1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3#include <linux/kernel.h>
4#include <linux/sched.h>
5#include <linux/init.h>
6#include <linux/module.h>
7#include <linux/timer.h>
8#include <linux/acpi_pmtmr.h>
9#include <linux/cpufreq.h>
10#include <linux/delay.h>
11#include <linux/clocksource.h>
12#include <linux/percpu.h>
13#include <linux/timex.h>
14#include <linux/static_key.h>
15
16#include <asm/hpet.h>
17#include <asm/timer.h>
18#include <asm/vgtod.h>
19#include <asm/time.h>
20#include <asm/delay.h>
21#include <asm/hypervisor.h>
22#include <asm/nmi.h>
23#include <asm/x86_init.h>
24#include <asm/geode.h>
25
26unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
27EXPORT_SYMBOL(cpu_khz);
28
29unsigned int __read_mostly tsc_khz;
30EXPORT_SYMBOL(tsc_khz);
31
32/*
33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
34 */
35static int __read_mostly tsc_unstable;
36
37/* native_sched_clock() is called before tsc_init(), so
38   we must start with the TSC soft disabled to prevent
39   erroneous rdtsc usage on !cpu_has_tsc processors */
40static int __read_mostly tsc_disabled = -1;
41
42static struct static_key __use_tsc = STATIC_KEY_INIT;
43
44int tsc_clocksource_reliable;
45
46/*
47 * Use a ring-buffer like data structure, where a writer advances the head by
48 * writing a new data entry and a reader advances the tail when it observes a
49 * new entry.
50 *
51 * Writers are made to wait on readers until there's space to write a new
52 * entry.
53 *
54 * This means that we can always use an {offset, mul} pair to compute a ns
55 * value that is 'roughly' in the right direction, even if we're writing a new
56 * {offset, mul} pair during the clock read.
57 *
58 * The down-side is that we can no longer guarantee strict monotonicity anymore
59 * (assuming the TSC was that to begin with), because while we compute the
60 * intersection point of the two clock slopes and make sure the time is
61 * continuous at the point of switching; we can no longer guarantee a reader is
62 * strictly before or after the switch point.
63 *
64 * It does mean a reader no longer needs to disable IRQs in order to avoid
65 * CPU-Freq updates messing with his times, and similarly an NMI reader will
66 * no longer run the risk of hitting half-written state.
67 */
68
69struct cyc2ns {
70	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
71	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
72	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
73}; /* exactly fits one cacheline */
74
75static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
76
77struct cyc2ns_data *cyc2ns_read_begin(void)
78{
79	struct cyc2ns_data *head;
80
81	preempt_disable();
82
83	head = this_cpu_read(cyc2ns.head);
84	/*
85	 * Ensure we observe the entry when we observe the pointer to it.
86	 * matches the wmb from cyc2ns_write_end().
87	 */
88	smp_read_barrier_depends();
89	head->__count++;
90	barrier();
91
92	return head;
93}
94
95void cyc2ns_read_end(struct cyc2ns_data *head)
96{
97	barrier();
98	/*
99	 * If we're the outer most nested read; update the tail pointer
100	 * when we're done. This notifies possible pending writers
101	 * that we've observed the head pointer and that the other
102	 * entry is now free.
103	 */
104	if (!--head->__count) {
105		/*
106		 * x86-TSO does not reorder writes with older reads;
107		 * therefore once this write becomes visible to another
108		 * cpu, we must be finished reading the cyc2ns_data.
109		 *
110		 * matches with cyc2ns_write_begin().
111		 */
112		this_cpu_write(cyc2ns.tail, head);
113	}
114	preempt_enable();
115}
116
117/*
118 * Begin writing a new @data entry for @cpu.
119 *
120 * Assumes some sort of write side lock; currently 'provided' by the assumption
121 * that cpufreq will call its notifiers sequentially.
122 */
123static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
124{
125	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
126	struct cyc2ns_data *data = c2n->data;
127
128	if (data == c2n->head)
129		data++;
130
131	/* XXX send an IPI to @cpu in order to guarantee a read? */
132
133	/*
134	 * When we observe the tail write from cyc2ns_read_end(),
135	 * the cpu must be done with that entry and its safe
136	 * to start writing to it.
137	 */
138	while (c2n->tail == data)
139		cpu_relax();
140
141	return data;
142}
143
144static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
145{
146	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
147
148	/*
149	 * Ensure the @data writes are visible before we publish the
150	 * entry. Matches the data-depencency in cyc2ns_read_begin().
