1/*
2 * This program is free software; you can redistribute it and/or modify
3 * it under the terms of the GNU General Public License, version 2, as
4 * published by the Free Software Foundation.
5 *
6 * This program is distributed in the hope that it will be useful,
7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9 * GNU General Public License for more details.
10 *
11 * You should have received a copy of the GNU General Public License
12 * along with this program; if not, write to the Free Software
13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14 *
15 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
16 */
17
18#include <linux/types.h>
19#include <linux/string.h>
20#include <linux/kvm.h>
21#include <linux/kvm_host.h>
22#include <linux/highmem.h>
23#include <linux/gfp.h>
24#include <linux/slab.h>
25#include <linux/hugetlb.h>
26#include <linux/vmalloc.h>
27#include <linux/srcu.h>
28#include <linux/anon_inodes.h>
29#include <linux/file.h>
30#include <linux/debugfs.h>
31
32#include <asm/tlbflush.h>
33#include <asm/kvm_ppc.h>
34#include <asm/kvm_book3s.h>
35#include <asm/mmu-hash64.h>
36#include <asm/hvcall.h>
37#include <asm/synch.h>
38#include <asm/ppc-opcode.h>
39#include <asm/cputable.h>
40
41#include "trace_hv.h"
42
43/* Power architecture requires HPT is at least 256kB */
44#define PPC_MIN_HPT_ORDER	18
45
46static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
47				long pte_index, unsigned long pteh,
48				unsigned long ptel, unsigned long *pte_idx_ret);
49static void kvmppc_rmap_reset(struct kvm *kvm);
50
51long kvmppc_alloc_hpt(struct kvm *kvm, u32 *htab_orderp)
52{
53	unsigned long hpt = 0;
54	struct revmap_entry *rev;
55	struct page *page = NULL;
56	long order = KVM_DEFAULT_HPT_ORDER;
57
58	if (htab_orderp) {
59		order = *htab_orderp;
60		if (order < PPC_MIN_HPT_ORDER)
61			order = PPC_MIN_HPT_ORDER;
62	}
63
64	kvm->arch.hpt_cma_alloc = 0;
65	page = kvm_alloc_hpt(1ul << (order - PAGE_SHIFT));
66	if (page) {
67		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
68		memset((void *)hpt, 0, (1ul << order));
69		kvm->arch.hpt_cma_alloc = 1;
70	}
71
72	/* Lastly try successively smaller sizes from the page allocator */
73	while (!hpt && order > PPC_MIN_HPT_ORDER) {
74		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_REPEAT|
75				       __GFP_NOWARN, order - PAGE_SHIFT);
76		if (!hpt)
77			--order;
78	}
79
80	if (!hpt)
81		return -ENOMEM;
82
83	kvm->arch.hpt_virt = hpt;
84	kvm->arch.hpt_order = order;
85	/* HPTEs are 2**4 bytes long */
86	kvm->arch.hpt_npte = 1ul << (order - 4);
87	/* 128 (2**7) bytes in each HPTEG */
88	kvm->arch.hpt_mask = (1ul << (order - 7)) - 1;
89
90	/* Allocate reverse map array */
91	rev = vmalloc(sizeof(struct revmap_entry) * kvm->arch.hpt_npte);
92	if (!rev) {
93		pr_err("kvmppc_alloc_hpt: Couldn't alloc reverse map array\n");
94		goto out_freehpt;
95	}
96	kvm->arch.revmap = rev;
97	kvm->arch.sdr1 = __pa(hpt) | (order - 18);
98
99	pr_info("KVM guest htab at %lx (order %ld), LPID %x\n",
100		hpt, order, kvm->arch.lpid);
101
102	if (htab_orderp)
103		*htab_orderp = order;
104	return 0;
105
106 out_freehpt:
107	if (kvm->arch.hpt_cma_alloc)
108		kvm_release_hpt(page, 1 << (order - PAGE_SHIFT));
109	else
110		free_pages(hpt, order - PAGE_SHIFT);
111	return -ENOMEM;
112}
113
114long kvmppc_alloc_reset_hpt(struct kvm *kvm, u32 *htab_orderp)
115{
116	long err = -EBUSY;
117	long order;
118
119	mutex_lock(&kvm->lock);
120	if (kvm->arch.hpte_setup_done) {
121		kvm->arch.hpte_setup_done = 0;
122		/* order hpte_setup_done vs. vcpus_running */
123		smp_mb();
124		if (atomic_read(&kvm->arch.vcpus_running)) {
125			kvm->arch.hpte_setup_done = 1;
126			goto out;
127		}
128	}
129	if (kvm->arch.hpt_virt) {
130		order = kvm->arch.hpt_order;
131		/* Set the entire HPT to 0, i.e. invalid HPTEs */
132		memset((void *)kvm->arch.hpt_virt, 0, 1ul << order);
133		/*
134		 * Reset all the reverse-mapping chains for all memslots
135		 */
136		kvmppc_rmap_reset(kvm);
137		/* Ensure that each vcpu will flush its TLB on next entry. */
138		cpumask_setall(&kvm->arch.need_tlb_flush);
139		*htab_orderp = order;
140		err = 0;
141	} else {
142		err = kvmppc_alloc_hpt(kvm, htab_orderp);
143		order = *htab_orderp;
144	}
145 out:
146	mutex_unlock(&kvm->lock);
147	return err;
148}
149
150void kvmppc_free_hpt(struct kvm *kvm)
151{
152	kvmppc_free_lpid(kvm->arch.lpid);
153	vfree(kvm->arch.revmap);
154	if (kvm->arch.hpt_cma_alloc)
155		kvm_release_hpt(virt_to_page(kvm->arch.hpt_virt),
156				1 << (kvm->arch.hpt_order - PAGE_SHIFT));
157	else
158		free_pages(kvm->arch.hpt_virt,
159			   kvm->arch.hpt_order - PAGE_SHIFT);
160}
161
162/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
163static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
164{
165	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
166}
167
168/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
169static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
170{
171	return (pgsize == 0x10000) ? 0x1000 : 0;
172}
173
174void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
175		     unsigned long porder)
176{
177	unsigned long i;
178	unsigned long npages;
179	unsigned long hp_v, hp_r;
180	unsigned long addr, hash;
181	unsigned long psize;
182	unsigned long hp0, hp1;
183	unsigned long idx_ret;
184	long ret;
185	struct kvm *kvm = vcpu->kvm;
186
187	psize = 1ul << porder;
188	npages = memslot->npages >> (porder - PAGE_SHIFT);
189
190	/* VRMA can't be > 1TB */
191	if (npages > 1ul << (40 - porder))
192		npages = 1ul << (40 - porder);
193	/* Can't use more than 1 HPTE per HPTEG */
194	if (npages > kvm->arch.hpt_mask + 1)
195		npages = kvm->arch.hpt_mask + 1;
196
197	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
198		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
199	hp1 = hpte1_pgsize_encoding(psize) |
200		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
201
202	for (i = 0; i < npages; ++i) {
203		addr = i << porder;
204		/* can't use hpt_hash since va > 64 bits */
205		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25))) & kvm->arch.hpt_mask;
206		/*
207		 * We assume that the hash table is empty and no
208		 * vcpus are using it at this stage.  Since we create
209		 * at most one HPTE per HPTEG, we just assume entry 7
210		 * is available and use it.
