1#ifndef _ASM_POWERPC_PGTABLE_PPC64_H_
2#define _ASM_POWERPC_PGTABLE_PPC64_H_
3/*
4 * This file contains the functions and defines necessary to modify and use
5 * the ppc64 hashed page table.
6 */
7
8#ifdef CONFIG_PPC_64K_PAGES
9#include <asm/pgtable-ppc64-64k.h>
10#else
11#include <asm/pgtable-ppc64-4k.h>
12#endif
13#include <asm/barrier.h>
14
15#define FIRST_USER_ADDRESS	0UL
16
17/*
18 * Size of EA range mapped by our pagetables.
19 */
20#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \
21                	    PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT)
22#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE)
23
24#ifdef CONFIG_TRANSPARENT_HUGEPAGE
25#define PMD_CACHE_INDEX	(PMD_INDEX_SIZE + 1)
26#else
27#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
28#endif
29/*
30 * Define the address range of the kernel non-linear virtual area
31 */
32
33#ifdef CONFIG_PPC_BOOK3E
34#define KERN_VIRT_START ASM_CONST(0x8000000000000000)
35#else
36#define KERN_VIRT_START ASM_CONST(0xD000000000000000)
37#endif
38#define KERN_VIRT_SIZE	ASM_CONST(0x0000100000000000)
39
40/*
41 * The vmalloc space starts at the beginning of that region, and
42 * occupies half of it on hash CPUs and a quarter of it on Book3E
43 * (we keep a quarter for the virtual memmap)
44 */
45#define VMALLOC_START	KERN_VIRT_START
46#ifdef CONFIG_PPC_BOOK3E
47#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 2)
48#else
49#define VMALLOC_SIZE	(KERN_VIRT_SIZE >> 1)
50#endif
51#define VMALLOC_END	(VMALLOC_START + VMALLOC_SIZE)
52
53/*
54 * The second half of the kernel virtual space is used for IO mappings,
55 * it's itself carved into the PIO region (ISA and PHB IO space) and
56 * the ioremap space
57 *
58 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
59 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
60 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
61 */
62#define KERN_IO_START	(KERN_VIRT_START + (KERN_VIRT_SIZE >> 1))
63#define FULL_IO_SIZE	0x80000000ul
64#define  ISA_IO_BASE	(KERN_IO_START)
65#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
66#define  PHB_IO_BASE	(ISA_IO_END)
67#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
68#define IOREMAP_BASE	(PHB_IO_END)
69#define IOREMAP_END	(KERN_VIRT_START + KERN_VIRT_SIZE)
70
71
72/*
73 * Region IDs
74 */
75#define REGION_SHIFT		60UL
76#define REGION_MASK		(0xfUL << REGION_SHIFT)
77#define REGION_ID(ea)		(((unsigned long)(ea)) >> REGION_SHIFT)
78
79#define VMALLOC_REGION_ID	(REGION_ID(VMALLOC_START))
80#define KERNEL_REGION_ID	(REGION_ID(PAGE_OFFSET))
81#define VMEMMAP_REGION_ID	(0xfUL)	/* Server only */
82#define USER_REGION_ID		(0UL)
83
84/*
85 * Defines the address of the vmemap area, in its own region on
86 * hash table CPUs and after the vmalloc space on Book3E
87 */
88#ifdef CONFIG_PPC_BOOK3E
89#define VMEMMAP_BASE		VMALLOC_END
90#define VMEMMAP_END		KERN_IO_START
91#else
92#define VMEMMAP_BASE		(VMEMMAP_REGION_ID << REGION_SHIFT)
93#endif
94#define vmemmap			((struct page *)VMEMMAP_BASE)
95
96
97/*
98 * Include the PTE bits definitions
99 */
100#ifdef CONFIG_PPC_BOOK3S
101#include <asm/pte-hash64.h>
102#else
103#include <asm/pte-book3e.h>
104#endif
105#include <asm/pte-common.h>
106
107#ifdef CONFIG_PPC_MM_SLICES
108#define HAVE_ARCH_UNMAPPED_AREA
109#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
110#endif /* CONFIG_PPC_MM_SLICES */
111
112#ifndef __ASSEMBLY__
113
114/*
115 * This is the default implementation of various PTE accessors, it's
116 * used in all cases except Book3S with 64K pages where we have a
117 * concept of sub-pages
118 */
119#ifndef __real_pte
120
121#ifdef STRICT_MM_TYPECHECKS
122#define __real_pte(e,p)		((real_pte_t){(e)})
123#define __rpte_to_pte(r)	((r).pte)
124#else
125#define __real_pte(e,p)		(e)
126#define __rpte_to_pte(r)	(__pte(r))
127#endif
128#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> 12)
129
130#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
131	do {							         \
132		index = 0;					         \
133		shift = mmu_psize_defs[psize].shift;		         \
134
135#define pte_iterate_hashed_end() } while(0)
136
137#ifdef CONFIG_PPC_HAS_HASH_64K
138/*
139 * We expect this to be called only for user addresses or kernel virtual
140 * addresses other than the linear mapping.