151	 */
152	smp_wmb();
153
154	ACCESS_ONCE(c2n->head) = data;
155}
156
157/*
158 * Accelerators for sched_clock()
159 * convert from cycles(64bits) => nanoseconds (64bits)
160 *  basic equation:
161 *              ns = cycles / (freq / ns_per_sec)
162 *              ns = cycles * (ns_per_sec / freq)
163 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
164 *              ns = cycles * (10^6 / cpu_khz)
165 *
166 *      Then we use scaling math (suggested by george@mvista.com) to get:
167 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
168 *              ns = cycles * cyc2ns_scale / SC
169 *
170 *      And since SC is a constant power of two, we can convert the div
171 *  into a shift.
172 *
173 *  We can use khz divisor instead of mhz to keep a better precision, since
174 *  cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
175 *  (mathieu.desnoyers@polymtl.ca)
176 *
177 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
178 */
179
180#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
181
182static void cyc2ns_data_init(struct cyc2ns_data *data)
183{
184	data->cyc2ns_mul = 0;
185	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
186	data->cyc2ns_offset = 0;
187	data->__count = 0;
188}
189
190static void cyc2ns_init(int cpu)
191{
192	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
193
194	cyc2ns_data_init(&c2n->data[0]);
195	cyc2ns_data_init(&c2n->data[1]);
196
197	c2n->head = c2n->data;
198	c2n->tail = c2n->data;
199}
200
201static inline unsigned long long cycles_2_ns(unsigned long long cyc)
202{
203	struct cyc2ns_data *data, *tail;
204	unsigned long long ns;
205
206	/*
207	 * See cyc2ns_read_*() for details; replicated in order to avoid
208	 * an extra few instructions that came with the abstraction.
209	 * Notable, it allows us to only do the __count and tail update
210	 * dance when its actually needed.
211	 */
212
213	preempt_disable_notrace();
214	data = this_cpu_read(cyc2ns.head);
215	tail = this_cpu_read(cyc2ns.tail);
216
217	if (likely(data == tail)) {
218		ns = data->cyc2ns_offset;
219		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
220	} else {
221		data->__count++;
222
223		barrier();
224
225		ns = data->cyc2ns_offset;
226		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
227
228		barrier();
229
230		if (!--data->__count)
231			this_cpu_write(cyc2ns.tail, data);
232	}
233	preempt_enable_notrace();
234
235	return ns;
236}
237
238static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
239{
240	unsigned long long tsc_now, ns_now;
241	struct cyc2ns_data *data;
242	unsigned long flags;
243
244	local_irq_save(flags);
245	sched_clock_idle_sleep_event();
246
247	if (!cpu_khz)
248		goto done;
249
250	data = cyc2ns_write_begin(cpu);
251
252	rdtscll(tsc_now);
253	ns_now = cycles_2_ns(tsc_now);
254
255	/*
256	 * Compute a new multiplier as per the above comment and ensure our
257	 * time function is continuous; see the comment near struct
258	 * cyc2ns_data.
259	 */
260	data->cyc2ns_mul =
261		DIV_ROUND_CLOSEST(NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR,
262				  cpu_khz);
263	data->cyc2ns_shift = CYC2NS_SCALE_FACTOR;
264	data->cyc2ns_offset = ns_now -
265		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, CYC2NS_SCALE_FACTOR);
266
267	cyc2ns_write_end(cpu, data);
268
269done:
270	sched_clock_idle_wakeup_event(0);
271	local_irq_restore(flags);
272}
273/*
274 * Scheduler clock - returns current time in nanosec units.
