1/*
2 * BPF Jit compiler for s390.
3 *
4 * Minimum build requirements:
5 *
6 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
7 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9 *  - PACK_STACK
10 *  - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18#define KMSG_COMPONENT "bpf_jit"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/netdevice.h>
22#include <linux/filter.h>
23#include <linux/init.h>
24#include <asm/cacheflush.h>
25#include <asm/dis.h>
26#include "bpf_jit.h"
27
28int bpf_jit_enable __read_mostly;
29
30struct bpf_jit {
31	u32 seen;		/* Flags to remember seen eBPF instructions */
32	u32 seen_reg[16];	/* Array to remember which registers are used */
33	u32 *addrs;		/* Array with relative instruction addresses */
34	u8 *prg_buf;		/* Start of program */
35	int size;		/* Size of program and literal pool */
36	int size_prg;		/* Size of program */
37	int prg;		/* Current position in program */
38	int lit_start;		/* Start of literal pool */
39	int lit;		/* Current position in literal pool */
40	int base_ip;		/* Base address for literal pool */
41	int ret0_ip;		/* Address of return 0 */
42	int exit_ip;		/* Address of exit */
43};
44
45#define BPF_SIZE_MAX	4096	/* Max size for program */
46
47#define SEEN_SKB	1	/* skb access */
48#define SEEN_MEM	2	/* use mem[] for temporary storage */
49#define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
50#define SEEN_LITERAL	8	/* code uses literals */
51#define SEEN_FUNC	16	/* calls C functions */
52#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
53
54/*
55 * s390 registers
56 */
57#define REG_W0		(__MAX_BPF_REG+0)	/* Work register 1 (even) */
58#define REG_W1		(__MAX_BPF_REG+1)	/* Work register 2 (odd) */
59#define REG_SKB_DATA	(__MAX_BPF_REG+2)	/* SKB data register */
60#define REG_L		(__MAX_BPF_REG+3)	/* Literal pool register */
61#define REG_15		(__MAX_BPF_REG+4)	/* Register 15 */
62#define REG_0		REG_W0			/* Register 0 */
63#define REG_2		BPF_REG_1		/* Register 2 */
64#define REG_14		BPF_REG_0		/* Register 14 */
65
66/*
67 * Mapping of BPF registers to s390 registers
68 */
69static const int reg2hex[] = {
70	/* Return code */
71	[BPF_REG_0]	= 14,
72	/* Function parameters */
73	[BPF_REG_1]	= 2,
74	[BPF_REG_2]	= 3,
75	[BPF_REG_3]	= 4,
76	[BPF_REG_4]	= 5,
77	[BPF_REG_5]	= 6,
78	/* Call saved registers */
79	[BPF_REG_6]	= 7,
80	[BPF_REG_7]	= 8,
81	[BPF_REG_8]	= 9,
82	[BPF_REG_9]	= 10,
83	/* BPF stack pointer */
84	[BPF_REG_FP]	= 13,
85	/* SKB data pointer */
86	[REG_SKB_DATA]	= 12,
87	/* Work registers for s390x backend */
88	[REG_W0]	= 0,
89	[REG_W1]	= 1,
90	[REG_L]		= 11,
91	[REG_15]	= 15,
92};
93
94static inline u32 reg(u32 dst_reg, u32 src_reg)
95{
96	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
97}
98
99static inline u32 reg_high(u32 reg)
100{
101	return reg2hex[reg] << 4;
102}
103
104static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
105{
106	u32 r1 = reg2hex[b1];
107
108	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
109		jit->seen_reg[r1] = 1;
110}
111
112#define REG_SET_SEEN(b1)					\
113({								\
114	reg_set_seen(jit, b1);					\
115})
116
117#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
118
119/*
120 * EMIT macros for code generation
121 */
122
123#define _EMIT2(op)						\
124({								\
125	if (jit->prg_buf)					\
126		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
127	jit->prg += 2;						\
128})
129
130#define EMIT2(op, b1, b2)					\
131({								\
132	_EMIT2(op | reg(b1, b2));				\
133	REG_SET_SEEN(b1);					\
134	REG_SET_SEEN(b2);					\
135})
136
137#define _EMIT4(op)						\
138({								\
139	if (jit->prg_buf)					\
140		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
141	jit->prg += 4;						\
142})
143
144#define EMIT4(op, b1, b2)					\
145({								\
146	_EMIT4(op | reg(b1, b2));				\
147	REG_SET_SEEN(b1);					\
148	REG_SET_SEEN(b2);					\
149})
150
151#define EMIT4_RRF(op, b1, b2, b3)				\
152({								\
153	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
154	REG_SET_SEEN(b1);					\
155	REG_SET_SEEN(b2);					\
156	REG_SET_SEEN(b3);					\
157})
158
159#define _EMIT4_DISP(op, disp)					\
160({								\
161	unsigned int __disp = (disp) & 0xfff;			\
162	_EMIT4(op | __disp);					\
163})
164
165#define EMIT4_DISP(op, b1, b2, disp)				\
166({								\
167	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
168		    reg_high(b2) << 8, disp);			\
169	REG_SET_SEEN(b1);					\
170	REG_SET_SEEN(b2);					\
171})
172
173#define EMIT4_IMM(op, b1, imm)					\
174({								\
175	unsigned int __imm = (imm) & 0xffff;			\
