1 /*
2  *  Copyright (C) 1994 Linus Torvalds
3  *
4  *  Pentium III FXSR, SSE support
5  *  General FPU state handling cleanups
6  *	Gareth Hughes <gareth@valinux.com>, May 2000
7  */
8 #include <linux/module.h>
9 #include <linux/regset.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 
13 #include <asm/sigcontext.h>
14 #include <asm/processor.h>
15 #include <asm/math_emu.h>
16 #include <asm/tlbflush.h>
17 #include <asm/uaccess.h>
18 #include <asm/ptrace.h>
19 #include <asm/i387.h>
20 #include <asm/fpu-internal.h>
21 #include <asm/user.h>
22 
23 static DEFINE_PER_CPU(bool, in_kernel_fpu);
24 
kernel_fpu_disable(void)25 void kernel_fpu_disable(void)
26 {
27 	WARN_ON(this_cpu_read(in_kernel_fpu));
28 	this_cpu_write(in_kernel_fpu, true);
29 }
30 
kernel_fpu_enable(void)31 void kernel_fpu_enable(void)
32 {
33 	this_cpu_write(in_kernel_fpu, false);
34 }
35 
36 /*
37  * Were we in an interrupt that interrupted kernel mode?
38  *
39  * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
40  * pair does nothing at all: the thread must not have fpu (so
41  * that we don't try to save the FPU state), and TS must
42  * be set (so that the clts/stts pair does nothing that is
43  * visible in the interrupted kernel thread).
44  *
45  * Except for the eagerfpu case when we return true; in the likely case
46  * the thread has FPU but we are not going to set/clear TS.
47  */
interrupted_kernel_fpu_idle(void)48 static inline bool interrupted_kernel_fpu_idle(void)
49 {
50 	if (this_cpu_read(in_kernel_fpu))
51 		return false;
52 
53 	if (use_eager_fpu())
54 		return true;
55 
56 	return !__thread_has_fpu(current) &&
57 		(read_cr0() & X86_CR0_TS);
58 }
59 
60 /*
61  * Were we in user mode (or vm86 mode) when we were
62  * interrupted?
63  *
64  * Doing kernel_fpu_begin/end() is ok if we are running
65  * in an interrupt context from user mode - we'll just
66  * save the FPU state as required.
67  */
interrupted_user_mode(void)68 static inline bool interrupted_user_mode(void)
69 {
70 	struct pt_regs *regs = get_irq_regs();
71 	return regs && user_mode(regs);
72 }
73 
74 /*
75  * Can we use the FPU in kernel mode with the
76  * whole "kernel_fpu_begin/end()" sequence?
77  *
78  * It's always ok in process context (ie "not interrupt")
79  * but it is sometimes ok even from an irq.
80  */
irq_fpu_usable(void)81 bool irq_fpu_usable(void)
82 {
83 	return !in_interrupt() ||
84 		interrupted_user_mode() ||
85 		interrupted_kernel_fpu_idle();
86 }
87 EXPORT_SYMBOL(irq_fpu_usable);
88 
__kernel_fpu_begin(void)89 void __kernel_fpu_begin(void)
90 {
91 	struct task_struct *me = current;
92 
93 	this_cpu_write(in_kernel_fpu, true);
94 
95 	if (__thread_has_fpu(me)) {
96 		__save_init_fpu(me);
97 	} else {
98 		this_cpu_write(fpu_owner_task, NULL);
99 		if (!use_eager_fpu())
100 			clts();
101 	}
102 }
103 EXPORT_SYMBOL(__kernel_fpu_begin);
104 
__kernel_fpu_end(void)105 void __kernel_fpu_end(void)
106 {
107 	struct task_struct *me = current;
108 
109 	if (__thread_has_fpu(me)) {
110 		if (WARN_ON(restore_fpu_checking(me)))
111 			fpu_reset_state(me);
112 	} else if (!use_eager_fpu()) {
113 		stts();
114 	}
115 
116 	this_cpu_write(in_kernel_fpu, false);
117 }
118 EXPORT_SYMBOL(__kernel_fpu_end);
119 
unlazy_fpu(struct task_struct * tsk)120 void unlazy_fpu(struct task_struct *tsk)
121 {
122 	preempt_disable();
123 	if (__thread_has_fpu(tsk)) {
124 		if (use_eager_fpu()) {
125 			__save_fpu(tsk);
126 		} else {
127 			__save_init_fpu(tsk);
128 			__thread_fpu_end(tsk);
129 		}
130 	}
131 	preempt_enable();
132 }
133 EXPORT_SYMBOL(unlazy_fpu);
134 
135 unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
136 unsigned int xstate_size;
137 EXPORT_SYMBOL_GPL(xstate_size);
138 static struct i387_fxsave_struct fx_scratch;
139 
mxcsr_feature_mask_init(void)140 static void mxcsr_feature_mask_init(void)
141 {
142 	unsigned long mask = 0;
143 
144 	if (cpu_has_fxsr) {
145 		memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
146 		asm volatile("fxsave %0" : "+m" (fx_scratch));
147 		mask = fx_scratch.mxcsr_mask;
148 		if (mask == 0)
149 			mask = 0x0000ffbf;
150 	}
151 	mxcsr_feature_mask &= mask;
152 }
153 
init_thread_xstate(void)154 static void init_thread_xstate(void)
155 {
156 	/*
157 	 * Note that xstate_size might be overwriten later during
158 	 * xsave_init().
