1/*
2 * unaligned.c: Unaligned load/store trap handling with special
3 *              cases for the kernel to do them more quickly.
4 *
5 * Copyright (C) 1996,2008 David S. Miller (davem@davemloft.net)
6 * Copyright (C) 1996,1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
7 */
8
9
10#include <linux/jiffies.h>
11#include <linux/kernel.h>
12#include <linux/sched.h>
13#include <linux/mm.h>
14#include <linux/module.h>
15#include <asm/asi.h>
16#include <asm/ptrace.h>
17#include <asm/pstate.h>
18#include <asm/processor.h>
19#include <asm/uaccess.h>
20#include <linux/smp.h>
21#include <linux/bitops.h>
22#include <linux/perf_event.h>
23#include <linux/ratelimit.h>
24#include <linux/context_tracking.h>
25#include <asm/fpumacro.h>
26#include <asm/cacheflush.h>
27#include <asm/setup.h>
28
29#include "entry.h"
30#include "kernel.h"
31
32enum direction {
33	load,    /* ld, ldd, ldh, ldsh */
34	store,   /* st, std, sth, stsh */
35	both,    /* Swap, ldstub, cas, ... */
36	fpld,
37	fpst,
38	invalid,
39};
40
41static inline enum direction decode_direction(unsigned int insn)
42{
43	unsigned long tmp = (insn >> 21) & 1;
44
45	if (!tmp)
46		return load;
47	else {
48		switch ((insn>>19)&0xf) {
49		case 15: /* swap* */
50			return both;
51		default:
52			return store;
53		}
54	}
55}
56
57/* 16 = double-word, 8 = extra-word, 4 = word, 2 = half-word */
58static inline int decode_access_size(struct pt_regs *regs, unsigned int insn)
59{
60	unsigned int tmp;
61
62	tmp = ((insn >> 19) & 0xf);
63	if (tmp == 11 || tmp == 14) /* ldx/stx */
64		return 8;
65	tmp &= 3;
66	if (!tmp)
67		return 4;
68	else if (tmp == 3)
69		return 16;	/* ldd/std - Although it is actually 8 */
70	else if (tmp == 2)
71		return 2;
72	else {
73		printk("Impossible unaligned trap. insn=%08x\n", insn);
74		die_if_kernel("Byte sized unaligned access?!?!", regs);
75
76		/* GCC should never warn that control reaches the end
77		 * of this function without returning a value because
78		 * die_if_kernel() is marked with attribute 'noreturn'.
79		 * Alas, some versions do...
80		 */
81
82		return 0;
83	}
84}
85
86static inline int decode_asi(unsigned int insn, struct pt_regs *regs)
87{
88	if (insn & 0x800000) {
89		if (insn & 0x2000)
90			return (unsigned char)(regs->tstate >> 24);	/* %asi */
91		else
92			return (unsigned char)(insn >> 5);		/* imm_asi */
93	} else
94		return ASI_P;
95}
96
97/* 0x400000 = signed, 0 = unsigned */
98static inline int decode_signedness(unsigned int insn)
99{
100	return (insn & 0x400000);
101}
102
103static inline void maybe_flush_windows(unsigned int rs1, unsigned int rs2,
104				       unsigned int rd, int from_kernel)
105{
106	if (rs2 >= 16 || rs1 >= 16 || rd >= 16) {
107		if (from_kernel != 0)
108			__asm__ __volatile__("flushw");
109		else
110			flushw_user();
111	}
112}
113
114static inline long sign_extend_imm13(long imm)
115{
