1/* smp.c: Sparc64 SMP support.
2 *
3 * Copyright (C) 1997, 2007, 2008 David S. Miller (davem@davemloft.net)
4 */
5
6#include <linux/export.h>
7#include <linux/kernel.h>
8#include <linux/sched.h>
9#include <linux/mm.h>
10#include <linux/pagemap.h>
11#include <linux/threads.h>
12#include <linux/smp.h>
13#include <linux/interrupt.h>
14#include <linux/kernel_stat.h>
15#include <linux/delay.h>
16#include <linux/init.h>
17#include <linux/spinlock.h>
18#include <linux/fs.h>
19#include <linux/seq_file.h>
20#include <linux/cache.h>
21#include <linux/jiffies.h>
22#include <linux/profile.h>
23#include <linux/bootmem.h>
24#include <linux/vmalloc.h>
25#include <linux/ftrace.h>
26#include <linux/cpu.h>
27#include <linux/slab.h>
28#include <linux/kgdb.h>
29
30#include <asm/head.h>
31#include <asm/ptrace.h>
32#include <linux/atomic.h>
33#include <asm/tlbflush.h>
34#include <asm/mmu_context.h>
35#include <asm/cpudata.h>
36#include <asm/hvtramp.h>
37#include <asm/io.h>
38#include <asm/timer.h>
39#include <asm/setup.h>
40
41#include <asm/irq.h>
42#include <asm/irq_regs.h>
43#include <asm/page.h>
44#include <asm/pgtable.h>
45#include <asm/oplib.h>
46#include <asm/uaccess.h>
47#include <asm/starfire.h>
48#include <asm/tlb.h>
49#include <asm/sections.h>
50#include <asm/prom.h>
51#include <asm/mdesc.h>
52#include <asm/ldc.h>
53#include <asm/hypervisor.h>
54#include <asm/pcr.h>
55
56#include "cpumap.h"
57#include "kernel.h"
58
59DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
60cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
61	{ [0 ... NR_CPUS-1] = CPU_MASK_NONE };
62
63cpumask_t cpu_core_sib_map[NR_CPUS] __read_mostly = {
64	[0 ... NR_CPUS-1] = CPU_MASK_NONE };
65
66EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
67EXPORT_SYMBOL(cpu_core_map);
68EXPORT_SYMBOL(cpu_core_sib_map);
69
70static cpumask_t smp_commenced_mask;
71
72void smp_info(struct seq_file *m)
73{
74	int i;
75
76	seq_printf(m, "State:\n");
77	for_each_online_cpu(i)
78		seq_printf(m, "CPU%d:\t\tonline\n", i);
79}
80
81void smp_bogo(struct seq_file *m)
82{
83	int i;
84
85	for_each_online_cpu(i)
86		seq_printf(m,
87			   "Cpu%dClkTck\t: %016lx\n",
88			   i, cpu_data(i).clock_tick);
89}
90
91extern void setup_sparc64_timer(void);
92
93static volatile unsigned long callin_flag = 0;
94
95void smp_callin(void)
96{
97	int cpuid = hard_smp_processor_id();
98
99	__local_per_cpu_offset = __per_cpu_offset(cpuid);
100
101	if (tlb_type == hypervisor)
102		sun4v_ktsb_register();
103
104	__flush_tlb_all();
105
106	setup_sparc64_timer();
107
108	if (cheetah_pcache_forced_on)
109		cheetah_enable_pcache();
110
111	callin_flag = 1;
112	__asm__ __volatile__("membar #Sync\n\t"
113			     "flush  %%g6" : : : "memory");
114
115	/* Clear this or we will die instantly when we
116	 * schedule back to this idler...
117	 */
118	current_thread_info()->new_child = 0;
119
120	/* Attach to the address space of init_task. */
121	atomic_inc(&init_mm.mm_count);
122	current->active_mm = &init_mm;
123
124	/* inform the notifiers about the new cpu */
125	notify_cpu_starting(cpuid);
126
127	while (!cpumask_test_cpu(cpuid, &smp_commenced_mask))
128		rmb();
129
130	set_cpu_online(cpuid, true);
131
132	/* idle thread is expected to have preempt disabled */
133	preempt_disable();
134
135	local_irq_enable();
136
137	cpu_startup_entry(CPUHP_ONLINE);
138}
139
140void cpu_panic(void)
141{
142	printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
143	panic("SMP bolixed\n");
144}
145
146/* This tick register synchronization scheme is taken entirely from
147 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
148 *
149 * The only change I've made is to rework it so that the master
150 * initiates the synchonization instead of the slave. -DaveM
151 */
152
153#define MASTER	0
154#define SLAVE	(SMP_CACHE_BYTES/sizeof(unsigned long))
155
156#define NUM_ROUNDS	64	/* magic value */
157#define NUM_ITERS	5	/* likewise */
158
159static DEFINE_RAW_SPINLOCK(itc_sync_lock);
160static unsigned long go[SLAVE + 1];
161
162#define DEBUG_TICK_SYNC	0
163
164static inline long get_delta (long *rt, long *master)
165{
166	unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
167	unsigned long tcenter, t0, t1, tm;
168	unsigned long i;
169
170	for (i = 0; i < NUM_ITERS; i++) {
171		t0 = tick_ops->get_tick();
172		go[MASTER] = 1;
173		membar_safe("#StoreLoad");
174		while (!(tm = go[SLAVE]))
175			rmb();
176		go[SLAVE] = 0;
177		wmb();
178		t1 = tick_ops->get_tick();
179
180		if (t1 - t0 < best_t1 - best_t0)
181			best_t0 = t0, best_t1 = t1, best_tm = tm;
182	}
183
184	*rt = best_t1 - best_t0;
185	*master = best_tm - best_t0;
186
187	/* average best_t0 and best_t1 without overflow: */
188	tcenter = (best_t0/2 + best_t1/2);
189	if (best_t0 % 2 + best_t1 % 2 == 2)
190		tcenter++;
191	return tcenter - best_tm;
192}
193
194void smp_synchronize_tick_client(void)
195{
196	long i, delta, adj, adjust_latency = 0, done = 0;
197	unsigned long flags, rt, master_time_stamp;
198#if DEBUG_TICK_SYNC
199	struct {
200		long rt;	/* roundtrip time */
201		long master;	/* master's timestamp */
202		long diff;	/* difference between midpoint and master's timestamp */
203		long lat;	/* estimate of itc adjustment latency */
204	} t[NUM_ROUNDS];