211		 */
212		hash = (hash << 3) + 7;
213		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
214		hp_r = hp1 | addr;
215		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
216						 &idx_ret);
217		if (ret != H_SUCCESS) {
218			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
219			       addr, ret);
220			break;
221		}
222	}
223}
224
225int kvmppc_mmu_hv_init(void)
226{
227	unsigned long host_lpid, rsvd_lpid;
228
229	if (!cpu_has_feature(CPU_FTR_HVMODE))
230		return -EINVAL;
231
232	/* POWER7 has 10-bit LPIDs (12-bit in POWER8) */
233	host_lpid = mfspr(SPRN_LPID);
234	rsvd_lpid = LPID_RSVD;
235
236	kvmppc_init_lpid(rsvd_lpid + 1);
237
238	kvmppc_claim_lpid(host_lpid);
239	/* rsvd_lpid is reserved for use in partition switching */
240	kvmppc_claim_lpid(rsvd_lpid);
241
242	return 0;
243}
244
245static void kvmppc_mmu_book3s_64_hv_reset_msr(struct kvm_vcpu *vcpu)
246{
247	unsigned long msr = vcpu->arch.intr_msr;
248
249	/* If transactional, change to suspend mode on IRQ delivery */
250	if (MSR_TM_TRANSACTIONAL(vcpu->arch.shregs.msr))
251		msr |= MSR_TS_S;
252	else
253		msr |= vcpu->arch.shregs.msr & MSR_TS_MASK;
254	kvmppc_set_msr(vcpu, msr);
255}
256
257long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
258				long pte_index, unsigned long pteh,
259				unsigned long ptel, unsigned long *pte_idx_ret)
260{
261	long ret;
262
263	/* Protect linux PTE lookup from page table destruction */
264	rcu_read_lock_sched();	/* this disables preemption too */
265	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
266				current->mm->pgd, false, pte_idx_ret);
267	rcu_read_unlock_sched();
268	if (ret == H_TOO_HARD) {
269		/* this can't happen */
270		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
271		ret = H_RESOURCE;	/* or something */
272	}
273	return ret;
274
275}
276
277static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
278							 gva_t eaddr)
279{
280	u64 mask;
281	int i;
282
283	for (i = 0; i < vcpu->arch.slb_nr; i++) {
284		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
285			continue;
286
287		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
288			mask = ESID_MASK_1T;
289		else
290			mask = ESID_MASK;
291
292		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
293			return &vcpu->arch.slb[i];
294	}
295	return NULL;
296}
297
298static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
299			unsigned long ea)
300{
301	unsigned long ra_mask;
302
303	ra_mask = hpte_page_size(v, r) - 1;
304	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
305}
306
307static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
308			struct kvmppc_pte *gpte, bool data, bool iswrite)
309{
310	struct kvm *kvm = vcpu->kvm;
311	struct kvmppc_slb *slbe;
312	unsigned long slb_v;
313	unsigned long pp, key;
314	unsigned long v, gr;
315	__be64 *hptep;
316	int index;
317	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
318
319	/* Get SLB entry */
320	if (virtmode) {
321		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
322		if (!slbe)
323			return -EINVAL;
324		slb_v = slbe->origv;
325	} else {
326		/* real mode access */
327		slb_v = vcpu->kvm->arch.vrma_slb_v;
328	}
329
330	preempt_disable();
331	/* Find the HPTE in the hash table */
332	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
333					 HPTE_V_VALID | HPTE_V_ABSENT);
334	if (index < 0) {
335		preempt_enable();
336		return -ENOENT;
337	}
338	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
339	v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
340	gr = kvm->arch.revmap[index].guest_rpte;
341
342	unlock_hpte(hptep, v);
343	preempt_enable();
344
345	gpte->eaddr = eaddr;
346	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
347
348	/* Get PP bits and key for permission check */
349	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
350	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
351	key &= slb_v;
352
353	/* Calculate permissions */
354	gpte->may_read = hpte_read_permission(pp, key);
355	gpte->may_write = hpte_write_permission(pp, key);
356	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
357
358	/* Storage key permission check for POWER7 */
359	if (data && virtmode) {
360		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
361		if (amrfield & 1)
362			gpte->may_read = 0;
363		if (amrfield & 2)
364			gpte->may_write = 0;
365	}
366
367	/* Get the guest physical address */
368	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
369	return 0;
370}
371
372/*
373 * Quick test for whether an instruction is a load or a store.
374 * If the instruction is a load or a store, then this will indicate
375 * which it is, at least on server processors.  (Embedded processors
376 * have some external PID instructions that don't follow the rule
377 * embodied here.)  If the instruction isn't a load or store, then
378 * this doesn't return anything useful.
379 */
380static int instruction_is_store(unsigned int instr)
381{
382	unsigned int mask;
383
384	mask = 0x10000000;
385	if ((instr & 0xfc000000) == 0x7c000000)
386		mask = 0x100;		/* major opcode 31 */
387	return (instr & mask) != 0;
388}
389
390static int kvmppc_hv_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu,
391				  unsigned long gpa, gva_t ea, int is_store)
392{
393	u32 last_inst;
394
395	/*
396	 * If we fail, we just return to the guest and try executing it again.
397	 */
398	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
399		EMULATE_DONE)
400		return RESUME_GUEST;
401
402	/*
403	 * WARNING: We do not know for sure whether the instruction we just
404	 * read from memory is the same that caused the fault in the first
405	 * place.  If the instruction we read is neither an load or a store,
406	 * then it can't access memory, so we don't need to worry about
407	 * enforcing access permissions.  So, assuming it is a load or
408	 * store, we just check that its direction (load or store) is
409	 * consistent with the original fault, since that's what we
410	 * checked the access permissions against.  If there is a mismatch
411	 * we just return and retry the instruction.
