1/*
2 * srmmu.c:  SRMMU specific routines for memory management.
3 *
4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
9 */
10
11#include <linux/seq_file.h>
12#include <linux/spinlock.h>
13#include <linux/bootmem.h>
14#include <linux/pagemap.h>
15#include <linux/vmalloc.h>
16#include <linux/kdebug.h>
17#include <linux/export.h>
18#include <linux/kernel.h>
19#include <linux/init.h>
20#include <linux/log2.h>
21#include <linux/gfp.h>
22#include <linux/fs.h>
23#include <linux/mm.h>
24
25#include <asm/mmu_context.h>
26#include <asm/cacheflush.h>
27#include <asm/tlbflush.h>
28#include <asm/io-unit.h>
29#include <asm/pgalloc.h>
30#include <asm/pgtable.h>
31#include <asm/bitext.h>
32#include <asm/vaddrs.h>
33#include <asm/cache.h>
34#include <asm/traps.h>
35#include <asm/oplib.h>
36#include <asm/mbus.h>
37#include <asm/page.h>
38#include <asm/asi.h>
39#include <asm/msi.h>
40#include <asm/smp.h>
41#include <asm/io.h>
42
43/* Now the cpu specific definitions. */
44#include <asm/turbosparc.h>
45#include <asm/tsunami.h>
46#include <asm/viking.h>
47#include <asm/swift.h>
48#include <asm/leon.h>
49#include <asm/mxcc.h>
50#include <asm/ross.h>
51
52#include "mm_32.h"
53
54enum mbus_module srmmu_modtype;
55static unsigned int hwbug_bitmask;
56int vac_cache_size;
57int vac_line_size;
58
59extern struct resource sparc_iomap;
60
61extern unsigned long last_valid_pfn;
62
63static pgd_t *srmmu_swapper_pg_dir;
64
65const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
66EXPORT_SYMBOL(sparc32_cachetlb_ops);
67
68#ifdef CONFIG_SMP
69const struct sparc32_cachetlb_ops *local_ops;
70
71#define FLUSH_BEGIN(mm)
72#define FLUSH_END
73#else
74#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
75#define FLUSH_END	}
76#endif
77
78int flush_page_for_dma_global = 1;
79
80char *srmmu_name;
81
82ctxd_t *srmmu_ctx_table_phys;
83static ctxd_t *srmmu_context_table;
84
85int viking_mxcc_present;
86static DEFINE_SPINLOCK(srmmu_context_spinlock);
87
88static int is_hypersparc;
89
90static int srmmu_cache_pagetables;
91
92/* these will be initialized in srmmu_nocache_calcsize() */
93static unsigned long srmmu_nocache_size;
94static unsigned long srmmu_nocache_end;
95
96/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
97#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
98
99/* The context table is a nocache user with the biggest alignment needs. */
100#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
101
102void *srmmu_nocache_pool;
103static struct bit_map srmmu_nocache_map;
104
105static inline int srmmu_pmd_none(pmd_t pmd)
106{ return !(pmd_val(pmd) & 0xFFFFFFF); }
107
108/* XXX should we hyper_flush_whole_icache here - Anton */
109static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
110{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
111
112void pmd_set(pmd_t *pmdp, pte_t *ptep)
113{
114	unsigned long ptp;	/* Physical address, shifted right by 4 */
115	int i;
116
117	ptp = __nocache_pa((unsigned long) ptep) >> 4;
118	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
119		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
120		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
121	}
122}
123
124void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
125{
126	unsigned long ptp;	/* Physical address, shifted right by 4 */
127	int i;
128
129	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
130	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
131		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
132		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
133	}
134}
135
136/* Find an entry in the third-level page table.. */
137pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
138{
139	void *pte;
140
141	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
142	return (pte_t *) pte +
143	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
144}
145
146/*
147 * size: bytes to allocate in the nocache area.
148 * align: bytes, number to align at.
149 * Returns the virtual address of the allocated area.
150 */
151static void *__srmmu_get_nocache(int size, int align)
152{
153	int offset;
154	unsigned long addr;
155
156	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
157		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
158		       size);
159		size = SRMMU_NOCACHE_BITMAP_SHIFT;
160	}
161	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
162		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
163		       size);
164		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
165	}
166	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
167
168	offset = bit_map_string_get(&srmmu_nocache_map,
169				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
170				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
171	if (offset == -1) {
172		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
173		       size, (int) srmmu_nocache_size,
174		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
175		return NULL;
176	}
177
178	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
179	return (void *)addr;
180}
181
182void *srmmu_get_nocache(int size, int align)
183{
184	void *tmp;
185
186	tmp = __srmmu_get_nocache(size, align);
187
188	if (tmp)
189		memset(tmp, 0, size);
190
191	return tmp;
192}
193
194void srmmu_free_nocache(void *addr, int size)
195{
196	unsigned long vaddr;
197	int offset;
198
199	vaddr = (unsigned long)addr;
200	if (vaddr < SRMMU_NOCACHE_VADDR) {
201		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
202		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
203		BUG();
204	}
205	if (vaddr + size > srmmu_nocache_end) {
206		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
207		    vaddr, srmmu_nocache_end);
208		BUG();
209	}
210	if (!is_power_of_2(size)) {
211		printk("Size 0x%x is not a power of 2\n", size);
212		BUG();
213	}
214	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
215		printk("Size 0x%x is too small\n", size);
216		BUG();
217	}
218	if (vaddr & (size - 1)) {
219		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
220		BUG();
221	}
222
223	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
224	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
225
226	bit_map_clear(&srmmu_nocache_map, offset, size);
227}
228
229static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
230						 unsigned long end);
231
232/* Return how much physical memory we have.  */
233static unsigned long __init probe_memory(void)
234{
235	unsigned long total = 0;
236	int i;
237
238	for (i = 0; sp_banks[i].num_bytes; i++)
239		total += sp_banks[i].num_bytes;
240
241	return total;
242}
243
244/*
245 * Reserve nocache dynamically proportionally to the amount of
246 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
247 */
248static void __init srmmu_nocache_calcsize(void)
249{
250	unsigned long sysmemavail = probe_memory() / 1024;
251	int srmmu_nocache_npages;
252
253	srmmu_nocache_npages =
254		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
255
256 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
257	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
258	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
259		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
260
261	/* anything above 1280 blows up */
262	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
263		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
264
265	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
266	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
267}
268
269static void __init srmmu_nocache_init(void)
270{
271	void *srmmu_nocache_bitmap;
272	unsigned int bitmap_bits;
273	pgd_t *pgd;
274	pmd_t *pmd;
275	pte_t *pte;
276	unsigned long paddr, vaddr;
277	unsigned long pteval;
278
279	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
280
281	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
282		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
283	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
284
285	srmmu_nocache_bitmap =
286		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
287				SMP_CACHE_BYTES, 0UL);
288	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
289
290	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
291	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
292	init_mm.pgd = srmmu_swapper_pg_dir;
293
294	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
295
296	paddr = __pa((unsigned long)srmmu_nocache_pool);
297	vaddr = SRMMU_NOCACHE_VADDR;
298
299	while (vaddr < srmmu_nocache_end) {
300		pgd = pgd_offset_k(vaddr);
301		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
302		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
303
304		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
305
306		if (srmmu_cache_pagetables)
307			pteval |= SRMMU_CACHE;
308
309		set_pte(__nocache_fix(pte), __pte(pteval));
310
311		vaddr += PAGE_SIZE;
312		paddr += PAGE_SIZE;
313	}
314
315	flush_cache_all();
316	flush_tlb_all();
317}
318
319pgd_t *get_pgd_fast(void)
320{
321	pgd_t *pgd = NULL;
322
323	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
324	if (pgd) {
325		pgd_t *init = pgd_offset_k(0);
326		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
327		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
328						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
329	}
330
331	return pgd;
332}
333
334/*
335 * Hardware needs alignment to 256 only, but we align to whole page size
336 * to reduce fragmentation problems due to the buddy principle.