205#endif
206
207	go[MASTER] = 1;
208
209	while (go[MASTER])
210		rmb();
211
212	local_irq_save(flags);
213	{
214		for (i = 0; i < NUM_ROUNDS; i++) {
215			delta = get_delta(&rt, &master_time_stamp);
216			if (delta == 0)
217				done = 1;	/* let's lock on to this... */
218
219			if (!done) {
220				if (i > 0) {
221					adjust_latency += -delta;
222					adj = -delta + adjust_latency/4;
223				} else
224					adj = -delta;
225
226				tick_ops->add_tick(adj);
227			}
228#if DEBUG_TICK_SYNC
229			t[i].rt = rt;
230			t[i].master = master_time_stamp;
231			t[i].diff = delta;
232			t[i].lat = adjust_latency/4;
233#endif
234		}
235	}
236	local_irq_restore(flags);
237
238#if DEBUG_TICK_SYNC
239	for (i = 0; i < NUM_ROUNDS; i++)
240		printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
241		       t[i].rt, t[i].master, t[i].diff, t[i].lat);
242#endif
243
244	printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
245	       "(last diff %ld cycles, maxerr %lu cycles)\n",
246	       smp_processor_id(), delta, rt);
247}
248
249static void smp_start_sync_tick_client(int cpu);
250
251static void smp_synchronize_one_tick(int cpu)
252{
253	unsigned long flags, i;
254
255	go[MASTER] = 0;
256
257	smp_start_sync_tick_client(cpu);
258
259	/* wait for client to be ready */
260	while (!go[MASTER])
261		rmb();
262
263	/* now let the client proceed into his loop */
264	go[MASTER] = 0;
265	membar_safe("#StoreLoad");
266
267	raw_spin_lock_irqsave(&itc_sync_lock, flags);
268	{
269		for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
270			while (!go[MASTER])
271				rmb();
272			go[MASTER] = 0;
273			wmb();
274			go[SLAVE] = tick_ops->get_tick();
275			membar_safe("#StoreLoad");
276		}
277	}
278	raw_spin_unlock_irqrestore(&itc_sync_lock, flags);
279}
280
281#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
282static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg,
283				void **descrp)
284{
285	extern unsigned long sparc64_ttable_tl0;
286	extern unsigned long kern_locked_tte_data;
287	struct hvtramp_descr *hdesc;
288	unsigned long trampoline_ra;
289	struct trap_per_cpu *tb;
290	u64 tte_vaddr, tte_data;
291	unsigned long hv_err;
292	int i;
293
294	hdesc = kzalloc(sizeof(*hdesc) +
295			(sizeof(struct hvtramp_mapping) *
296			 num_kernel_image_mappings - 1),
297			GFP_KERNEL);
298	if (!hdesc) {
299		printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
300		       "hvtramp_descr.\n");
301		return;
302	}
303	*descrp = hdesc;
304
305	hdesc->cpu = cpu;
306	hdesc->num_mappings = num_kernel_image_mappings;
307
308	tb = &trap_block[cpu];
309
310	hdesc->fault_info_va = (unsigned long) &tb->fault_info;
311	hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
312
313	hdesc->thread_reg = thread_reg;
314
315	tte_vaddr = (unsigned long) KERNBASE;
316	tte_data = kern_locked_tte_data;
317
318	for (i = 0; i < hdesc->num_mappings; i++) {
319		hdesc->maps[i].vaddr = tte_vaddr;
320		hdesc->maps[i].tte   = tte_data;
321		tte_vaddr += 0x400000;
322		tte_data  += 0x400000;
323	}
324
325	trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326
327	hv_err = sun4v_cpu_start(cpu, trampoline_ra,
328				 kimage_addr_to_ra(&sparc64_ttable_tl0),
329				 __pa(hdesc));
330	if (hv_err)
331		printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
332		       "gives error %lu\n", hv_err);
333}
334#endif
335
336extern unsigned long sparc64_cpu_startup;
337
338/* The OBP cpu startup callback truncates the 3rd arg cookie to
339 * 32-bits (I think) so to be safe we have it read the pointer
340 * contained here so we work on >4GB machines. -DaveM
341 */
342static struct thread_info *cpu_new_thread = NULL;
343
344static int smp_boot_one_cpu(unsigned int cpu, struct task_struct *idle)
345{
346	unsigned long entry =
347		(unsigned long)(&sparc64_cpu_startup);
348	unsigned long cookie =
349		(unsigned long)(&cpu_new_thread);
350	void *descr = NULL;
351	int timeout, ret;
352
353	callin_flag = 0;
354	cpu_new_thread = task_thread_info(idle);
355
356	if (tlb_type == hypervisor) {
357#if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
358		if (ldom_domaining_enabled)
359			ldom_startcpu_cpuid(cpu,
360					    (unsigned long) cpu_new_thread,
361					    &descr);
362		else
363#endif
364			prom_startcpu_cpuid(cpu, entry, cookie);
365	} else {
366		struct device_node *dp = of_find_node_by_cpuid(cpu);
367
368		prom_startcpu(dp->phandle, entry, cookie);
369	}
370
371	for (timeout = 0; timeout < 50000; timeout++) {
372		if (callin_flag)
373			break;
374		udelay(100);
375	}
376
377	if (callin_flag) {
378		ret = 0;
379	} else {
380		printk("Processor %d is stuck.\n", cpu);
381		ret = -ENODEV;
382	}
383	cpu_new_thread = NULL;
384
385	kfree(descr);
386
387	return ret;
388}
389
390static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
391{
392	u64 result, target;
393	int stuck, tmp;
394
395	if (this_is_starfire) {
396		/* map to real upaid */
397		cpu = (((cpu & 0x3c) << 1) |
398			((cpu & 0x40) >> 4) |
399			(cpu & 0x3));
400	}
401
402	target = (cpu << 14) | 0x70;
403again:
404	/* Ok, this is the real Spitfire Errata #54.
405	 * One must read back from a UDB internal register
406	 * after writes to the UDB interrupt dispatch, but
407	 * before the membar Sync for that write.