159 	 */
160 
161 	if (!cpu_has_fpu) {
162 		/*
163 		 * Disable xsave as we do not support it if i387
164 		 * emulation is enabled.
165 		 */
166 		setup_clear_cpu_cap(X86_FEATURE_XSAVE);
167 		setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
168 		xstate_size = sizeof(struct i387_soft_struct);
169 		return;
170 	}
171 
172 	if (cpu_has_fxsr)
173 		xstate_size = sizeof(struct i387_fxsave_struct);
174 	else
175 		xstate_size = sizeof(struct i387_fsave_struct);
176 
177 	/*
178 	 * Quirk: we don't yet handle the XSAVES* instructions
179 	 * correctly, as we don't correctly convert between
180 	 * standard and compacted format when interfacing
181 	 * with user-space - so disable it for now.
182 	 *
183 	 * The difference is small: with recent CPUs the
184 	 * compacted format is only marginally smaller than
185 	 * the standard FPU state format.
186 	 *
187 	 * ( This is easy to backport while we are fixing
188 	 *   XSAVES* support. )
189 	 */
190 	setup_clear_cpu_cap(X86_FEATURE_XSAVES);
191 }
192 
193 /*
194  * Called at bootup to set up the initial FPU state that is later cloned
195  * into all processes.
196  */
197 
fpu_init(void)198 void fpu_init(void)
199 {
200 	unsigned long cr0;
201 	unsigned long cr4_mask = 0;
202 
203 #ifndef CONFIG_MATH_EMULATION
204 	if (!cpu_has_fpu) {
205 		pr_emerg("No FPU found and no math emulation present\n");
206 		pr_emerg("Giving up\n");
207 		for (;;)
208 			asm volatile("hlt");
209 	}
210 #endif
211 	if (cpu_has_fxsr)
212 		cr4_mask |= X86_CR4_OSFXSR;
213 	if (cpu_has_xmm)
214 		cr4_mask |= X86_CR4_OSXMMEXCPT;
215 	if (cr4_mask)
216 		cr4_set_bits(cr4_mask);
217 
218 	cr0 = read_cr0();
219 	cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
220 	if (!cpu_has_fpu)
221 		cr0 |= X86_CR0_EM;
222 	write_cr0(cr0);
223 
224 	/*
225 	 * init_thread_xstate is only called once to avoid overriding
226 	 * xstate_size during boot time or during CPU hotplug.
227 	 */
228 	if (xstate_size == 0)
229 		init_thread_xstate();
230 
231 	mxcsr_feature_mask_init();
232 	xsave_init();
233 	eager_fpu_init();
234 }
235 
fpu_finit(struct fpu * fpu)236 void fpu_finit(struct fpu *fpu)
237 {
238 	if (!cpu_has_fpu) {
239 		finit_soft_fpu(&fpu->state->soft);
240 		return;
241 	}
242 
243 	memset(fpu->state, 0, xstate_size);
244 
245 	if (cpu_has_fxsr) {
246 		fx_finit(&fpu->state->fxsave);
247 	} else {
248 		struct i387_fsave_struct *fp = &fpu->state->fsave;
249 		fp->cwd = 0xffff037fu;
250 		fp->swd = 0xffff0000u;
251 		fp->twd = 0xffffffffu;
252 		fp->fos = 0xffff0000u;
253 	}
254 }
255 EXPORT_SYMBOL_GPL(fpu_finit);
256 
257 /*
258  * The _current_ task is using the FPU for the first time
259  * so initialize it and set the mxcsr to its default
260  * value at reset if we support XMM instructions and then
261  * remember the current task has used the FPU.