141 */
142#define pte_pagesize_index(mm, addr, pte)			\
143	({							\
144		unsigned int psize;				\
145		if (is_kernel_addr(addr))			\
146			psize = MMU_PAGE_4K;			\
147		else						\
148			psize = get_slice_psize(mm, addr);	\
149		psize;						\
150	})
151#else
152#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
153#endif
154
155#endif /* __real_pte */
156
157
158/* pte_clear moved to later in this file */
159
160#define PMD_BAD_BITS		(PTE_TABLE_SIZE-1)
161#define PUD_BAD_BITS		(PMD_TABLE_SIZE-1)
162
163#define pmd_set(pmdp, pmdval) 	(pmd_val(*(pmdp)) = (pmdval))
164#define pmd_none(pmd)		(!pmd_val(pmd))
165#define	pmd_bad(pmd)		(!is_kernel_addr(pmd_val(pmd)) \
166				 || (pmd_val(pmd) & PMD_BAD_BITS))
167#define	pmd_present(pmd)	(!pmd_none(pmd))
168#define	pmd_clear(pmdp)		(pmd_val(*(pmdp)) = 0)
169#define pmd_page_vaddr(pmd)	(pmd_val(pmd) & ~PMD_MASKED_BITS)
170extern struct page *pmd_page(pmd_t pmd);
171
172#define pud_set(pudp, pudval)	(pud_val(*(pudp)) = (pudval))
173#define pud_none(pud)		(!pud_val(pud))
174#define	pud_bad(pud)		(!is_kernel_addr(pud_val(pud)) \
175				 || (pud_val(pud) & PUD_BAD_BITS))
176#define pud_present(pud)	(pud_val(pud) != 0)
177#define pud_clear(pudp)		(pud_val(*(pudp)) = 0)
178#define pud_page_vaddr(pud)	(pud_val(pud) & ~PUD_MASKED_BITS)
179
180extern struct page *pud_page(pud_t pud);
181
182static inline pte_t pud_pte(pud_t pud)
183{
184	return __pte(pud_val(pud));
185}
186
187static inline pud_t pte_pud(pte_t pte)
188{
189	return __pud(pte_val(pte));
190}
191#define pud_write(pud)		pte_write(pud_pte(pud))
192#define pgd_set(pgdp, pudp)	({pgd_val(*(pgdp)) = (unsigned long)(pudp);})
193#define pgd_write(pgd)		pte_write(pgd_pte(pgd))
194
195/*
196 * Find an entry in a page-table-directory.  We combine the address region
197 * (the high order N bits) and the pgd portion of the address.