176	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
177	REG_SET_SEEN(b1);					\
178})
179
180#define EMIT4_PCREL(op, pcrel)					\
181({								\
182	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
183	_EMIT4(op | __pcrel);					\
184})
185
186#define _EMIT6(op1, op2)					\
187({								\
188	if (jit->prg_buf) {					\
189		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
190		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
191	}							\
192	jit->prg += 6;						\
193})
194
195#define _EMIT6_DISP(op1, op2, disp)				\
196({								\
197	unsigned int __disp = (disp) & 0xfff;			\
198	_EMIT6(op1 | __disp, op2);				\
199})
200
201#define EMIT6_DISP(op1, op2, b1, b2, b3, disp)			\
202({								\
203	_EMIT6_DISP(op1 | reg(b1, b2) << 16 |			\
204		    reg_high(b3) << 8, op2, disp);		\
205	REG_SET_SEEN(b1);					\
206	REG_SET_SEEN(b2);					\
207	REG_SET_SEEN(b3);					\
208})
209
210#define _EMIT6_DISP_LH(op1, op2, disp)				\
211({								\
212	unsigned int __disp_h = ((u32)disp) & 0xff000;		\
213	unsigned int __disp_l = ((u32)disp) & 0x00fff;		\
214	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
215})
216
217#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
218({								\
219	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
220		       reg_high(b3) << 8, op2, disp);		\
221	REG_SET_SEEN(b1);					\
222	REG_SET_SEEN(b2);					\
223	REG_SET_SEEN(b3);					\
224})
225
226#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
227({								\
228	/* Branch instruction needs 6 bytes */			\
229	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
230	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
231	REG_SET_SEEN(b1);					\
232	REG_SET_SEEN(b2);					\
233})
234
235#define _EMIT6_IMM(op, imm)					\
236({								\
237	unsigned int __imm = (imm);				\
238	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
239})
240
241#define EMIT6_IMM(op, b1, imm)					\
242({								\
243	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
244	REG_SET_SEEN(b1);					\
245})
246
247#define EMIT_CONST_U32(val)					\
248({								\
249	unsigned int ret;					\
250	ret = jit->lit - jit->base_ip;				\
251	jit->seen |= SEEN_LITERAL;				\
252	if (jit->prg_buf)					\
253		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
254	jit->lit += 4;						\
255	ret;							\
256})
257
258#define EMIT_CONST_U64(val)					\
259({								\
260	unsigned int ret;					\
261	ret = jit->lit - jit->base_ip;				\
262	jit->seen |= SEEN_LITERAL;				\
263	if (jit->prg_buf)					\
264		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
265	jit->lit += 8;						\
266	ret;							\
267})
268
269#define EMIT_ZERO(b1)						\
270({								\
271	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
272	EMIT4(0xb9160000, b1, b1);				\
273	REG_SET_SEEN(b1);					\
274})
275
276/*
277 * Fill whole space with illegal instructions
278 */
279static void jit_fill_hole(void *area, unsigned int size)
280{
281	memset(area, 0, size);
282}
283
284/*
285 * Save registers from "rs" (register start) to "re" (register end) on stack
286 */
287static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
288{
289	u32 off = 72 + (rs - 6) * 8;
290
291	if (rs == re)
292		/* stg %rs,off(%r15) */
293		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
294	else
295		/* stmg %rs,%re,off(%r15) */
296		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
297}
298
299/*
300 * Restore registers from "rs" (register start) to "re" (register end) on stack
301 */
302static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
303{
304	u32 off = 72 + (rs - 6) * 8;
305
306	if (jit->seen & SEEN_STACK)
307		off += STK_OFF;
308
309	if (rs == re)
310		/* lg %rs,off(%r15) */
311		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
312	else
313		/* lmg %rs,%re,off(%r15) */
314		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
315}
316
317/*
318 * Return first seen register (from start)
319 */
320static int get_start(struct bpf_jit *jit, int start)
321{
322	int i;
323
324	for (i = start; i <= 15; i++) {
325		if (jit->seen_reg[i])
326			return i;
327	}
328	return 0;
329}
330
331/*
332 * Return last seen register (from start) (gap >= 2)
333 */
334static int get_end(struct bpf_jit *jit, int start)
335{
336	int i;
337
338	for (i = start; i < 15; i++) {
339		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
340			return i - 1;
341	}
342	return jit->seen_reg[15] ? 15 : 14;
343}
344
345#define REGS_SAVE	1
346#define REGS_RESTORE	0
347/*
348 * Save and restore clobbered registers (6-15) on stack.