412	 */
413
414	if (instruction_is_store(last_inst) != !!is_store)
415		return RESUME_GUEST;
416
417	/*
418	 * Emulated accesses are emulated by looking at the hash for
419	 * translation once, then performing the access later. The
420	 * translation could be invalidated in the meantime in which
421	 * point performing the subsequent memory access on the old
422	 * physical address could possibly be a security hole for the
423	 * guest (but not the host).
424	 *
425	 * This is less of an issue for MMIO stores since they aren't
426	 * globally visible. It could be an issue for MMIO loads to
427	 * a certain extent but we'll ignore it for now.
428	 */
429
430	vcpu->arch.paddr_accessed = gpa;
431	vcpu->arch.vaddr_accessed = ea;
432	return kvmppc_emulate_mmio(run, vcpu);
433}
434
435int kvmppc_book3s_hv_page_fault(struct kvm_run *run, struct kvm_vcpu *vcpu,
436				unsigned long ea, unsigned long dsisr)
437{
438	struct kvm *kvm = vcpu->kvm;
439	unsigned long hpte[3], r;
440	__be64 *hptep;
441	unsigned long mmu_seq, psize, pte_size;
442	unsigned long gpa_base, gfn_base;
443	unsigned long gpa, gfn, hva, pfn;
444	struct kvm_memory_slot *memslot;
445	unsigned long *rmap;
446	struct revmap_entry *rev;
447	struct page *page, *pages[1];
448	long index, ret, npages;
449	unsigned long is_io;
450	unsigned int writing, write_ok;
451	struct vm_area_struct *vma;
452	unsigned long rcbits;
453
454	/*
455	 * Real-mode code has already searched the HPT and found the
456	 * entry we're interested in.  Lock the entry and check that
457	 * it hasn't changed.  If it has, just return and re-execute the
458	 * instruction.
459	 */
460	if (ea != vcpu->arch.pgfault_addr)
461		return RESUME_GUEST;
462	index = vcpu->arch.pgfault_index;
463	hptep = (__be64 *)(kvm->arch.hpt_virt + (index << 4));
464	rev = &kvm->arch.revmap[index];
465	preempt_disable();
466	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
467		cpu_relax();
468	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
469	hpte[1] = be64_to_cpu(hptep[1]);
470	hpte[2] = r = rev->guest_rpte;
471	unlock_hpte(hptep, hpte[0]);
472	preempt_enable();
473
474	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
475	    hpte[1] != vcpu->arch.pgfault_hpte[1])
476		return RESUME_GUEST;
477
478	/* Translate the logical address and get the page */
479	psize = hpte_page_size(hpte[0], r);
480	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
481	gfn_base = gpa_base >> PAGE_SHIFT;
482	gpa = gpa_base | (ea & (psize - 1));
483	gfn = gpa >> PAGE_SHIFT;
484	memslot = gfn_to_memslot(kvm, gfn);
485
486	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
487
488	/* No memslot means it's an emulated MMIO region */
489	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
490		return kvmppc_hv_emulate_mmio(run, vcpu, gpa, ea,
491					      dsisr & DSISR_ISSTORE);
492
493	/*
494	 * This should never happen, because of the slot_is_aligned()
495	 * check in kvmppc_do_h_enter().
496	 */
497	if (gfn_base < memslot->base_gfn)
498		return -EFAULT;
499
500	/* used to check for invalidations in progress */
501	mmu_seq = kvm->mmu_notifier_seq;
502	smp_rmb();
503
504	ret = -EFAULT;
505	is_io = 0;
506	pfn = 0;
507	page = NULL;
508	pte_size = PAGE_SIZE;
509	writing = (dsisr & DSISR_ISSTORE) != 0;
510	/* If writing != 0, then the HPTE must allow writing, if we get here */
511	write_ok = writing;
512	hva = gfn_to_hva_memslot(memslot, gfn);
513	npages = get_user_pages_fast(hva, 1, writing, pages);
514	if (npages < 1) {
515		/* Check if it's an I/O mapping */
516		down_read(&current->mm->mmap_sem);
517		vma = find_vma(current->mm, hva);
518		if (vma && vma->vm_start <= hva && hva + psize <= vma->vm_end &&
519		    (vma->vm_flags & VM_PFNMAP)) {
520			pfn = vma->vm_pgoff +
521				((hva - vma->vm_start) >> PAGE_SHIFT);
522			pte_size = psize;
523			is_io = hpte_cache_bits(pgprot_val(vma->vm_page_prot));
524			write_ok = vma->vm_flags & VM_WRITE;
525		}
526		up_read(&current->mm->mmap_sem);
527		if (!pfn)
528			goto out_put;
529	} else {
530		page = pages[0];
531		pfn = page_to_pfn(page);
532		if (PageHuge(page)) {
533			page = compound_head(page);
534			pte_size <<= compound_order(page);
535		}
536		/* if the guest wants write access, see if that is OK */
537		if (!writing && hpte_is_writable(r)) {
538			pte_t *ptep, pte;
539			unsigned long flags;
540			/*
541			 * We need to protect against page table destruction
542			 * hugepage split and collapse.
543			 */
544			local_irq_save(flags);
545			ptep = find_linux_pte_or_hugepte(current->mm->pgd,
546							 hva, NULL);
547			if (ptep) {
548				pte = kvmppc_read_update_linux_pte(ptep, 1);
549				if (pte_write(pte))
550					write_ok = 1;
551			}
552			local_irq_restore(flags);
553		}
554	}
555
556	if (psize > pte_size)
557		goto out_put;
558
559	/* Check WIMG vs. the actual page we're accessing */
560	if (!hpte_cache_flags_ok(r, is_io)) {
561		if (is_io)
562			goto out_put;
563
564		/*
565		 * Allow guest to map emulated device memory as
566		 * uncacheable, but actually make it cacheable.
567		 */
568		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
569	}
570
571	/*
572	 * Set the HPTE to point to pfn.
573	 * Since the pfn is at PAGE_SIZE granularity, make sure we
574	 * don't mask out lower-order bits if psize < PAGE_SIZE.