116	return imm << 51 >> 51;
117}
118
119static unsigned long fetch_reg(unsigned int reg, struct pt_regs *regs)
120{
121	unsigned long value, fp;
122
123	if (reg < 16)
124		return (!reg ? 0 : regs->u_regs[reg]);
125
126	fp = regs->u_regs[UREG_FP];
127
128	if (regs->tstate & TSTATE_PRIV) {
129		struct reg_window *win;
130		win = (struct reg_window *)(fp + STACK_BIAS);
131		value = win->locals[reg - 16];
132	} else if (!test_thread_64bit_stack(fp)) {
133		struct reg_window32 __user *win32;
134		win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
135		get_user(value, &win32->locals[reg - 16]);
136	} else {
137		struct reg_window __user *win;
138		win = (struct reg_window __user *)(fp + STACK_BIAS);
139		get_user(value, &win->locals[reg - 16]);
140	}
141	return value;
142}
143
144static unsigned long *fetch_reg_addr(unsigned int reg, struct pt_regs *regs)
145{
146	unsigned long fp;
147
148	if (reg < 16)
149		return &regs->u_regs[reg];
150
151	fp = regs->u_regs[UREG_FP];
152
153	if (regs->tstate & TSTATE_PRIV) {
154		struct reg_window *win;
155		win = (struct reg_window *)(fp + STACK_BIAS);
156		return &win->locals[reg - 16];
157	} else if (!test_thread_64bit_stack(fp)) {
158		struct reg_window32 *win32;
159		win32 = (struct reg_window32 *)((unsigned long)((u32)fp));
160		return (unsigned long *)&win32->locals[reg - 16];
161	} else {
162		struct reg_window *win;
163		win = (struct reg_window *)(fp + STACK_BIAS);
164		return &win->locals[reg - 16];
165	}
166}
167
168unsigned long compute_effective_address(struct pt_regs *regs,
169					unsigned int insn, unsigned int rd)
170{
171	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
172	unsigned int rs1 = (insn >> 14) & 0x1f;
173	unsigned int rs2 = insn & 0x1f;
174	unsigned long addr;
175
176	if (insn & 0x2000) {
177		maybe_flush_windows(rs1, 0, rd, from_kernel);
178		addr = (fetch_reg(rs1, regs) + sign_extend_imm13(insn));
179	} else {
180		maybe_flush_windows(rs1, rs2, rd, from_kernel);
181		addr = (fetch_reg(rs1, regs) + fetch_reg(rs2, regs));
182	}
183
184	if (!from_kernel && test_thread_flag(TIF_32BIT))
185		addr &= 0xffffffff;
186
187	return addr;
188}
189
190/* This is just to make gcc think die_if_kernel does return... */
191static void __used unaligned_panic(char *str, struct pt_regs *regs)
192{
193	die_if_kernel(str, regs);
194}
195
196extern int do_int_load(unsigned long *dest_reg, int size,
197		       unsigned long *saddr, int is_signed, int asi);
198
199extern int __do_int_store(unsigned long *dst_addr, int size,
200			  unsigned long src_val, int asi);
201
202static inline int do_int_store(int reg_num, int size, unsigned long *dst_addr,
203			       struct pt_regs *regs, int asi, int orig_asi)
204{
205	unsigned long zero = 0;
206	unsigned long *src_val_p = &zero;
207	unsigned long src_val;
208
209	if (size == 16) {
210		size = 8;
211		zero = (((long)(reg_num ?