349 * We save/restore registers in chunks with gap >= 2 registers.
350 */
351static void save_restore_regs(struct bpf_jit *jit, int op)
352{
353
354	int re = 6, rs;
355
356	do {
357		rs = get_start(jit, re);
358		if (!rs)
359			break;
360		re = get_end(jit, rs + 1);
361		if (op == REGS_SAVE)
362			save_regs(jit, rs, re);
363		else
364			restore_regs(jit, rs, re);
365		re++;
366	} while (re <= 15);
367}
368
369/*
370 * Emit function prologue
371 *
372 * Save registers and create stack frame if necessary.
373 * See stack frame layout desription in "bpf_jit.h"!
374 */
375static void bpf_jit_prologue(struct bpf_jit *jit)
376{
377	/* Save registers */
378	save_restore_regs(jit, REGS_SAVE);
379	/* Setup literal pool */
380	if (jit->seen & SEEN_LITERAL) {
381		/* basr %r13,0 */
382		EMIT2(0x0d00, REG_L, REG_0);
383		jit->base_ip = jit->prg;
384	}
385	/* Setup stack and backchain */
386	if (jit->seen & SEEN_STACK) {
387		if (jit->seen & SEEN_FUNC)
388			/* lgr %w1,%r15 (backchain) */
389			EMIT4(0xb9040000, REG_W1, REG_15);
390		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
391		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
392		/* aghi %r15,-STK_OFF */
393		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
394		if (jit->seen & SEEN_FUNC)
395			/* stg %w1,152(%r15) (backchain) */
396			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
397				      REG_15, 152);
398	}
399	/*
400	 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
401	 * we store the SKB header length on the stack and the SKB data
402	 * pointer in REG_SKB_DATA.
403	 */
404	if (jit->seen & SEEN_SKB) {
405		/* Header length: llgf %w1,<len>(%b1) */
406		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
407			      offsetof(struct sk_buff, len));
408		/* s %w1,<data_len>(%b1) */
409		EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
410			   offsetof(struct sk_buff, data_len));
411		/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
412		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15,
413			      STK_OFF_HLEN);
414		/* lg %skb_data,data_off(%b1) */
415		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
416			      BPF_REG_1, offsetof(struct sk_buff, data));
417	}
418	/* BPF compatibility: clear A (%b0) and X (%b7) registers */
419	if (REG_SEEN(BPF_REG_A))
420		/* lghi %ba,0 */
421		EMIT4_IMM(0xa7090000, BPF_REG_A, 0);
422	if (REG_SEEN(BPF_REG_X))
423		/* lghi %bx,0 */
424		EMIT4_IMM(0xa7090000, BPF_REG_X, 0);
425}
426
427/*
428 * Function epilogue
429 */
430static void bpf_jit_epilogue(struct bpf_jit *jit)
431{
432	/* Return 0 */
433	if (jit->seen & SEEN_RET0) {
434		jit->ret0_ip = jit->prg;
435		/* lghi %b0,0 */
436		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
437	}
438	jit->exit_ip = jit->prg;
439	/* Load exit code: lgr %r2,%b0 */
440	EMIT4(0xb9040000, REG_2, BPF_REG_0);
441	/* Restore registers */
442	save_restore_regs(jit, REGS_RESTORE);
443	/* br %r14 */
444	_EMIT2(0x07fe);
445}
446
447/*
448 * Compile one eBPF instruction into s390x code
449 *
450 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
451 * stack space for the large switch statement.
