 gives the highest legal CPUID number (and the ID string).
431 	 * We futureproof our code a little by sticking to known CPUID values.
432 	 */
433 	case 0:
434 		if (*ax > 5)
435 			*ax = 5;
436 		break;
437 
438 	/*
439 	 * CPUID 1 is a basic feature request.
440 	 *
441 	 * CX: we only allow kernel to see SSE3, CMPXCHG16B and SSSE3
442 	 * DX: SSE, SSE2, FXSR, MMX, CMOV, CMPXCHG8B, TSC, FPU and PAE.
443 	 */
444 	case 1:
445 		*cx &= 0x00002201;
446 		*dx &= 0x07808151;
447 		/*
448 		 * The Host can do a nice optimization if it knows that the
449 		 * kernel mappings (addresses above 0xC0000000 or whatever
450 		 * PAGE_OFFSET is set to) haven't changed.  But Linux calls
451 		 * flush_tlb_user() for both user and kernel mappings unless
452 		 * the Page Global Enable (PGE) feature bit is set.
453 		 */
454 		*dx |= 0x00002000;
455 		/*
456 		 * We also lie, and say we're family id 5.  6 or greater
457 		 * leads to a rdmsr in early_init_intel which we can't handle.
458 		 * Family ID is returned as bits 8-12 in ax.
459 		 */
460 		*ax &= 0xFFFFF0FF;
461 		*ax |= 0x00000500;
462 		break;
463 
464 	/*
465 	 * This is used to detect if we're running under KVM.  We might be,
466 	 * but that's a Host matter, not us.  So say we're not.
467 	 */
468 	case KVM_CPUID_SIGNATURE:
469 		*bx = *cx = *dx = 0;
470 		break;
471 
472 	/*
473 	 * 0x80000000 returns the highest Extended Function, so we futureproof
474 	 * like we do above by limiting it to known fields.
475 	 */
476 	case 0x80000000:
477 		if (*ax > 0x80000008)
478 			*ax = 0x80000008;
479 		break;
480 
481 	/*
482 	 * PAE systems can mark pages as non-executable.  Linux calls this the
483 	 * NX bit.  Intel calls it XD (eXecute Disable), AMD EVP (Enhanced
484 	 * Virus Protection).  We just switch it off here, since we don't
485 	 * support it.
486 	 */
487 	case 0x80000001:
488 		*dx &= ~(1 << 20);
489 		break;
490 	}
491 }
492 
493 /*
494  * Intel has four control registers, imaginatively named cr0, cr2, cr3 and cr4.
495  * I assume there's a cr1, but it hasn't bothered us yet, so we'll not bother
496  * it.  The Host needs to know when the Guest wants to change them, so we have
497  * a whole series of functions like read_cr0() and write_cr0().
498  *
499  * We start with cr0.  cr0 allows you to turn on and off all kinds of basic
500  * features, but Linux only really cares about one: the horrifically-named Task
501  * Switched (TS) bit at bit 3 (ie. 8)
502  *
503  * What does the TS bit do?  Well, it causes the CPU to trap (interrupt 7) if
504  * the floating point unit is used.  Which allows us to restore FPU state
505  * lazily after a task switch, and Linux uses that gratefully, but wouldn't a
506  * name like "FPUTRAP bit" be a little less cryptic?
507  *
508  * We store cr0 locally because the Host never changes it.  The Guest sometimes
509  * wants to read it and we'd prefer not to bother the Host unnecessarily.
510  */
511 static unsigned long current_cr0;
lguest_write_cr0(unsigned long val)512 static void lguest_write_cr0(unsigned long val)
513 {
514 	lazy_hcall1(LHCALL_TS, val & X86_CR0_TS);
515 	current_cr0 = val;
516 }
517 
lguest_read_cr0(void)518 static unsigned long lguest_read_cr0(void)
519 {
520 	return current_cr0;
521 }
522 
523 /*
524  * Intel provided a special instruction to clear the TS bit for people too cool
525  * to use write_cr0() to do it.  This "clts" instruction is faster, because all
526  * the vowels have been optimized out.
527  */
lguest_clts(void)528 static void lguest_clts(void)
529 {
530 	lazy_hcall1(LHCALL_TS, 0);
531 	current_cr0 &= ~X86_CR0_TS;
532 }
533 
534 /*
535  * cr2 is the virtual address of the last page fault, which the Guest only ever
536  * reads.  The Host kindly writes this into our "struct lguest_data", so we
537  * just read it out of there.
538  */
lguest_read_cr2(void)539 static unsigned long lguest_read_cr2(void)
540 {
541 	return lguest_data.cr2;
542 }
543 
544 /* See lguest_set_pte() below. */
545 static bool cr3_changed = false;
546 static unsigned long current_cr3;
547 
548 /*
549  * cr3 is the current toplevel pagetable page: the principle is the same as
550  * cr0.  Keep a local copy, and tell the Host when it changes.
551  */
lguest_write_cr3(unsigned long cr3)552 static void lguest_write_cr3(unsigned long cr3)
553 {
554 	lazy_hcall1(LHCALL_NEW_PGTABLE, cr3);
555 	current_cr3 = cr3;
556 
557 	/* These two page tables are simple, linear, and used during boot */
558 	if (cr3 != __pa_symbol(swapper_pg_dir) &&
559 	    cr3 != __pa_symbol(initial_page_table))
560 		cr3_changed = true;
561 }
562 
lguest_read_cr3(void)563 static unsigned long lguest_read_cr3(void)
564 {
565 	return current_cr3;
566 }
567 
568 /* cr4 is used to enable and disable PGE, but we don't care. */
lguest_read_cr4(void)569 static unsigned long lguest_read_cr4(void)
570 {
571 	return 0;
572 }
573 
lguest_write_cr4(unsigned long val)574 static void lguest_write_cr4(unsigned long val)
575 {
576 }
577 
578 /*
579  * Page Table Handling.
580  *
581  * Now would be a good time to take a rest and grab a coffee or similarly
582  * relaxing stimulant.  The easy parts are behind us, and the trek gradually
583  * winds uphill from here.
584  *
585  * Quick refresher: memory is divided into "pages" of 4096 bytes each.  The CPU
586  * maps virtual addresses to physical addresses using "page tables".  We could
587  * use one huge index of 1 million entries: each address is 4 bytes, so that's
588  * 1024 pages just to hold the page tables.   But since most virtual addresses
589  * are unused, we use a two level index which saves space.  The cr3 register
590  * contains the physical address of the top level "page directory" page, which
591  * contains physical addresses of up to 1024 second-level pages.  Each of these
592  * second level pages contains up to 1024 physical addresses of actual pages,
593  * or Page Table Entries (PTEs).