212		        (unsigned)fetch_reg(reg_num, regs) : 0)) << 32) |
213			(unsigned)fetch_reg(reg_num + 1, regs);
214	} else if (reg_num) {
215		src_val_p = fetch_reg_addr(reg_num, regs);
216	}
217	src_val = *src_val_p;
218	if (unlikely(asi != orig_asi)) {
219		switch (size) {
220		case 2:
221			src_val = swab16(src_val);
222			break;
223		case 4:
224			src_val = swab32(src_val);
225			break;
226		case 8:
227			src_val = swab64(src_val);
228			break;
229		case 16:
230		default:
231			BUG();
232			break;
233		}
234	}
235	return __do_int_store(dst_addr, size, src_val, asi);
236}
237
238static inline void advance(struct pt_regs *regs)
239{
240	regs->tpc   = regs->tnpc;
241	regs->tnpc += 4;
242	if (test_thread_flag(TIF_32BIT)) {
243		regs->tpc &= 0xffffffff;
244		regs->tnpc &= 0xffffffff;
245	}
246}
247
248static inline int floating_point_load_or_store_p(unsigned int insn)
249{
250	return (insn >> 24) & 1;
251}
252
253static inline int ok_for_kernel(unsigned int insn)
254{
255	return !floating_point_load_or_store_p(insn);
256}
257
258static void kernel_mna_trap_fault(int fixup_tstate_asi)
259{
260	struct pt_regs *regs = current_thread_info()->kern_una_regs;
261	unsigned int insn = current_thread_info()->kern_una_insn;
262	const struct exception_table_entry *entry;
263
264	entry = search_exception_tables(regs->tpc);
265	if (!entry) {
266		unsigned long address;
267
268		address = compute_effective_address(regs, insn,
269						    ((insn >> 25) & 0x1f));
270        	if (address < PAGE_SIZE) {
271                	printk(KERN_ALERT "Unable to handle kernel NULL "
272			       "pointer dereference in mna handler");
273        	} else
274                	printk(KERN_ALERT "Unable to handle kernel paging "
275			       "request in mna handler");
276	        printk(KERN_ALERT " at virtual address %016lx\n",address);
277		printk(KERN_ALERT "current->{active_,}mm->context = %016lx\n",
278			(current->mm ? CTX_HWBITS(current->mm->context) :
279			CTX_HWBITS(current->active_mm->context)));
280		printk(KERN_ALERT "current->{active_,}mm->pgd = %016lx\n",
281			(current->mm ? (unsigned long) current->mm->pgd :
282			(unsigned long) current->active_mm->pgd));
283	        die_if_kernel("Oops", regs);
284		/* Not reached */
285	}
286	regs->tpc = entry->fixup;
287	regs->tnpc = regs->tpc + 4;
288
289	if (fixup_tstate_asi) {
290		regs->tstate &= ~TSTATE_ASI;
291		regs->tstate |= (ASI_AIUS << 24UL);
292	}
293}
294
295static void log_unaligned(struct pt_regs *regs)
296{
297	static DEFINE_RATELIMIT_STATE(ratelimit, 5 * HZ, 5);
298
299	if (__ratelimit(&ratelimit)) {
300		printk("Kernel unaligned access at TPC[%lx] %pS\n",
301		       regs->tpc, (void *) regs->tpc);
302	}
303}
304
305asmlinkage void kernel_unaligned_trap(struct pt_regs *regs, unsigned int insn)
306{
307	enum direction dir = decode_direction(insn);
308	int size = decode_access_size(regs, insn);
309	int orig_asi, asi;
310
311	current_thread_info()->kern_una_regs = regs;
312	current_thread_info()->kern_una_insn = insn;
313
314	orig_asi = asi = decode_asi(insn, regs);
315
316	/* If this is a {get,put}_user() on an unaligned userspace pointer,
317	 * just signal a fault and do not log the event.