452 */
453static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
454{
455	struct bpf_insn *insn = &fp->insnsi[i];
456	int jmp_off, last, insn_count = 1;
457	unsigned int func_addr, mask;
458	u32 dst_reg = insn->dst_reg;
459	u32 src_reg = insn->src_reg;
460	u32 *addrs = jit->addrs;
461	s32 imm = insn->imm;
462	s16 off = insn->off;
463
464	switch (insn->code) {
465	/*
466	 * BPF_MOV
467	 */
468	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
469		/* llgfr %dst,%src */
470		EMIT4(0xb9160000, dst_reg, src_reg);
471		break;
472	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
473		/* lgr %dst,%src */
474		EMIT4(0xb9040000, dst_reg, src_reg);
475		break;
476	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
477		/* llilf %dst,imm */
478		EMIT6_IMM(0xc00f0000, dst_reg, imm);
479		break;
480	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
481		/* lgfi %dst,imm */
482		EMIT6_IMM(0xc0010000, dst_reg, imm);
483		break;
484	/*
485	 * BPF_LD 64
486	 */
487	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
488	{
489		/* 16 byte instruction that uses two 'struct bpf_insn' */
490		u64 imm64;
491
492		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
493		/* lg %dst,<d(imm)>(%l) */
494		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
495			      EMIT_CONST_U64(imm64));
496		insn_count = 2;
497		break;
498	}
499	/*
500	 * BPF_ADD
501	 */
502	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
503		/* ar %dst,%src */
504		EMIT2(0x1a00, dst_reg, src_reg);
505		EMIT_ZERO(dst_reg);
506		break;
507	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
508		/* agr %dst,%src */
509		EMIT4(0xb9080000, dst_reg, src_reg);
510		break;
511	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
512		if (!imm)
513			break;
514		/* alfi %dst,imm */
515		EMIT6_IMM(0xc20b0000, dst_reg, imm);
516		EMIT_ZERO(dst_reg);
517		break;
518	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
519		if (!imm)
520			break;
521		/* agfi %dst,imm */
522		EMIT6_IMM(0xc2080000, dst_reg, imm);
523		break;
524	/*
525	 * BPF_SUB
526	 */
527	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
528		/* sr %dst,%src */
529		EMIT2(0x1b00, dst_reg, src_reg);
530		EMIT_ZERO(dst_reg);
531		break;
532	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
533		/* sgr %dst,%src */
534		EMIT4(0xb9090000, dst_reg, src_reg);
535		break;
536	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
537		if (!imm)
538			break;
539		/* alfi %dst,-imm */
540		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
541		EMIT_ZERO(dst_reg);
542		break;
543	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
544		if (!imm)
545			break;
546		/* agfi %dst,-imm */
547		EMIT6_IMM(0xc2080000, dst_reg, -imm);
548		break;
549	/*
550	 * BPF_MUL
551	 */
552	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
553		/* msr %dst,%src */
554		EMIT4(0xb2520000, dst_reg, src_reg);
555		EMIT_ZERO(dst_reg);
556		break;
557	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
558		/* msgr %dst,%src */
559		EMIT4(0xb90c0000, dst_reg, src_reg);
560		break;
561	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
562		if (imm == 1)
563			break;
564		/* msfi %r5,imm */
565		EMIT6_IMM(0xc2010000, dst_reg, imm);
566		EMIT_ZERO(dst_reg);
567		break;
568	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
569		if (imm == 1)
570			break;
571		/* msgfi %dst,imm */
572		EMIT6_IMM(0xc2000000, dst_reg, imm);
573		break;
574	/*
575	 * BPF_DIV / BPF_MOD
576	 */
577	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
578	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
579	{
580		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
581
582		jit->seen |= SEEN_RET0;
583		/* ltr %src,%src (if src == 0 goto fail) */
584		EMIT2(0x1200, src_reg, src_reg);
585		/* jz <ret0> */
586		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
587		/* lhi %w0,0 */
588		EMIT4_IMM(0xa7080000, REG_W0, 0);
589		/* lr %w1,%dst */
590		EMIT2(0x1800, REG_W1, dst_reg);
591		/* dlr %w0,%src */
592		EMIT4(0xb9970000, REG_W0, src_reg);
593		/* llgfr %dst,%rc */
594		EMIT4(0xb9160000, dst_reg, rc_reg);
595		break;
596	}
597	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
598	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
599	{
600		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
601
602		jit->seen |= SEEN_RET0;
603		/* ltgr %src,%src (if src == 0 goto fail) */
604		EMIT4(0xb9020000, src_reg, src_reg);
605		/* jz <ret0> */
606		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
607		/* lghi %w0,0 */
608		EMIT4_IMM(0xa7090000, REG_W0, 0);
609		/* lgr %w1,%dst */
610		EMIT4(0xb9040000, REG_W1, dst_reg);
611		/* dlgr %w0,%dst */
612		EMIT4(0xb9870000, REG_W0, src_reg);
613		/* lgr %dst,%rc */
614		EMIT4(0xb9040000, dst_reg, rc_reg);
615		break;
616	}
617	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
618	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
619	{
620		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
621
622		if (imm == 1) {
623			if (BPF_OP(insn->code) == BPF_MOD)
624				/* lhgi %dst,0 */
625				EMIT4_IMM(0xa7090000, dst_reg, 0);
626			break;
627		}
628		/* lhi %w0,0 */
629		EMIT4_IMM(0xa7080000, REG_W0, 0);
630		/* lr %w1,%dst */
631		EMIT2(0x1800, REG_W1, dst_reg);