262  */
init_fpu(struct task_struct * tsk)263 int init_fpu(struct task_struct *tsk)
264 {
265 	int ret;
266 
267 	if (tsk_used_math(tsk)) {
268 		if (cpu_has_fpu && tsk == current)
269 			unlazy_fpu(tsk);
270 		task_disable_lazy_fpu_restore(tsk);
271 		return 0;
272 	}
273 
274 	/*
275 	 * Memory allocation at the first usage of the FPU and other state.
276 	 */
277 	ret = fpu_alloc(&tsk->thread.fpu);
278 	if (ret)
279 		return ret;
280 
281 	fpu_finit(&tsk->thread.fpu);
282 
283 	set_stopped_child_used_math(tsk);
284 	return 0;
285 }
286 EXPORT_SYMBOL_GPL(init_fpu);
287 
288 /*
289  * The xstateregs_active() routine is the same as the fpregs_active() routine,
290  * as the "regset->n" for the xstate regset will be updated based on the feature
291  * capabilites supported by the xsave.
292  */
fpregs_active(struct task_struct * target,const struct user_regset * regset)293 int fpregs_active(struct task_struct *target, const struct user_regset *regset)
294 {
295 	return tsk_used_math(target) ? regset->n : 0;
296 }
297 
xfpregs_active(struct task_struct * target,const struct user_regset * regset)298 int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
299 {
300 	return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
301 }
302 
xfpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)303 int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
304 		unsigned int pos, unsigned int count,
305 		void *kbuf, void __user *ubuf)
306 {
307 	int ret;
308 
309 	if (!cpu_has_fxsr)
310 		return -ENODEV;
311 
312 	ret = init_fpu(target);
313 	if (ret)
314 		return ret;
315 
316 	sanitize_i387_state(target);
317 
318 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
319 				   &target->thread.fpu.state->fxsave, 0, -1);
320 }
321 
xfpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)322 int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
323 		unsigned int pos, unsigned int count,
324 		const void *kbuf, const void __user *ubuf)
325 {
326 	int ret;
327 
328 	if (!cpu_has_fxsr)
329 		return -ENODEV;
330 
331 	ret = init_fpu(target);
332 	if (ret)
333 		return ret;
334 
335 	sanitize_i387_state(target);
336 
337 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
338 				 &target->thread.fpu.state->fxsave, 0, -1);
339 
340 	/*
341 	 * mxcsr reserved bits must be masked to zero for security reasons.
342 	 */
343 	target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
344 
345 	/*
346 	 * update the header bits in the xsave header, indicating the
347 	 * presence of FP and SSE state.
348 	 */
349 	if (cpu_has_xsave)
350 		target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
351 
352 	return ret;
353 }
354 
xstateregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)355 int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
356 		unsigned int pos, unsigned int count,
357 		void *kbuf, void __user *ubuf)
358 {
359 	struct xsave_struct *xsave;
360 	int ret;
361 
362 	if (!cpu_has_xsave)
363 		return -ENODEV;
364 
365 	ret = init_fpu(target);
366 	if (ret)
367 		return ret;
368 
369 	xsave = &target->thread.fpu.state->xsave;
370 
371 	/*
372 	 * Copy the 48bytes defined by the software first into the xstate
373 	 * memory layout in the thread struct, so that we can copy the entire
374 	 * xstateregs to the user using one user_regset_copyout().
375 	 */
376 	memcpy(&xsave->i387.sw_reserved,
377 		xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
378 	/*
379 	 * Copy the xstate memory layout.
380 	 */
381 	ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
382 	return ret;
383 }
384 
xstateregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)385 int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
386 		  unsigned int pos, unsigned int count,
387 		  const void *kbuf, const void __user *ubuf)
388 {
389 	struct xsave_struct *xsave;
390 	int ret;
391 
392 	if (!cpu_has_xsave)
393 		return -ENODEV;
394 
395 	ret = init_fpu(target);
396 	if (ret)
397 		return ret;
398 
399 	xsave = &target->thread.fpu.state->xsave;
400 
401 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, xsave, 0, -1);
402 	/*
403 	 * mxcsr reserved bits must be masked to zero for security reasons.
404 	 */
405 	xsave->i387.mxcsr &= mxcsr_feature_mask;
406 	xsave->xsave_hdr.xstate_bv &= pcntxt_mask;
407 	/*
408 	 * These bits must be zero.