275 */
276u64 native_sched_clock(void)
277{
278	u64 tsc_now;
279
280	/*
281	 * Fall back to jiffies if there's no TSC available:
282	 * ( But note that we still use it if the TSC is marked
283	 *   unstable. We do this because unlike Time Of Day,
284	 *   the scheduler clock tolerates small errors and it's
285	 *   very important for it to be as fast as the platform
286	 *   can achieve it. )
287	 */
288	if (!static_key_false(&__use_tsc)) {
289		/* No locking but a rare wrong value is not a big deal: */
290		return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
291	}
292
293	/* read the Time Stamp Counter: */
294	rdtscll(tsc_now);
295
296	/* return the value in ns */
297	return cycles_2_ns(tsc_now);
298}
299
300/* We need to define a real function for sched_clock, to override the
301   weak default version */
302#ifdef CONFIG_PARAVIRT
303unsigned long long sched_clock(void)
304{
305	return paravirt_sched_clock();
306}
307#else
308unsigned long long
309sched_clock(void) __attribute__((alias("native_sched_clock")));
310#endif
311
312unsigned long long native_read_tsc(void)
313{
314	return __native_read_tsc();
315}
316EXPORT_SYMBOL(native_read_tsc);
317
318int check_tsc_unstable(void)
319{
320	return tsc_unstable;
321}
322EXPORT_SYMBOL_GPL(check_tsc_unstable);
323
324int check_tsc_disabled(void)
325{
326	return tsc_disabled;
327}
328EXPORT_SYMBOL_GPL(check_tsc_disabled);
329
330#ifdef CONFIG_X86_TSC
331int __init notsc_setup(char *str)
332{
333	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
334	tsc_disabled = 1;
335	return 1;
336}
337#else
338/*
339 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
340 * in cpu/common.c
341 */
342int __init notsc_setup(char *str)
343{
344	setup_clear_cpu_cap(X86_FEATURE_TSC);
345	return 1;
346}
347#endif
348
349__setup("notsc", notsc_setup);
350
351static int no_sched_irq_time;
352
353static int __init tsc_setup(char *str)
354{
355	if (!strcmp(str, "reliable"))
356		tsc_clocksource_reliable = 1;
357	if (!strncmp(str, "noirqtime", 9))
358		no_sched_irq_time = 1;
359	return 1;
360}
361
362__setup("tsc=", tsc_setup);
363
364#define MAX_RETRIES     5
365#define SMI_TRESHOLD    50000
366
367/*
368 * Read TSC and the reference counters. Take care of SMI disturbance
369 */
370static u64 tsc_read_refs(u64 *p, int hpet)
371{
372	u64 t1, t2;
373	int i;
374
375	for (i = 0; i < MAX_RETRIES; i++) {
376		t1 = get_cycles();
377		if (hpet)
378			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
379		else
380			*p = acpi_pm_read_early();
381		t2 = get_cycles();
382		if ((t2 - t1) < SMI_TRESHOLD)
383			return t2;
384	}
385	return ULLONG_MAX;
386}
387
388/*
389 * Calculate the TSC frequency from HPET reference
390 */
391static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
392{
393	u64 tmp;
394
395	if (hpet2 < hpet1)
396		hpet2 += 0x100000000ULL;
397	hpet2 -= hpet1;
398	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
399	do_div(tmp, 1000000);
400	do_div(deltatsc, tmp);
401
402	return (unsigned long) deltatsc;
403}
404
405/*
406 * Calculate the TSC frequency from PMTimer reference
407 */
408static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
409{
410	u64 tmp;
411
412	if (!pm1 && !pm2)
413		return ULONG_MAX;
414
415	if (pm2 < pm1)
416		pm2 += (u64)ACPI_PM_OVRRUN;
417	pm2 -= pm1;
418	tmp = pm2 * 1000000000LL;
419	do_div(tmp, PMTMR_TICKS_PER_SEC);
420	do_div(deltatsc, tmp);
421
422	return (unsigned long) deltatsc;
423}
424
425#define CAL_MS		10
426#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
427#define CAL_PIT_LOOPS	1000
428
429#define CAL2_MS		50
430#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
431#define CAL2_PIT_LOOPS	5000
432
433
434/*
435 * Try to calibrate the TSC against the Programmable
436 * Interrupt Timer and return the frequency of the TSC
437 * in kHz.
438 *
439 * Return ULONG_MAX on failure to calibrate.
440 */
441static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
442{
443	u64 tsc, t1, t2, delta;
444	unsigned long tscmin, tscmax;
445	int pitcnt;
446
447	/* Set the Gate high, disable speaker */
448	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
449
450	/*
451	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
452	 * count mode), binary count. Set the latch register to 50ms
453	 * (LSB then MSB) to begin countdown.
454	 */
455	outb(0xb0, 0x43);
456	outb(latch & 0xff, 0x42);
457	outb(latch >> 8, 0x42);
458
459	tsc = t1 = t2 = get_cycles();
460
461	pitcnt = 0;
462	tscmax = 0;
463	tscmin = ULONG_MAX;
464	while ((inb(0x61) & 0x20) == 0) {
465		t2 = get_cycles();
466		delta = t2 - tsc;
467		tsc = t2;
468		if ((unsigned long) delta < tscmin)
469			tscmin = (unsigned int) delta;
470		if ((unsigned long) delta > tscmax)
471			tscmax = (unsigned int) delta;
472		pitcnt++;
473	}
474
475	/*
476	 * Sanity checks:
477	 *
478	 * If we were not able to read the PIT more than loopmin
479	 * times, then we have been hit by a massive SMI
480	 *
481	 * If the maximum is 10 times larger than the minimum,
482	 * then we got hit by an SMI as well.