632		/* dl %w0,<d(imm)>(%l) */
633		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
634			      EMIT_CONST_U32(imm));
635		/* llgfr %dst,%rc */
636		EMIT4(0xb9160000, dst_reg, rc_reg);
637		break;
638	}
639	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
640	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
641	{
642		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
643
644		if (imm == 1) {
645			if (BPF_OP(insn->code) == BPF_MOD)
646				/* lhgi %dst,0 */
647				EMIT4_IMM(0xa7090000, dst_reg, 0);
648			break;
649		}
650		/* lghi %w0,0 */
651		EMIT4_IMM(0xa7090000, REG_W0, 0);
652		/* lgr %w1,%dst */
653		EMIT4(0xb9040000, REG_W1, dst_reg);
654		/* dlg %w0,<d(imm)>(%l) */
655		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
656			      EMIT_CONST_U64(imm));
657		/* lgr %dst,%rc */
658		EMIT4(0xb9040000, dst_reg, rc_reg);
659		break;
660	}
661	/*
662	 * BPF_AND
663	 */
664	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
665		/* nr %dst,%src */
666		EMIT2(0x1400, dst_reg, src_reg);
667		EMIT_ZERO(dst_reg);
668		break;
669	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
670		/* ngr %dst,%src */
671		EMIT4(0xb9800000, dst_reg, src_reg);
672		break;
673	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
674		/* nilf %dst,imm */
675		EMIT6_IMM(0xc00b0000, dst_reg, imm);
676		EMIT_ZERO(dst_reg);
677		break;
678	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
679		/* ng %dst,<d(imm)>(%l) */
680		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
681			      EMIT_CONST_U64(imm));
682		break;
683	/*
684	 * BPF_OR
685	 */
686	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
687		/* or %dst,%src */
688		EMIT2(0x1600, dst_reg, src_reg);
689		EMIT_ZERO(dst_reg);
690		break;
691	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
692		/* ogr %dst,%src */
693		EMIT4(0xb9810000, dst_reg, src_reg);
694		break;
695	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
696		/* oilf %dst,imm */
697		EMIT6_IMM(0xc00d0000, dst_reg, imm);
698		EMIT_ZERO(dst_reg);
699		break;
700	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
701		/* og %dst,<d(imm)>(%l) */
702		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
703			      EMIT_CONST_U64(imm));
704		break;
705	/*
706	 * BPF_XOR
707	 */
708	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
709		/* xr %dst,%src */
710		EMIT2(0x1700, dst_reg, src_reg);
711		EMIT_ZERO(dst_reg);
712		break;
713	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
714		/* xgr %dst,%src */
715		EMIT4(0xb9820000, dst_reg, src_reg);
716		break;
717	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
718		if (!imm)
719			break;
720		/* xilf %dst,imm */
721		EMIT6_IMM(0xc0070000, dst_reg, imm);
722		EMIT_ZERO(dst_reg);
723		break;
724	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
725		/* xg %dst,<d(imm)>(%l) */
726		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
727			      EMIT_CONST_U64(imm));
728		break;
729	/*
730	 * BPF_LSH
731	 */
732	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
733		/* sll %dst,0(%src) */
734		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
735		EMIT_ZERO(dst_reg);
736		break;
737	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
738		/* sllg %dst,%dst,0(%src) */
739		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
740		break;
741	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
742		if (imm == 0)
743			break;
744		/* sll %dst,imm(%r0) */
745		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
746		EMIT_ZERO(dst_reg);
747		break;
748	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
749		if (imm == 0)
750			break;
751		/* sllg %dst,%dst,imm(%r0) */
752		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
753		break;
754	/*
755	 * BPF_RSH
756	 */
757	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
758		/* srl %dst,0(%src) */
759		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
760		EMIT_ZERO(dst_reg);
761		break;
762	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
763		/* srlg %dst,%dst,0(%src) */
764		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
765		break;
766	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
767		if (imm == 0)
768			break;
769		/* srl %dst,imm(%r0) */
770		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
771		EMIT_ZERO(dst_reg);
772		break;
773	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
774		if (imm == 0)
775			break;
776		/* srlg %dst,%dst,imm(%r0) */
777		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
778		break;
779	/*
780	 * BPF_ARSH
781	 */
782	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
783		/* srag %dst,%dst,0(%src) */
784		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
785		break;
786	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
787		if (imm == 0)
788			break;
789		/* srag %dst,%dst,imm(%r0) */
790		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
791		break;
792	/*
793	 * BPF_NEG
794	 */
795	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
796		/* lcr %dst,%dst */
797		EMIT2(0x1300, dst_reg, dst_reg);
798		EMIT_ZERO(dst_reg);
799		break;
800	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
801		/* lcgr %dst,%dst */
802		EMIT4(0xb9130000, dst_reg, dst_reg);
803		break;