318	 */
319	if (asi == ASI_AIUS) {
320		kernel_mna_trap_fault(0);
321		return;
322	}
323
324	log_unaligned(regs);
325
326	if (!ok_for_kernel(insn) || dir == both) {
327		printk("Unsupported unaligned load/store trap for kernel "
328		       "at <%016lx>.\n", regs->tpc);
329		unaligned_panic("Kernel does fpu/atomic "
330				"unaligned load/store.", regs);
331
332		kernel_mna_trap_fault(0);
333	} else {
334		unsigned long addr, *reg_addr;
335		int err;
336
337		addr = compute_effective_address(regs, insn,
338						 ((insn >> 25) & 0x1f));
339		perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, addr);
340		switch (asi) {
341		case ASI_NL:
342		case ASI_AIUPL:
343		case ASI_AIUSL:
344		case ASI_PL:
345		case ASI_SL:
346		case ASI_PNFL:
347		case ASI_SNFL:
348			asi &= ~0x08;
349			break;
350		}
351		switch (dir) {
352		case load:
353			reg_addr = fetch_reg_addr(((insn>>25)&0x1f), regs);
354			err = do_int_load(reg_addr, size,
355					  (unsigned long *) addr,
356					  decode_signedness(insn), asi);
357			if (likely(!err) && unlikely(asi != orig_asi)) {
358				unsigned long val_in = *reg_addr;
359				switch (size) {
360				case 2:
361					val_in = swab16(val_in);
362					break;
363				case 4:
364					val_in = swab32(val_in);
365					break;
366				case 8:
367					val_in = swab64(val_in);
368					break;
369				case 16:
370				default:
371					BUG();
372					break;
373				}
374				*reg_addr = val_in;
375			}
376			break;
377
378		case store:
379			err = do_int_store(((insn>>25)&0x1f), size,
380					   (unsigned long *) addr, regs,
381					   asi, orig_asi);
382			break;
383
384		default:
385			panic("Impossible kernel unaligned trap.");
386			/* Not reached... */
387		}
388		if (unlikely(err))
389			kernel_mna_trap_fault(1);
390		else
391			advance(regs);
392	}
393}
394
395int handle_popc(u32 insn, struct pt_regs *regs)
396{
397	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
398	int ret, rd = ((insn >> 25) & 0x1f);
399	u64 value;
400
401	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
402	if (insn & 0x2000) {
403		maybe_flush_windows(0, 0, rd, from_kernel);
404		value = sign_extend_imm13(insn);
405	} else {
406		maybe_flush_windows(0, insn & 0x1f, rd, from_kernel);
407		value = fetch_reg(insn & 0x1f, regs);
408	}
409	ret = hweight64(value);
410	if (rd < 16) {
411		if (rd)
412			regs->u_regs[rd] = ret;
413	} else {
414		unsigned long fp = regs->u_regs[UREG_FP];
415
416		if (!test_thread_64bit_stack(fp)) {
417			struct reg_window32 __user *win32;
418			win32 = (struct reg_window32 __user *)((unsigned long)((u32)fp));
419			put_user(ret, &win32->locals[rd - 16]);
420		} else {
421			struct reg_window __user *win;
422			win = (struct reg_window __user *)(fp + STACK_BIAS);
423			put_user(ret, &win->locals[rd - 16]);
424		}
425	}
426	advance(regs);
427	return 1;
428}
429
430extern void do_fpother(struct pt_regs *regs);
431extern void do_privact(struct pt_regs *regs);
432extern void sun4v_data_access_exception(struct pt_regs *regs,
433					unsigned long addr,
434					unsigned long type_ctx);
435
436int handle_ldf_stq(u32 insn, struct pt_regs *regs)
437{
438	unsigned long addr = compute_effective_address(regs, insn, 0);
439	int freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
440	struct fpustate *f = FPUSTATE;
441	int asi = decode_asi(insn, regs);
442	int flag = (freg < 32) ? FPRS_DL : FPRS_DU;
443
444	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
445
446	save_and_clear_fpu();
447	current_thread_info()->xfsr[0] &= ~0x1c000;
448	if (freg & 3) {
449		current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
450		do_fpother(regs);