594  *
595  * Here's a diagram, where arrows indicate physical addresses:
596  *
597  * cr3 ---> +---------+
598  *	    |  	   --------->+---------+
599  *	    |	      |	     | PADDR1  |
600  *	  Mid-level   |	     | PADDR2  |
601  *	  (PMD) page  |	     | 	       |
602  *	    |	      |	   Lower-level |
603  *	    |	      |	   (PTE) page  |
604  *	    |	      |	     |	       |
605  *	      ....    	     	 ....
606  *
607  * So to convert a virtual address to a physical address, we look up the top
608  * level, which points us to the second level, which gives us the physical
609  * address of that page.  If the top level entry was not present, or the second
610  * level entry was not present, then the virtual address is invalid (we
611  * say "the page was not mapped").
612  *
613  * Put another way, a 32-bit virtual address is divided up like so:
614  *
615  *  1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
616  * |<---- 10 bits ---->|<---- 10 bits ---->|<------ 12 bits ------>|
617  *    Index into top     Index into second      Offset within page
618  *  page directory page    pagetable page
619  *
620  * Now, unfortunately, this isn't the whole story: Intel added Physical Address
621  * Extension (PAE) to allow 32 bit systems to use 64GB of memory (ie. 36 bits).
622  * These are held in 64-bit page table entries, so we can now only fit 512
623  * entries in a page, and the neat three-level tree breaks down.
624  *
625  * The result is a four level page table:
626  *
627  * cr3 --> [ 4 Upper  ]
628  *	   [   Level  ]
629  *	   [  Entries ]
630  *	   [(PUD Page)]---> +---------+
631  *	 		    |  	   --------->+---------+
632  *	 		    |	      |	     | PADDR1  |
633  *	 		  Mid-level   |	     | PADDR2  |
634  *	 		  (PMD) page  |	     | 	       |
635  *	 		    |	      |	   Lower-level |
636  *	 		    |	      |	   (PTE) page  |
637  *	 		    |	      |	     |	       |
638  *	 		      ....    	     	 ....
639  *
640  *
641  * And the virtual address is decoded as:
642  *
643  *         1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
644  *      |<-2->|<--- 9 bits ---->|<---- 9 bits --->|<------ 12 bits ------>|
645  * Index into    Index into mid    Index into lower    Offset within page
646  * top entries   directory page     pagetable page
647  *
648  * It's too hard to switch between these two formats at runtime, so Linux only
649  * supports one or the other depending on whether CONFIG_X86_PAE is set.  Many
650  * distributions turn it on, and not just for people with silly amounts of
651  * memory: the larger PTE entries allow room for the NX bit, which lets the
652  * kernel disable execution of pages and increase security.
653  *
654  * This was a problem for lguest, which couldn't run on these distributions;
655  * then Matias Zabaljauregui figured it all out and implemented it, and only a
656  * handful of puppies were crushed in the process!
657  *
658  * Back to our point: the kernel spends a lot of time changing both the
659  * top-level page directory and lower-level pagetable pages.  The Guest doesn't
660  * know physical addresses, so while it maintains these page tables exactly
661  * like normal, it also needs to keep the Host informed whenever it makes a
662  * change: the Host will create the real page tables based on the Guests'.
663  */
664 
665 /*
666  * The Guest calls this after it has set a second-level entry (pte), ie. to map
667  * a page into a process' address space.  We tell the Host the toplevel and
668  * address this corresponds to.  The Guest uses one pagetable per process, so
669  * we need to tell the Host which one we're changing (mm->pgd).
670  */
lguest_pte_update(struct mm_struct * mm,unsigned long addr,pte_t * ptep)671 static void lguest_pte_update(struct mm_struct *mm, unsigned long addr,
672 			       pte_t *ptep)
673 {
674 #ifdef CONFIG_X86_PAE
675 	/* PAE needs to hand a 64 bit page table entry, so it uses two args. */
676 	lazy_hcall4(LHCALL_SET_PTE, __pa(mm->pgd), addr,
677 		    ptep->pte_low, ptep->pte_high);
678 #else
679 	lazy_hcall3(LHCALL_SET_PTE, __pa(mm->pgd), addr, ptep->pte_low);
680 #endif
681 }
682 
683 /* This is the "set and update" combo-meal-deal version. */
lguest_set_pte_at(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pteval)684 static void lguest_set_pte_at(struct mm_struct *mm, unsigned long addr,
685 			      pte_t *ptep, pte_t pteval)
686 {
687 	native_set_pte(ptep, pteval);
688 	lguest_pte_update(mm, addr, ptep);
689 }
690 
691 /*
692  * The Guest calls lguest_set_pud to set a top-level entry and lguest_set_pmd
693  * to set a middle-level entry when PAE is activated.
694  *
695  * Again, we set the entry then tell the Host which page we changed,
696  * and the index of the entry we changed.
697  */
698 #ifdef CONFIG_X86_PAE
lguest_set_pud(pud_t * pudp,pud_t pudval)699 static void lguest_set_pud(pud_t *pudp, pud_t pudval)
700 {
701 	native_set_pud(pudp, pudval);
702 
703 	/* 32 bytes aligned pdpt address and the index. */
704 	lazy_hcall2(LHCALL_SET_PGD, __pa(pudp) & 0xFFFFFFE0,
705 		   (__pa(pudp) & 0x1F) / sizeof(pud_t));
706 }
707 
lguest_set_pmd(pmd_t * pmdp,pmd_t pmdval)708 static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
709 {
710 	native_set_pmd(pmdp, pmdval);
711 	lazy_hcall2(LHCALL_SET_PMD, __pa(pmdp) & PAGE_MASK,
712 		   (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
713 }
714 #else
715 
716 /* The Guest calls lguest_set_pmd to set a top-level entry when !PAE. */
lguest_set_pmd(pmd_t * pmdp,pmd_t pmdval)717 static void lguest_set_pmd(pmd_t *pmdp, pmd_t pmdval)
718 {
719 	native_set_pmd(pmdp, pmdval);
720 	lazy_hcall2(LHCALL_SET_PGD, __pa(pmdp) & PAGE_MASK,
721 		   (__pa(pmdp) & (PAGE_SIZE - 1)) / sizeof(pmd_t));
722 }
723 #endif
724 
725 /*
726  * There are a couple of legacy places where the kernel sets a PTE, but we
727  * don't know the top level any more.  This is useless for us, since we don't
728  * know which pagetable is changing or what address, so we just tell the Host
729  * to forget all of them.  Fortunately, this is very rare.