198 */
199#define pgd_index(address) (((address) >> (PGDIR_SHIFT)) & (PTRS_PER_PGD - 1))
200
201#define pgd_offset(mm, address)	 ((mm)->pgd + pgd_index(address))
202
203#define pmd_offset(pudp,addr) \
204  (((pmd_t *) pud_page_vaddr(*(pudp))) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
205
206#define pte_offset_kernel(dir,addr) \
207  (((pte_t *) pmd_page_vaddr(*(dir))) + (((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)))
208
209#define pte_offset_map(dir,addr)	pte_offset_kernel((dir), (addr))
210#define pte_unmap(pte)			do { } while(0)
211
212/* to find an entry in a kernel page-table-directory */
213/* This now only contains the vmalloc pages */
214#define pgd_offset_k(address) pgd_offset(&init_mm, address)
215extern void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
216			    pte_t *ptep, unsigned long pte, int huge);
217
218/* Atomic PTE updates */
219static inline unsigned long pte_update(struct mm_struct *mm,
220				       unsigned long addr,
221				       pte_t *ptep, unsigned long clr,
222				       unsigned long set,
223				       int huge)
224{
225#ifdef PTE_ATOMIC_UPDATES
226	unsigned long old, tmp;
227
228	__asm__ __volatile__(
229	"1:	ldarx	%0,0,%3		# pte_update\n\
230	andi.	%1,%0,%6\n\
231	bne-	1b \n\
232	andc	%1,%0,%4 \n\
233	or	%1,%1,%7\n\
234	stdcx.	%1,0,%3 \n\
235	bne-	1b"
236	: "=&r" (old), "=&r" (tmp), "=m" (*ptep)
237	: "r" (ptep), "r" (clr), "m" (*ptep), "i" (_PAGE_BUSY), "r" (set)
238	: "cc" );
239#else
240	unsigned long old = pte_val(*ptep);
241	*ptep = __pte((old & ~clr) | set);
242#endif
243	/* huge pages use the old page table lock */
244	if (!huge)
245		assert_pte_locked(mm, addr);
246
247#ifdef CONFIG_PPC_STD_MMU_64
248	if (old & _PAGE_HASHPTE)
249		hpte_need_flush(mm, addr, ptep, old, huge);
250#endif
251
252	return old;
253}
254
255static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
256					      unsigned long addr, pte_t *ptep)
257{
258	unsigned long old;
259
260	if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
261		return 0;
262	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
263	return (old & _PAGE_ACCESSED) != 0;
264}
265#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
266#define ptep_test_and_clear_young(__vma, __addr, __ptep)		   \
267({									   \
268	int __r;							   \
269	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
270	__r;								   \
271})
272
273#define __HAVE_ARCH_PTEP_SET_WRPROTECT
274static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
275				      pte_t *ptep)
276{
277
278	if ((pte_val(*ptep) & _PAGE_RW) == 0)
279		return;
280
281	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
282}
283
284static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
285					   unsigned long addr, pte_t *ptep)
286{
287	if ((pte_val(*ptep) & _PAGE_RW) == 0)
288		return;
289
290	pte_update(mm, addr, ptep, _PAGE_RW, 0, 1);
291}
292
293/*
294 * We currently remove entries from the hashtable regardless of whether
295 * the entry was young or dirty. The generic routines only flush if the
296 * entry was young or dirty which is not good enough.
297 *
298 * We should be more intelligent about this but for the moment we override
299 * these functions and force a tlb flush unconditionally
300 */
301#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
302#define ptep_clear_flush_young(__vma, __address, __ptep)		\
303({									\
304	int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \
305						  __ptep);		\
306	__young;							\
307})
308
309#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
310static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
311				       unsigned long addr, pte_t *ptep)
312{
313	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
314	return __pte(old);
315}
316
317static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
318			     pte_t * ptep)
319{
320	pte_update(mm, addr, ptep, ~0UL, 0, 0);
321}
322
323
324/* Set the dirty and/or accessed bits atomically in a linux PTE, this
325 * function doesn't need to flush the hash entry
326 */
327static inline void __ptep_set_access_flags(pte_t *ptep, pte_t entry)
328{
329	unsigned long bits = pte_val(entry) &
330		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
331
332#ifdef PTE_ATOMIC_UPDATES
333	unsigned long old, tmp;
334
335	__asm__ __volatile__(
336	"1:	ldarx	%0,0,%4\n\
337		andi.	%1,%0,%6\n\
338		bne-	1b \n\