408	 * So we use the high UDB control register (ASI 0x7f,
409	 * ADDR 0x20) for the dummy read. -DaveM
410	 */
411	tmp = 0x40;
412	__asm__ __volatile__(
413	"wrpr	%1, %2, %%pstate\n\t"
414	"stxa	%4, [%0] %3\n\t"
415	"stxa	%5, [%0+%8] %3\n\t"
416	"add	%0, %8, %0\n\t"
417	"stxa	%6, [%0+%8] %3\n\t"
418	"membar	#Sync\n\t"
419	"stxa	%%g0, [%7] %3\n\t"
420	"membar	#Sync\n\t"
421	"mov	0x20, %%g1\n\t"
422	"ldxa	[%%g1] 0x7f, %%g0\n\t"
423	"membar	#Sync"
424	: "=r" (tmp)
425	: "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
426	  "r" (data0), "r" (data1), "r" (data2), "r" (target),
427	  "r" (0x10), "0" (tmp)
428        : "g1");
429
430	/* NOTE: PSTATE_IE is still clear. */
431	stuck = 100000;
432	do {
433		__asm__ __volatile__("ldxa [%%g0] %1, %0"
434			: "=r" (result)
435			: "i" (ASI_INTR_DISPATCH_STAT));
436		if (result == 0) {
437			__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
438					     : : "r" (pstate));
439			return;
440		}
441		stuck -= 1;
442		if (stuck == 0)
443			break;
444	} while (result & 0x1);
445	__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
446			     : : "r" (pstate));
447	if (stuck == 0) {
448		printk("CPU[%d]: mondo stuckage result[%016llx]\n",
449		       smp_processor_id(), result);
450	} else {
451		udelay(2);
452		goto again;
453	}
454}
455
456static void spitfire_xcall_deliver(struct trap_per_cpu *tb, int cnt)
457{
458	u64 *mondo, data0, data1, data2;
459	u16 *cpu_list;
460	u64 pstate;
461	int i;
462
463	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
464	cpu_list = __va(tb->cpu_list_pa);
465	mondo = __va(tb->cpu_mondo_block_pa);
466	data0 = mondo[0];
467	data1 = mondo[1];
468	data2 = mondo[2];
469	for (i = 0; i < cnt; i++)
470		spitfire_xcall_helper(data0, data1, data2, pstate, cpu_list[i]);
471}
472
473/* Cheetah now allows to send the whole 64-bytes of data in the interrupt
474 * packet, but we have no use for that.  However we do take advantage of
475 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
476 */
477static void cheetah_xcall_deliver(struct trap_per_cpu *tb, int cnt)
478{
479	int nack_busy_id, is_jbus, need_more;
480	u64 *mondo, pstate, ver, busy_mask;
481	u16 *cpu_list;
482
483	cpu_list = __va(tb->cpu_list_pa);
484	mondo = __va(tb->cpu_mondo_block_pa);
485
486	/* Unfortunately, someone at Sun had the brilliant idea to make the
487	 * busy/nack fields hard-coded by ITID number for this Ultra-III
488	 * derivative processor.
489	 */
490	__asm__ ("rdpr %%ver, %0" : "=r" (ver));
491	is_jbus = ((ver >> 32) == __JALAPENO_ID ||
492		   (ver >> 32) == __SERRANO_ID);
493
494	__asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495
496retry:
497	need_more = 0;
498	__asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
499			     : : "r" (pstate), "i" (PSTATE_IE));
500
501	/* Setup the dispatch data registers. */
502	__asm__ __volatile__("stxa	%0, [%3] %6\n\t"
503			     "stxa	%1, [%4] %6\n\t"
504			     "stxa	%2, [%5] %6\n\t"
505			     "membar	#Sync\n\t"
506			     : /* no outputs */
507			     : "r" (mondo[0]), "r" (mondo[1]), "r" (mondo[2]),
508			       "r" (0x40), "r" (0x50), "r" (0x60),
509			       "i" (ASI_INTR_W));
510
511	nack_busy_id = 0;
512	busy_mask = 0;
513	{
514		int i;
515
516		for (i = 0; i < cnt; i++) {
517			u64 target, nr;
518
519			nr = cpu_list[i];
520			if (nr == 0xffff)
521				continue;
522
523			target = (nr << 14) | 0x70;
524			if (is_jbus) {
525				busy_mask |= (0x1UL << (nr * 2));
526			} else {
527				target |= (nack_busy_id << 24);
528				busy_mask |= (0x1UL <<
529					      (nack_busy_id * 2));
530			}
531			__asm__ __volatile__(
532				"stxa	%%g0, [%0] %1\n\t"
533				"membar	#Sync\n\t"
534				: /* no outputs */
535				: "r" (target), "i" (ASI_INTR_W));
536			nack_busy_id++;
537			if (nack_busy_id == 32) {
538				need_more = 1;
539				break;
540			}
541		}
542	}
543
544	/* Now, poll for completion. */
545	{
546		u64 dispatch_stat, nack_mask;
547		long stuck;
548
549		stuck = 100000 * nack_busy_id;
550		nack_mask = busy_mask << 1;
551		do {
552			__asm__ __volatile__("ldxa	[%%g0] %1, %0"
553					     : "=r" (dispatch_stat)
554					     : "i" (ASI_INTR_DISPATCH_STAT));
555			if (!(dispatch_stat & (busy_mask | nack_mask))) {
556				__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
557						     : : "r" (pstate));
558				if (unlikely(need_more)) {
559					int i, this_cnt = 0;
560					for (i = 0; i < cnt; i++) {
561						if (cpu_list[i] == 0xffff)
562							continue;
563						cpu_list[i] = 0xffff;
564						this_cnt++;
565						if (this_cnt == 32)
566							break;
567					}
568					goto retry;
569				}
570				return;
571			}
572			if (!--stuck)
573				break;
574		} while (dispatch_stat & busy_mask);
575
576		__asm__ __volatile__("wrpr %0, 0x0, %%pstate"
577				     : : "r" (pstate));
578
579		if (dispatch_stat & busy_mask) {
580			/* Busy bits will not clear, continue instead
581			 * of freezing up on this cpu.
582			 */
583			printk("CPU[%d]: mondo stuckage result[%016llx]\n",
584			       smp_processor_id(), dispatch_stat);
585		} else {
586			int i, this_busy_nack = 0;
587
588			/* Delay some random time with interrupts enabled
589			 * to prevent deadlock.
590			 */
591			udelay(2 * nack_busy_id);
592
593			/* Clear out the mask bits for cpus which did not
594			 * NACK us.