730  *
731  * ... except in early boot when the kernel sets up the initial pagetables,
732  * which makes booting astonishingly slow: 48 seconds!  So we don't even tell
733  * the Host anything changed until we've done the first real page table switch,
734  * which brings boot back to 4.3 seconds.
735  */
lguest_set_pte(pte_t * ptep,pte_t pteval)736 static void lguest_set_pte(pte_t *ptep, pte_t pteval)
737 {
738 	native_set_pte(ptep, pteval);
739 	if (cr3_changed)
740 		lazy_hcall1(LHCALL_FLUSH_TLB, 1);
741 }
742 
743 #ifdef CONFIG_X86_PAE
744 /*
745  * With 64-bit PTE values, we need to be careful setting them: if we set 32
746  * bits at a time, the hardware could see a weird half-set entry.  These
747  * versions ensure we update all 64 bits at once.
748  */
lguest_set_pte_atomic(pte_t * ptep,pte_t pte)749 static void lguest_set_pte_atomic(pte_t *ptep, pte_t pte)
750 {
751 	native_set_pte_atomic(ptep, pte);
752 	if (cr3_changed)
753 		lazy_hcall1(LHCALL_FLUSH_TLB, 1);
754 }
755 
lguest_pte_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)756 static void lguest_pte_clear(struct mm_struct *mm, unsigned long addr,
757 			     pte_t *ptep)
758 {
759 	native_pte_clear(mm, addr, ptep);
760 	lguest_pte_update(mm, addr, ptep);
761 }
762 
lguest_pmd_clear(pmd_t * pmdp)763 static void lguest_pmd_clear(pmd_t *pmdp)
764 {
765 	lguest_set_pmd(pmdp, __pmd(0));
766 }
767 #endif
768 
769 /*
770  * Unfortunately for Lguest, the pv_mmu_ops for page tables were based on
771  * native page table operations.  On native hardware you can set a new page
772  * table entry whenever you want, but if you want to remove one you have to do
773  * a TLB flush (a TLB is a little cache of page table entries kept by the CPU).
774  *
775  * So the lguest_set_pte_at() and lguest_set_pmd() functions above are only
776  * called when a valid entry is written, not when it's removed (ie. marked not
777  * present).  Instead, this is where we come when the Guest wants to remove a
778  * page table entry: we tell the Host to set that entry to 0 (ie. the present
779  * bit is zero).
780  */
lguest_flush_tlb_single(unsigned long addr)781 static void lguest_flush_tlb_single(unsigned long addr)
782 {
783 	/* Simply set it to zero: if it was not, it will fault back in. */
784 	lazy_hcall3(LHCALL_SET_PTE, current_cr3, addr, 0);
785 }
786 
787 /*
788  * This is what happens after the Guest has removed a large number of entries.
789  * This tells the Host that any of the page table entries for userspace might
790  * have changed, ie. virtual addresses below PAGE_OFFSET.
791  */
lguest_flush_tlb_user(void)792 static void lguest_flush_tlb_user(void)
793 {
794 	lazy_hcall1(LHCALL_FLUSH_TLB, 0);
795 }
796 
797 /*
798  * This is called when the kernel page tables have changed.  That's not very
799  * common (unless the Guest is using highmem, which makes the Guest extremely
800  * slow), so it's worth separating this from the user flushing above.
801  */
lguest_flush_tlb_kernel(void)802 static void lguest_flush_tlb_kernel(void)
803 {
804 	lazy_hcall1(LHCALL_FLUSH_TLB, 1);
805 }
806 
807 /*
808  * The Unadvanced Programmable Interrupt Controller.
809  *
810  * This is an attempt to implement the simplest possible interrupt controller.
811  * I spent some time looking though routines like set_irq_chip_and_handler,
812  * set_irq_chip_and_handler_name, set_irq_chip_data and set_phasers_to_stun and
813  * I *think* this is as simple as it gets.
814  *
815  * We can tell the Host what interrupts we want blocked ready for using the
816  * lguest_data.interrupts bitmap, so disabling (aka "masking") them is as
817  * simple as setting a bit.  We don't actually "ack" interrupts as such, we
818  * just mask and unmask them.  I wonder if we should be cleverer?
819  */
disable_lguest_irq(struct irq_data * data)820 static void disable_lguest_irq(struct irq_data *data)
821 {
822 	set_bit(data->irq, lguest_data.blocked_interrupts);
823 }
824 
enable_lguest_irq(struct irq_data * data)825 static void enable_lguest_irq(struct irq_data *data)
826 {
827 	clear_bit(data->irq, lguest_data.blocked_interrupts);
828 }
829 
830 /* This structure describes the lguest IRQ controller. */
831 static struct irq_chip lguest_irq_controller = {
832 	.name		= "lguest",
833 	.irq_mask	= disable_lguest_irq,
834 	.irq_mask_ack	= disable_lguest_irq,
835 	.irq_unmask	= enable_lguest_irq,
836 };
837 
lguest_enable_irq(struct pci_dev * dev)838 static int lguest_enable_irq(struct pci_dev *dev)
839 {
840 	u8 line = 0;
841 
842 	/* We literally use the PCI interrupt line as the irq number. */
843 	pci_read_config_byte(dev, PCI_INTERRUPT_LINE, &line);
844 	irq_set_chip_and_handler_name(line, &lguest_irq_controller,
845 				      handle_level_irq, "level");
846 	dev->irq = line;
847 	return 0;
848 }
849 
850 /* We don't do hotplug PCI, so this shouldn't be called. */
lguest_disable_irq(struct pci_dev * dev)851 static void lguest_disable_irq(struct pci_dev *dev)
852 {
853 	WARN_ON(1);
854 }
855 
856 /*
857  * This sets up the Interrupt Descriptor Table (IDT) entry for each hardware
858  * interrupt (except 128, which is used for system calls), and then tells the
859  * Linux infrastructure that each interrupt is controlled by our level-based
860  * lguest interrupt controller.
861  */
lguest_init_IRQ(void)862 static void __init lguest_init_IRQ(void)
863 {
864 	unsigned int i;
865 
866 	for (i = FIRST_EXTERNAL_VECTOR; i < FIRST_SYSTEM_VECTOR; i++) {
867 		/* Some systems map "vectors" to interrupts weirdly.  Not us! */
868 		__this_cpu_write(vector_irq[i], i - FIRST_EXTERNAL_VECTOR);
869 		if (i != SYSCALL_VECTOR)
870 			set_intr_gate(i, irq_entries_start +
871 					8 * (i - FIRST_EXTERNAL_VECTOR));
872 	}
873 
874 	/*
875 	 * This call is required to set up for 4k stacks, where we have
876 	 * separate stacks for hard and soft interrupts.