483	 */
484	if (pitcnt < loopmin || tscmax > 10 * tscmin)
485		return ULONG_MAX;
486
487	/* Calculate the PIT value */
488	delta = t2 - t1;
489	do_div(delta, ms);
490	return delta;
491}
492
493/*
494 * This reads the current MSB of the PIT counter, and
495 * checks if we are running on sufficiently fast and
496 * non-virtualized hardware.
497 *
498 * Our expectations are:
499 *
500 *  - the PIT is running at roughly 1.19MHz
501 *
502 *  - each IO is going to take about 1us on real hardware,
503 *    but we allow it to be much faster (by a factor of 10) or
504 *    _slightly_ slower (ie we allow up to a 2us read+counter
505 *    update - anything else implies a unacceptably slow CPU
506 *    or PIT for the fast calibration to work.
507 *
508 *  - with 256 PIT ticks to read the value, we have 214us to
509 *    see the same MSB (and overhead like doing a single TSC
510 *    read per MSB value etc).
511 *
512 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
513 *    them each to take about a microsecond on real hardware.
514 *    So we expect a count value of around 100. But we'll be
515 *    generous, and accept anything over 50.
516 *
517 *  - if the PIT is stuck, and we see *many* more reads, we
518 *    return early (and the next caller of pit_expect_msb()
519 *    then consider it a failure when they don't see the
520 *    next expected value).
521 *
522 * These expectations mean that we know that we have seen the
523 * transition from one expected value to another with a fairly
524 * high accuracy, and we didn't miss any events. We can thus
525 * use the TSC value at the transitions to calculate a pretty
526 * good value for the TSC frequencty.
527 */
528static inline int pit_verify_msb(unsigned char val)
529{
530	/* Ignore LSB */
531	inb(0x42);
532	return inb(0x42) == val;
533}
534
535static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
536{
537	int count;
538	u64 tsc = 0, prev_tsc = 0;
539
540	for (count = 0; count < 50000; count++) {
541		if (!pit_verify_msb(val))
542			break;
543		prev_tsc = tsc;
544		tsc = get_cycles();
545	}
546	*deltap = get_cycles() - prev_tsc;
547	*tscp = tsc;
548
549	/*
550	 * We require _some_ success, but the quality control
551	 * will be based on the error terms on the TSC values.
552	 */
553	return count > 5;
554}
555
556/*
557 * How many MSB values do we want to see? We aim for
558 * a maximum error rate of 500ppm (in practice the
559 * real error is much smaller), but refuse to spend
560 * more than 50ms on it.
561 */
562#define MAX_QUICK_PIT_MS 50
563#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
564
565static unsigned long quick_pit_calibrate(void)
566{
567	int i;
568	u64 tsc, delta;
569	unsigned long d1, d2;
570
571	/* Set the Gate high, disable speaker */
572	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
573
574	/*
575	 * Counter 2, mode 0 (one-shot), binary count
576	 *
577	 * NOTE! Mode 2 decrements by two (and then the
578	 * output is flipped each time, giving the same
579	 * final output frequency as a decrement-by-one),
580	 * so mode 0 is much better when looking at the
581	 * individual counts.
582	 */
583	outb(0xb0, 0x43);
584
585	/* Start at 0xffff */
586	outb(0xff, 0x42);
587	outb(0xff, 0x42);
588
589	/*
590	 * The PIT starts counting at the next edge, so we
591	 * need to delay for a microsecond. The easiest way
592	 * to do that is to just read back the 16-bit counter
593	 * once from the PIT.
594	 */
595	pit_verify_msb(0);
596
597	if (pit_expect_msb(0xff, &tsc, &d1)) {
598		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
599			if (!pit_expect_msb(0xff-i, &delta, &d2))
600				break;
601
602			/*
603			 * Iterate until the error is less than 500 ppm
604			 */
605			delta -= tsc;
606			if (d1+d2 >= delta >> 11)
607				continue;
608
609			/*
610			 * Check the PIT one more time to verify that
611			 * all TSC reads were stable wrt the PIT.
612			 *
613			 * This also guarantees serialization of the
614			 * last cycle read ('d2') in pit_expect_msb.
615			 */
616			if (!pit_verify_msb(0xfe - i))
617				break;
618			goto success;
619		}
620	}
621	pr_info("Fast TSC calibration failed\n");
622	return 0;
623
624success:
625	/*
626	 * Ok, if we get here, then we've seen the
627	 * MSB of the PIT decrement 'i' times, and the
628	 * error has shrunk to less than 500 ppm.
629	 *
630	 * As a result, we can depend on there not being
631	 * any odd delays anywhere, and the TSC reads are
632	 * reliable (within the error).