595			 */
596			for (i = 0; i < cnt; i++) {
597				u64 check_mask, nr;
598
599				nr = cpu_list[i];
600				if (nr == 0xffff)
601					continue;
602
603				if (is_jbus)
604					check_mask = (0x2UL << (2*nr));
605				else
606					check_mask = (0x2UL <<
607						      this_busy_nack);
608				if ((dispatch_stat & check_mask) == 0)
609					cpu_list[i] = 0xffff;
610				this_busy_nack += 2;
611				if (this_busy_nack == 64)
612					break;
613			}
614
615			goto retry;
616		}
617	}
618}
619
620/* Multi-cpu list version.  */
621static void hypervisor_xcall_deliver(struct trap_per_cpu *tb, int cnt)
622{
623	int retries, this_cpu, prev_sent, i, saw_cpu_error;
624	unsigned long status;
625	u16 *cpu_list;
626
627	this_cpu = smp_processor_id();
628
629	cpu_list = __va(tb->cpu_list_pa);
630
631	saw_cpu_error = 0;
632	retries = 0;
633	prev_sent = 0;
634	do {
635		int forward_progress, n_sent;
636
637		status = sun4v_cpu_mondo_send(cnt,
638					      tb->cpu_list_pa,
639					      tb->cpu_mondo_block_pa);
640
641		/* HV_EOK means all cpus received the xcall, we're done.  */
642		if (likely(status == HV_EOK))
643			break;
644
645		/* First, see if we made any forward progress.
646		 *
647		 * The hypervisor indicates successful sends by setting
648		 * cpu list entries to the value 0xffff.
649		 */
650		n_sent = 0;
651		for (i = 0; i < cnt; i++) {
652			if (likely(cpu_list[i] == 0xffff))
653				n_sent++;
654		}
655
656		forward_progress = 0;
657		if (n_sent > prev_sent)
658			forward_progress = 1;
659
660		prev_sent = n_sent;
661
662		/* If we get a HV_ECPUERROR, then one or more of the cpus
663		 * in the list are in error state.  Use the cpu_state()
664		 * hypervisor call to find out which cpus are in error state.
665		 */
666		if (unlikely(status == HV_ECPUERROR)) {
667			for (i = 0; i < cnt; i++) {
668				long err;
669				u16 cpu;
670
671				cpu = cpu_list[i];
672				if (cpu == 0xffff)
673					continue;
674
675				err = sun4v_cpu_state(cpu);
676				if (err == HV_CPU_STATE_ERROR) {
677					saw_cpu_error = (cpu + 1);
678					cpu_list[i] = 0xffff;
679				}
680			}
681		} else if (unlikely(status != HV_EWOULDBLOCK))
682			goto fatal_mondo_error;
683
684		/* Don't bother rewriting the CPU list, just leave the
685		 * 0xffff and non-0xffff entries in there and the
686		 * hypervisor will do the right thing.
687		 *
688		 * Only advance timeout state if we didn't make any
689		 * forward progress.
690		 */
691		if (unlikely(!forward_progress)) {
692			if (unlikely(++retries > 10000))
693				goto fatal_mondo_timeout;
694
695			/* Delay a little bit to let other cpus catch up
696			 * on their cpu mondo queue work.
697			 */
698			udelay(2 * cnt);
699		}
700	} while (1);
701
702	if (unlikely(saw_cpu_error))
703		goto fatal_mondo_cpu_error;
704
705	return;
706
707fatal_mondo_cpu_error:
708	printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
709	       "(including %d) were in error state\n",
710	       this_cpu, saw_cpu_error - 1);
711	return;
712
713fatal_mondo_timeout:
714	printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
715	       " progress after %d retries.\n",
716	       this_cpu, retries);
717	goto dump_cpu_list_and_out;
718
719fatal_mondo_error:
720	printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
721	       this_cpu, status);
722	printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
723	       "mondo_block_pa(%lx)\n",
724	       this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
725
726dump_cpu_list_and_out:
727	printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
728	for (i = 0; i < cnt; i++)
729		printk("%u ", cpu_list[i]);
730	printk("]\n");
731}
732
733static void (*xcall_deliver_impl)(struct trap_per_cpu *, int);
734
735static void xcall_deliver(u64 data0, u64 data1, u64 data2, const cpumask_t *mask)
736{
737	struct trap_per_cpu *tb;
738	int this_cpu, i, cnt;
739	unsigned long flags;
740	u16 *cpu_list;
741	u64 *mondo;
742
743	/* We have to do this whole thing with interrupts fully disabled.
744	 * Otherwise if we send an xcall from interrupt context it will
745	 * corrupt both our mondo block and cpu list state.
746	 *
747	 * One consequence of this is that we cannot use timeout mechanisms
748	 * that depend upon interrupts being delivered locally.  So, for
749	 * example, we cannot sample jiffies and expect it to advance.
750	 *
751	 * Fortunately, udelay() uses %stick/%tick so we can use that.
752	 */
753	local_irq_save(flags);
754
755	this_cpu = smp_processor_id();
756	tb = &trap_block[this_cpu];
757
758	mondo = __va(tb->cpu_mondo_block_pa);
759	mondo[0] = data0;
760	mondo[1] = data1;
761	mondo[2] = data2;
762	wmb();
763
764	cpu_list = __va(tb->cpu_list_pa);
765
766	/* Setup the initial cpu list.  */
767	cnt = 0;
768	for_each_cpu(i, mask) {
769		if (i == this_cpu || !cpu_online(i))
770			continue;
771		cpu_list[cnt++] = i;
772	}
773
774	if (cnt)
775		xcall_deliver_impl(tb, cnt);
776
777	local_irq_restore(flags);
778}
779
780/* Send cross call to all processors mentioned in MASK_P
781 * except self.  Really, there are only two cases currently,
782 * "cpu_online_mask" and "mm_cpumask(mm)".