877 	 */
878 	irq_ctx_init(smp_processor_id());
879 }
880 
881 /*
882  * Interrupt descriptors are allocated as-needed, but low-numbered ones are
883  * reserved by the generic x86 code.  So we ignore irq_alloc_desc_at if it
884  * tells us the irq is already used: other errors (ie. ENOMEM) we take
885  * seriously.
886  */
lguest_setup_irq(unsigned int irq)887 int lguest_setup_irq(unsigned int irq)
888 {
889 	int err;
890 
891 	/* Returns -ve error or vector number. */
892 	err = irq_alloc_desc_at(irq, 0);
893 	if (err < 0 && err != -EEXIST)
894 		return err;
895 
896 	irq_set_chip_and_handler_name(irq, &lguest_irq_controller,
897 				      handle_level_irq, "level");
898 	return 0;
899 }
900 
901 /*
902  * Time.
903  *
904  * It would be far better for everyone if the Guest had its own clock, but
905  * until then the Host gives us the time on every interrupt.
906  */
lguest_get_wallclock(struct timespec * now)907 static void lguest_get_wallclock(struct timespec *now)
908 {
909 	*now = lguest_data.time;
910 }
911 
912 /*
913  * The TSC is an Intel thing called the Time Stamp Counter.  The Host tells us
914  * what speed it runs at, or 0 if it's unusable as a reliable clock source.
915  * This matches what we want here: if we return 0 from this function, the x86
916  * TSC clock will give up and not register itself.
917  */
lguest_tsc_khz(void)918 static unsigned long lguest_tsc_khz(void)
919 {
920 	return lguest_data.tsc_khz;
921 }
922 
923 /*
924  * If we can't use the TSC, the kernel falls back to our lower-priority
925  * "lguest_clock", where we read the time value given to us by the Host.
926  */
lguest_clock_read(struct clocksource * cs)927 static cycle_t lguest_clock_read(struct clocksource *cs)
928 {
929 	unsigned long sec, nsec;
930 
931 	/*
932 	 * Since the time is in two parts (seconds and nanoseconds), we risk
933 	 * reading it just as it's changing from 99 & 0.999999999 to 100 and 0,
934 	 * and getting 99 and 0.  As Linux tends to come apart under the stress
935 	 * of time travel, we must be careful:
936 	 */
937 	do {
938 		/* First we read the seconds part. */
939 		sec = lguest_data.time.tv_sec;
940 		/*
941 		 * This read memory barrier tells the compiler and the CPU that
942 		 * this can't be reordered: we have to complete the above
943 		 * before going on.
944 		 */
945 		rmb();
946 		/* Now we read the nanoseconds part. */
947 		nsec = lguest_data.time.tv_nsec;
948 		/* Make sure we've done that. */
949 		rmb();
950 		/* Now if the seconds part has changed, try again. */
951 	} while (unlikely(lguest_data.time.tv_sec != sec));
952 
953 	/* Our lguest clock is in real nanoseconds. */
954 	return sec*1000000000ULL + nsec;
955 }
956 
957 /* This is the fallback clocksource: lower priority than the TSC clocksource. */
958 static struct clocksource lguest_clock = {
959 	.name		= "lguest",
960 	.rating		= 200,
961 	.read		= lguest_clock_read,
962 	.mask		= CLOCKSOURCE_MASK(64),
963 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
964 };
965 
966 /*
967  * We also need a "struct clock_event_device": Linux asks us to set it to go
968  * off some time in the future.  Actually, James Morris figured all this out, I
969  * just applied the patch.
970  */
lguest_clockevent_set_next_event(unsigned long delta,struct clock_event_device * evt)971 static int lguest_clockevent_set_next_event(unsigned long delta,
972                                            struct clock_event_device *evt)
973 {
974 	/* FIXME: I don't think this can ever happen, but James tells me he had
975 	 * to put this code in.  Maybe we should remove it now.  Anyone? */
976 	if (delta < LG_CLOCK_MIN_DELTA) {
977 		if (printk_ratelimit())
978 			printk(KERN_DEBUG "%s: small delta %lu ns\n",
979 			       __func__, delta);
980 		return -ETIME;
981 	}
982 
983 	/* Please wake us this far in the future. */
984 	hcall(LHCALL_SET_CLOCKEVENT, delta, 0, 0, 0);
985 	return 0;
986 }
987 
lguest_clockevent_set_mode(enum clock_event_mode mode,struct clock_event_device * evt)988 static void lguest_clockevent_set_mode(enum clock_event_mode mode,
989                                       struct clock_event_device *evt)
990 {
991 	switch (mode) {
992 	case CLOCK_EVT_MODE_UNUSED:
993 	case CLOCK_EVT_MODE_SHUTDOWN:
994 		/* A 0 argument shuts the clock down. */
995 		hcall(LHCALL_SET_CLOCKEVENT, 0, 0, 0, 0);
996 		break;
997 	case CLOCK_EVT_MODE_ONESHOT:
998 		/* This is what we expect. */
999 		break;
1000 	case CLOCK_EVT_MODE_PERIODIC:
1001 		BUG();
1002 	case CLOCK_EVT_MODE_RESUME:
1003 		break;
1004 	}
1005 }
1006 
1007 /* This describes our primitive timer chip. */
1008 static struct clock_event_device lguest_clockevent = {
1009 	.name                   = "lguest",
1010 	.features               = CLOCK_EVT_FEAT_ONESHOT,
1011 	.set_next_event         = lguest_clockevent_set_next_event,
1012 	.set_mode               = lguest_clockevent_set_mode,
1013 	.rating                 = INT_MAX,
1014 	.mult                   = 1,
1015 	.shift                  = 0,
1016 	.min_delta_ns           = LG_CLOCK_MIN_DELTA,
1017 	.max_delta_ns           = LG_CLOCK_MAX_DELTA,
1018 };
1019 
1020 /*
1021  * This is the Guest timer interrupt handler (hardware interrupt 0).  We just
1022  * call the clockevent infrastructure and it does whatever needs doing.