804	/*
805	 * BPF_FROM_BE/LE
806	 */
807	case BPF_ALU | BPF_END | BPF_FROM_BE:
808		/* s390 is big endian, therefore only clear high order bytes */
809		switch (imm) {
810		case 16: /* dst = (u16) cpu_to_be16(dst) */
811			/* llghr %dst,%dst */
812			EMIT4(0xb9850000, dst_reg, dst_reg);
813			break;
814		case 32: /* dst = (u32) cpu_to_be32(dst) */
815			/* llgfr %dst,%dst */
816			EMIT4(0xb9160000, dst_reg, dst_reg);
817			break;
818		case 64: /* dst = (u64) cpu_to_be64(dst) */
819			break;
820		}
821		break;
822	case BPF_ALU | BPF_END | BPF_FROM_LE:
823		switch (imm) {
824		case 16: /* dst = (u16) cpu_to_le16(dst) */
825			/* lrvr %dst,%dst */
826			EMIT4(0xb91f0000, dst_reg, dst_reg);
827			/* srl %dst,16(%r0) */
828			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
829			/* llghr %dst,%dst */
830			EMIT4(0xb9850000, dst_reg, dst_reg);
831			break;
832		case 32: /* dst = (u32) cpu_to_le32(dst) */
833			/* lrvr %dst,%dst */
834			EMIT4(0xb91f0000, dst_reg, dst_reg);
835			/* llgfr %dst,%dst */
836			EMIT4(0xb9160000, dst_reg, dst_reg);
837			break;
838		case 64: /* dst = (u64) cpu_to_le64(dst) */
839			/* lrvgr %dst,%dst */
840			EMIT4(0xb90f0000, dst_reg, dst_reg);
841			break;
842		}
843		break;
844	/*
845	 * BPF_ST(X)
846	 */
847	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
848		/* stcy %src,off(%dst) */
849		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
850		jit->seen |= SEEN_MEM;
851		break;
852	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
853		/* sthy %src,off(%dst) */
854		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
855		jit->seen |= SEEN_MEM;
856		break;
857	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
858		/* sty %src,off(%dst) */
859		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
860		jit->seen |= SEEN_MEM;
861		break;
862	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
863		/* stg %src,off(%dst) */
864		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
865		jit->seen |= SEEN_MEM;
866		break;
867	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
868		/* lhi %w0,imm */
869		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
870		/* stcy %w0,off(dst) */
871		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
872		jit->seen |= SEEN_MEM;
873		break;
874	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
875		/* lhi %w0,imm */
876		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
877		/* sthy %w0,off(dst) */
878		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
879		jit->seen |= SEEN_MEM;
880		break;
881	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
882		/* llilf %w0,imm  */
883		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
884		/* sty %w0,off(%dst) */
885		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
886		jit->seen |= SEEN_MEM;
887		break;
888	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
889		/* lgfi %w0,imm */
890		EMIT6_IMM(0xc0010000, REG_W0, imm);
891		/* stg %w0,off(%dst) */
892		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
893		jit->seen |= SEEN_MEM;
894		break;
895	/*
896	 * BPF_STX XADD (atomic_add)
897	 */
898	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
899		/* laal %w0,%src,off(%dst) */
900		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
901			      dst_reg, off);
902		jit->seen |= SEEN_MEM;
903		break;
904	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
905		/* laalg %w0,%src,off(%dst) */
906		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
907			      dst_reg, off);
908		jit->seen |= SEEN_MEM;
909		break;
910	/*
911	 * BPF_LDX
912	 */
913	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
914		/* llgc %dst,0(off,%src) */
915		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
916		jit->seen |= SEEN_MEM;
917		break;
918	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
919		/* llgh %dst,0(off,%src) */
920		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
921		jit->seen |= SEEN_MEM;
922		break;
923	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
924		/* llgf %dst,off(%src) */
925		jit->seen |= SEEN_MEM;
926		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
927		break;
928	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
929		/* lg %dst,0(off,%src) */
930		jit->seen |= SEEN_MEM;
931		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
932		break;
933	/*
934	 * BPF_JMP / CALL
935	 */
936	case BPF_JMP | BPF_CALL:
937	{
938		/*
939		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
940		 */
941		const u64 func = (u64)__bpf_call_base + imm;
942
943		REG_SET_SEEN(BPF_REG_5);
944		jit->seen |= SEEN_FUNC;
945		/* lg %w1,<d(imm)>(%l) */
946		EMIT6_DISP(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
947			   EMIT_CONST_U64(func));
948		/* basr %r14,%w1 */
949		EMIT2(0x0d00, REG_14, REG_W1);
950		/* lgr %b0,%r2: load return value into %b0 */
951		EMIT4(0xb9040000, BPF_REG_0, REG_2);
952		break;
953	}
954	case BPF_JMP | BPF_EXIT: /* return b0 */
955		last = (i == fp->len - 1) ? 1 : 0;
956		if (last && !(jit->seen & SEEN_RET0))
957			break;
958		/* j <exit> */
959		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
960		break;
961	/*
962	 * Branch relative (number of skipped instructions) to offset on
963	 * condition.