783 */
784static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, const cpumask_t *mask)
785{
786	u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
787
788	xcall_deliver(data0, data1, data2, mask);
789}
790
791/* Send cross call to all processors except self. */
792static void smp_cross_call(unsigned long *func, u32 ctx, u64 data1, u64 data2)
793{
794	smp_cross_call_masked(func, ctx, data1, data2, cpu_online_mask);
795}
796
797extern unsigned long xcall_sync_tick;
798
799static void smp_start_sync_tick_client(int cpu)
800{
801	xcall_deliver((u64) &xcall_sync_tick, 0, 0,
802		      cpumask_of(cpu));
803}
804
805extern unsigned long xcall_call_function;
806
807void arch_send_call_function_ipi_mask(const struct cpumask *mask)
808{
809	xcall_deliver((u64) &xcall_call_function, 0, 0, mask);
810}
811
812extern unsigned long xcall_call_function_single;
813
814void arch_send_call_function_single_ipi(int cpu)
815{
816	xcall_deliver((u64) &xcall_call_function_single, 0, 0,
817		      cpumask_of(cpu));
818}
819
820void __irq_entry smp_call_function_client(int irq, struct pt_regs *regs)
821{
822	clear_softint(1 << irq);
823	irq_enter();
824	generic_smp_call_function_interrupt();
825	irq_exit();
826}
827
828void __irq_entry smp_call_function_single_client(int irq, struct pt_regs *regs)
829{
830	clear_softint(1 << irq);
831	irq_enter();
832	generic_smp_call_function_single_interrupt();
833	irq_exit();
834}
835
836static void tsb_sync(void *info)
837{
838	struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
839	struct mm_struct *mm = info;
840
841	/* It is not valid to test "current->active_mm == mm" here.
842	 *
843	 * The value of "current" is not changed atomically with
844	 * switch_mm().  But that's OK, we just need to check the
845	 * current cpu's trap block PGD physical address.
846	 */
847	if (tp->pgd_paddr == __pa(mm->pgd))
848		tsb_context_switch(mm);
849}
850
851void smp_tsb_sync(struct mm_struct *mm)
852{
853	smp_call_function_many(mm_cpumask(mm), tsb_sync, mm, 1);
854}
855
856extern unsigned long xcall_flush_tlb_mm;
857extern unsigned long xcall_flush_tlb_page;
858extern unsigned long xcall_flush_tlb_kernel_range;
859extern unsigned long xcall_fetch_glob_regs;
860extern unsigned long xcall_fetch_glob_pmu;
861extern unsigned long xcall_fetch_glob_pmu_n4;
862extern unsigned long xcall_receive_signal;
863extern unsigned long xcall_new_mmu_context_version;
864#ifdef CONFIG_KGDB
865extern unsigned long xcall_kgdb_capture;
866#endif
867
868#ifdef DCACHE_ALIASING_POSSIBLE
869extern unsigned long xcall_flush_dcache_page_cheetah;
870#endif
871extern unsigned long xcall_flush_dcache_page_spitfire;
872
873static inline void __local_flush_dcache_page(struct page *page)
874{
875#ifdef DCACHE_ALIASING_POSSIBLE
876	__flush_dcache_page(page_address(page),
877			    ((tlb_type == spitfire) &&
878			     page_mapping(page) != NULL));
879#else
880	if (page_mapping(page) != NULL &&
881	    tlb_type == spitfire)
882		__flush_icache_page(__pa(page_address(page)));
883#endif
884}
885
886void smp_flush_dcache_page_impl(struct page *page, int cpu)
887{
888	int this_cpu;
889
890	if (tlb_type == hypervisor)
891		return;
892
893#ifdef CONFIG_DEBUG_DCFLUSH
894	atomic_inc(&dcpage_flushes);
895#endif
896
897	this_cpu = get_cpu();
898
899	if (cpu == this_cpu) {
900		__local_flush_dcache_page(page);
901	} else if (cpu_online(cpu)) {
902		void *pg_addr = page_address(page);
903		u64 data0 = 0;
904
905		if (tlb_type == spitfire) {
906			data0 = ((u64)&xcall_flush_dcache_page_spitfire);
907			if (page_mapping(page) != NULL)
908				data0 |= ((u64)1 << 32);
909		} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
910#ifdef DCACHE_ALIASING_POSSIBLE
911			data0 =	((u64)&xcall_flush_dcache_page_cheetah);
912#endif
913		}
914		if (data0) {
915			xcall_deliver(data0, __pa(pg_addr),
916				      (u64) pg_addr, cpumask_of(cpu));
917#ifdef CONFIG_DEBUG_DCFLUSH
918			atomic_inc(&dcpage_flushes_xcall);
919#endif
920		}
921	}
922
923	put_cpu();
924}
925
926void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
927{
928	void *pg_addr;
929	u64 data0;
930
931	if (tlb_type == hypervisor)
932		return;
933
934	preempt_disable();
935
936#ifdef CONFIG_DEBUG_DCFLUSH
937	atomic_inc(&dcpage_flushes);
938#endif
939	data0 = 0;
940	pg_addr = page_address(page);
941	if (tlb_type == spitfire) {
942		data0 = ((u64)&xcall_flush_dcache_page_spitfire);
943		if (page_mapping(page) != NULL)
944			data0 |= ((u64)1 << 32);
945	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
946#ifdef DCACHE_ALIASING_POSSIBLE
947		data0 = ((u64)&xcall_flush_dcache_page_cheetah);
948#endif
949	}
950	if (data0) {
951		xcall_deliver(data0, __pa(pg_addr),
952			      (u64) pg_addr, cpu_online_mask);
953#ifdef CONFIG_DEBUG_DCFLUSH
954		atomic_inc(&dcpage_flushes_xcall);
955#endif
956	}
957	__local_flush_dcache_page(page);
958
959	preempt_enable();
960}
961
962void __irq_entry smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
963{
964	struct mm_struct *mm;
965	unsigned long flags;
966
967	clear_softint(1 << irq);
968
969	/* See if we need to allocate a new TLB context because
970	 * the version of the one we are using is now out of date.
971	 */
972	mm = current->active_mm;
973	if (unlikely(!mm || (mm == &init_mm)))
974		return;
975
976	spin_lock_irqsave(&mm->context.lock, flags);
977
978	if (unlikely(!CTX_VALID(mm->context)))
979		get_new_mmu_context(mm);
980
981	spin_unlock_irqrestore(&mm->context.lock, flags);
982
983	load_secondary_context(mm);
984	__flush_tlb_mm(CTX_HWBITS(mm->context),
985		       SECONDARY_CONTEXT);
986}
987
988void smp_new_mmu_context_version(void)
989{
990	smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
991}
992
993#ifdef CONFIG_KGDB
994void kgdb_roundup_cpus(unsigned long flags)
995{
996	smp_cross_call(&xcall_kgdb_capture, 0, 0, 0);
997}
998#endif
999
1000void smp_fetch_global_regs(void)
1001{
1002	smp_cross_call(&xcall_fetch_glob_regs, 0, 0, 0);
1003}
1004
1005void smp_fetch_global_pmu(void)
1006{
1007	if (tlb_type == hypervisor &&
1008	    sun4v_chip_type >= SUN4V_CHIP_NIAGARA4)
1009		smp_cross_call(&xcall_fetch_glob_pmu_n4, 0, 0, 0);
1010	else
1011		smp_cross_call(&xcall_fetch_glob_pmu, 0, 0, 0);
1012}
1013
1014/* We know that the window frames of the user have been flushed
1015 * to the stack before we get here because all callers of us
1016 * are flush_tlb_*() routines, and these run after flush_cache_*()
1017 * which performs the flushw.