575	 */
576	if (psize < PAGE_SIZE)
577		psize = PAGE_SIZE;
578	r = (r & ~(HPTE_R_PP0 - psize)) | ((pfn << PAGE_SHIFT) & ~(psize - 1));
579	if (hpte_is_writable(r) && !write_ok)
580		r = hpte_make_readonly(r);
581	ret = RESUME_GUEST;
582	preempt_disable();
583	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
584		cpu_relax();
585	if ((be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK) != hpte[0] ||
586		be64_to_cpu(hptep[1]) != hpte[1] ||
587		rev->guest_rpte != hpte[2])
588		/* HPTE has been changed under us; let the guest retry */
589		goto out_unlock;
590	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
591
592	/* Always put the HPTE in the rmap chain for the page base address */
593	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
594	lock_rmap(rmap);
595
596	/* Check if we might have been invalidated; let the guest retry if so */
597	ret = RESUME_GUEST;
598	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
599		unlock_rmap(rmap);
600		goto out_unlock;
601	}
602
603	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
604	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
605	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
606
607	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
608		/* HPTE was previously valid, so we need to invalidate it */
609		unlock_rmap(rmap);
610		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
611		kvmppc_invalidate_hpte(kvm, hptep, index);
612		/* don't lose previous R and C bits */
613		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
614	} else {
615		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
616	}
617
618	hptep[1] = cpu_to_be64(r);
619	eieio();
620	__unlock_hpte(hptep, hpte[0]);
621	asm volatile("ptesync" : : : "memory");
622	preempt_enable();
623	if (page && hpte_is_writable(r))
624		SetPageDirty(page);
625
626 out_put:
627	trace_kvm_page_fault_exit(vcpu, hpte, ret);
628
629	if (page) {
630		/*
631		 * We drop pages[0] here, not page because page might
632		 * have been set to the head page of a compound, but
633		 * we have to drop the reference on the correct tail
634		 * page to match the get inside gup()
635		 */
636		put_page(pages[0]);
637	}
638	return ret;
639
640 out_unlock:
641	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
642	preempt_enable();
643	goto out_put;
644}
645
646static void kvmppc_rmap_reset(struct kvm *kvm)
647{
648	struct kvm_memslots *slots;
649	struct kvm_memory_slot *memslot;
650	int srcu_idx;
651
652	srcu_idx = srcu_read_lock(&kvm->srcu);
653	slots = kvm->memslots;
654	kvm_for_each_memslot(memslot, slots) {
655		/*
656		 * This assumes it is acceptable to lose reference and
657		 * change bits across a reset.
658		 */
659		memset(memslot->arch.rmap, 0,
660		       memslot->npages * sizeof(*memslot->arch.rmap));
661	}
662	srcu_read_unlock(&kvm->srcu, srcu_idx);
663}
664
665static int kvm_handle_hva_range(struct kvm *kvm,
666				unsigned long start,
667				unsigned long end,
668				int (*handler)(struct kvm *kvm,
669					       unsigned long *rmapp,
670					       unsigned long gfn))
671{
672	int ret;
673	int retval = 0;
674	struct kvm_memslots *slots;
675	struct kvm_memory_slot *memslot;
676
677	slots = kvm_memslots(kvm);
678	kvm_for_each_memslot(memslot, slots) {
679		unsigned long hva_start, hva_end;
680		gfn_t gfn, gfn_end;
681
682		hva_start = max(start, memslot->userspace_addr);
683		hva_end = min(end, memslot->userspace_addr +
684					(memslot->npages << PAGE_SHIFT));
685		if (hva_start >= hva_end)
686			continue;
687		/*
688		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
689		 * {gfn, gfn+1, ..., gfn_end-1}.
690		 */
691		gfn = hva_to_gfn_memslot(hva_start, memslot);
692		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
693
694		for (; gfn < gfn_end; ++gfn) {
695			gfn_t gfn_offset = gfn - memslot->base_gfn;
696
697			ret = handler(kvm, &memslot->arch.rmap[gfn_offset], gfn);
698			retval |= ret;
699		}
700	}
701
702	return retval;
703}
704
705static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
706			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
707					 unsigned long gfn))
708{
709	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
710}
711
712static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
713			   unsigned long gfn)
714{
715	struct revmap_entry *rev = kvm->arch.revmap;
716	unsigned long h, i, j;
717	__be64 *hptep;
718	unsigned long ptel, psize, rcbits;
719
720	for (;;) {
721		lock_rmap(rmapp);
722		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
723			unlock_rmap(rmapp);
724			break;
725		}
726
727		/*
728		 * To avoid an ABBA deadlock with the HPTE lock bit,
729		 * we can't spin on the HPTE lock while holding the
730		 * rmap chain lock.
731		 */
732		i = *rmapp & KVMPPC_RMAP_INDEX;
733		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
734		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
735			/* unlock rmap before spinning on the HPTE lock */
736			unlock_rmap(rmapp);
737			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
738				cpu_relax();
739			continue;
740		}
741		j = rev[i].forw;
742		if (j == i) {
743			/* chain is now empty */
744			*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
745		} else {
746			/* remove i from chain */
747			h = rev[i].back;
748			rev[h].forw = j;
749			rev[j].back = h;
750			rev[i].forw = rev[i].back = i;
751			*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
752		}
753
754		/* Now check and modify the HPTE */
755		ptel = rev[i].guest_rpte;
756		psize = hpte_page_size(be64_to_cpu(hptep[0]), ptel);
757		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
758		    hpte_rpn(ptel, psize) == gfn) {
759			hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
760			kvmppc_invalidate_hpte(kvm, hptep, i);
761			/* Harvest R and C */
762			rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
763			*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
764			if (rcbits & ~rev[i].guest_rpte) {
765				rev[i].guest_rpte = ptel | rcbits;
766				note_hpte_modification(kvm, &rev[i]);
767			}
768		}
769		unlock_rmap(rmapp);
770		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
771	}
772	return 0;
773}
774
775int kvm_unmap_hva_hv(struct kvm *kvm, unsigned long hva)
776{
777	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
778	return 0;
779}
780
781int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
782{
783	kvm_handle_hva_range(kvm, start, end, kvm_unmap_rmapp);
784	return 0;
785}
786
787void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
788				  struct kvm_memory_slot *memslot)
789{
790	unsigned long *rmapp;
791	unsigned long gfn;
792	unsigned long n;
793
794	rmapp = memslot->arch.rmap;
795	gfn = memslot->base_gfn;
796	for (n = memslot->npages; n; --n) {
797		/*
798		 * Testing the present bit without locking is OK because
799		 * the memslot has been marked invalid already, and hence
800		 * no new HPTEs referencing this page can be created,
801		 * thus the present bit can't go from 0 to 1.