409 	 */
410 	memset(&xsave->xsave_hdr.reserved, 0, 48);
411 	return ret;
412 }
413 
414 #if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
415 
416 /*
417  * FPU tag word conversions.
418  */
419 
twd_i387_to_fxsr(unsigned short twd)420 static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
421 {
422 	unsigned int tmp; /* to avoid 16 bit prefixes in the code */
423 
424 	/* Transform each pair of bits into 01 (valid) or 00 (empty) */
425 	tmp = ~twd;
426 	tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
427 	/* and move the valid bits to the lower byte. */
428 	tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
429 	tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
430 	tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
431 
432 	return tmp;
433 }
434 
435 #define FPREG_ADDR(f, n)	((void *)&(f)->st_space + (n) * 16)
436 #define FP_EXP_TAG_VALID	0
437 #define FP_EXP_TAG_ZERO		1
438 #define FP_EXP_TAG_SPECIAL	2
439 #define FP_EXP_TAG_EMPTY	3
440 
twd_fxsr_to_i387(struct i387_fxsave_struct * fxsave)441 static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
442 {
443 	struct _fpxreg *st;
444 	u32 tos = (fxsave->swd >> 11) & 7;
445 	u32 twd = (unsigned long) fxsave->twd;
446 	u32 tag;
447 	u32 ret = 0xffff0000u;
448 	int i;
449 
450 	for (i = 0; i < 8; i++, twd >>= 1) {
451 		if (twd & 0x1) {
452 			st = FPREG_ADDR(fxsave, (i - tos) & 7);
453 
454 			switch (st->exponent & 0x7fff) {
455 			case 0x7fff:
456 				tag = FP_EXP_TAG_SPECIAL;
457 				break;
458 			case 0x0000:
459 				if (!st->significand[0] &&
460 				    !st->significand[1] &&
461 				    !st->significand[2] &&
462 				    !st->significand[3])
463 					tag = FP_EXP_TAG_ZERO;
464 				else
465 					tag = FP_EXP_TAG_SPECIAL;
466 				break;
467 			default:
468 				if (st->significand[3] & 0x8000)
469 					tag = FP_EXP_TAG_VALID;
470 				else
471 					tag = FP_EXP_TAG_SPECIAL;
472 				break;
473 			}
474 		} else {
475 			tag = FP_EXP_TAG_EMPTY;
476 		}
477 		ret |= tag << (2 * i);
478 	}
479 	return ret;
480 }
481 
482 /*
483  * FXSR floating point environment conversions.
484  */
485 
486 void
convert_from_fxsr(struct user_i387_ia32_struct * env,struct task_struct * tsk)487 convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
488 {
489 	struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
490 	struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
491 	struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
492 	int i;
493 
494 	env->cwd = fxsave->cwd | 0xffff0000u;
495 	env->swd = fxsave->swd | 0xffff0000u;
496 	env->twd = twd_fxsr_to_i387(fxsave);
497 
498 #ifdef CONFIG_X86_64
499 	env->fip = fxsave->rip;
500 	env->foo = fxsave->rdp;
501 	/*
502 	 * should be actually ds/cs at fpu exception time, but
503 	 * that information is not available in 64bit mode.