337 * XXX Provide actual fragmentation statistics in /proc.
338 *
339 * Alignments up to the page size are the same for physical and virtual
340 * addresses of the nocache area.
341 */
342pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
343{
344	unsigned long pte;
345	struct page *page;
346
347	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
348		return NULL;
349	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
350	if (!pgtable_page_ctor(page)) {
351		__free_page(page);
352		return NULL;
353	}
354	return page;
355}
356
357void pte_free(struct mm_struct *mm, pgtable_t pte)
358{
359	unsigned long p;
360
361	pgtable_page_dtor(pte);
362	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
363	if (p == 0)
364		BUG();
365	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
366
367	/* free non cached virtual address*/
368	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
369}
370
371/* context handling - a dynamically sized pool is used */
372#define NO_CONTEXT	-1
373
374struct ctx_list {
375	struct ctx_list *next;
376	struct ctx_list *prev;
377	unsigned int ctx_number;
378	struct mm_struct *ctx_mm;
379};
380
381static struct ctx_list *ctx_list_pool;
382static struct ctx_list ctx_free;
383static struct ctx_list ctx_used;
384
385/* At boot time we determine the number of contexts */
386static int num_contexts;
387
388static inline void remove_from_ctx_list(struct ctx_list *entry)
389{
390	entry->next->prev = entry->prev;
391	entry->prev->next = entry->next;
392}
393
394static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
395{
396	entry->next = head;
397	(entry->prev = head->prev)->next = entry;
398	head->prev = entry;
399}
400#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
401#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
402
403
404static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
405{
406	struct ctx_list *ctxp;
407
408	ctxp = ctx_free.next;
409	if (ctxp != &ctx_free) {
410		remove_from_ctx_list(ctxp);
411		add_to_used_ctxlist(ctxp);
412		mm->context = ctxp->ctx_number;
413		ctxp->ctx_mm = mm;
414		return;
415	}
416	ctxp = ctx_used.next;
417	if (ctxp->ctx_mm == old_mm)
418		ctxp = ctxp->next;
419	if (ctxp == &ctx_used)
420		panic("out of mmu contexts");
421	flush_cache_mm(ctxp->ctx_mm);
422	flush_tlb_mm(ctxp->ctx_mm);
423	remove_from_ctx_list(ctxp);
424	add_to_used_ctxlist(ctxp);
425	ctxp->ctx_mm->context = NO_CONTEXT;
426	ctxp->ctx_mm = mm;
427	mm->context = ctxp->ctx_number;
428}
429
430static inline void free_context(int context)
431{
432	struct ctx_list *ctx_old;
433
434	ctx_old = ctx_list_pool + context;
435	remove_from_ctx_list(ctx_old);
436	add_to_free_ctxlist(ctx_old);
437}
438
439static void __init sparc_context_init(int numctx)
440{
441	int ctx;
442	unsigned long size;
443
444	size = numctx * sizeof(struct ctx_list);
445	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
446
447	for (ctx = 0; ctx < numctx; ctx++) {
448		struct ctx_list *clist;
449
450		clist = (ctx_list_pool + ctx);
451		clist->ctx_number = ctx;
452		clist->ctx_mm = NULL;
453	}
454	ctx_free.next = ctx_free.prev = &ctx_free;
455	ctx_used.next = ctx_used.prev = &ctx_used;
456	for (ctx = 0; ctx < numctx; ctx++)
457		add_to_free_ctxlist(ctx_list_pool + ctx);
458}
459
460void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
461	       struct task_struct *tsk)
462{
463	unsigned long flags;
464
465	if (mm->context == NO_CONTEXT) {
466		spin_lock_irqsave(&srmmu_context_spinlock, flags);
467		alloc_context(old_mm, mm);
468		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
469		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
470	}
471
472	if (sparc_cpu_model == sparc_leon)
473		leon_switch_mm();
474
475	if (is_hypersparc)
476		hyper_flush_whole_icache();
477
478	srmmu_set_context(mm->context);
479}
480
481/* Low level IO area allocation on the SRMMU. */
482static inline void srmmu_mapioaddr(unsigned long physaddr,
483				   unsigned long virt_addr, int bus_type)
484{
485	pgd_t *pgdp;
486	pmd_t *pmdp;
487	pte_t *ptep;
488	unsigned long tmp;
489
490	physaddr &= PAGE_MASK;
491	pgdp = pgd_offset_k(virt_addr);
492	pmdp = pmd_offset(pgdp, virt_addr);
493	ptep = pte_offset_kernel(pmdp, virt_addr);
494	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
495
496	/* I need to test whether this is consistent over all
497	 * sun4m's.  The bus_type represents the upper 4 bits of
498	 * 36-bit physical address on the I/O space lines...