802		 */
803		if (*rmapp & KVMPPC_RMAP_PRESENT)
804			kvm_unmap_rmapp(kvm, rmapp, gfn);
805		++rmapp;
806		++gfn;
807	}
808}
809
810static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
811			 unsigned long gfn)
812{
813	struct revmap_entry *rev = kvm->arch.revmap;
814	unsigned long head, i, j;
815	__be64 *hptep;
816	int ret = 0;
817
818 retry:
819	lock_rmap(rmapp);
820	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
821		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
822		ret = 1;
823	}
824	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
825		unlock_rmap(rmapp);
826		return ret;
827	}
828
829	i = head = *rmapp & KVMPPC_RMAP_INDEX;
830	do {
831		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
832		j = rev[i].forw;
833
834		/* If this HPTE isn't referenced, ignore it */
835		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
836			continue;
837
838		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
839			/* unlock rmap before spinning on the HPTE lock */
840			unlock_rmap(rmapp);
841			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
842				cpu_relax();
843			goto retry;
844		}
845
846		/* Now check and modify the HPTE */
847		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
848		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
849			kvmppc_clear_ref_hpte(kvm, hptep, i);
850			if (!(rev[i].guest_rpte & HPTE_R_R)) {
851				rev[i].guest_rpte |= HPTE_R_R;
852				note_hpte_modification(kvm, &rev[i]);
853			}
854			ret = 1;
855		}
856		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
857	} while ((i = j) != head);
858
859	unlock_rmap(rmapp);
860	return ret;
861}
862
863int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
864{
865	return kvm_handle_hva_range(kvm, start, end, kvm_age_rmapp);
866}
867
868static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
869			      unsigned long gfn)
870{
871	struct revmap_entry *rev = kvm->arch.revmap;
872	unsigned long head, i, j;
873	unsigned long *hp;
874	int ret = 1;
875
876	if (*rmapp & KVMPPC_RMAP_REFERENCED)
877		return 1;
878
879	lock_rmap(rmapp);
880	if (*rmapp & KVMPPC_RMAP_REFERENCED)
881		goto out;
882
883	if (*rmapp & KVMPPC_RMAP_PRESENT) {
884		i = head = *rmapp & KVMPPC_RMAP_INDEX;
885		do {
886			hp = (unsigned long *)(kvm->arch.hpt_virt + (i << 4));
887			j = rev[i].forw;
888			if (be64_to_cpu(hp[1]) & HPTE_R_R)
889				goto out;
890		} while ((i = j) != head);
891	}
892	ret = 0;
893
894 out:
895	unlock_rmap(rmapp);
896	return ret;
897}
898
899int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
900{
901	return kvm_handle_hva(kvm, hva, kvm_test_age_rmapp);
902}
903
904void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
905{
906	kvm_handle_hva(kvm, hva, kvm_unmap_rmapp);
907}
908
909static int vcpus_running(struct kvm *kvm)
910{
911	return atomic_read(&kvm->arch.vcpus_running) != 0;
912}
913
914/*
915 * Returns the number of system pages that are dirty.
916 * This can be more than 1 if we find a huge-page HPTE.
917 */
918static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
919{
920	struct revmap_entry *rev = kvm->arch.revmap;
921	unsigned long head, i, j;
922	unsigned long n;
923	unsigned long v, r;
924	__be64 *hptep;
925	int npages_dirty = 0;
926
927 retry:
928	lock_rmap(rmapp);
929	if (*rmapp & KVMPPC_RMAP_CHANGED) {
930		*rmapp &= ~KVMPPC_RMAP_CHANGED;
931		npages_dirty = 1;
932	}
933	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
934		unlock_rmap(rmapp);
935		return npages_dirty;
936	}
937
938	i = head = *rmapp & KVMPPC_RMAP_INDEX;
939	do {
940		unsigned long hptep1;
941		hptep = (__be64 *) (kvm->arch.hpt_virt + (i << 4));
942		j = rev[i].forw;
943
944		/*
945		 * Checking the C (changed) bit here is racy since there
946		 * is no guarantee about when the hardware writes it back.
947		 * If the HPTE is not writable then it is stable since the
948		 * page can't be written to, and we would have done a tlbie
949		 * (which forces the hardware to complete any writeback)
950		 * when making the HPTE read-only.
951		 * If vcpus are running then this call is racy anyway
952		 * since the page could get dirtied subsequently, so we
953		 * expect there to be a further call which would pick up
954		 * any delayed C bit writeback.
955		 * Otherwise we need to do the tlbie even if C==0 in
956		 * order to pick up any delayed writeback of C.
957		 */
958		hptep1 = be64_to_cpu(hptep[1]);
959		if (!(hptep1 & HPTE_R_C) &&
960		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
961			continue;
962
963		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
964			/* unlock rmap before spinning on the HPTE lock */
965			unlock_rmap(rmapp);
966			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
967				cpu_relax();
968			goto retry;
969		}
970
971		/* Now check and modify the HPTE */
972		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
973			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
974			continue;
975		}
976
977		/* need to make it temporarily absent so C is stable */
978		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
979		kvmppc_invalidate_hpte(kvm, hptep, i);
980		v = be64_to_cpu(hptep[0]);
981		r = be64_to_cpu(hptep[1]);
982		if (r & HPTE_R_C) {
983			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
984			if (!(rev[i].guest_rpte & HPTE_R_C)) {
985				rev[i].guest_rpte |= HPTE_R_C;
986				note_hpte_modification(kvm, &rev[i]);
987			}
988			n = hpte_page_size(v, r);
989			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
990			if (n > npages_dirty)
991				npages_dirty = n;
992			eieio();
993		}
994		v &= ~HPTE_V_ABSENT;
995		v |= HPTE_V_VALID;
996		__unlock_hpte(hptep, v);
997	} while ((i = j) != head);
998
999	unlock_rmap(rmapp);
1000	return npages_dirty;
1001}
1002
1003static void harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1004			      struct kvm_memory_slot *memslot,
1005			      unsigned long *map)
1006{
1007	unsigned long gfn;
1008
1009	if (!vpa->dirty || !vpa->pinned_addr)
1010		return;
1011	gfn = vpa->gpa >> PAGE_SHIFT;
1012	if (gfn < memslot->base_gfn ||
1013	    gfn >= memslot->base_gfn + memslot->npages)
1014		return;
1015
1016	vpa->dirty = false;
1017	if (map)
1018		__set_bit_le(gfn - memslot->base_gfn, map);
1019}
1020
1021long kvmppc_hv_get_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot,
1022			     unsigned long *map)
1023{
1024	unsigned long i, j;
1025	unsigned long *rmapp;
1026	struct kvm_vcpu *vcpu;
1027
1028	preempt_disable();
1029	rmapp = memslot->arch.rmap;
1030	for (i = 0; i < memslot->npages; ++i) {
1031		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1032		/*
1033		 * Note that if npages > 0 then i must be a multiple of npages,
1034		 * since we always put huge-page HPTEs in the rmap chain
1035		 * corresponding to their page base address.