504 	 */
505 	env->fcs = task_pt_regs(tsk)->cs;
506 	if (tsk == current) {
507 		savesegment(ds, env->fos);
508 	} else {
509 		env->fos = tsk->thread.ds;
510 	}
511 	env->fos |= 0xffff0000;
512 #else
513 	env->fip = fxsave->fip;
514 	env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
515 	env->foo = fxsave->foo;
516 	env->fos = fxsave->fos;
517 #endif
518 
519 	for (i = 0; i < 8; ++i)
520 		memcpy(&to[i], &from[i], sizeof(to[0]));
521 }
522 
convert_to_fxsr(struct task_struct * tsk,const struct user_i387_ia32_struct * env)523 void convert_to_fxsr(struct task_struct *tsk,
524 		     const struct user_i387_ia32_struct *env)
525 
526 {
527 	struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
528 	struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
529 	struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
530 	int i;
531 
532 	fxsave->cwd = env->cwd;
533 	fxsave->swd = env->swd;
534 	fxsave->twd = twd_i387_to_fxsr(env->twd);
535 	fxsave->fop = (u16) ((u32) env->fcs >> 16);
536 #ifdef CONFIG_X86_64
537 	fxsave->rip = env->fip;
538 	fxsave->rdp = env->foo;
539 	/* cs and ds ignored */
540 #else
541 	fxsave->fip = env->fip;
542 	fxsave->fcs = (env->fcs & 0xffff);
543 	fxsave->foo = env->foo;
544 	fxsave->fos = env->fos;
545 #endif
546 
547 	for (i = 0; i < 8; ++i)
548 		memcpy(&to[i], &from[i], sizeof(from[0]));
549 }
550 
fpregs_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)551 int fpregs_get(struct task_struct *target, const struct user_regset *regset,
552 	       unsigned int pos, unsigned int count,
553 	       void *kbuf, void __user *ubuf)
554 {
555 	struct user_i387_ia32_struct env;
556 	int ret;
557 
558 	ret = init_fpu(target);
559 	if (ret)
560 		return ret;
561 
562 	if (!static_cpu_has(X86_FEATURE_FPU))
563 		return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
564 
565 	if (!cpu_has_fxsr)
566 		return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
567 					   &target->thread.fpu.state->fsave, 0,
568 					   -1);
569 
570 	sanitize_i387_state(target);
571 
572 	if (kbuf && pos == 0 && count == sizeof(env)) {
573 		convert_from_fxsr(kbuf, target);
574 		return 0;
575 	}
576 
577 	convert_from_fxsr(&env, target);
578 
579 	return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
580 }
581 
fpregs_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)582 int fpregs_set(struct task_struct *target, const struct user_regset *regset,
583 	       unsigned int pos, unsigned int count,
584 	       const void *kbuf, const void __user *ubuf)
585 {
586 	struct user_i387_ia32_struct env;
587 	int ret;
588 
589 	ret = init_fpu(target);
590 	if (ret)
591 		return ret;
592 
593 	sanitize_i387_state(target);
594 
595 	if (!static_cpu_has(X86_FEATURE_FPU))
596 		return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
597 
598 	if (!cpu_has_fxsr)
599 		return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
600 					  &target->thread.fpu.state->fsave, 0,
601 					  -1);
602 
603 	if (pos > 0 || count < sizeof(env))
604 		convert_from_fxsr(&env, target);
605 
606 	ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
607 	if (!ret)
608 		convert_to_fxsr(target, &env);
609 
610 	/*
611 	 * update the header bit in the xsave header, indicating the
612 	 * presence of FP.
613 	 */
614 	if (cpu_has_xsave)
615 		target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
616 	return ret;
617 }
618 
619 /*
620  * FPU state for core dumps.
621  * This is only used for a.out dumps now.
622  * It is declared generically using elf_fpregset_t (which is
623  * struct user_i387_struct) but is in fact only used for 32-bit
624  * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
625  */
dump_fpu(struct pt_regs * regs,struct user_i387_struct * fpu)626 int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
627 {
628 	struct task_struct *tsk = current;
629 	int fpvalid;
630 
631 	fpvalid = !!used_math();
632 	if (fpvalid)
633 		fpvalid = !fpregs_get(tsk, NULL,
634 				      0, sizeof(struct user_i387_ia32_struct),
635 				      fpu, NULL);
636 
637 	return fpvalid;
638 }
639 EXPORT_SYMBOL(dump_fpu);
640 
641 #endif	/* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
642 
no_387(char * s)643 static int __init no_387(char *s)
644 {
645 	setup_clear_cpu_cap(X86_FEATURE_FPU);
646 	return 1;
647 }
648 
649 __setup("no387", no_387);
650 
fpu_detect(struct cpuinfo_x86 * c)651 void fpu_detect(struct cpuinfo_x86 *c)
652 {
653 	unsigned long cr0;
654 	u16 fsw, fcw;
655 
656 	fsw = fcw = 0xffff;
657 
658 	cr0 = read_cr0();
659 	cr0 &= ~(X86_CR0_TS | X86_CR0_EM);
660 	write_cr0(cr0);
661 
662 	asm volatile("fninit ; fnstsw %0 ; fnstcw %1"
663 		     : "+m" (fsw), "+m" (fcw));
664 
665 	if (fsw == 0 && (fcw & 0x103f) == 0x003f)
666 		set_cpu_cap(c, X86_FEATURE_FPU);
667 	else
668 		clear_cpu_cap(c, X86_FEATURE_FPU);
669 
670 	/* The final cr0 value is set in fpu_init() */
671 }
672