499	 */
500	tmp |= (bus_type << 28);
501	tmp |= SRMMU_PRIV;
502	__flush_page_to_ram(virt_addr);
503	set_pte(ptep, __pte(tmp));
504}
505
506void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
507		      unsigned long xva, unsigned int len)
508{
509	while (len != 0) {
510		len -= PAGE_SIZE;
511		srmmu_mapioaddr(xpa, xva, bus);
512		xva += PAGE_SIZE;
513		xpa += PAGE_SIZE;
514	}
515	flush_tlb_all();
516}
517
518static inline void srmmu_unmapioaddr(unsigned long virt_addr)
519{
520	pgd_t *pgdp;
521	pmd_t *pmdp;
522	pte_t *ptep;
523
524	pgdp = pgd_offset_k(virt_addr);
525	pmdp = pmd_offset(pgdp, virt_addr);
526	ptep = pte_offset_kernel(pmdp, virt_addr);
527
528	/* No need to flush uncacheable page. */
529	__pte_clear(ptep);
530}
531
532void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
533{
534	while (len != 0) {
535		len -= PAGE_SIZE;
536		srmmu_unmapioaddr(virt_addr);
537		virt_addr += PAGE_SIZE;
538	}
539	flush_tlb_all();
540}
541
542/* tsunami.S */
543extern void tsunami_flush_cache_all(void);
544extern void tsunami_flush_cache_mm(struct mm_struct *mm);
545extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
546extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
547extern void tsunami_flush_page_to_ram(unsigned long page);
548extern void tsunami_flush_page_for_dma(unsigned long page);
549extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
550extern void tsunami_flush_tlb_all(void);
551extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
552extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
553extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
554extern void tsunami_setup_blockops(void);
555
556/* swift.S */
557extern void swift_flush_cache_all(void);
558extern void swift_flush_cache_mm(struct mm_struct *mm);
559extern void swift_flush_cache_range(struct vm_area_struct *vma,
560				    unsigned long start, unsigned long end);
561extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
562extern void swift_flush_page_to_ram(unsigned long page);
563extern void swift_flush_page_for_dma(unsigned long page);
564extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
565extern void swift_flush_tlb_all(void);
566extern void swift_flush_tlb_mm(struct mm_struct *mm);
567extern void swift_flush_tlb_range(struct vm_area_struct *vma,
568				  unsigned long start, unsigned long end);
569extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
570
571#if 0  /* P3: deadwood to debug precise flushes on Swift. */
572void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
573{
574	int cctx, ctx1;
575
576	page &= PAGE_MASK;
577	if ((ctx1 = vma->vm_mm->context) != -1) {
578		cctx = srmmu_get_context();
579/* Is context # ever different from current context? P3 */
580		if (cctx != ctx1) {
581			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
582			srmmu_set_context(ctx1);
583			swift_flush_page(page);
584			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
585					"r" (page), "i" (ASI_M_FLUSH_PROBE));
586			srmmu_set_context(cctx);
587		} else {
588			 /* Rm. prot. bits from virt. c. */
589			/* swift_flush_cache_all(); */
590			/* swift_flush_cache_page(vma, page); */
591			swift_flush_page(page);
592
593			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
594				"r" (page), "i" (ASI_M_FLUSH_PROBE));
595			/* same as above: srmmu_flush_tlb_page() */
596		}
597	}
598}
599#endif
600
601/*
602 * The following are all MBUS based SRMMU modules, and therefore could
603 * be found in a multiprocessor configuration.  On the whole, these
604 * chips seems to be much more touchy about DVMA and page tables
605 * with respect to cache coherency.
606 */
607
608/* viking.S */
609extern void viking_flush_cache_all(void);
610extern void viking_flush_cache_mm(struct mm_struct *mm);
611extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
612				     unsigned long end);
613extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
614extern void viking_flush_page_to_ram(unsigned long page);
615extern void viking_flush_page_for_dma(unsigned long page);
616extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
617extern void viking_flush_page(unsigned long page);
618extern void viking_mxcc_flush_page(unsigned long page);
619extern void viking_flush_tlb_all(void);
620extern void viking_flush_tlb_mm(struct mm_struct *mm);
621extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
622				   unsigned long end);
623extern void viking_flush_tlb_page(struct vm_area_struct *vma,
624				  unsigned long page);
625extern void sun4dsmp_flush_tlb_all(void);
626extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
627extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
628				   unsigned long end);
629extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
630				  unsigned long page);
631
632/* hypersparc.S */
633extern void hypersparc_flush_cache_all(void);
634extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
635extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
636extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
637extern void hypersparc_flush_page_to_ram(unsigned long page);
638extern void hypersparc_flush_page_for_dma(unsigned long page);
639extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
640extern void hypersparc_flush_tlb_all(void);
641extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
642extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
643extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
644extern void hypersparc_setup_blockops(void);
645
646/*
647 * NOTE: All of this startup code assumes the low 16mb (approx.) of
648 *       kernel mappings are done with one single contiguous chunk of
649 *       ram.  On small ram machines (classics mainly) we only get
650 *       around 8mb mapped for us.
651 */
652
653static void __init early_pgtable_allocfail(char *type)
654{
655	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
656	prom_halt();
657}
658
659static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
660							unsigned long end)
661{
662	pgd_t *pgdp;
663	pmd_t *pmdp;
664	pte_t *ptep;
665
666	while (start < end) {
667		pgdp = pgd_offset_k(start);
668		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
669			pmdp = __srmmu_get_nocache(
670			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
671			if (pmdp == NULL)
672				early_pgtable_allocfail("pmd");
673			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
674			pgd_set(__nocache_fix(pgdp), pmdp);
675		}
676		pmdp = pmd_offset(__nocache_fix(pgdp), start);
677		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
678			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
679			if (ptep == NULL)
680				early_pgtable_allocfail("pte");
681			memset(__nocache_fix(ptep), 0, PTE_SIZE);
682			pmd_set(__nocache_fix(pmdp), ptep);
683		}
684		if (start > (0xffffffffUL - PMD_SIZE))
685			break;
686		start = (start + PMD_SIZE) & PMD_MASK;
687	}
688}
689
690static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
691						  unsigned long end)
692{
693	pgd_t *pgdp;
694	pmd_t *pmdp;
695	pte_t *ptep;
696
697	while (start < end) {
698		pgdp = pgd_offset_k(start);
699		if (pgd_none(*pgdp)) {
700			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
701			if (pmdp == NULL)
702				early_pgtable_allocfail("pmd");
703			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
704			pgd_set(pgdp, pmdp);
705		}
706		pmdp = pmd_offset(pgdp, start);
707		if (srmmu_pmd_none(*pmdp)) {
708			ptep = __srmmu_get_nocache(PTE_SIZE,
709							     PTE_SIZE);
710			if (ptep == NULL)
711				early_pgtable_allocfail("pte");
712			memset(ptep, 0, PTE_SIZE);
713			pmd_set(pmdp, ptep);
714		}
715		if (start > (0xffffffffUL - PMD_SIZE))
716			break;
717		start = (start + PMD_SIZE) & PMD_MASK;
718	}
719}
720
721/* These flush types are not available on all chips... */
722static inline unsigned long srmmu_probe(unsigned long vaddr)
723{
724	unsigned long retval;
725
726	if (sparc_cpu_model != sparc_leon) {
727
728		vaddr &= PAGE_MASK;
729		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
730				     "=r" (retval) :
731				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
732	} else {
733		retval = leon_swprobe(vaddr, NULL);
734	}
735	return retval;
736}
737
738/*
739 * This is much cleaner than poking around physical address space
740 * looking at the prom's page table directly which is what most
741 * other OS's do.  Yuck... this is much better.