339		or	%0,%3,%0\n\
340		stdcx.	%0,0,%4\n\
341		bne-	1b"
342	:"=&r" (old), "=&r" (tmp), "=m" (*ptep)
343	:"r" (bits), "r" (ptep), "m" (*ptep), "i" (_PAGE_BUSY)
344	:"cc");
345#else
346	unsigned long old = pte_val(*ptep);
347	*ptep = __pte(old | bits);
348#endif
349}
350
351#define __HAVE_ARCH_PTE_SAME
352#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HPTEFLAGS) == 0)
353
354#define pte_ERROR(e) \
355	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
356#define pmd_ERROR(e) \
357	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
358#define pgd_ERROR(e) \
359	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
360
361/* Encode and de-code a swap entry */
362#define __swp_type(entry)	(((entry).val >> 1) & 0x3f)
363#define __swp_offset(entry)	((entry).val >> 8)
364#define __swp_entry(type, offset) ((swp_entry_t){((type)<< 1)|((offset)<<8)})
365#define __pte_to_swp_entry(pte)	((swp_entry_t){pte_val(pte) >> PTE_RPN_SHIFT})
366#define __swp_entry_to_pte(x)	((pte_t) { (x).val << PTE_RPN_SHIFT })
367
368void pgtable_cache_add(unsigned shift, void (*ctor)(void *));
369void pgtable_cache_init(void);
370#endif /* __ASSEMBLY__ */
371
372/*
373 * THP pages can't be special. So use the _PAGE_SPECIAL
374 */
375#define _PAGE_SPLITTING _PAGE_SPECIAL
376
377/*
378 * We need to differentiate between explicit huge page and THP huge
379 * page, since THP huge page also need to track real subpage details
380 */
381#define _PAGE_THP_HUGE  _PAGE_4K_PFN
382
383/*
384 * set of bits not changed in pmd_modify.
385 */
386#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS |		\
387			 _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPLITTING | \
388			 _PAGE_THP_HUGE)
389
390#ifndef __ASSEMBLY__
391/*
392 * The linux hugepage PMD now include the pmd entries followed by the address
393 * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits.
394 * [ 1 bit secondary | 3 bit hidx | 1 bit valid | 000]. We use one byte per
395 * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and
396 * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t.
397 *
398 * The last three bits are intentionally left to zero. This memory location
399 * are also used as normal page PTE pointers. So if we have any pointers
400 * left around while we collapse a hugepage, we need to make sure
401 * _PAGE_PRESENT bit of that is zero when we look at them
402 */
403static inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index)
404{
405	return (hpte_slot_array[index] >> 3) & 0x1;
406}
407
408static inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array,
409					   int index)
410{
411	return hpte_slot_array[index] >> 4;
412}
413
414static inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array,
415					unsigned int index, unsigned int hidx)
416{
417	hpte_slot_array[index] = hidx << 4 | 0x1 << 3;
418}
419
420struct page *realmode_pfn_to_page(unsigned long pfn);
421
422static inline char *get_hpte_slot_array(pmd_t *pmdp)
423{
424	/*
425	 * The hpte hindex is stored in the pgtable whose address is in the
426	 * second half of the PMD
427	 *
428	 * Order this load with the test for pmd_trans_huge in the caller
429	 */
430	smp_rmb();
431	return *(char **)(pmdp + PTRS_PER_PMD);
432
433
434}
435
436extern void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
437				   pmd_t *pmdp, unsigned long old_pmd);
438#ifdef CONFIG_TRANSPARENT_HUGEPAGE
439extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
440extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
441extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
442extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
443		       pmd_t *pmdp, pmd_t pmd);
444extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
445				 pmd_t *pmd);
446/*
447 *
448 * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs
449 * page. The hugetlbfs page table walking and mangling paths are totally
450 * separated form the core VM paths and they're differentiated by
451 *  VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run.
452 *
453 * pmd_trans_huge() is defined as false at build time if
454 * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build
455 * time in such case.
456 *
457 * For ppc64 we need to differntiate from explicit hugepages from THP, because
458 * for THP we also track the subpage details at the pmd level. We don't do
459 * that for explicit huge pages.