1023  */
lguest_time_irq(unsigned int irq,struct irq_desc * desc)1024 static void lguest_time_irq(unsigned int irq, struct irq_desc *desc)
1025 {
1026 	unsigned long flags;
1027 
1028 	/* Don't interrupt us while this is running. */
1029 	local_irq_save(flags);
1030 	lguest_clockevent.event_handler(&lguest_clockevent);
1031 	local_irq_restore(flags);
1032 }
1033 
1034 /*
1035  * At some point in the boot process, we get asked to set up our timing
1036  * infrastructure.  The kernel doesn't expect timer interrupts before this, but
1037  * we cleverly initialized the "blocked_interrupts" field of "struct
1038  * lguest_data" so that timer interrupts were blocked until now.
1039  */
lguest_time_init(void)1040 static void lguest_time_init(void)
1041 {
1042 	/* Set up the timer interrupt (0) to go to our simple timer routine */
1043 	lguest_setup_irq(0);
1044 	irq_set_handler(0, lguest_time_irq);
1045 
1046 	clocksource_register_hz(&lguest_clock, NSEC_PER_SEC);
1047 
1048 	/* We can't set cpumask in the initializer: damn C limitations!  Set it
1049 	 * here and register our timer device. */
1050 	lguest_clockevent.cpumask = cpumask_of(0);
1051 	clockevents_register_device(&lguest_clockevent);
1052 
1053 	/* Finally, we unblock the timer interrupt. */
1054 	clear_bit(0, lguest_data.blocked_interrupts);
1055 }
1056 
1057 /*
1058  * Miscellaneous bits and pieces.
1059  *
1060  * Here is an oddball collection of functions which the Guest needs for things
1061  * to work.  They're pretty simple.
1062  */
1063 
1064 /*
1065  * The Guest needs to tell the Host what stack it expects traps to use.  For
1066  * native hardware, this is part of the Task State Segment mentioned above in
1067  * lguest_load_tr_desc(), but to help hypervisors there's this special call.
1068  *
1069  * We tell the Host the segment we want to use (__KERNEL_DS is the kernel data
1070  * segment), the privilege level (we're privilege level 1, the Host is 0 and
1071  * will not tolerate us trying to use that), the stack pointer, and the number
1072  * of pages in the stack.
1073  */
lguest_load_sp0(struct tss_struct * tss,struct thread_struct * thread)1074 static void lguest_load_sp0(struct tss_struct *tss,
1075 			    struct thread_struct *thread)
1076 {
1077 	lazy_hcall3(LHCALL_SET_STACK, __KERNEL_DS | 0x1, thread->sp0,
1078 		   THREAD_SIZE / PAGE_SIZE);
1079 	tss->x86_tss.sp0 = thread->sp0;
1080 }
1081 
1082 /* Let's just say, I wouldn't do debugging under a Guest. */
lguest_get_debugreg(int regno)1083 static unsigned long lguest_get_debugreg(int regno)
1084 {
1085 	/* FIXME: Implement */
1086 	return 0;
1087 }
1088 
lguest_set_debugreg(int regno,unsigned long value)1089 static void lguest_set_debugreg(int regno, unsigned long value)
1090 {
1091 	/* FIXME: Implement */
1092 }
1093 
1094 /*
1095  * There are times when the kernel wants to make sure that no memory writes are
1096  * caught in the cache (that they've all reached real hardware devices).  This
1097  * doesn't matter for the Guest which has virtual hardware.
1098  *
1099  * On the Pentium 4 and above, cpuid() indicates that the Cache Line Flush
1100  * (clflush) instruction is available and the kernel uses that.  Otherwise, it
1101  * uses the older "Write Back and Invalidate Cache" (wbinvd) instruction.
1102  * Unlike clflush, wbinvd can only be run at privilege level 0.  So we can
1103  * ignore clflush, but replace wbinvd.
1104  */
lguest_wbinvd(void)1105 static void lguest_wbinvd(void)
1106 {
1107 }
1108 
1109 /*
1110  * If the Guest expects to have an Advanced Programmable Interrupt Controller,
1111  * we play dumb by ignoring writes and returning 0 for reads.  So it's no
1112  * longer Programmable nor Controlling anything, and I don't think 8 lines of
1113  * code qualifies for Advanced.  It will also never interrupt anything.  It
1114  * does, however, allow us to get through the Linux boot code.
1115  */
1116 #ifdef CONFIG_X86_LOCAL_APIC
lguest_apic_write(u32 reg,u32 v)1117 static void lguest_apic_write(u32 reg, u32 v)
1118 {
1119 }
1120 
lguest_apic_read(u32 reg)1121 static u32 lguest_apic_read(u32 reg)
1122 {
1123 	return 0;
1124 }
1125 
lguest_apic_icr_read(void)1126 static u64 lguest_apic_icr_read(void)
1127 {
1128 	return 0;
1129 }
1130 
lguest_apic_icr_write(u32 low,u32 id)1131 static void lguest_apic_icr_write(u32 low, u32 id)
1132 {
1133 	/* Warn to see if there's any stray references */
1134 	WARN_ON(1);
1135 }
1136 
lguest_apic_wait_icr_idle(void)1137 static void lguest_apic_wait_icr_idle(void)
1138 {
1139 	return;
1140 }
1141 
lguest_apic_safe_wait_icr_idle(void)1142 static u32 lguest_apic_safe_wait_icr_idle(void)
1143 {
1144 	return 0;
1145 }
1146 
set_lguest_basic_apic_ops(void)1147 static void set_lguest_basic_apic_ops(void)
1148 {
1149 	apic->read = lguest_apic_read;
1150 	apic->write = lguest_apic_write;
1151 	apic->icr_read = lguest_apic_icr_read;
1152 	apic->icr_write = lguest_apic_icr_write;
1153 	apic->wait_icr_idle = lguest_apic_wait_icr_idle;
1154 	apic->safe_wait_icr_idle = lguest_apic_safe_wait_icr_idle;
1155 };
1156 #endif
1157 
1158 /* STOP!  Until an interrupt comes in. */
lguest_safe_halt(void)1159 static void lguest_safe_halt(void)
1160 {
1161 	hcall(LHCALL_HALT, 0, 0, 0, 0);
1162 }
1163 
1164 /*
1165  * The SHUTDOWN hypercall takes a string to describe what's happening, and
1166  * an argument which says whether this to restart (reboot) the Guest or not.
1167  *
1168  * Note that the Host always prefers that the Guest speak in physical addresses
1169  * rather than virtual addresses, so we use __pa() here.
1170  */
lguest_power_off(void)1171 static void lguest_power_off(void)
1172 {
1173 	hcall(LHCALL_SHUTDOWN, __pa("Power down"),
1174 	      LGUEST_SHUTDOWN_POWEROFF, 0, 0);
1175 }
1176 
1177 /*
1178  * Panicing.