964	 *
965	 * Condition code to mask mapping:
966	 *
967	 * CC | Description	   | Mask
968	 * ------------------------------
969	 * 0  | Operands equal	   |	8
970	 * 1  | First operand low  |	4
971	 * 2  | First operand high |	2
972	 * 3  | Unused		   |	1
973	 *
974	 * For s390x relative branches: ip = ip + off_bytes
975	 * For BPF relative branches:	insn = insn + off_insns + 1
976	 *
977	 * For example for s390x with offset 0 we jump to the branch
978	 * instruction itself (loop) and for BPF with offset 0 we
979	 * branch to the instruction behind the branch.
980	 */
981	case BPF_JMP | BPF_JA: /* if (true) */
982		mask = 0xf000; /* j */
983		goto branch_oc;
984	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
985		mask = 0x2000; /* jh */
986		goto branch_ks;
987	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
988		mask = 0xa000; /* jhe */
989		goto branch_ks;
990	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
991		mask = 0x2000; /* jh */
992		goto branch_ku;
993	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
994		mask = 0xa000; /* jhe */
995		goto branch_ku;
996	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
997		mask = 0x7000; /* jne */
998		goto branch_ku;
999	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1000		mask = 0x8000; /* je */
1001		goto branch_ku;
1002	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1003		mask = 0x7000; /* jnz */
1004		/* lgfi %w1,imm (load sign extend imm) */
1005		EMIT6_IMM(0xc0010000, REG_W1, imm);
1006		/* ngr %w1,%dst */
1007		EMIT4(0xb9800000, REG_W1, dst_reg);
1008		goto branch_oc;
1009
1010	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1011		mask = 0x2000; /* jh */
1012		goto branch_xs;
1013	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1014		mask = 0xa000; /* jhe */
1015		goto branch_xs;
1016	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1017		mask = 0x2000; /* jh */
1018		goto branch_xu;
1019	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1020		mask = 0xa000; /* jhe */
1021		goto branch_xu;
1022	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1023		mask = 0x7000; /* jne */
1024		goto branch_xu;
1025	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1026		mask = 0x8000; /* je */
1027		goto branch_xu;
1028	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1029		mask = 0x7000; /* jnz */
1030		/* ngrk %w1,%dst,%src */
1031		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1032		goto branch_oc;
1033branch_ks:
1034		/* lgfi %w1,imm (load sign extend imm) */
1035		EMIT6_IMM(0xc0010000, REG_W1, imm);
1036		/* cgrj %dst,%w1,mask,off */
1037		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1038		break;
1039branch_ku:
1040		/* lgfi %w1,imm (load sign extend imm) */
1041		EMIT6_IMM(0xc0010000, REG_W1, imm);
1042		/* clgrj %dst,%w1,mask,off */
1043		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1044		break;
1045branch_xs:
1046		/* cgrj %dst,%src,mask,off */
1047		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1048		break;
1049branch_xu:
1050		/* clgrj %dst,%src,mask,off */
1051		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1052		break;
1053branch_oc:
1054		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1055		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1056		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1057		break;
1058	/*
1059	 * BPF_LD
1060	 */
1061	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1062	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1063		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1064			func_addr = __pa(sk_load_byte_pos);
1065		else
1066			func_addr = __pa(sk_load_byte);
1067		goto call_fn;
1068	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1069	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1070		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1071			func_addr = __pa(sk_load_half_pos);
1072		else
1073			func_addr = __pa(sk_load_half);
1074		goto call_fn;