1018 *
1019 * The SMP TLB coherency scheme we use works as follows:
1020 *
1021 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1022 *    space has (potentially) executed on, this is the heuristic
1023 *    we use to avoid doing cross calls.
1024 *
1025 *    Also, for flushing from kswapd and also for clones, we
1026 *    use cpu_vm_mask as the list of cpus to make run the TLB.
1027 *
1028 * 2) TLB context numbers are shared globally across all processors
1029 *    in the system, this allows us to play several games to avoid
1030 *    cross calls.
1031 *
1032 *    One invariant is that when a cpu switches to a process, and
1033 *    that processes tsk->active_mm->cpu_vm_mask does not have the
1034 *    current cpu's bit set, that tlb context is flushed locally.
1035 *
1036 *    If the address space is non-shared (ie. mm->count == 1) we avoid
1037 *    cross calls when we want to flush the currently running process's
1038 *    tlb state.  This is done by clearing all cpu bits except the current
1039 *    processor's in current->mm->cpu_vm_mask and performing the
1040 *    flush locally only.  This will force any subsequent cpus which run
1041 *    this task to flush the context from the local tlb if the process
1042 *    migrates to another cpu (again).
1043 *
1044 * 3) For shared address spaces (threads) and swapping we bite the
1045 *    bullet for most cases and perform the cross call (but only to
1046 *    the cpus listed in cpu_vm_mask).
1047 *
1048 *    The performance gain from "optimizing" away the cross call for threads is
1049 *    questionable (in theory the big win for threads is the massive sharing of
1050 *    address space state across processors).
1051 */
1052
1053/* This currently is only used by the hugetlb arch pre-fault
1054 * hook on UltraSPARC-III+ and later when changing the pagesize
1055 * bits of the context register for an address space.
1056 */
1057void smp_flush_tlb_mm(struct mm_struct *mm)
1058{
1059	u32 ctx = CTX_HWBITS(mm->context);
1060	int cpu = get_cpu();
1061
1062	if (atomic_read(&mm->mm_users) == 1) {
1063		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1064		goto local_flush_and_out;
1065	}
1066
1067	smp_cross_call_masked(&xcall_flush_tlb_mm,
1068			      ctx, 0, 0,
1069			      mm_cpumask(mm));
1070
1071local_flush_and_out:
1072	__flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1073
1074	put_cpu();
1075}
1076
1077struct tlb_pending_info {
1078	unsigned long ctx;
1079	unsigned long nr;
1080	unsigned long *vaddrs;
1081};
1082
1083static void tlb_pending_func(void *info)
1084{
1085	struct tlb_pending_info *t = info;
1086
1087	__flush_tlb_pending(t->ctx, t->nr, t->vaddrs);
1088}
1089
1090void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1091{
1092	u32 ctx = CTX_HWBITS(mm->context);
1093	struct tlb_pending_info info;
1094	int cpu = get_cpu();
1095
1096	info.ctx = ctx;
1097	info.nr = nr;
1098	info.vaddrs = vaddrs;
1099
1100	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1101		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1102	else
1103		smp_call_function_many(mm_cpumask(mm), tlb_pending_func,
1104				       &info, 1);
1105
1106	__flush_tlb_pending(ctx, nr, vaddrs);
1107
1108	put_cpu();
1109}
1110
1111void smp_flush_tlb_page(struct mm_struct *mm, unsigned long vaddr)
1112{
1113	unsigned long context = CTX_HWBITS(mm->context);
1114	int cpu = get_cpu();
1115
1116	if (mm == current->mm && atomic_read(&mm->mm_users) == 1)
1117		cpumask_copy(mm_cpumask(mm), cpumask_of(cpu));
1118	else
1119		smp_cross_call_masked(&xcall_flush_tlb_page,
1120				      context, vaddr, 0,
1121				      mm_cpumask(mm));
1122	__flush_tlb_page(context, vaddr);
1123
1124	put_cpu();
1125}
1126
1127void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1128{
1129	start &= PAGE_MASK;
1130	end    = PAGE_ALIGN(end);
1131	if (start != end) {
1132		smp_cross_call(&xcall_flush_tlb_kernel_range,
1133			       0, start, end);
1134
1135		__flush_tlb_kernel_range(start, end);
1136	}
1137}
1138
1139/* CPU capture. */
1140/* #define CAPTURE_DEBUG */
1141extern unsigned long xcall_capture;
1142
1143static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1144static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1145static unsigned long penguins_are_doing_time;
1146
1147void smp_capture(void)
1148{
1149	int result = atomic_add_return(1, &smp_capture_depth);
1150
1151	if (result == 1) {
1152		int ncpus = num_online_cpus();
1153
1154#ifdef CAPTURE_DEBUG
1155		printk("CPU[%d]: Sending penguins to jail...",
1156		       smp_processor_id());
1157#endif
1158		penguins_are_doing_time = 1;
1159		atomic_inc(&smp_capture_registry);
1160		smp_cross_call(&xcall_capture, 0, 0, 0);
1161		while (atomic_read(&smp_capture_registry) != ncpus)
1162			rmb();
1163#ifdef CAPTURE_DEBUG
1164		printk("done\n");
1165#endif
1166	}
1167}
1168
1169void smp_release(void)
1170{
1171	if (atomic_dec_and_test(&smp_capture_depth)) {
1172#ifdef CAPTURE_DEBUG
1173		printk("CPU[%d]: Giving pardon to "
1174		       "imprisoned penguins\n",
1175		       smp_processor_id());
1176#endif
1177		penguins_are_doing_time = 0;
1178		membar_safe("#StoreLoad");
1179		atomic_dec(&smp_capture_registry);
1180	}
1181}
1182
1183/* Imprisoned penguins run with %pil == PIL_NORMAL_MAX, but PSTATE_IE
1184 * set, so they can service tlb flush xcalls...