1179  *
1180  * Don't.  But if you did, this is what happens.
1181  */
lguest_panic(struct notifier_block * nb,unsigned long l,void * p)1182 static int lguest_panic(struct notifier_block *nb, unsigned long l, void *p)
1183 {
1184 	hcall(LHCALL_SHUTDOWN, __pa(p), LGUEST_SHUTDOWN_POWEROFF, 0, 0);
1185 	/* The hcall won't return, but to keep gcc happy, we're "done". */
1186 	return NOTIFY_DONE;
1187 }
1188 
1189 static struct notifier_block paniced = {
1190 	.notifier_call = lguest_panic
1191 };
1192 
1193 /* Setting up memory is fairly easy. */
lguest_memory_setup(void)1194 static __init char *lguest_memory_setup(void)
1195 {
1196 	/*
1197 	 * The Linux bootloader header contains an "e820" memory map: the
1198 	 * Launcher populated the first entry with our memory limit.
1199 	 */
1200 	e820_add_region(boot_params.e820_map[0].addr,
1201 			  boot_params.e820_map[0].size,
1202 			  boot_params.e820_map[0].type);
1203 
1204 	/* This string is for the boot messages. */
1205 	return "LGUEST";
1206 }
1207 
1208 /* Offset within PCI config space of BAR access capability. */
1209 static int console_cfg_offset = 0;
1210 static int console_access_cap;
1211 
1212 /* Set up so that we access off in bar0 (on bus 0, device 1, function 0) */
set_cfg_window(u32 cfg_offset,u32 off)1213 static void set_cfg_window(u32 cfg_offset, u32 off)
1214 {
1215 	write_pci_config_byte(0, 1, 0,
1216 			      cfg_offset + offsetof(struct virtio_pci_cap, bar),
1217 			      0);
1218 	write_pci_config(0, 1, 0,
1219 			 cfg_offset + offsetof(struct virtio_pci_cap, length),
1220 			 4);
1221 	write_pci_config(0, 1, 0,
1222 			 cfg_offset + offsetof(struct virtio_pci_cap, offset),
1223 			 off);
1224 }
1225 
write_bar_via_cfg(u32 cfg_offset,u32 off,u32 val)1226 static void write_bar_via_cfg(u32 cfg_offset, u32 off, u32 val)
1227 {
1228 	/*
1229 	 * We could set this up once, then leave it; nothing else in the *
1230 	 * kernel should touch these registers.  But if it went wrong, that
1231 	 * would be a horrible bug to find.
1232 	 */
1233 	set_cfg_window(cfg_offset, off);
1234 	write_pci_config(0, 1, 0,
1235 			 cfg_offset + sizeof(struct virtio_pci_cap), val);
1236 }
1237 
probe_pci_console(void)1238 static void probe_pci_console(void)
1239 {
1240 	u8 cap, common_cap = 0, device_cap = 0;
1241 	/* Offset within BAR0 */
1242 	u32 device_offset;
1243 	u32 device_len;
1244 
1245 	/* Avoid recursive printk into here. */
1246 	console_cfg_offset = -1;
1247 
1248 	if (!early_pci_allowed()) {
1249 		printk(KERN_ERR "lguest: early PCI access not allowed!\n");
1250 		return;
1251 	}
1252 
1253 	/* We expect a console PCI device at BUS0, slot 1. */
1254 	if (read_pci_config(0, 1, 0, 0) != 0x10431AF4) {
1255 		printk(KERN_ERR "lguest: PCI device is %#x!\n",
1256 		       read_pci_config(0, 1, 0, 0));
1257 		return;
1258 	}
1259 
1260 	/* Find the capabilities we need (must be in bar0) */
1261 	cap = read_pci_config_byte(0, 1, 0, PCI_CAPABILITY_LIST);
1262 	while (cap) {
1263 		u8 vndr = read_pci_config_byte(0, 1, 0, cap);
1264 		if (vndr == PCI_CAP_ID_VNDR) {
1265 			u8 type, bar;
1266 			u32 offset, length;
1267 
1268 			type = read_pci_config_byte(0, 1, 0,
1269 			    cap + offsetof(struct virtio_pci_cap, cfg_type));
1270 			bar = read_pci_config_byte(0, 1, 0,
1271 			    cap + offsetof(struct virtio_pci_cap, bar));
1272 			offset = read_pci_config(0, 1, 0,
1273 			    cap + offsetof(struct virtio_pci_cap, offset));
1274 			length = read_pci_config(0, 1, 0,
1275 			    cap + offsetof(struct virtio_pci_cap, length));
1276 
1277 			switch (type) {
1278 			case VIRTIO_PCI_CAP_DEVICE_CFG:
1279 				if (bar == 0) {
1280 					device_cap = cap;
1281 					device_offset = offset;
1282 					device_len = length;
1283 				}
1284 				break;
1285 			case VIRTIO_PCI_CAP_PCI_CFG:
1286 				console_access_cap = cap;
1287 				break;
1288 			}
1289 		}
1290 		cap = read_pci_config_byte(0, 1, 0, cap + PCI_CAP_LIST_NEXT);
1291 	}
1292 	if (!device_cap || !console_access_cap) {
1293 		printk(KERN_ERR "lguest: No caps (%u/%u/%u) in console!\n",
1294 		       common_cap, device_cap, console_access_cap);
1295 		return;
1296 	}
1297 
1298 	/*
1299 	 * Note that we can't check features, until we've set the DRIVER
1300 	 * status bit.  We don't want to do that until we have a real driver,
1301 	 * so we just check that the device-specific config has room for
1302 	 * emerg_wr.  If it doesn't support VIRTIO_CONSOLE_F_EMERG_WRITE
1303 	 * it should ignore the access.
1304 	 */
1305 	if (device_len < (offsetof(struct virtio_console_config, emerg_wr)
1306 			  + sizeof(u32))) {
1307 		printk(KERN_ERR "lguest: console missing emerg_wr field\n");
1308 		return;
1309 	}
1310 
1311 	console_cfg_offset = device_offset;
1312 	printk(KERN_INFO "lguest: Console via virtio-pci emerg_wr\n");
1313 }
1314 
1315 /*
1316  * We will eventually use the virtio console device to produce console output,
1317  * but before that is set up we use the virtio PCI console's backdoor mmio
1318  * access and the "emergency" write facility (which is legal even before the
1319  * device is configured).