742 */
743static void __init srmmu_inherit_prom_mappings(unsigned long start,
744					       unsigned long end)
745{
746	unsigned long probed;
747	unsigned long addr;
748	pgd_t *pgdp;
749	pmd_t *pmdp;
750	pte_t *ptep;
751	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
752
753	while (start <= end) {
754		if (start == 0)
755			break; /* probably wrap around */
756		if (start == 0xfef00000)
757			start = KADB_DEBUGGER_BEGVM;
758		probed = srmmu_probe(start);
759		if (!probed) {
760			/* continue probing until we find an entry */
761			start += PAGE_SIZE;
762			continue;
763		}
764
765		/* A red snapper, see what it really is. */
766		what = 0;
767		addr = start - PAGE_SIZE;
768
769		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
770			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
771				what = 1;
772		}
773
774		if (!(start & ~(SRMMU_PGDIR_MASK))) {
775			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
776				what = 2;
777		}
778
779		pgdp = pgd_offset_k(start);
780		if (what == 2) {
781			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
782			start += SRMMU_PGDIR_SIZE;
783			continue;
784		}
785		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
786			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
787						   SRMMU_PMD_TABLE_SIZE);
788			if (pmdp == NULL)
789				early_pgtable_allocfail("pmd");
790			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
791			pgd_set(__nocache_fix(pgdp), pmdp);
792		}
793		pmdp = pmd_offset(__nocache_fix(pgdp), start);
794		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
795			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
796			if (ptep == NULL)
797				early_pgtable_allocfail("pte");
798			memset(__nocache_fix(ptep), 0, PTE_SIZE);
799			pmd_set(__nocache_fix(pmdp), ptep);
800		}
801		if (what == 1) {
802			/* We bend the rule where all 16 PTPs in a pmd_t point
803			 * inside the same PTE page, and we leak a perfectly
804			 * good hardware PTE piece. Alternatives seem worse.
805			 */
806			unsigned int x;	/* Index of HW PMD in soft cluster */
807			unsigned long *val;
808			x = (start >> PMD_SHIFT) & 15;
809			val = &pmdp->pmdv[x];
810			*(unsigned long *)__nocache_fix(val) = probed;
811			start += SRMMU_REAL_PMD_SIZE;
812			continue;
813		}
814		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
815		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
816		start += PAGE_SIZE;
817	}
818}
819
820#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
821
822/* Create a third-level SRMMU 16MB page mapping. */
823static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
824{
825	pgd_t *pgdp = pgd_offset_k(vaddr);
826	unsigned long big_pte;
827
828	big_pte = KERNEL_PTE(phys_base >> 4);
829	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
830}
831
832/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
833static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
834{
835	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
836	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
837	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
838	/* Map "low" memory only */
839	const unsigned long min_vaddr = PAGE_OFFSET;
840	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
841
842	if (vstart < min_vaddr || vstart >= max_vaddr)
843		return vstart;
844
845	if (vend > max_vaddr || vend < min_vaddr)
846		vend = max_vaddr;
847
848	while (vstart < vend) {
849		do_large_mapping(vstart, pstart);
850		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
851	}
852	return vstart;
853}
854
855static void __init map_kernel(void)
856{
857	int i;
858
859	if (phys_base > 0) {
860		do_large_mapping(PAGE_OFFSET, phys_base);
861	}
862
863	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
864		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
865	}
866}
867
868void (*poke_srmmu)(void) = NULL;
869
870void __init srmmu_paging_init(void)
871{
872	int i;
873	phandle cpunode;
874	char node_str[128];
875	pgd_t *pgd;
876	pmd_t *pmd;
877	pte_t *pte;
878	unsigned long pages_avail;
879
880	init_mm.context = (unsigned long) NO_CONTEXT;
881	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
882
883	if (sparc_cpu_model == sun4d)
884		num_contexts = 65536; /* We know it is Viking */
885	else {
886		/* Find the number of contexts on the srmmu. */
887		cpunode = prom_getchild(prom_root_node);
888		num_contexts = 0;
889		while (cpunode != 0) {
890			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
891			if (!strcmp(node_str, "cpu")) {
892				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
893				break;
894			}
895			cpunode = prom_getsibling(cpunode);
896		}
897	}
898
899	if (!num_contexts) {
900		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
901		prom_halt();
902	}
903
904	pages_avail = 0;
905	last_valid_pfn = bootmem_init(&pages_avail);
906
907	srmmu_nocache_calcsize();
908	srmmu_nocache_init();
909	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
910	map_kernel();
911
912	/* ctx table has to be physically aligned to its size */
913	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
914	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
915
916	for (i = 0; i < num_contexts; i++)
917		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
918
919	flush_cache_all();
920	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
921#ifdef CONFIG_SMP
922	/* Stop from hanging here... */
923	local_ops->tlb_all();
924#else
925	flush_tlb_all();
926#endif
927	poke_srmmu();
928
929	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
930	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
931
932	srmmu_allocate_ptable_skeleton(
933		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
934	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
935
936	pgd = pgd_offset_k(PKMAP_BASE);
937	pmd = pmd_offset(pgd, PKMAP_BASE);
938	pte = pte_offset_kernel(pmd, PKMAP_BASE);
939	pkmap_page_table = pte;
940
941	flush_cache_all();
942	flush_tlb_all();
943
944	sparc_context_init(num_contexts);
945
946	kmap_init();
947
948	{
949		unsigned long zones_size[MAX_NR_ZONES];
950		unsigned long zholes_size[MAX_NR_ZONES];
951		unsigned long npages;
952		int znum;
953
954		for (znum = 0; znum < MAX_NR_ZONES; znum++)
955			zones_size[znum] = zholes_size[znum] = 0;
956
957		npages = max_low_pfn - pfn_base;
958
959		zones_size[ZONE_DMA] = npages;
960		zholes_size[ZONE_DMA] = npages - pages_avail;
961
962		npages = highend_pfn - max_low_pfn;
963		zones_size[ZONE_HIGHMEM] = npages;
964		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
965
966		free_area_init_node(0, zones_size, pfn_base, zholes_size);
967	}
968}
969
970void mmu_info(struct seq_file *m)
971{
972	seq_printf(m,
973		   "MMU type\t: %s\n"
974		   "contexts\t: %d\n"
975		   "nocache total\t: %ld\n"
976		   "nocache used\t: %d\n",
977		   srmmu_name,
978		   num_contexts,
979		   srmmu_nocache_size,
980		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
981}
982
983int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
984{
985	mm->context = NO_CONTEXT;
986	return 0;
987}
988
989void destroy_context(struct mm_struct *mm)
990{
991	unsigned long flags;
992
993	if (mm->context != NO_CONTEXT) {
994		flush_cache_mm(mm);
995		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
996		flush_tlb_mm(mm);
997		spin_lock_irqsave(&srmmu_context_spinlock, flags);
998		free_context(mm->context);
999		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1000		mm->context = NO_CONTEXT;
1001	}
1002}
1003
1004/* Init various srmmu chip types. */
1005static void __init srmmu_is_bad(void)
1006{
1007	prom_printf("Could not determine SRMMU chip type.\n");
1008	prom_halt();
1009}
1010
1011static void __init init_vac_layout(void)
1012{
1013	phandle nd;
1014	int cache_lines;
1015	char node_str[128];
1016#ifdef CONFIG_SMP
1017	int cpu = 0;
1018	unsigned long max_size = 0;
1019	unsigned long min_line_size = 0x10000000;
1020#endif
1021
1022	nd = prom_getchild(prom_root_node);
1023	while ((nd = prom_getsibling(nd)) != 0) {
1024		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1025		if (!strcmp(node_str, "cpu")) {
1026			vac_line_size = prom_getint(nd, "cache-line-size");
1027			if (vac_line_size == -1) {
1028				prom_printf("can't determine cache-line-size, halting.\n");
1029				prom_halt();
1030			}
1031			cache_lines = prom_getint(nd, "cache-nlines");
1032			if (cache_lines == -1) {
1033				prom_printf("can't determine cache-nlines, halting.\n");
1034				prom_halt();
1035			}
1036
1037			vac_cache_size = cache_lines * vac_line_size;
1038#ifdef CONFIG_SMP
1039			if (vac_cache_size > max_size)
1040				max_size = vac_cache_size;
1041			if (vac_line_size < min_line_size)
1042				min_line_size = vac_line_size;
1043			//FIXME: cpus not contiguous!!