633	 *
634	 * kHz = ticks / time-in-seconds / 1000;
635	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
636	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
637	 */
638	delta *= PIT_TICK_RATE;
639	do_div(delta, i*256*1000);
640	pr_info("Fast TSC calibration using PIT\n");
641	return delta;
642}
643
644/**
645 * native_calibrate_tsc - calibrate the tsc on boot
646 */
647unsigned long native_calibrate_tsc(void)
648{
649	u64 tsc1, tsc2, delta, ref1, ref2;
650	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
651	unsigned long flags, latch, ms, fast_calibrate;
652	int hpet = is_hpet_enabled(), i, loopmin;
653
654	/* Calibrate TSC using MSR for Intel Atom SoCs */
655	local_irq_save(flags);
656	fast_calibrate = try_msr_calibrate_tsc();
657	local_irq_restore(flags);
658	if (fast_calibrate)
659		return fast_calibrate;
660
661	local_irq_save(flags);
662	fast_calibrate = quick_pit_calibrate();
663	local_irq_restore(flags);
664	if (fast_calibrate)
665		return fast_calibrate;
666
667	/*
668	 * Run 5 calibration loops to get the lowest frequency value
669	 * (the best estimate). We use two different calibration modes
670	 * here:
671	 *
672	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
673	 * load a timeout of 50ms. We read the time right after we
674	 * started the timer and wait until the PIT count down reaches
675	 * zero. In each wait loop iteration we read the TSC and check
676	 * the delta to the previous read. We keep track of the min
677	 * and max values of that delta. The delta is mostly defined
678	 * by the IO time of the PIT access, so we can detect when a
679	 * SMI/SMM disturbance happened between the two reads. If the
680	 * maximum time is significantly larger than the minimum time,
681	 * then we discard the result and have another try.
682	 *
683	 * 2) Reference counter. If available we use the HPET or the
684	 * PMTIMER as a reference to check the sanity of that value.
685	 * We use separate TSC readouts and check inside of the
686	 * reference read for a SMI/SMM disturbance. We dicard
687	 * disturbed values here as well. We do that around the PIT
688	 * calibration delay loop as we have to wait for a certain
689	 * amount of time anyway.
690	 */
691
692	/* Preset PIT loop values */
693	latch = CAL_LATCH;
694	ms = CAL_MS;
695	loopmin = CAL_PIT_LOOPS;
696
697	for (i = 0; i < 3; i++) {
698		unsigned long tsc_pit_khz;
699
700		/*
701		 * Read the start value and the reference count of
702		 * hpet/pmtimer when available. Then do the PIT
703		 * calibration, which will take at least 50ms, and
704		 * read the end value.
705		 */
706		local_irq_save(flags);
707		tsc1 = tsc_read_refs(&ref1, hpet);
708		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
709		tsc2 = tsc_read_refs(&ref2, hpet);
710		local_irq_restore(flags);
711
712		/* Pick the lowest PIT TSC calibration so far */
713		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
714
715		/* hpet or pmtimer available ? */
716		if (ref1 == ref2)
717			continue;
718
719		/* Check, whether the sampling was disturbed by an SMI */
720		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
721			continue;
722
723		tsc2 = (tsc2 - tsc1) * 1000000LL;
724		if (hpet)
725			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
726		else
727			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
728
729		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
730
731		/* Check the reference deviation */
732		delta = ((u64) tsc_pit_min) * 100;
733		do_div(delta, tsc_ref_min);
734
735		/*
736		 * If both calibration results are inside a 10% window
737		 * then we can be sure, that the calibration
738		 * succeeded. We break out of the loop right away. We
739		 * use the reference value, as it is more precise.
740		 */
741		if (delta >= 90 && delta <= 110) {
742			pr_info("PIT calibration matches %s. %d loops\n",
743				hpet ? "HPET" : "PMTIMER", i + 1);
744			return tsc_ref_min;
745		}
746
747		/*
748		 * Check whether PIT failed more than once. This
749		 * happens in virtualized environments. We need to
750		 * give the virtual PC a slightly longer timeframe for
751		 * the HPET/PMTIMER to make the result precise.
752		 */
753		if (i == 1 && tsc_pit_min == ULONG_MAX) {
754			latch = CAL2_LATCH;
755			ms = CAL2_MS;
756			loopmin = CAL2_PIT_LOOPS;
757		}
758	}
759
760	/*
761	 * Now check the results.