1320  */
early_put_chars(u32 vtermno,const char * buf,int count)1321 static __init int early_put_chars(u32 vtermno, const char *buf, int count)
1322 {
1323 	/* If we couldn't find PCI console, forget it. */
1324 	if (console_cfg_offset < 0)
1325 		return count;
1326 
1327 	if (unlikely(!console_cfg_offset)) {
1328 		probe_pci_console();
1329 		if (console_cfg_offset < 0)
1330 			return count;
1331 	}
1332 
1333 	write_bar_via_cfg(console_access_cap,
1334 			  console_cfg_offset
1335 			  + offsetof(struct virtio_console_config, emerg_wr),
1336 			  buf[0]);
1337 	return 1;
1338 }
1339 
1340 /*
1341  * Rebooting also tells the Host we're finished, but the RESTART flag tells the
1342  * Launcher to reboot us.
1343  */
lguest_restart(char * reason)1344 static void lguest_restart(char *reason)
1345 {
1346 	hcall(LHCALL_SHUTDOWN, __pa(reason), LGUEST_SHUTDOWN_RESTART, 0, 0);
1347 }
1348 
1349 /*G:050
1350  * Patching (Powerfully Placating Performance Pedants)
1351  *
1352  * We have already seen that pv_ops structures let us replace simple native
1353  * instructions with calls to the appropriate back end all throughout the
1354  * kernel.  This allows the same kernel to run as a Guest and as a native
1355  * kernel, but it's slow because of all the indirect branches.
1356  *
1357  * Remember that David Wheeler quote about "Any problem in computer science can
1358  * be solved with another layer of indirection"?  The rest of that quote is
1359  * "... But that usually will create another problem."  This is the first of
1360  * those problems.
1361  *
1362  * Our current solution is to allow the paravirt back end to optionally patch
1363  * over the indirect calls to replace them with something more efficient.  We
1364  * patch two of the simplest of the most commonly called functions: disable
1365  * interrupts and save interrupts.  We usually have 6 or 10 bytes to patch
1366  * into: the Guest versions of these operations are small enough that we can
1367  * fit comfortably.
1368  *
1369  * First we need assembly templates of each of the patchable Guest operations,
1370  * and these are in head_32.S.
1371  */
1372 
1373 /*G:060 We construct a table from the assembler templates: */
1374 static const struct lguest_insns
1375 {
1376 	const char *start, *end;
1377 } lguest_insns[] = {
1378 	[PARAVIRT_PATCH(pv_irq_ops.irq_disable)] = { lgstart_cli, lgend_cli },
1379 	[PARAVIRT_PATCH(pv_irq_ops.save_fl)] = { lgstart_pushf, lgend_pushf },
1380 };
1381 
1382 /*
1383  * Now our patch routine is fairly simple (based on the native one in
1384  * paravirt.c).  If we have a replacement, we copy it in and return how much of
1385  * the available space we used.
1386  */
lguest_patch(u8 type,u16 clobber,void * ibuf,unsigned long addr,unsigned len)1387 static unsigned lguest_patch(u8 type, u16 clobber, void *ibuf,
1388 			     unsigned long addr, unsigned len)
1389 {
1390 	unsigned int insn_len;
1391 
1392 	/* Don't do anything special if we don't have a replacement */
1393 	if (type >= ARRAY_SIZE(lguest_insns) || !lguest_insns[type].start)
1394 		return paravirt_patch_default(type, clobber, ibuf, addr, len);
1395 
1396 	insn_len = lguest_insns[type].end - lguest_insns[type].start;
1397 
1398 	/* Similarly if it can't fit (doesn't happen, but let's be thorough). */
1399 	if (len < insn_len)
1400 		return paravirt_patch_default(type, clobber, ibuf, addr, len);
1401 
1402 	/* Copy in our instructions. */
1403 	memcpy(ibuf, lguest_insns[type].start, insn_len);
1404 	return insn_len;
1405 }
1406 
1407 /*G:029
1408  * Once we get to lguest_init(), we know we're a Guest.  The various
1409  * pv_ops structures in the kernel provide points for (almost) every routine we
1410  * have to override to avoid privileged instructions.
1411  */
lguest_init(void)1412 __init void lguest_init(void)
1413 {
1414 	/* We're under lguest. */
1415 	pv_info.name = "lguest";
1416 	/* Paravirt is enabled. */
1417 	pv_info.paravirt_enabled = 1;
1418 	/* We're running at privilege level 1, not 0 as normal. */
1419 	pv_info.kernel_rpl = 1;
1420 	/* Everyone except Xen runs with this set. */
1421 	pv_info.shared_kernel_pmd = 1;
1422 
1423 	/*
1424 	 * We set up all the lguest overrides for sensitive operations.  These
1425 	 * are detailed with the operations themselves.