460 *
461 */
462static inline int pmd_trans_huge(pmd_t pmd)
463{
464	/*
465	 * leaf pte for huge page, bottom two bits != 00
466	 */
467	return (pmd_val(pmd) & 0x3) && (pmd_val(pmd) & _PAGE_THP_HUGE);
468}
469
470static inline int pmd_trans_splitting(pmd_t pmd)
471{
472	if (pmd_trans_huge(pmd))
473		return pmd_val(pmd) & _PAGE_SPLITTING;
474	return 0;
475}
476
477extern int has_transparent_hugepage(void);
478#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
479
480static inline int pmd_large(pmd_t pmd)
481{
482	/*
483	 * leaf pte for huge page, bottom two bits != 00
484	 */
485	return ((pmd_val(pmd) & 0x3) != 0x0);
486}
487
488static inline pte_t pmd_pte(pmd_t pmd)
489{
490	return __pte(pmd_val(pmd));
491}
492
493static inline pmd_t pte_pmd(pte_t pte)
494{
495	return __pmd(pte_val(pte));
496}
497
498static inline pte_t *pmdp_ptep(pmd_t *pmd)
499{
500	return (pte_t *)pmd;
501}
502
503#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
504#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
505#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
506#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
507#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
508#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
509#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
510#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
511
512#define __HAVE_ARCH_PMD_WRITE
513#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
514
515static inline pmd_t pmd_mkhuge(pmd_t pmd)
516{
517	/* Do nothing, mk_pmd() does this part.  */
518	return pmd;
519}
520
521static inline pmd_t pmd_mknotpresent(pmd_t pmd)
522{
523	pmd_val(pmd) &= ~_PAGE_PRESENT;
524	return pmd;
525}
526
527static inline pmd_t pmd_mksplitting(pmd_t pmd)
528{
529	pmd_val(pmd) |= _PAGE_SPLITTING;
530	return pmd;
531}
532
533#define __HAVE_ARCH_PMD_SAME
534static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
535{
536	return (((pmd_val(pmd_a) ^ pmd_val(pmd_b)) & ~_PAGE_HPTEFLAGS) == 0);
537}
538
539#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
540extern int pmdp_set_access_flags(struct vm_area_struct *vma,
541				 unsigned long address, pmd_t *pmdp,
542				 pmd_t entry, int dirty);
543
544extern unsigned long pmd_hugepage_update(struct mm_struct *mm,
545					 unsigned long addr,
546					 pmd_t *pmdp,
547					 unsigned long clr,
548					 unsigned long set);
549
550static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
551					      unsigned long addr, pmd_t *pmdp)
552{
553	unsigned long old;
554
555	if ((pmd_val(*pmdp) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0)
556		return 0;
557	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
558	return ((old & _PAGE_ACCESSED) != 0);
559}
560
561#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
562extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
563				     unsigned long address, pmd_t *pmdp);
564#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
565extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
566				  unsigned long address, pmd_t *pmdp);
567
568#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
569extern pmd_t pmdp_get_and_clear(struct mm_struct *mm,
570				unsigned long addr, pmd_t *pmdp);
571
572#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
573extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma, unsigned long address,
574			      pmd_t *pmdp);
575
576#define __HAVE_ARCH_PMDP_SET_WRPROTECT
577static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
578				      pmd_t *pmdp)
579{
580
581	if ((pmd_val(*pmdp) & _PAGE_RW) == 0)
582		return;
583
584	pmd_hugepage_update(mm, addr, pmdp, _PAGE_RW, 0);
585}
586
587#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
588extern void pmdp_splitting_flush(struct vm_area_struct *vma,
589				 unsigned long address, pmd_t *pmdp);
590
591#define __HAVE_ARCH_PGTABLE_DEPOSIT
592extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
593				       pgtable_t pgtable);
594#define __HAVE_ARCH_PGTABLE_WITHDRAW
595extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
596
597#define __HAVE_ARCH_PMDP_INVALIDATE
598extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
599			    pmd_t *pmdp);
600
601#define pmd_move_must_withdraw pmd_move_must_withdraw
602struct spinlock;
603static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
604					 struct spinlock *old_pmd_ptl)
605{
606	/*
607	 * Archs like ppc64 use pgtable to store per pmd
608	 * specific information. So when we switch the pmd,
609	 * we should also withdraw and deposit the pgtable
610	 */
611	return true;
612}
613#endif /* __ASSEMBLY__ */
614#endif /* _ASM_POWERPC_PGTABLE_PPC64_H_ */
615