1036		 */
1037		if (npages && map)
1038			for (j = i; npages; ++j, --npages)
1039				__set_bit_le(j, map);
1040		++rmapp;
1041	}
1042
1043	/* Harvest dirty bits from VPA and DTL updates */
1044	/* Note: we never modify the SLB shadow buffer areas */
1045	kvm_for_each_vcpu(i, vcpu, kvm) {
1046		spin_lock(&vcpu->arch.vpa_update_lock);
1047		harvest_vpa_dirty(&vcpu->arch.vpa, memslot, map);
1048		harvest_vpa_dirty(&vcpu->arch.dtl, memslot, map);
1049		spin_unlock(&vcpu->arch.vpa_update_lock);
1050	}
1051	preempt_enable();
1052	return 0;
1053}
1054
1055void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1056			    unsigned long *nb_ret)
1057{
1058	struct kvm_memory_slot *memslot;
1059	unsigned long gfn = gpa >> PAGE_SHIFT;
1060	struct page *page, *pages[1];
1061	int npages;
1062	unsigned long hva, offset;
1063	int srcu_idx;
1064
1065	srcu_idx = srcu_read_lock(&kvm->srcu);
1066	memslot = gfn_to_memslot(kvm, gfn);
1067	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1068		goto err;
1069	hva = gfn_to_hva_memslot(memslot, gfn);
1070	npages = get_user_pages_fast(hva, 1, 1, pages);
1071	if (npages < 1)
1072		goto err;
1073	page = pages[0];
1074	srcu_read_unlock(&kvm->srcu, srcu_idx);
1075
1076	offset = gpa & (PAGE_SIZE - 1);
1077	if (nb_ret)
1078		*nb_ret = PAGE_SIZE - offset;
1079	return page_address(page) + offset;
1080
1081 err:
1082	srcu_read_unlock(&kvm->srcu, srcu_idx);
1083	return NULL;
1084}
1085
1086void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1087			     bool dirty)
1088{
1089	struct page *page = virt_to_page(va);
1090	struct kvm_memory_slot *memslot;
1091	unsigned long gfn;
1092	unsigned long *rmap;
1093	int srcu_idx;
1094
1095	put_page(page);
1096
1097	if (!dirty)
1098		return;
1099
1100	/* We need to mark this page dirty in the rmap chain */
1101	gfn = gpa >> PAGE_SHIFT;
1102	srcu_idx = srcu_read_lock(&kvm->srcu);
1103	memslot = gfn_to_memslot(kvm, gfn);
1104	if (memslot) {
1105		rmap = &memslot->arch.rmap[gfn - memslot->base_gfn];
1106		lock_rmap(rmap);
1107		*rmap |= KVMPPC_RMAP_CHANGED;
1108		unlock_rmap(rmap);
1109	}
1110	srcu_read_unlock(&kvm->srcu, srcu_idx);
1111}
1112
1113/*
1114 * Functions for reading and writing the hash table via reads and
1115 * writes on a file descriptor.
1116 *
1117 * Reads return the guest view of the hash table, which has to be
1118 * pieced together from the real hash table and the guest_rpte
1119 * values in the revmap array.
1120 *
1121 * On writes, each HPTE written is considered in turn, and if it
1122 * is valid, it is written to the HPT as if an H_ENTER with the
1123 * exact flag set was done.  When the invalid count is non-zero
1124 * in the header written to the stream, the kernel will make
1125 * sure that that many HPTEs are invalid, and invalidate them
1126 * if not.
1127 */
1128
1129struct kvm_htab_ctx {
1130	unsigned long	index;
1131	unsigned long	flags;
1132	struct kvm	*kvm;
1133	int		first_pass;
1134};
1135
1136#define HPTE_SIZE	(2 * sizeof(unsigned long))
1137
1138/*
1139 * Returns 1 if this HPT entry has been modified or has pending
1140 * R/C bit changes.
1141 */
1142static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1143{
1144	unsigned long rcbits_unset;
1145
1146	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1147		return 1;
1148
1149	/* Also need to consider changes in reference and changed bits */
1150	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1151	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1152	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1153		return 1;
1154
1155	return 0;
1156}
1157
1158static long record_hpte(unsigned long flags, __be64 *hptp,
1159			unsigned long *hpte, struct revmap_entry *revp,
1160			int want_valid, int first_pass)
1161{
1162	unsigned long v, r;
1163	unsigned long rcbits_unset;
1164	int ok = 1;
1165	int valid, dirty;
1166
1167	/* Unmodified entries are uninteresting except on the first pass */
1168	dirty = hpte_dirty(revp, hptp);
1169	if (!first_pass && !dirty)
1170		return 0;
1171
1172	valid = 0;
1173	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1174		valid = 1;
1175		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1176		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1177			valid = 0;
1178	}
1179	if (valid != want_valid)
1180		return 0;
1181
1182	v = r = 0;
1183	if (valid || dirty) {
1184		/* lock the HPTE so it's stable and read it */
1185		preempt_disable();
1186		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1187			cpu_relax();
1188		v = be64_to_cpu(hptp[0]);
1189
1190		/* re-evaluate valid and dirty from synchronized HPTE value */
1191		valid = !!(v & HPTE_V_VALID);
1192		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1193
1194		/* Harvest R and C into guest view if necessary */
1195		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1196		if (valid && (rcbits_unset & be64_to_cpu(hptp[1]))) {
1197			revp->guest_rpte |= (be64_to_cpu(hptp[1]) &
1198				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1199			dirty = 1;
1200		}
1201
1202		if (v & HPTE_V_ABSENT) {
1203			v &= ~HPTE_V_ABSENT;
1204			v |= HPTE_V_VALID;
1205			valid = 1;
1206		}
1207		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1208			valid = 0;
1209
1210		r = revp->guest_rpte;
1211		/* only clear modified if this is the right sort of entry */
1212		if (valid == want_valid && dirty) {
1213			r &= ~HPTE_GR_MODIFIED;
1214			revp->guest_rpte = r;
1215		}
1216		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1217		preempt_enable();
1218		if (!(valid == want_valid && (first_pass || dirty)))
1219			ok = 0;
1220	}