451		return 0;
452	}
453	if (insn & 0x200000) {
454		/* STQ */
455		u64 first = 0, second = 0;
456
457		if (current_thread_info()->fpsaved[0] & flag) {
458			first = *(u64 *)&f->regs[freg];
459			second = *(u64 *)&f->regs[freg+2];
460		}
461		if (asi < 0x80) {
462			do_privact(regs);
463			return 1;
464		}
465		switch (asi) {
466		case ASI_P:
467		case ASI_S: break;
468		case ASI_PL:
469		case ASI_SL:
470			{
471				/* Need to convert endians */
472				u64 tmp = __swab64p(&first);
473
474				first = __swab64p(&second);
475				second = tmp;
476				break;
477			}
478		default:
479			if (tlb_type == hypervisor)
480				sun4v_data_access_exception(regs, addr, 0);
481			else
482				spitfire_data_access_exception(regs, 0, addr);
483			return 1;
484		}
485		if (put_user (first >> 32, (u32 __user *)addr) ||
486		    __put_user ((u32)first, (u32 __user *)(addr + 4)) ||
487		    __put_user (second >> 32, (u32 __user *)(addr + 8)) ||
488		    __put_user ((u32)second, (u32 __user *)(addr + 12))) {
489			if (tlb_type == hypervisor)
490				sun4v_data_access_exception(regs, addr, 0);
491			else
492				spitfire_data_access_exception(regs, 0, addr);
493		    	return 1;
494		}
495	} else {
496		/* LDF, LDDF, LDQF */
497		u32 data[4] __attribute__ ((aligned(8)));
498		int size, i;
499		int err;
500
501		if (asi < 0x80) {
502			do_privact(regs);
503			return 1;
504		} else if (asi > ASI_SNFL) {
505			if (tlb_type == hypervisor)
506				sun4v_data_access_exception(regs, addr, 0);
507			else
508				spitfire_data_access_exception(regs, 0, addr);
509			return 1;
510		}
511		switch (insn & 0x180000) {
512		case 0x000000: size = 1; break;
513		case 0x100000: size = 4; break;
514		default: size = 2; break;
515		}
516		for (i = 0; i < size; i++)
517			data[i] = 0;
518
519		err = get_user (data[0], (u32 __user *) addr);
520		if (!err) {
521			for (i = 1; i < size; i++)
522				err |= __get_user (data[i], (u32 __user *)(addr + 4*i));
523		}
524		if (err && !(asi & 0x2 /* NF */)) {
525			if (tlb_type == hypervisor)
526				sun4v_data_access_exception(regs, addr, 0);
527			else
528				spitfire_data_access_exception(regs, 0, addr);
529			return 1;
530		}
531		if (asi & 0x8) /* Little */ {
532			u64 tmp;
533
534			switch (size) {
535			case 1: data[0] = le32_to_cpup(data + 0); break;
536			default:*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 0));
537				break;
538			case 4: tmp = le64_to_cpup((u64 *)(data + 0));
539				*(u64 *)(data + 0) = le64_to_cpup((u64 *)(data + 2));
540				*(u64 *)(data + 2) = tmp;
541				break;
542			}
543		}
544		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
545			current_thread_info()->fpsaved[0] = FPRS_FEF;
546			current_thread_info()->gsr[0] = 0;
547		}
548		if (!(current_thread_info()->fpsaved[0] & flag)) {
549			if (freg < 32)
550				memset(f->regs, 0, 32*sizeof(u32));
551			else
552				memset(f->regs+32, 0, 32*sizeof(u32));
553		}
554		memcpy(f->regs + freg, data, size * 4);
555		current_thread_info()->fpsaved[0] |= flag;
556	}
557	advance(regs);
558	return 1;
559}
560
561void handle_ld_nf(u32 insn, struct pt_regs *regs)
562{
563	int rd = ((insn >> 25) & 0x1f);
564	int from_kernel = (regs->tstate & TSTATE_PRIV) != 0;
565	unsigned long *reg;
566
567	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
568
569	maybe_flush_windows(0, 0, rd, from_kernel);
570	reg = fetch_reg_addr(rd, regs);
571	if (from_kernel || rd < 16) {
572		reg[0] = 0;
573		if ((insn & 0x780000) == 0x180000)
574			reg[1] = 0;
575	} else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
576		put_user(0, (int __user *) reg);
577		if ((insn & 0x780000) == 0x180000)