762	 */
763	if (tsc_pit_min == ULONG_MAX) {
764		/* PIT gave no useful value */
765		pr_warn("Unable to calibrate against PIT\n");
766
767		/* We don't have an alternative source, disable TSC */
768		if (!hpet && !ref1 && !ref2) {
769			pr_notice("No reference (HPET/PMTIMER) available\n");
770			return 0;
771		}
772
773		/* The alternative source failed as well, disable TSC */
774		if (tsc_ref_min == ULONG_MAX) {
775			pr_warn("HPET/PMTIMER calibration failed\n");
776			return 0;
777		}
778
779		/* Use the alternative source */
780		pr_info("using %s reference calibration\n",
781			hpet ? "HPET" : "PMTIMER");
782
783		return tsc_ref_min;
784	}
785
786	/* We don't have an alternative source, use the PIT calibration value */
787	if (!hpet && !ref1 && !ref2) {
788		pr_info("Using PIT calibration value\n");
789		return tsc_pit_min;
790	}
791
792	/* The alternative source failed, use the PIT calibration value */
793	if (tsc_ref_min == ULONG_MAX) {
794		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
795		return tsc_pit_min;
796	}
797
798	/*
799	 * The calibration values differ too much. In doubt, we use
800	 * the PIT value as we know that there are PMTIMERs around
801	 * running at double speed. At least we let the user know:
802	 */
803	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
804		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
805	pr_info("Using PIT calibration value\n");
806	return tsc_pit_min;
807}
808
809int recalibrate_cpu_khz(void)
810{
811#ifndef CONFIG_SMP
812	unsigned long cpu_khz_old = cpu_khz;
813
814	if (cpu_has_tsc) {
815		tsc_khz = x86_platform.calibrate_tsc();
816		cpu_khz = tsc_khz;
817		cpu_data(0).loops_per_jiffy =
818			cpufreq_scale(cpu_data(0).loops_per_jiffy,
819					cpu_khz_old, cpu_khz);
820		return 0;
821	} else
822		return -ENODEV;
823#else
824	return -ENODEV;
825#endif
826}
827
828EXPORT_SYMBOL(recalibrate_cpu_khz);
829
830
831static unsigned long long cyc2ns_suspend;
832
833void tsc_save_sched_clock_state(void)
834{
835	if (!sched_clock_stable())
836		return;
837
838	cyc2ns_suspend = sched_clock();
839}
840
841/*
842 * Even on processors with invariant TSC, TSC gets reset in some the
843 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
844 * arbitrary value (still sync'd across cpu's) during resume from such sleep
845 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
846 * that sched_clock() continues from the point where it was left off during
847 * suspend.
848 */
849void tsc_restore_sched_clock_state(void)
850{
851	unsigned long long offset;
852	unsigned long flags;
853	int cpu;
854
855	if (!sched_clock_stable())
856		return;
857
858	local_irq_save(flags);
859
860	/*
861	 * We're comming out of suspend, there's no concurrency yet; don't
862	 * bother being nice about the RCU stuff, just write to both
863	 * data fields.
864	 */
865
866	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
867	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
868
869	offset = cyc2ns_suspend - sched_clock();
870
871	for_each_possible_cpu(cpu) {
872		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
873		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
874	}
875
876	local_irq_restore(flags);
877}
878
879#ifdef CONFIG_CPU_FREQ
880
881/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
882 * changes.
883 *
884 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
885 * not that important because current Opteron setups do not support
886 * scaling on SMP anyroads.
887 *
888 * Should fix up last_tsc too. Currently gettimeofday in the
889 * first tick after the change will be slightly wrong.
890 */
891
892static unsigned int  ref_freq;
893static unsigned long loops_per_jiffy_ref;
894static unsigned long tsc_khz_ref;
895
896static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
897				void *data)
898{
899	struct cpufreq_freqs *freq = data;
900	unsigned long *lpj;
901
902	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
903		return 0;
904
905	lpj = &boot_cpu_data.loops_per_jiffy;
906#ifdef CONFIG_SMP
907	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
908		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
909#endif
910
911	if (!ref_freq) {
912		ref_freq = freq->old;
913		loops_per_jiffy_ref = *lpj;
914		tsc_khz_ref = tsc_khz;
915	}
916	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
917			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
918		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
919
920		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
921		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
922			mark_tsc_unstable("cpufreq changes");
923
924		set_cyc2ns_scale(tsc_khz, freq->cpu);
925	}
926
927	return 0;
928}
929
930static struct notifier_block time_cpufreq_notifier_block = {
931	.notifier_call  = time_cpufreq_notifier
932};
933
934static int __init cpufreq_tsc(void)
935{
936	if (!cpu_has_tsc)
937		return 0;
938	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
939		return 0;
940	cpufreq_register_notifier(&time_cpufreq_notifier_block,
941				CPUFREQ_TRANSITION_NOTIFIER);
942	return 0;
943}
944
945core_initcall(cpufreq_tsc);
946
947#endif /* CONFIG_CPU_FREQ */
948
949/* clocksource code */
950
951static struct clocksource clocksource_tsc;
952
953/*
954 * We used to compare the TSC to the cycle_last value in the clocksource
955 * structure to avoid a nasty time-warp. This can be observed in a
956 * very small window right after one CPU updated cycle_last under
957 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
958 * is smaller than the cycle_last reference value due to a TSC which
959 * is slighty behind. This delta is nowhere else observable, but in
960 * that case it results in a forward time jump in the range of hours
961 * due to the unsigned delta calculation of the time keeping core
962 * code, which is necessary to support wrapping clocksources like pm
963 * timer.