1426 	 */
1427 
1428 	/* Interrupt-related operations */
1429 	pv_irq_ops.save_fl = PV_CALLEE_SAVE(lguest_save_fl);
1430 	pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(lg_restore_fl);
1431 	pv_irq_ops.irq_disable = PV_CALLEE_SAVE(lguest_irq_disable);
1432 	pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(lg_irq_enable);
1433 	pv_irq_ops.safe_halt = lguest_safe_halt;
1434 
1435 	/* Setup operations */
1436 	pv_init_ops.patch = lguest_patch;
1437 
1438 	/* Intercepts of various CPU instructions */
1439 	pv_cpu_ops.load_gdt = lguest_load_gdt;
1440 	pv_cpu_ops.cpuid = lguest_cpuid;
1441 	pv_cpu_ops.load_idt = lguest_load_idt;
1442 	pv_cpu_ops.iret = lguest_iret;
1443 	pv_cpu_ops.load_sp0 = lguest_load_sp0;
1444 	pv_cpu_ops.load_tr_desc = lguest_load_tr_desc;
1445 	pv_cpu_ops.set_ldt = lguest_set_ldt;
1446 	pv_cpu_ops.load_tls = lguest_load_tls;
1447 	pv_cpu_ops.get_debugreg = lguest_get_debugreg;
1448 	pv_cpu_ops.set_debugreg = lguest_set_debugreg;
1449 	pv_cpu_ops.clts = lguest_clts;
1450 	pv_cpu_ops.read_cr0 = lguest_read_cr0;
1451 	pv_cpu_ops.write_cr0 = lguest_write_cr0;
1452 	pv_cpu_ops.read_cr4 = lguest_read_cr4;
1453 	pv_cpu_ops.write_cr4 = lguest_write_cr4;
1454 	pv_cpu_ops.write_gdt_entry = lguest_write_gdt_entry;
1455 	pv_cpu_ops.write_idt_entry = lguest_write_idt_entry;
1456 	pv_cpu_ops.wbinvd = lguest_wbinvd;
1457 	pv_cpu_ops.start_context_switch = paravirt_start_context_switch;
1458 	pv_cpu_ops.end_context_switch = lguest_end_context_switch;
1459 
1460 	/* Pagetable management */
1461 	pv_mmu_ops.write_cr3 = lguest_write_cr3;
1462 	pv_mmu_ops.flush_tlb_user = lguest_flush_tlb_user;
1463 	pv_mmu_ops.flush_tlb_single = lguest_flush_tlb_single;
1464 	pv_mmu_ops.flush_tlb_kernel = lguest_flush_tlb_kernel;
1465 	pv_mmu_ops.set_pte = lguest_set_pte;
1466 	pv_mmu_ops.set_pte_at = lguest_set_pte_at;
1467 	pv_mmu_ops.set_pmd = lguest_set_pmd;
1468 #ifdef CONFIG_X86_PAE
1469 	pv_mmu_ops.set_pte_atomic = lguest_set_pte_atomic;
1470 	pv_mmu_ops.pte_clear = lguest_pte_clear;
1471 	pv_mmu_ops.pmd_clear = lguest_pmd_clear;
1472 	pv_mmu_ops.set_pud = lguest_set_pud;
1473 #endif
1474 	pv_mmu_ops.read_cr2 = lguest_read_cr2;
1475 	pv_mmu_ops.read_cr3 = lguest_read_cr3;
1476 	pv_mmu_ops.lazy_mode.enter = paravirt_enter_lazy_mmu;
1477 	pv_mmu_ops.lazy_mode.leave = lguest_leave_lazy_mmu_mode;
1478 	pv_mmu_ops.lazy_mode.flush = paravirt_flush_lazy_mmu;
1479 	pv_mmu_ops.pte_update = lguest_pte_update;
1480 	pv_mmu_ops.pte_update_defer = lguest_pte_update;
1481 
1482 #ifdef CONFIG_X86_LOCAL_APIC
1483 	/* APIC read/write intercepts */
1484 	set_lguest_basic_apic_ops();
1485 #endif
1486 
1487 	x86_init.resources.memory_setup = lguest_memory_setup;
1488 	x86_init.irqs.intr_init = lguest_init_IRQ;
1489 	x86_init.timers.timer_init = lguest_time_init;
1490 	x86_platform.calibrate_tsc = lguest_tsc_khz;
1491 	x86_platform.get_wallclock =  lguest_get_wallclock;
1492 
1493 	/*
1494 	 * Now is a good time to look at the implementations of these functions
1495 	 * before returning to the rest of lguest_init().
1496 	 */
1497 
1498 	/*G:070
1499 	 * Now we've seen all the paravirt_ops, we return to
1500 	 * lguest_init() where the rest of the fairly chaotic boot setup
1501 	 * occurs.
1502 	 */
1503 
1504 	/*
1505 	 * The stack protector is a weird thing where gcc places a canary
1506 	 * value on the stack and then checks it on return.  This file is
1507 	 * compiled with -fno-stack-protector it, so we got this far without
1508 	 * problems.  The value of the canary is kept at offset 20 from the
1509 	 * %gs register, so we need to set that up before calling C functions
1510 	 * in other files.
1511 	 */
1512 	setup_stack_canary_segment(0);
1513 
1514 	/*
1515 	 * We could just call load_stack_canary_segment(), but we might as well
1516 	 * call switch_to_new_gdt() which loads the whole table and sets up the
1517 	 * per-cpu segment descriptor register %fs as well.
1518 	 */
1519 	switch_to_new_gdt(0);
1520 
1521 	/*
1522 	 * The Host<->Guest Switcher lives at the top of our address space, and
1523 	 * the Host told us how big it is when we made LGUEST_INIT hypercall:
1524 	 * it put the answer in lguest_data.reserve_mem
1525 	 */
1526 	reserve_top_address(lguest_data.reserve_mem);
1527 
1528 	/*
1529 	 * If we don't initialize the lock dependency checker now, it crashes
1530 	 * atomic_notifier_chain_register, then paravirt_disable_iospace.
1531 	 */
1532 	lockdep_init();
1533 
1534 	/* Hook in our special panic hypercall code. */
1535 	atomic_notifier_chain_register(&panic_notifier_list, &paniced);
1536 
1537 	/*
1538 	 * This is messy CPU setup stuff which the native boot code does before
1539 	 * start_kernel, so we have to do, too:
1540 	 */
1541 	cpu_detect(&new_cpu_data);
1542 	/* head.S usually sets up the first capability word, so do it here. */
1543 	new_cpu_data.x86_capability[0] = cpuid_edx(1);
1544 
1545 	/* Math is always hard! */
1546 	set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1547 
1548 	/* We don't have features.  We have puppies!  Puppies! */
1549 #ifdef CONFIG_X86_MCE
1550 	mca_cfg.disabled = true;
1551 #endif
1552 #ifdef CONFIG_ACPI
1553 	acpi_disabled = 1;
1554 #endif
1555 
1556 	/*
1557 	 * We set the preferred console to "hvc".  This is the "hypervisor
1558 	 * virtual console" driver written by the PowerPC people, which we also
1559 	 * adapted for lguest's use.
1560 	 */
1561 	add_preferred_console("hvc", 0, NULL);
1562 
1563 	/* Register our very early console. */
1564 	virtio_cons_early_init(early_put_chars);
1565 
1566 	/* Don't let ACPI try to control our PCI interrupts. */
1567 	disable_acpi();
1568 
1569 	/* We control them ourselves, by overriding these two hooks. */
1570 	pcibios_enable_irq = lguest_enable_irq;
1571 	pcibios_disable_irq = lguest_disable_irq;
1572 
1573 	/*
1574 	 * Last of all, we set the power management poweroff hook to point to
1575 	 * the Guest routine to power off, and the reboot hook to our restart
1576 	 * routine.
1577 	 */
1578 	pm_power_off = lguest_power_off;
1579 	machine_ops.restart = lguest_restart;
1580 
1581 	/*
1582 	 * Now we're set up, call i386_start_kernel() in head32.c and we proceed
1583 	 * to boot as normal.  It never returns.
1584 	 */
1585 	i386_start_kernel();
1586 }
1587 /*
1588  * This marks the end of stage II of our journey, The Guest.
1589  *
1590  * It is now time for us to explore the layer of virtual drivers and complete
1591  * our understanding of the Guest in "make Drivers".
1592  */
1593