1044			cpu++;
1045			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1046				break;
1047#else
1048			break;
1049#endif
1050		}
1051	}
1052	if (nd == 0) {
1053		prom_printf("No CPU nodes found, halting.\n");
1054		prom_halt();
1055	}
1056#ifdef CONFIG_SMP
1057	vac_cache_size = max_size;
1058	vac_line_size = min_line_size;
1059#endif
1060	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1061	       (int)vac_cache_size, (int)vac_line_size);
1062}
1063
1064static void poke_hypersparc(void)
1065{
1066	volatile unsigned long clear;
1067	unsigned long mreg = srmmu_get_mmureg();
1068
1069	hyper_flush_unconditional_combined();
1070
1071	mreg &= ~(HYPERSPARC_CWENABLE);
1072	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1073	mreg |= (HYPERSPARC_CMODE);
1074
1075	srmmu_set_mmureg(mreg);
1076
1077#if 0 /* XXX I think this is bad news... -DaveM */
1078	hyper_clear_all_tags();
1079#endif
1080
1081	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1082	hyper_flush_whole_icache();
1083	clear = srmmu_get_faddr();
1084	clear = srmmu_get_fstatus();
1085}
1086
1087static const struct sparc32_cachetlb_ops hypersparc_ops = {
1088	.cache_all	= hypersparc_flush_cache_all,
1089	.cache_mm	= hypersparc_flush_cache_mm,
1090	.cache_page	= hypersparc_flush_cache_page,
1091	.cache_range	= hypersparc_flush_cache_range,
1092	.tlb_all	= hypersparc_flush_tlb_all,
1093	.tlb_mm		= hypersparc_flush_tlb_mm,
1094	.tlb_page	= hypersparc_flush_tlb_page,
1095	.tlb_range	= hypersparc_flush_tlb_range,
1096	.page_to_ram	= hypersparc_flush_page_to_ram,
1097	.sig_insns	= hypersparc_flush_sig_insns,
1098	.page_for_dma	= hypersparc_flush_page_for_dma,
1099};
1100
1101static void __init init_hypersparc(void)
1102{
1103	srmmu_name = "ROSS HyperSparc";
1104	srmmu_modtype = HyperSparc;
1105
1106	init_vac_layout();
1107
1108	is_hypersparc = 1;
1109	sparc32_cachetlb_ops = &hypersparc_ops;
1110
1111	poke_srmmu = poke_hypersparc;
1112
1113	hypersparc_setup_blockops();
1114}
1115
1116static void poke_swift(void)
1117{
1118	unsigned long mreg;
1119
1120	/* Clear any crap from the cache or else... */
1121	swift_flush_cache_all();
1122
1123	/* Enable I & D caches */
1124	mreg = srmmu_get_mmureg();
1125	mreg |= (SWIFT_IE | SWIFT_DE);
1126	/*
1127	 * The Swift branch folding logic is completely broken.  At
1128	 * trap time, if things are just right, if can mistakenly
1129	 * think that a trap is coming from kernel mode when in fact
1130	 * it is coming from user mode (it mis-executes the branch in
1131	 * the trap code).  So you see things like crashme completely
1132	 * hosing your machine which is completely unacceptable.  Turn
1133	 * this shit off... nice job Fujitsu.
1134	 */
1135	mreg &= ~(SWIFT_BF);
1136	srmmu_set_mmureg(mreg);
1137}
1138
1139static const struct sparc32_cachetlb_ops swift_ops = {
1140	.cache_all	= swift_flush_cache_all,
1141	.cache_mm	= swift_flush_cache_mm,
1142	.cache_page	= swift_flush_cache_page,
1143	.cache_range	= swift_flush_cache_range,
1144	.tlb_all	= swift_flush_tlb_all,
1145	.tlb_mm		= swift_flush_tlb_mm,
1146	.tlb_page	= swift_flush_tlb_page,
1147	.tlb_range	= swift_flush_tlb_range,
1148	.page_to_ram	= swift_flush_page_to_ram,
1149	.sig_insns	= swift_flush_sig_insns,
1150	.page_for_dma	= swift_flush_page_for_dma,
1151};
1152
1153#define SWIFT_MASKID_ADDR  0x10003018
1154static void __init init_swift(void)
1155{
1156	unsigned long swift_rev;
1157
1158	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1159			     "srl %0, 0x18, %0\n\t" :
1160			     "=r" (swift_rev) :
1161			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1162	srmmu_name = "Fujitsu Swift";
1163	switch (swift_rev) {
1164	case 0x11:
1165	case 0x20:
1166	case 0x23:
1167	case 0x30:
1168		srmmu_modtype = Swift_lots_o_bugs;
1169		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1170		/*
1171		 * Gee george, I wonder why Sun is so hush hush about
1172		 * this hardware bug... really braindamage stuff going
1173		 * on here.  However I think we can find a way to avoid
1174		 * all of the workaround overhead under Linux.  Basically,
1175		 * any page fault can cause kernel pages to become user
1176		 * accessible (the mmu gets confused and clears some of
1177		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1178		 * horrible eh?  But wait, after extensive testing it appears
1179		 * that if you use pgd_t level large kernel pte's (like the
1180		 * 4MB pages on the Pentium) the bug does not get tripped
1181		 * at all.  This avoids almost all of the major overhead.