578			put_user(0, ((int __user *) reg) + 1);
579	} else {
580		put_user(0, (unsigned long __user *) reg);
581		if ((insn & 0x780000) == 0x180000)
582			put_user(0, (unsigned long __user *) reg + 1);
583	}
584	advance(regs);
585}
586
587void handle_lddfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
588{
589	enum ctx_state prev_state = exception_enter();
590	unsigned long pc = regs->tpc;
591	unsigned long tstate = regs->tstate;
592	u32 insn;
593	u64 value;
594	u8 freg;
595	int flag;
596	struct fpustate *f = FPUSTATE;
597
598	if (tstate & TSTATE_PRIV)
599		die_if_kernel("lddfmna from kernel", regs);
600	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
601	if (test_thread_flag(TIF_32BIT))
602		pc = (u32)pc;
603	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
604		int asi = decode_asi(insn, regs);
605		u32 first, second;
606		int err;
607
608		if ((asi > ASI_SNFL) ||
609		    (asi < ASI_P))
610			goto daex;
611		first = second = 0;
612		err = get_user(first, (u32 __user *)sfar);
613		if (!err)
614			err = get_user(second, (u32 __user *)(sfar + 4));
615		if (err) {
616			if (!(asi & 0x2))
617				goto daex;
618			first = second = 0;
619		}
620		save_and_clear_fpu();
621		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
622		value = (((u64)first) << 32) | second;
623		if (asi & 0x8) /* Little */
624			value = __swab64p(&value);
625		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
626		if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
627			current_thread_info()->fpsaved[0] = FPRS_FEF;
628			current_thread_info()->gsr[0] = 0;
629		}
630		if (!(current_thread_info()->fpsaved[0] & flag)) {
631			if (freg < 32)
632				memset(f->regs, 0, 32*sizeof(u32));
633			else
634				memset(f->regs+32, 0, 32*sizeof(u32));
635		}
636		*(u64 *)(f->regs + freg) = value;
637		current_thread_info()->fpsaved[0] |= flag;
638	} else {
639daex:
640		if (tlb_type == hypervisor)
641			sun4v_data_access_exception(regs, sfar, sfsr);
642		else
643			spitfire_data_access_exception(regs, sfsr, sfar);
644		goto out;
645	}
646	advance(regs);
647out:
648	exception_exit(prev_state);
649}
650
651void handle_stdfmna(struct pt_regs *regs, unsigned long sfar, unsigned long sfsr)
652{
653	enum ctx_state prev_state = exception_enter();
654	unsigned long pc = regs->tpc;
655	unsigned long tstate = regs->tstate;
656	u32 insn;
657	u64 value;
658	u8 freg;
659	int flag;
660	struct fpustate *f = FPUSTATE;
661
662	if (tstate & TSTATE_PRIV)
663		die_if_kernel("stdfmna from kernel", regs);
664	perf_sw_event(PERF_COUNT_SW_ALIGNMENT_FAULTS, 1, regs, sfar);
665	if (test_thread_flag(TIF_32BIT))
666		pc = (u32)pc;
667	if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
668		int asi = decode_asi(insn, regs);
669		freg = ((insn >> 25) & 0x1e) | ((insn >> 20) & 0x20);
670		value = 0;
671		flag = (freg < 32) ? FPRS_DL : FPRS_DU;
672		if ((asi > ASI_SNFL) ||
673		    (asi < ASI_P))
674			goto daex;
675		save_and_clear_fpu();
676		if (current_thread_info()->fpsaved[0] & flag)
677			value = *(u64 *)&f->regs[freg];
678		switch (asi) {
679		case ASI_P:
680		case ASI_S: break;
681		case ASI_PL:
682		case ASI_SL:
683			value = __swab64p(&value); break;
684		default: goto daex;
685		}
686		if (put_user (value >> 32, (u32 __user *) sfar) ||
687		    __put_user ((u32)value, (u32 __user *)(sfar + 4)))
688			goto daex;
689	} else {
690daex:
691		if (tlb_type == hypervisor)
692			sun4v_data_access_exception(regs, sfar, sfsr);
693		else
694			spitfire_data_access_exception(regs, sfsr, sfar);
695		goto out;
696	}
697	advance(regs);
698out:
699	exception_exit(prev_state);
700}
701