1221	hpte[0] = cpu_to_be64(v);
1222	hpte[1] = cpu_to_be64(r);
1223	return ok;
1224}
1225
1226static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1227			     size_t count, loff_t *ppos)
1228{
1229	struct kvm_htab_ctx *ctx = file->private_data;
1230	struct kvm *kvm = ctx->kvm;
1231	struct kvm_get_htab_header hdr;
1232	__be64 *hptp;
1233	struct revmap_entry *revp;
1234	unsigned long i, nb, nw;
1235	unsigned long __user *lbuf;
1236	struct kvm_get_htab_header __user *hptr;
1237	unsigned long flags;
1238	int first_pass;
1239	unsigned long hpte[2];
1240
1241	if (!access_ok(VERIFY_WRITE, buf, count))
1242		return -EFAULT;
1243
1244	first_pass = ctx->first_pass;
1245	flags = ctx->flags;
1246
1247	i = ctx->index;
1248	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1249	revp = kvm->arch.revmap + i;
1250	lbuf = (unsigned long __user *)buf;
1251
1252	nb = 0;
1253	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1254		/* Initialize header */
1255		hptr = (struct kvm_get_htab_header __user *)buf;
1256		hdr.n_valid = 0;
1257		hdr.n_invalid = 0;
1258		nw = nb;
1259		nb += sizeof(hdr);
1260		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1261
1262		/* Skip uninteresting entries, i.e. clean on not-first pass */
1263		if (!first_pass) {
1264			while (i < kvm->arch.hpt_npte &&
1265			       !hpte_dirty(revp, hptp)) {
1266				++i;
1267				hptp += 2;
1268				++revp;
1269			}
1270		}
1271		hdr.index = i;
1272
1273		/* Grab a series of valid entries */
1274		while (i < kvm->arch.hpt_npte &&
1275		       hdr.n_valid < 0xffff &&
1276		       nb + HPTE_SIZE < count &&
1277		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1278			/* valid entry, write it out */
1279			++hdr.n_valid;
1280			if (__put_user(hpte[0], lbuf) ||
1281			    __put_user(hpte[1], lbuf + 1))
1282				return -EFAULT;
1283			nb += HPTE_SIZE;
1284			lbuf += 2;
1285			++i;
1286			hptp += 2;
1287			++revp;
1288		}
1289		/* Now skip invalid entries while we can */
1290		while (i < kvm->arch.hpt_npte &&
1291		       hdr.n_invalid < 0xffff &&
1292		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1293			/* found an invalid entry */
1294			++hdr.n_invalid;
1295			++i;
1296			hptp += 2;
1297			++revp;
1298		}
1299
1300		if (hdr.n_valid || hdr.n_invalid) {
1301			/* write back the header */
1302			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1303				return -EFAULT;
1304			nw = nb;
1305			buf = (char __user *)lbuf;
1306		} else {
1307			nb = nw;
1308		}
1309
1310		/* Check if we've wrapped around the hash table */
1311		if (i >= kvm->arch.hpt_npte) {
1312			i = 0;
1313			ctx->first_pass = 0;
1314			break;
1315		}
1316	}
1317
1318	ctx->index = i;
1319
1320	return nb;
1321}
1322
1323static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1324			      size_t count, loff_t *ppos)
1325{
1326	struct kvm_htab_ctx *ctx = file->private_data;
1327	struct kvm *kvm = ctx->kvm;
1328	struct kvm_get_htab_header hdr;
1329	unsigned long i, j;
1330	unsigned long v, r;
1331	unsigned long __user *lbuf;
1332	__be64 *hptp;
1333	unsigned long tmp[2];
1334	ssize_t nb;
1335	long int err, ret;
1336	int hpte_setup;
1337
1338	if (!access_ok(VERIFY_READ, buf, count))
1339		return -EFAULT;
1340
1341	/* lock out vcpus from running while we're doing this */
1342	mutex_lock(&kvm->lock);
1343	hpte_setup = kvm->arch.hpte_setup_done;
1344	if (hpte_setup) {
1345		kvm->arch.hpte_setup_done = 0;	/* temporarily */
1346		/* order hpte_setup_done vs. vcpus_running */
1347		smp_mb();
1348		if (atomic_read(&kvm->arch.vcpus_running)) {
1349			kvm->arch.hpte_setup_done = 1;
1350			mutex_unlock(&kvm->lock);
1351			return -EBUSY;
1352		}
1353	}
1354
1355	err = 0;
1356	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1357		err = -EFAULT;
1358		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1359			break;
1360
1361		err = 0;
1362		if (nb + hdr.n_valid * HPTE_SIZE > count)
1363			break;
1364
1365		nb += sizeof(hdr);
1366		buf += sizeof(hdr);
1367
1368		err = -EINVAL;
1369		i = hdr.index;
1370		if (i >= kvm->arch.hpt_npte ||
1371		    i + hdr.n_valid + hdr.n_invalid > kvm->arch.hpt_npte)
1372			break;
1373
1374		hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1375		lbuf = (unsigned long __user *)buf;
1376		for (j = 0; j < hdr.n_valid; ++j) {
1377			__be64 hpte_v;
1378			__be64 hpte_r;
1379
1380			err = -EFAULT;
1381			if (__get_user(hpte_v, lbuf) ||
1382			    __get_user(hpte_r, lbuf + 1))
1383				goto out;
1384			v = be64_to_cpu(hpte_v);
1385			r = be64_to_cpu(hpte_r);
1386			err = -EINVAL;
1387			if (!(v & HPTE_V_VALID))
1388				goto out;
1389			lbuf += 2;
1390			nb += HPTE_SIZE;
1391
1392			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1393				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1394			err = -EIO;
1395			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1396							 tmp);
1397			if (ret != H_SUCCESS) {
1398				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1399				       "r=%lx\n", ret, i, v, r);
1400				goto out;
1401			}
1402			if (!hpte_setup && is_vrma_hpte(v)) {
1403				unsigned long psize = hpte_base_page_size(v, r);
1404				unsigned long senc = slb_pgsize_encoding(psize);
1405				unsigned long lpcr;
1406
1407				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1408					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1409				lpcr = senc << (LPCR_VRMASD_SH - 4);
1410				kvmppc_update_lpcr(kvm, lpcr, LPCR_VRMASD);
1411				hpte_setup = 1;
1412			}
1413			++i;
1414			hptp += 2;
1415		}
1416
1417		for (j = 0; j < hdr.n_invalid; ++j) {