1182		 * Welcome to a world where your vendor tells you to,
1183		 * "apply this kernel patch" instead of "sorry for the
1184		 * broken hardware, send it back and we'll give you
1185		 * properly functioning parts"
1186		 */
1187		break;
1188	case 0x25:
1189	case 0x31:
1190		srmmu_modtype = Swift_bad_c;
1191		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1192		/*
1193		 * You see Sun allude to this hardware bug but never
1194		 * admit things directly, they'll say things like,
1195		 * "the Swift chip cache problems" or similar.
1196		 */
1197		break;
1198	default:
1199		srmmu_modtype = Swift_ok;
1200		break;
1201	}
1202
1203	sparc32_cachetlb_ops = &swift_ops;
1204	flush_page_for_dma_global = 0;
1205
1206	/*
1207	 * Are you now convinced that the Swift is one of the
1208	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1209	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1210	 * you examined the microcode of the Swift you'd find
1211	 * XXX's all over the place.
1212	 */
1213	poke_srmmu = poke_swift;
1214}
1215
1216static void turbosparc_flush_cache_all(void)
1217{
1218	flush_user_windows();
1219	turbosparc_idflash_clear();
1220}
1221
1222static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1223{
1224	FLUSH_BEGIN(mm)
1225	flush_user_windows();
1226	turbosparc_idflash_clear();
1227	FLUSH_END
1228}
1229
1230static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1231{
1232	FLUSH_BEGIN(vma->vm_mm)
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235	FLUSH_END
1236}
1237
1238static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1239{
1240	FLUSH_BEGIN(vma->vm_mm)
1241	flush_user_windows();
1242	if (vma->vm_flags & VM_EXEC)
1243		turbosparc_flush_icache();
1244	turbosparc_flush_dcache();
1245	FLUSH_END
1246}
1247
1248/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1249static void turbosparc_flush_page_to_ram(unsigned long page)
1250{
1251#ifdef TURBOSPARC_WRITEBACK
1252	volatile unsigned long clear;
1253
1254	if (srmmu_probe(page))
1255		turbosparc_flush_page_cache(page);
1256	clear = srmmu_get_fstatus();
1257#endif
1258}
1259
1260static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1261{
1262}
1263
1264static void turbosparc_flush_page_for_dma(unsigned long page)
1265{
1266	turbosparc_flush_dcache();
1267}
1268
1269static void turbosparc_flush_tlb_all(void)
1270{
1271	srmmu_flush_whole_tlb();
1272}
1273
1274static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1275{
1276	FLUSH_BEGIN(mm)
1277	srmmu_flush_whole_tlb();
1278	FLUSH_END
1279}
1280
1281static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1282{
1283	FLUSH_BEGIN(vma->vm_mm)
1284	srmmu_flush_whole_tlb();
1285	FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1289{
1290	FLUSH_BEGIN(vma->vm_mm)
1291	srmmu_flush_whole_tlb();
1292	FLUSH_END
1293}
1294
1295
1296static void poke_turbosparc(void)
1297{
1298	unsigned long mreg = srmmu_get_mmureg();
1299	unsigned long ccreg;
1300
1301	/* Clear any crap from the cache or else... */
1302	turbosparc_flush_cache_all();
1303	/* Temporarily disable I & D caches */
1304	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1305	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1306	srmmu_set_mmureg(mreg);
1307
1308	ccreg = turbosparc_get_ccreg();
1309
1310#ifdef TURBOSPARC_WRITEBACK
1311	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1312	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1313			/* Write-back D-cache, emulate VLSI
1314			 * abortion number three, not number one */
1315#else
1316	/* For now let's play safe, optimize later */
1317	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1318			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1319	ccreg &= ~(TURBOSPARC_uS2);
1320			/* Emulate VLSI abortion number three, not number one */
1321#endif
1322
1323	switch (ccreg & 7) {
1324	case 0: /* No SE cache */
1325	case 7: /* Test mode */
1326		break;
1327	default:
1328		ccreg |= (TURBOSPARC_SCENABLE);
1329	}
1330	turbosparc_set_ccreg(ccreg);
1331
1332	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1333	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1334	srmmu_set_mmureg(mreg);
1335}
1336
1337static const struct sparc32_cachetlb_ops turbosparc_ops = {
1338	.cache_all	= turbosparc_flush_cache_all,
1339	.cache_mm	= turbosparc_flush_cache_mm,
1340	.cache_page	= turbosparc_flush_cache_page,
1341	.cache_range	= turbosparc_flush_cache_range,
1342	.tlb_all	= turbosparc_flush_tlb_all,
1343	.tlb_mm		= turbosparc_flush_tlb_mm,
1344	.tlb_page	= turbosparc_flush_tlb_page,
1345	.tlb_range	= turbosparc_flush_tlb_range,
1346	.page_to_ram	= turbosparc_flush_page_to_ram,
1347	.sig_insns	= turbosparc_flush_sig_insns,
1348	.page_for_dma	= turbosparc_flush_page_for_dma,
1349};
1350
1351static void __init init_turbosparc(void)
1352{
1353	srmmu_name = "Fujitsu TurboSparc";
1354	srmmu_modtype = TurboSparc;
1355	sparc32_cachetlb_ops = &turbosparc_ops;
1356	poke_srmmu = poke_turbosparc;
1357}
1358
1359static void poke_tsunami(void)
1360{
1361	unsigned long mreg = srmmu_get_mmureg();
1362
1363	tsunami_flush_icache();
1364	tsunami_flush_dcache();
1365	mreg &= ~TSUNAMI_ITD;
1366	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1367	srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops tsunami_ops = {
1371	.cache_all	= tsunami_flush_cache_all,
1372	.cache_mm	= tsunami_flush_cache_mm,
1373	.cache_page	= tsunami_flush_cache_page,
1374	.cache_range	= tsunami_flush_cache_range,
1375	.tlb_all	= tsunami_flush_tlb_all,
1376	.tlb_mm		= tsunami_flush_tlb_mm,
1377	.tlb_page	= tsunami_flush_tlb_page,
1378	.tlb_range	= tsunami_flush_tlb_range,
1379	.page_to_ram	= tsunami_flush_page_to_ram,
1380	.sig_insns	= tsunami_flush_sig_insns,
1381	.page_for_dma	= tsunami_flush_page_for_dma,
1382};
1383
1384static void __init init_tsunami(void)
1385{
1386	/*
1387	 * Tsunami's pretty sane, Sun and TI actually got it
1388	 * somewhat right this time.  Fujitsu should have
1389	 * taken some lessons from them.