1185 */
1186extern void prom_world(int);
1187
1188void __irq_entry smp_penguin_jailcell(int irq, struct pt_regs *regs)
1189{
1190	clear_softint(1 << irq);
1191
1192	preempt_disable();
1193
1194	__asm__ __volatile__("flushw");
1195	prom_world(1);
1196	atomic_inc(&smp_capture_registry);
1197	membar_safe("#StoreLoad");
1198	while (penguins_are_doing_time)
1199		rmb();
1200	atomic_dec(&smp_capture_registry);
1201	prom_world(0);
1202
1203	preempt_enable();
1204}
1205
1206/* /proc/profile writes can call this, don't __init it please. */
1207int setup_profiling_timer(unsigned int multiplier)
1208{
1209	return -EINVAL;
1210}
1211
1212void __init smp_prepare_cpus(unsigned int max_cpus)
1213{
1214}
1215
1216void smp_prepare_boot_cpu(void)
1217{
1218}
1219
1220void __init smp_setup_processor_id(void)
1221{
1222	if (tlb_type == spitfire)
1223		xcall_deliver_impl = spitfire_xcall_deliver;
1224	else if (tlb_type == cheetah || tlb_type == cheetah_plus)
1225		xcall_deliver_impl = cheetah_xcall_deliver;
1226	else
1227		xcall_deliver_impl = hypervisor_xcall_deliver;
1228}
1229
1230void smp_fill_in_sib_core_maps(void)
1231{
1232	unsigned int i;
1233
1234	for_each_present_cpu(i) {
1235		unsigned int j;
1236
1237		cpumask_clear(&cpu_core_map[i]);
1238		if (cpu_data(i).core_id == 0) {
1239			cpumask_set_cpu(i, &cpu_core_map[i]);
1240			continue;
1241		}
1242
1243		for_each_present_cpu(j) {
1244			if (cpu_data(i).core_id ==
1245			    cpu_data(j).core_id)
1246				cpumask_set_cpu(j, &cpu_core_map[i]);
1247		}
1248	}
1249
1250	for_each_present_cpu(i)  {
1251		unsigned int j;
1252
1253		for_each_present_cpu(j)  {
1254			if (cpu_data(i).sock_id == cpu_data(j).sock_id)
1255				cpumask_set_cpu(j, &cpu_core_sib_map[i]);
1256		}
1257	}
1258
1259	for_each_present_cpu(i) {
1260		unsigned int j;
1261
1262		cpumask_clear(&per_cpu(cpu_sibling_map, i));
1263		if (cpu_data(i).proc_id == -1) {
1264			cpumask_set_cpu(i, &per_cpu(cpu_sibling_map, i));
1265			continue;
1266		}
1267
1268		for_each_present_cpu(j) {
1269			if (cpu_data(i).proc_id ==
1270			    cpu_data(j).proc_id)
1271				cpumask_set_cpu(j, &per_cpu(cpu_sibling_map, i));
1272		}
1273	}
1274}
1275
1276int __cpu_up(unsigned int cpu, struct task_struct *tidle)
1277{
1278	int ret = smp_boot_one_cpu(cpu, tidle);
1279
1280	if (!ret) {
1281		cpumask_set_cpu(cpu, &smp_commenced_mask);
1282		while (!cpu_online(cpu))
1283			mb();
1284		if (!cpu_online(cpu)) {
1285			ret = -ENODEV;
1286		} else {
1287			/* On SUN4V, writes to %tick and %stick are
1288			 * not allowed.
1289			 */
1290			if (tlb_type != hypervisor)
1291				smp_synchronize_one_tick(cpu);
1292		}
1293	}
1294	return ret;
1295}
1296
1297#ifdef CONFIG_HOTPLUG_CPU
1298void cpu_play_dead(void)
1299{
1300	int cpu = smp_processor_id();
1301	unsigned long pstate;
1302
1303	idle_task_exit();
1304
1305	if (tlb_type == hypervisor) {
1306		struct trap_per_cpu *tb = &trap_block[cpu];
1307
1308		sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1309				tb->cpu_mondo_pa, 0);
1310		sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1311				tb->dev_mondo_pa, 0);
1312		sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1313				tb->resum_mondo_pa, 0);
1314		sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1315				tb->nonresum_mondo_pa, 0);
1316	}
1317
1318	cpumask_clear_cpu(cpu, &smp_commenced_mask);
1319	membar_safe("#Sync");
1320
1321	local_irq_disable();
1322
1323	__asm__ __volatile__(
1324		"rdpr	%%pstate, %0\n\t"
1325		"wrpr	%0, %1, %%pstate"
1326		: "=r" (pstate)
1327		: "i" (PSTATE_IE));
1328
1329	while (1)
1330		barrier();
1331}
1332
1333int __cpu_disable(void)
1334{
1335	int cpu = smp_processor_id();
1336	cpuinfo_sparc *c;
1337	int i;
1338
1339	for_each_cpu(i, &cpu_core_map[cpu])
1340		cpumask_clear_cpu(cpu, &cpu_core_map[i]);
1341	cpumask_clear(&cpu_core_map[cpu]);
1342
1343	for_each_cpu(i, &per_cpu(cpu_sibling_map, cpu))
1344		cpumask_clear_cpu(cpu, &per_cpu(cpu_sibling_map, i));
1345	cpumask_clear(&per_cpu(cpu_sibling_map, cpu));
1346
1347	c = &cpu_data(cpu);
1348
1349	c->core_id = 0;
1350	c->proc_id = -1;
1351
1352	smp_wmb();
1353
1354	/* Make sure no interrupts point to this cpu.  */
1355	fixup_irqs();
1356
1357	local_irq_enable();
1358	mdelay(1);
1359	local_irq_disable();
1360
1361	set_cpu_online(cpu, false);
1362
1363	cpu_map_rebuild();
1364
1365	return 0;
1366}
1367
1368void __cpu_die(unsigned int cpu)
1369{
1370	int i;
1371
1372	for (i = 0; i < 100; i++) {
1373		smp_rmb();
1374		if (!cpumask_test_cpu(cpu, &smp_commenced_mask))
1375			break;
1376		msleep(100);
1377	}
1378	if (cpumask_test_cpu(cpu, &smp_commenced_mask)) {
1379		printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1380	} else {
1381#if defined(CONFIG_SUN_LDOMS)
1382		unsigned long hv_err;
1383		int limit = 100;
1384
1385		do {
1386			hv_err = sun4v_cpu_stop(cpu);
1387			if (hv_err == HV_EOK) {
1388				set_cpu_present(cpu, false);