964 *
965 * This sanity check is now done in the core timekeeping code.
966 * checking the result of read_tsc() - cycle_last for being negative.
967 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
968 */
969static cycle_t read_tsc(struct clocksource *cs)
970{
971	return (cycle_t)get_cycles();
972}
973
974/*
975 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
976 */
977static struct clocksource clocksource_tsc = {
978	.name                   = "tsc",
979	.rating                 = 300,
980	.read                   = read_tsc,
981	.mask                   = CLOCKSOURCE_MASK(64),
982	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
983				  CLOCK_SOURCE_MUST_VERIFY,
984	.archdata               = { .vclock_mode = VCLOCK_TSC },
985};
986
987void mark_tsc_unstable(char *reason)
988{
989	if (!tsc_unstable) {
990		tsc_unstable = 1;
991		clear_sched_clock_stable();
992		disable_sched_clock_irqtime();
993		pr_info("Marking TSC unstable due to %s\n", reason);
994		/* Change only the rating, when not registered */
995		if (clocksource_tsc.mult)
996			clocksource_mark_unstable(&clocksource_tsc);
997		else {
998			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
999			clocksource_tsc.rating = 0;
1000		}
1001	}
1002}
1003
1004EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1005
1006static void __init check_system_tsc_reliable(void)
1007{
1008#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1009	if (is_geode_lx()) {
1010		/* RTSC counts during suspend */
1011#define RTSC_SUSP 0x100
1012		unsigned long res_low, res_high;
1013
1014		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1015		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1016		if (res_low & RTSC_SUSP)
1017			tsc_clocksource_reliable = 1;
1018	}
1019#endif
1020	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1021		tsc_clocksource_reliable = 1;
1022}
1023
1024/*
1025 * Make an educated guess if the TSC is trustworthy and synchronized
1026 * over all CPUs.
1027 */
1028int unsynchronized_tsc(void)
1029{
1030	if (!cpu_has_tsc || tsc_unstable)
1031		return 1;
1032
1033#ifdef CONFIG_SMP
1034	if (apic_is_clustered_box())
1035		return 1;
1036#endif
1037
1038	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1039		return 0;
1040
1041	if (tsc_clocksource_reliable)
1042		return 0;
1043	/*
1044	 * Intel systems are normally all synchronized.
1045	 * Exceptions must mark TSC as unstable:
1046	 */
1047	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1048		/* assume multi socket systems are not synchronized: */
1049		if (num_possible_cpus() > 1)
1050			return 1;
1051	}
1052
1053	return 0;
1054}
1055
1056
1057static void tsc_refine_calibration_work(struct work_struct *work);
1058static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1059/**
1060 * tsc_refine_calibration_work - Further refine tsc freq calibration
1061 * @work - ignored.
1062 *
1063 * This functions uses delayed work over a period of a
1064 * second to further refine the TSC freq value. Since this is
1065 * timer based, instead of loop based, we don't block the boot
1066 * process while this longer calibration is done.
1067 *
1068 * If there are any calibration anomalies (too many SMIs, etc),
1069 * or the refined calibration is off by 1% of the fast early
1070 * calibration, we throw out the new calibration and use the
1071 * early calibration.
1072 */
1073static void tsc_refine_calibration_work(struct work_struct *work)
1074{
1075	static u64 tsc_start = -1, ref_start;
1076	static int hpet;
1077	u64 tsc_stop, ref_stop, delta;
1078	unsigned long freq;
1079
1080	/* Don't bother refining TSC on unstable systems */
1081	if (check_tsc_unstable())
1082		goto out;
1083
1084	/*
1085	 * Since the work is started early in boot, we may be
1086	 * delayed the first time we expire. So set the workqueue
1087	 * again once we know timers are working.