1390	 */
1391
1392	srmmu_name = "TI Tsunami";
1393	srmmu_modtype = Tsunami;
1394	sparc32_cachetlb_ops = &tsunami_ops;
1395	poke_srmmu = poke_tsunami;
1396
1397	tsunami_setup_blockops();
1398}
1399
1400static void poke_viking(void)
1401{
1402	unsigned long mreg = srmmu_get_mmureg();
1403	static int smp_catch;
1404
1405	if (viking_mxcc_present) {
1406		unsigned long mxcc_control = mxcc_get_creg();
1407
1408		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1409		mxcc_control &= ~(MXCC_CTL_RRC);
1410		mxcc_set_creg(mxcc_control);
1411
1412		/*
1413		 * We don't need memory parity checks.
1414		 * XXX This is a mess, have to dig out later. ecd.
1415		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1416		 */
1417
1418		/* We do cache ptables on MXCC. */
1419		mreg |= VIKING_TCENABLE;
1420	} else {
1421		unsigned long bpreg;
1422
1423		mreg &= ~(VIKING_TCENABLE);
1424		if (smp_catch++) {
1425			/* Must disable mixed-cmd mode here for other cpu's. */
1426			bpreg = viking_get_bpreg();
1427			bpreg &= ~(VIKING_ACTION_MIX);
1428			viking_set_bpreg(bpreg);
1429
1430			/* Just in case PROM does something funny. */
1431			msi_set_sync();
1432		}
1433	}
1434
1435	mreg |= VIKING_SPENABLE;
1436	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1437	mreg |= VIKING_SBENABLE;
1438	mreg &= ~(VIKING_ACENABLE);
1439	srmmu_set_mmureg(mreg);
1440}
1441
1442static struct sparc32_cachetlb_ops viking_ops = {
1443	.cache_all	= viking_flush_cache_all,
1444	.cache_mm	= viking_flush_cache_mm,
1445	.cache_page	= viking_flush_cache_page,
1446	.cache_range	= viking_flush_cache_range,
1447	.tlb_all	= viking_flush_tlb_all,
1448	.tlb_mm		= viking_flush_tlb_mm,
1449	.tlb_page	= viking_flush_tlb_page,
1450	.tlb_range	= viking_flush_tlb_range,
1451	.page_to_ram	= viking_flush_page_to_ram,
1452	.sig_insns	= viking_flush_sig_insns,
1453	.page_for_dma	= viking_flush_page_for_dma,
1454};
1455
1456#ifdef CONFIG_SMP
1457/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1458 * perform the local TLB flush and all the other cpus will see it.
1459 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1460 * that requires that we add some synchronization to these flushes.
1461 *
1462 * The bug is that the fifo which keeps track of all the pending TLB
1463 * broadcasts in the system is an entry or two too small, so if we
1464 * have too many going at once we'll overflow that fifo and lose a TLB
1465 * flush resulting in corruption.
1466 *
1467 * Our workaround is to take a global spinlock around the TLB flushes,
1468 * which guarentees we won't ever have too many pending.  It's a big
1469 * hammer, but a semaphore like system to make sure we only have N TLB
1470 * flushes going at once will require SMP locking anyways so there's
1471 * no real value in trying any harder than this.
1472 */
1473static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1474	.cache_all	= viking_flush_cache_all,
1475	.cache_mm	= viking_flush_cache_mm,
1476	.cache_page	= viking_flush_cache_page,
1477	.cache_range	= viking_flush_cache_range,
1478	.tlb_all	= sun4dsmp_flush_tlb_all,
1479	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1480	.tlb_page	= sun4dsmp_flush_tlb_page,
1481	.tlb_range	= sun4dsmp_flush_tlb_range,
1482	.page_to_ram	= viking_flush_page_to_ram,
1483	.sig_insns	= viking_flush_sig_insns,
1484	.page_for_dma	= viking_flush_page_for_dma,
1485};
1486#endif
1487
1488static void __init init_viking(void)
1489{
1490	unsigned long mreg = srmmu_get_mmureg();
1491
1492	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1493	if (mreg & VIKING_MMODE) {
1494		srmmu_name = "TI Viking";
1495		viking_mxcc_present = 0;
1496		msi_set_sync();
1497
1498		/*
1499		 * We need this to make sure old viking takes no hits
1500		 * on it's cache for dma snoops to workaround the
1501		 * "load from non-cacheable memory" interrupt bug.
1502		 * This is only necessary because of the new way in
1503		 * which we use the IOMMU.
1504		 */
1505		viking_ops.page_for_dma = viking_flush_page;
1506#ifdef CONFIG_SMP
1507		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1508#endif
1509		flush_page_for_dma_global = 0;
1510	} else {
1511		srmmu_name = "TI Viking/MXCC";
1512		viking_mxcc_present = 1;
1513		srmmu_cache_pagetables = 1;
1514	}
1515
1516	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1517		&viking_ops;
1518#ifdef CONFIG_SMP
1519	if (sparc_cpu_model == sun4d)
1520		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1521			&viking_sun4d_smp_ops;
1522#endif
1523
1524	poke_srmmu = poke_viking;
1525}
1526
1527/* Probe for the srmmu chip version. */
1528static void __init get_srmmu_type(void)
1529{
1530	unsigned long mreg, psr;
1531	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1532
1533	srmmu_modtype = SRMMU_INVAL_MOD;
1534	hwbug_bitmask = 0;
1535
1536	mreg = srmmu_get_mmureg(); psr = get_psr();
1537	mod_typ = (mreg & 0xf0000000) >> 28;
1538	mod_rev = (mreg & 0x0f000000) >> 24;
1539	psr_typ = (psr >> 28) & 0xf;
1540	psr_vers = (psr >> 24) & 0xf;
1541
1542	/* First, check for sparc-leon. */
1543	if (sparc_cpu_model == sparc_leon) {
1544		init_leon();
1545		return;
1546	}
1547
1548	/* Second, check for HyperSparc or Cypress. */
1549	if (mod_typ == 1) {
1550		switch (mod_rev) {
1551		case 7:
1552			/* UP or MP Hypersparc */
1553			init_hypersparc();
1554			break;
1555		case 0:
1556		case 2:
1557		case 10:
1558		case 11:
1559		case 12:
1560		case 13:
1561		case 14:
1562		case 15:
1563		default:
1564			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1565			prom_halt();
1566			break;
1567		}
1568		return;
1569	}
1570
1571	/* Now Fujitsu TurboSparc. It might happen that it is
1572	 * in Swift emulation mode, so we will check later...