1075	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1076	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1077		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1078			func_addr = __pa(sk_load_word_pos);
1079		else
1080			func_addr = __pa(sk_load_word);
1081		goto call_fn;
1082call_fn:
1083		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1084		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1085
1086		/*
1087		 * Implicit input:
1088		 *  BPF_REG_6	 (R7) : skb pointer
1089		 *  REG_SKB_DATA (R12): skb data pointer
1090		 *
1091		 * Calculated input:
1092		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1093		 *  BPF_REG_5	 (R6) : return address
1094		 *
1095		 * Output:
1096		 *  BPF_REG_0	 (R14): data read from skb
1097		 *
1098		 * Scratch registers (BPF_REG_1-5)
1099		 */
1100
1101		/* Call function: llilf %w1,func_addr  */
1102		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1103
1104		/* Offset: lgfi %b2,imm */
1105		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1106		if (BPF_MODE(insn->code) == BPF_IND)
1107			/* agfr %b2,%src (%src is s32 here) */
1108			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1109
1110		/* basr %b5,%w1 (%b5 is call saved) */
1111		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1112
1113		/*
1114		 * Note: For fast access we jump directly after the
1115		 * jnz instruction from bpf_jit.S
1116		 */
1117		/* jnz <ret0> */
1118		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1119		break;
1120	default: /* too complex, give up */
1121		pr_err("Unknown opcode %02x\n", insn->code);
1122		return -1;
1123	}
1124	return insn_count;
1125}
1126
1127/*
1128 * Compile eBPF program into s390x code
1129 */
1130static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1131{
1132	int i, insn_count;
1133
1134	jit->lit = jit->lit_start;
1135	jit->prg = 0;
1136
1137	bpf_jit_prologue(jit);
1138	for (i = 0; i < fp->len; i += insn_count) {
1139		insn_count = bpf_jit_insn(jit, fp, i);
1140		if (insn_count < 0)
1141			return -1;
1142		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1143	}
1144	bpf_jit_epilogue(jit);
1145
1146	jit->lit_start = jit->prg;
1147	jit->size = jit->lit;
1148	jit->size_prg = jit->prg;
1149	return 0;
1150}
1151
1152/*
1153 * Classic BPF function stub. BPF programs will be converted into
1154 * eBPF and then bpf_int_jit_compile() will be called.
1155 */
1156void bpf_jit_compile(struct bpf_prog *fp)
1157{
1158}
1159
1160/*
1161 * Compile eBPF program "fp"
1162 */
1163void bpf_int_jit_compile(struct bpf_prog *fp)
1164{
1165	struct bpf_binary_header *header;
1166	struct bpf_jit jit;
1167	int pass;
1168
1169	if (!bpf_jit_enable)
1170		return;
1171	memset(&jit, 0, sizeof(jit));
1172	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1173	if (jit.addrs == NULL)
1174		return;
1175	/*
1176	 * Three initial passes:
1177	 *   - 1/2: Determine clobbered registers
1178	 *   - 3:   Calculate program size and addrs arrray
1179	 */
1180	for (pass = 1; pass <= 3; pass++) {
1181		if (bpf_jit_prog(&jit, fp))
1182			goto free_addrs;
1183	}
1184	/*
1185	 * Final pass: Allocate and generate program
1186	 */
1187	if (jit.size >= BPF_SIZE_MAX)
1188		goto free_addrs;
1189	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1190	if (!header)
1191		goto free_addrs;
1192	if (bpf_jit_prog(&jit, fp))
1193		goto free_addrs;
1194	if (bpf_jit_enable > 1) {
1195		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1196		if (jit.prg_buf)
1197			print_fn_code(jit.prg_buf, jit.size_prg);
1198	}
1199	if (jit.prg_buf) {
1200		set_memory_ro((unsigned long)header, header->pages);
1201		fp->bpf_func = (void *) jit.prg_buf;
1202		fp->jited = true;
1203	}
1204free_addrs:
1205	kfree(jit.addrs);
1206}
1207
1208/*
1209 * Free eBPF program
1210 */
1211void bpf_jit_free(struct bpf_prog *fp)
1212{
1213	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1214	struct bpf_binary_header *header = (void *)addr;
1215
1216	if (!fp->jited)
1217		goto free_filter;
1218
1219	set_memory_rw(addr, header->pages);
1220	bpf_jit_binary_free(header);
1221
1222free_filter:
1223	bpf_prog_unlock_free(fp);
1224}
1225