1418			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1419				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1420			++i;
1421			hptp += 2;
1422		}
1423		err = 0;
1424	}
1425
1426 out:
1427	/* Order HPTE updates vs. hpte_setup_done */
1428	smp_wmb();
1429	kvm->arch.hpte_setup_done = hpte_setup;
1430	mutex_unlock(&kvm->lock);
1431
1432	if (err)
1433		return err;
1434	return nb;
1435}
1436
1437static int kvm_htab_release(struct inode *inode, struct file *filp)
1438{
1439	struct kvm_htab_ctx *ctx = filp->private_data;
1440
1441	filp->private_data = NULL;
1442	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1443		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1444	kvm_put_kvm(ctx->kvm);
1445	kfree(ctx);
1446	return 0;
1447}
1448
1449static const struct file_operations kvm_htab_fops = {
1450	.read		= kvm_htab_read,
1451	.write		= kvm_htab_write,
1452	.llseek		= default_llseek,
1453	.release	= kvm_htab_release,
1454};
1455
1456int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1457{
1458	int ret;
1459	struct kvm_htab_ctx *ctx;
1460	int rwflag;
1461
1462	/* reject flags we don't recognize */
1463	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1464		return -EINVAL;
1465	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1466	if (!ctx)
1467		return -ENOMEM;
1468	kvm_get_kvm(kvm);
1469	ctx->kvm = kvm;
1470	ctx->index = ghf->start_index;
1471	ctx->flags = ghf->flags;
1472	ctx->first_pass = 1;
1473
1474	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1475	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1476	if (ret < 0) {
1477		kvm_put_kvm(kvm);
1478		return ret;
1479	}
1480
1481	if (rwflag == O_RDONLY) {
1482		mutex_lock(&kvm->slots_lock);
1483		atomic_inc(&kvm->arch.hpte_mod_interest);
1484		/* make sure kvmppc_do_h_enter etc. see the increment */
1485		synchronize_srcu_expedited(&kvm->srcu);
1486		mutex_unlock(&kvm->slots_lock);
1487	}
1488
1489	return ret;
1490}
1491
1492struct debugfs_htab_state {
1493	struct kvm	*kvm;
1494	struct mutex	mutex;
1495	unsigned long	hpt_index;
1496	int		chars_left;
1497	int		buf_index;
1498	char		buf[64];
1499};
1500
1501static int debugfs_htab_open(struct inode *inode, struct file *file)
1502{
1503	struct kvm *kvm = inode->i_private;
1504	struct debugfs_htab_state *p;
1505
1506	p = kzalloc(sizeof(*p), GFP_KERNEL);
1507	if (!p)
1508		return -ENOMEM;
1509
1510	kvm_get_kvm(kvm);
1511	p->kvm = kvm;
1512	mutex_init(&p->mutex);
1513	file->private_data = p;
1514
1515	return nonseekable_open(inode, file);
1516}
1517
1518static int debugfs_htab_release(struct inode *inode, struct file *file)
1519{
1520	struct debugfs_htab_state *p = file->private_data;
1521
1522	kvm_put_kvm(p->kvm);
1523	kfree(p);
1524	return 0;
1525}
1526
1527static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
1528				 size_t len, loff_t *ppos)
1529{
1530	struct debugfs_htab_state *p = file->private_data;
1531	ssize_t ret, r;
1532	unsigned long i, n;
1533	unsigned long v, hr, gr;
1534	struct kvm *kvm;
1535	__be64 *hptp;
1536
1537	ret = mutex_lock_interruptible(&p->mutex);
1538	if (ret)
1539		return ret;
1540
1541	if (p->chars_left) {
1542		n = p->chars_left;
1543		if (n > len)
1544			n = len;
1545		r = copy_to_user(buf, p->buf + p->buf_index, n);
1546		n -= r;
1547		p->chars_left -= n;
1548		p->buf_index += n;
1549		buf += n;
1550		len -= n;
1551		ret = n;
1552		if (r) {
1553			if (!n)
1554				ret = -EFAULT;
1555			goto out;
1556		}
1557	}
1558
1559	kvm = p->kvm;
1560	i = p->hpt_index;
1561	hptp = (__be64 *)(kvm->arch.hpt_virt + (i * HPTE_SIZE));
1562	for (; len != 0 && i < kvm->arch.hpt_npte; ++i, hptp += 2) {
1563		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
1564			continue;
1565
1566		/* lock the HPTE so it's stable and read it */
1567		preempt_disable();
1568		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1569			cpu_relax();
1570		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
1571		hr = be64_to_cpu(hptp[1]);
1572		gr = kvm->arch.revmap[i].guest_rpte;
1573		unlock_hpte(hptp, v);
1574		preempt_enable();
1575
1576		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
1577			continue;
1578
1579		n = scnprintf(p->buf, sizeof(p->buf),
1580			      "%6lx %.16lx %.16lx %.16lx\n",
1581			      i, v, hr, gr);
1582		p->chars_left = n;
1583		if (n > len)
1584			n = len;
1585		r = copy_to_user(buf, p->buf, n);
1586		n -= r;
1587		p->chars_left -= n;
1588		p->buf_index = n;
1589		buf += n;
1590		len -= n;
1591		ret += n;
1592		if (r) {
1593			if (!ret)
1594				ret = -EFAULT;
1595			goto out;
1596		}
1597	}
1598	p->hpt_index = i;
1599
1600 out:
1601	mutex_unlock(&p->mutex);
1602	return ret;
1603}
1604
1605ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
1606			   size_t len, loff_t *ppos)
1607{
1608	return -EACCES;
1609}
1610
1611static const struct file_operations debugfs_htab_fops = {
1612	.owner	 = THIS_MODULE,
1613	.open	 = debugfs_htab_open,
1614	.release = debugfs_htab_release,
1615	.read	 = debugfs_htab_read,
1616	.write	 = debugfs_htab_write,
1617	.llseek	 = generic_file_llseek,
1618};
1619
1620void kvmppc_mmu_debugfs_init(struct kvm *kvm)
1621{
1622	kvm->arch.htab_dentry = debugfs_create_file("htab", 0400,
1623						    kvm->arch.debugfs_dir, kvm,
1624						    &debugfs_htab_fops);
1625}
1626
1627void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
1628{
1629	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
1630
1631	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
1632
1633	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
1634	mmu->reset_msr = kvmppc_mmu_book3s_64_hv_reset_msr;
1635
1636	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
1637}
1638