1088	 */
1089	if (tsc_start == -1) {
1090		/*
1091		 * Only set hpet once, to avoid mixing hardware
1092		 * if the hpet becomes enabled later.
1093		 */
1094		hpet = is_hpet_enabled();
1095		schedule_delayed_work(&tsc_irqwork, HZ);
1096		tsc_start = tsc_read_refs(&ref_start, hpet);
1097		return;
1098	}
1099
1100	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1101
1102	/* hpet or pmtimer available ? */
1103	if (ref_start == ref_stop)
1104		goto out;
1105
1106	/* Check, whether the sampling was disturbed by an SMI */
1107	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1108		goto out;
1109
1110	delta = tsc_stop - tsc_start;
1111	delta *= 1000000LL;
1112	if (hpet)
1113		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1114	else
1115		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1116
1117	/* Make sure we're within 1% */
1118	if (abs(tsc_khz - freq) > tsc_khz/100)
1119		goto out;
1120
1121	tsc_khz = freq;
1122	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1123		(unsigned long)tsc_khz / 1000,
1124		(unsigned long)tsc_khz % 1000);
1125
1126out:
1127	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1128}
1129
1130
1131static int __init init_tsc_clocksource(void)
1132{
1133	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1134		return 0;
1135
1136	if (tsc_clocksource_reliable)
1137		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1138	/* lower the rating if we already know its unstable: */
1139	if (check_tsc_unstable()) {
1140		clocksource_tsc.rating = 0;
1141		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1142	}
1143
1144	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1145		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1146
1147	/*
1148	 * Trust the results of the earlier calibration on systems
1149	 * exporting a reliable TSC.
1150	 */
1151	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
1152		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1153		return 0;
1154	}
1155
1156	schedule_delayed_work(&tsc_irqwork, 0);
1157	return 0;
1158}
1159/*
1160 * We use device_initcall here, to ensure we run after the hpet
1161 * is fully initialized, which may occur at fs_initcall time.
1162 */
1163device_initcall(init_tsc_clocksource);
1164
1165void __init tsc_init(void)
1166{
1167	u64 lpj;
1168	int cpu;
1169
1170	x86_init.timers.tsc_pre_init();
1171
1172	if (!cpu_has_tsc) {
1173		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1174		return;
1175	}
1176
1177	tsc_khz = x86_platform.calibrate_tsc();
1178	cpu_khz = tsc_khz;
1179
1180	if (!tsc_khz) {
1181		mark_tsc_unstable("could not calculate TSC khz");
1182		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1183		return;
1184	}
1185
1186	pr_info("Detected %lu.%03lu MHz processor\n",
1187		(unsigned long)cpu_khz / 1000,
1188		(unsigned long)cpu_khz % 1000);
1189
1190	/*
1191	 * Secondary CPUs do not run through tsc_init(), so set up
1192	 * all the scale factors for all CPUs, assuming the same
1193	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1194	 * up if their speed diverges)
1195	 */
1196	for_each_possible_cpu(cpu) {
1197		cyc2ns_init(cpu);
1198		set_cyc2ns_scale(cpu_khz, cpu);
1199	}
1200
1201	if (tsc_disabled > 0)
1202		return;
1203
1204	/* now allow native_sched_clock() to use rdtsc */
1205
1206	tsc_disabled = 0;
1207	static_key_slow_inc(&__use_tsc);
1208
1209	if (!no_sched_irq_time)
1210		enable_sched_clock_irqtime();
1211
1212	lpj = ((u64)tsc_khz * 1000);
1213	do_div(lpj, HZ);
1214	lpj_fine = lpj;
1215
1216	use_tsc_delay();
1217
1218	if (unsynchronized_tsc())
1219		mark_tsc_unstable("TSCs unsynchronized");
1220
1221	check_system_tsc_reliable();
1222}
1223
1224#ifdef CONFIG_SMP
1225/*
1226 * If we have a constant TSC and are using the TSC for the delay loop,
1227 * we can skip clock calibration if another cpu in the same socket has already
1228 * been calibrated. This assumes that CONSTANT_TSC applies to all
1229 * cpus in the socket - this should be a safe assumption.
1230 */
1231unsigned long calibrate_delay_is_known(void)
1232{
1233	int i, cpu = smp_processor_id();
1234
1235	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1236		return 0;
1237
1238	for_each_online_cpu(i)
1239		if (cpu_data(i).phys_proc_id == cpu_data(cpu).phys_proc_id)
1240			return cpu_data(i).loops_per_jiffy;
1241	return 0;
1242}
1243#endif
1244