1573	 */
1574	if (psr_typ == 0 && psr_vers == 5) {
1575		init_turbosparc();
1576		return;
1577	}
1578
1579	/* Next check for Fujitsu Swift. */
1580	if (psr_typ == 0 && psr_vers == 4) {
1581		phandle cpunode;
1582		char node_str[128];
1583
1584		/* Look if it is not a TurboSparc emulating Swift... */
1585		cpunode = prom_getchild(prom_root_node);
1586		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1587			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1588			if (!strcmp(node_str, "cpu")) {
1589				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1590				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1591					init_turbosparc();
1592					return;
1593				}
1594				break;
1595			}
1596		}
1597
1598		init_swift();
1599		return;
1600	}
1601
1602	/* Now the Viking family of srmmu. */
1603	if (psr_typ == 4 &&
1604	   ((psr_vers == 0) ||
1605	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1606		init_viking();
1607		return;
1608	}
1609
1610	/* Finally the Tsunami. */
1611	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1612		init_tsunami();
1613		return;
1614	}
1615
1616	/* Oh well */
1617	srmmu_is_bad();
1618}
1619
1620#ifdef CONFIG_SMP
1621/* Local cross-calls. */
1622static void smp_flush_page_for_dma(unsigned long page)
1623{
1624	xc1((smpfunc_t) local_ops->page_for_dma, page);
1625	local_ops->page_for_dma(page);
1626}
1627
1628static void smp_flush_cache_all(void)
1629{
1630	xc0((smpfunc_t) local_ops->cache_all);
1631	local_ops->cache_all();
1632}
1633
1634static void smp_flush_tlb_all(void)
1635{
1636	xc0((smpfunc_t) local_ops->tlb_all);
1637	local_ops->tlb_all();
1638}
1639
1640static void smp_flush_cache_mm(struct mm_struct *mm)
1641{
1642	if (mm->context != NO_CONTEXT) {
1643		cpumask_t cpu_mask;
1644		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1645		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1646		if (!cpumask_empty(&cpu_mask))
1647			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1648		local_ops->cache_mm(mm);
1649	}
1650}
1651
1652static void smp_flush_tlb_mm(struct mm_struct *mm)
1653{
1654	if (mm->context != NO_CONTEXT) {
1655		cpumask_t cpu_mask;
1656		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1657		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1658		if (!cpumask_empty(&cpu_mask)) {
1659			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1660			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1661				cpumask_copy(mm_cpumask(mm),
1662					     cpumask_of(smp_processor_id()));
1663		}
1664		local_ops->tlb_mm(mm);
1665	}
1666}
1667
1668static void smp_flush_cache_range(struct vm_area_struct *vma,
1669				  unsigned long start,
1670				  unsigned long end)
1671{
1672	struct mm_struct *mm = vma->vm_mm;
1673
1674	if (mm->context != NO_CONTEXT) {
1675		cpumask_t cpu_mask;
1676		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1677		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1678		if (!cpumask_empty(&cpu_mask))
1679			xc3((smpfunc_t) local_ops->cache_range,
1680			    (unsigned long) vma, start, end);
1681		local_ops->cache_range(vma, start, end);
1682	}
1683}
1684
1685static void smp_flush_tlb_range(struct vm_area_struct *vma,
1686				unsigned long start,
1687				unsigned long end)
1688{
1689	struct mm_struct *mm = vma->vm_mm;
1690
1691	if (mm->context != NO_CONTEXT) {
1692		cpumask_t cpu_mask;
1693		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1694		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1695		if (!cpumask_empty(&cpu_mask))
1696			xc3((smpfunc_t) local_ops->tlb_range,
1697			    (unsigned long) vma, start, end);
1698		local_ops->tlb_range(vma, start, end);
1699	}
1700}
1701
1702static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc2((smpfunc_t) local_ops->cache_page,
1712			    (unsigned long) vma, page);
1713		local_ops->cache_page(vma, page);
1714	}
1715}
1716
1717static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2((smpfunc_t) local_ops->tlb_page,
1727			    (unsigned long) vma, page);
1728		local_ops->tlb_page(vma, page);
1729	}
1730}
1731
1732static void smp_flush_page_to_ram(unsigned long page)
1733{
1734	/* Current theory is that those who call this are the one's
1735	 * who have just dirtied their cache with the pages contents
1736	 * in kernel space, therefore we only run this on local cpu.
1737	 *
1738	 * XXX This experiment failed, research further... -DaveM
1739	 */
1740#if 1
1741	xc1((smpfunc_t) local_ops->page_to_ram, page);
1742#endif
1743	local_ops->page_to_ram(page);
1744}
1745
1746static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1747{
1748	cpumask_t cpu_mask;
1749	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1750	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1751	if (!cpumask_empty(&cpu_mask))
1752		xc2((smpfunc_t) local_ops->sig_insns,
1753		    (unsigned long) mm, insn_addr);
1754	local_ops->sig_insns(mm, insn_addr);
1755}
1756
1757static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1758	.cache_all	= smp_flush_cache_all,
1759	.cache_mm	= smp_flush_cache_mm,
1760	.cache_page	= smp_flush_cache_page,
1761	.cache_range	= smp_flush_cache_range,
1762	.tlb_all	= smp_flush_tlb_all,
1763	.tlb_mm		= smp_flush_tlb_mm,
1764	.tlb_page	= smp_flush_tlb_page,
1765	.tlb_range	= smp_flush_tlb_range,
1766	.page_to_ram	= smp_flush_page_to_ram,
1767	.sig_insns	= smp_flush_sig_insns,
1768	.page_for_dma	= smp_flush_page_for_dma,
1769};
1770#endif
1771
1772/* Load up routines and constants for sun4m and sun4d mmu */
1773void __init load_mmu(void)
1774{
1775	/* Functions */
1776	get_srmmu_type();
1777
1778#ifdef CONFIG_SMP
1779	/* El switcheroo... */
1780	local_ops = sparc32_cachetlb_ops;
1781
1782	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787	}
1788
1789	if (poke_srmmu == poke_viking) {
1790		/* Avoid unnecessary cross calls. */
1791		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795
1796		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799	}
1800
1801	/* It really is const after this point. */
1802	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803		&smp_cachetlb_ops;
1804#endif
1805
1806	if (sparc_cpu_model == sun4d)
1807		ld_mmu_iounit();
1808	else
1809		ld_mmu_iommu();
1810#ifdef CONFIG_SMP
1811	if (sparc_cpu_model == sun4d)
1812		sun4d_init_smp();
1813	else if (sparc_cpu_model == sparc_leon)
1814		leon_init_smp();
1815	else
1816		sun4m_init_smp();
1817#endif
1818}
1819