1389				break;
1390			}
1391		} while (--limit > 0);
1392		if (limit <= 0) {
1393			printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1394			       hv_err);
1395		}
1396#endif
1397	}
1398}
1399#endif
1400
1401void __init smp_cpus_done(unsigned int max_cpus)
1402{
1403}
1404
1405void smp_send_reschedule(int cpu)
1406{
1407	if (cpu == smp_processor_id()) {
1408		WARN_ON_ONCE(preemptible());
1409		set_softint(1 << PIL_SMP_RECEIVE_SIGNAL);
1410	} else {
1411		xcall_deliver((u64) &xcall_receive_signal,
1412			      0, 0, cpumask_of(cpu));
1413	}
1414}
1415
1416void __irq_entry smp_receive_signal_client(int irq, struct pt_regs *regs)
1417{
1418	clear_softint(1 << irq);
1419	scheduler_ipi();
1420}
1421
1422static void stop_this_cpu(void *dummy)
1423{
1424	prom_stopself();
1425}
1426
1427void smp_send_stop(void)
1428{
1429	int cpu;
1430
1431	if (tlb_type == hypervisor) {
1432		for_each_online_cpu(cpu) {
1433			if (cpu == smp_processor_id())
1434				continue;
1435#ifdef CONFIG_SUN_LDOMS
1436			if (ldom_domaining_enabled) {
1437				unsigned long hv_err;
1438				hv_err = sun4v_cpu_stop(cpu);
1439				if (hv_err)
1440					printk(KERN_ERR "sun4v_cpu_stop() "
1441					       "failed err=%lu\n", hv_err);
1442			} else
1443#endif
1444				prom_stopcpu_cpuid(cpu);
1445		}
1446	} else
1447		smp_call_function(stop_this_cpu, NULL, 0);
1448}
1449
1450/**
1451 * pcpu_alloc_bootmem - NUMA friendly alloc_bootmem wrapper for percpu
1452 * @cpu: cpu to allocate for
1453 * @size: size allocation in bytes
1454 * @align: alignment
1455 *
1456 * Allocate @size bytes aligned at @align for cpu @cpu.  This wrapper
1457 * does the right thing for NUMA regardless of the current
1458 * configuration.
1459 *
1460 * RETURNS:
1461 * Pointer to the allocated area on success, NULL on failure.
1462 */
1463static void * __init pcpu_alloc_bootmem(unsigned int cpu, size_t size,
1464					size_t align)
1465{
1466	const unsigned long goal = __pa(MAX_DMA_ADDRESS);
1467#ifdef CONFIG_NEED_MULTIPLE_NODES
1468	int node = cpu_to_node(cpu);
1469	void *ptr;
1470
1471	if (!node_online(node) || !NODE_DATA(node)) {
1472		ptr = __alloc_bootmem(size, align, goal);
1473		pr_info("cpu %d has no node %d or node-local memory\n",
1474			cpu, node);
1475		pr_debug("per cpu data for cpu%d %lu bytes at %016lx\n",
1476			 cpu, size, __pa(ptr));
1477	} else {
1478		ptr = __alloc_bootmem_node(NODE_DATA(node),
1479					   size, align, goal);
1480		pr_debug("per cpu data for cpu%d %lu bytes on node%d at "
1481			 "%016lx\n", cpu, size, node, __pa(ptr));
1482	}
1483	return ptr;
1484#else
1485	return __alloc_bootmem(size, align, goal);
1486#endif
1487}
1488
1489static void __init pcpu_free_bootmem(void *ptr, size_t size)
1490{
1491	free_bootmem(__pa(ptr), size);
1492}
1493
1494static int __init pcpu_cpu_distance(unsigned int from, unsigned int to)
1495{
1496	if (cpu_to_node(from) == cpu_to_node(to))
1497		return LOCAL_DISTANCE;
1498	else
1499		return REMOTE_DISTANCE;
1500}
1501
1502static void __init pcpu_populate_pte(unsigned long addr)
1503{
1504	pgd_t *pgd = pgd_offset_k(addr);
1505	pud_t *pud;
1506	pmd_t *pmd;
1507
1508	if (pgd_none(*pgd)) {
1509		pud_t *new;
1510
1511		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1512		pgd_populate(&init_mm, pgd, new);
1513	}
1514
1515	pud = pud_offset(pgd, addr);
1516	if (pud_none(*pud)) {
1517		pmd_t *new;
1518
1519		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1520		pud_populate(&init_mm, pud, new);
1521	}
1522
1523	pmd = pmd_offset(pud, addr);
1524	if (!pmd_present(*pmd)) {
1525		pte_t *new;
1526
1527		new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1528		pmd_populate_kernel(&init_mm, pmd, new);
1529	}
1530}
1531
1532void __init setup_per_cpu_areas(void)
1533{
1534	unsigned long delta;
1535	unsigned int cpu;
1536	int rc = -EINVAL;
1537
1538	if (pcpu_chosen_fc != PCPU_FC_PAGE) {
1539		rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE,
1540					    PERCPU_DYNAMIC_RESERVE, 4 << 20,
1541					    pcpu_cpu_distance,
1542					    pcpu_alloc_bootmem,
1543					    pcpu_free_bootmem);
1544		if (rc)
1545			pr_warning("PERCPU: %s allocator failed (%d), "
1546				   "falling back to page size\n",
1547				   pcpu_fc_names[pcpu_chosen_fc], rc);
1548	}
1549	if (rc < 0)
1550		rc = pcpu_page_first_chunk(PERCPU_MODULE_RESERVE,
1551					   pcpu_alloc_bootmem,
1552					   pcpu_free_bootmem,
1553					   pcpu_populate_pte);
1554	if (rc < 0)
1555		panic("cannot initialize percpu area (err=%d)", rc);
1556
1557	delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start;
1558	for_each_possible_cpu(cpu)
1559		__per_cpu_offset(cpu) = delta + pcpu_unit_offsets[cpu];
1560
1561	/* Setup %g5 for the boot cpu.  */
1562	__local_per_cpu_offset = __per_cpu_offset(smp_processor_id());
1563
1564	of_fill_in_cpu_data();
1565	if (tlb_type == hypervisor)
1566		mdesc_fill_in_cpu_data(cpu_all_mask);
1567}
1568