1#ifndef _ASM_POWERPC_MMU_HASH64_H_
2#define _ASM_POWERPC_MMU_HASH64_H_
3/*
4 * PowerPC64 memory management structures
5 *
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 *   PPC64 rework.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <asm/asm-compat.h>
16#include <asm/page.h>
17
18/*
19 * This is necessary to get the definition of PGTABLE_RANGE which we
20 * need for various slices related matters. Note that this isn't the
21 * complete pgtable.h but only a portion of it.
22 */
23#include <asm/pgtable-ppc64.h>
24#include <asm/bug.h>
25#include <asm/processor.h>
26
27/*
28 * SLB
29 */
30
31#define SLB_NUM_BOLTED		3
32#define SLB_CACHE_ENTRIES	8
33#define SLB_MIN_SIZE		32
34
35/* Bits in the SLB ESID word */
36#define SLB_ESID_V		ASM_CONST(0x0000000008000000) /* valid */
37
38/* Bits in the SLB VSID word */
39#define SLB_VSID_SHIFT		12
40#define SLB_VSID_SHIFT_1T	24
41#define SLB_VSID_SSIZE_SHIFT	62
42#define SLB_VSID_B		ASM_CONST(0xc000000000000000)
43#define SLB_VSID_B_256M		ASM_CONST(0x0000000000000000)
44#define SLB_VSID_B_1T		ASM_CONST(0x4000000000000000)
45#define SLB_VSID_KS		ASM_CONST(0x0000000000000800)
46#define SLB_VSID_KP		ASM_CONST(0x0000000000000400)
47#define SLB_VSID_N		ASM_CONST(0x0000000000000200) /* no-execute */
48#define SLB_VSID_L		ASM_CONST(0x0000000000000100)
49#define SLB_VSID_C		ASM_CONST(0x0000000000000080) /* class */
50#define SLB_VSID_LP		ASM_CONST(0x0000000000000030)
51#define SLB_VSID_LP_00		ASM_CONST(0x0000000000000000)
52#define SLB_VSID_LP_01		ASM_CONST(0x0000000000000010)
53#define SLB_VSID_LP_10		ASM_CONST(0x0000000000000020)
54#define SLB_VSID_LP_11		ASM_CONST(0x0000000000000030)
55#define SLB_VSID_LLP		(SLB_VSID_L|SLB_VSID_LP)
56
57#define SLB_VSID_KERNEL		(SLB_VSID_KP)
58#define SLB_VSID_USER		(SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
59
60#define SLBIE_C			(0x08000000)
61#define SLBIE_SSIZE_SHIFT	25
62
63/*
64 * Hash table
65 */
66
67#define HPTES_PER_GROUP 8
68
69#define HPTE_V_SSIZE_SHIFT	62
70#define HPTE_V_AVPN_SHIFT	7
71#define HPTE_V_AVPN		ASM_CONST(0x3fffffffffffff80)
72#define HPTE_V_AVPN_VAL(x)	(((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
73#define HPTE_V_COMPARE(x,y)	(!(((x) ^ (y)) & 0xffffffffffffff80UL))
74#define HPTE_V_BOLTED		ASM_CONST(0x0000000000000010)
75#define HPTE_V_LOCK		ASM_CONST(0x0000000000000008)
76#define HPTE_V_LARGE		ASM_CONST(0x0000000000000004)
77#define HPTE_V_SECONDARY	ASM_CONST(0x0000000000000002)
78#define HPTE_V_VALID		ASM_CONST(0x0000000000000001)
79
80#define HPTE_R_PP0		ASM_CONST(0x8000000000000000)
81#define HPTE_R_TS		ASM_CONST(0x4000000000000000)
82#define HPTE_R_KEY_HI		ASM_CONST(0x3000000000000000)
83#define HPTE_R_RPN_SHIFT	12
84#define HPTE_R_RPN		ASM_CONST(0x0ffffffffffff000)
85#define HPTE_R_PP		ASM_CONST(0x0000000000000003)
86#define HPTE_R_N		ASM_CONST(0x0000000000000004)
87#define HPTE_R_G		ASM_CONST(0x0000000000000008)
88#define HPTE_R_M		ASM_CONST(0x0000000000000010)
89#define HPTE_R_I		ASM_CONST(0x0000000000000020)
90#define HPTE_R_W		ASM_CONST(0x0000000000000040)
91#define HPTE_R_WIMG		ASM_CONST(0x0000000000000078)
92#define HPTE_R_C		ASM_CONST(0x0000000000000080)
93#define HPTE_R_R		ASM_CONST(0x0000000000000100)
94#define HPTE_R_KEY_LO		ASM_CONST(0x0000000000000e00)
95
96#define HPTE_V_1TB_SEG		ASM_CONST(0x4000000000000000)
97#define HPTE_V_VRMA_MASK	ASM_CONST(0x4001ffffff000000)
98
99/* Values for PP (assumes Ks=0, Kp=1) */
100#define PP_RWXX	0	/* Supervisor read/write, User none */
101#define PP_RWRX 1	/* Supervisor read/write, User read */
102#define PP_RWRW 2	/* Supervisor read/write, User read/write */
103#define PP_RXRX 3	/* Supervisor read,       User read */
104#define PP_RXXX	(HPTE_R_PP0 | 2)	/* Supervisor read, user none */
105
106/* Fields for tlbiel instruction in architecture 2.06 */
107#define TLBIEL_INVAL_SEL_MASK	0xc00	/* invalidation selector */
108#define  TLBIEL_INVAL_PAGE	0x000	/* invalidate a single page */
109#define  TLBIEL_INVAL_SET_LPID	0x800	/* invalidate a set for current LPID */
110#define  TLBIEL_INVAL_SET	0xc00	/* invalidate a set for all LPIDs */
111#define TLBIEL_INVAL_SET_MASK	0xfff000	/* set number to inval. */
112#define TLBIEL_INVAL_SET_SHIFT	12
113
114#define POWER7_TLB_SETS		128	/* # sets in POWER7 TLB */
115#define POWER8_TLB_SETS		512	/* # sets in POWER8 TLB */
116
117#ifndef __ASSEMBLY__
118
119struct hash_pte {
120	__be64 v;
121	__be64 r;
122};
123
124extern struct hash_pte *htab_address;
125extern unsigned long htab_size_bytes;
126extern unsigned long htab_hash_mask;
127
128/*
129 * Page size definition
130 *
131 *    shift : is the "PAGE_SHIFT" value for that page size
132 *    sllp  : is a bit mask with the value of SLB L || LP to be or'ed
133 *            directly to a slbmte "vsid" value
134 *    penc  : is the HPTE encoding mask for the "LP" field:
135 *
136 */
137struct mmu_psize_def
138{
139	unsigned int	shift;	/* number of bits */
140	int		penc[MMU_PAGE_COUNT];	/* HPTE encoding */
141	unsigned int	tlbiel;	/* tlbiel supported for that page size */
142	unsigned long	avpnm;	/* bits to mask out in AVPN in the HPTE */
143	unsigned long	sllp;	/* SLB L||LP (exact mask to use in slbmte) */
144};
145extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
146
147static inline int shift_to_mmu_psize(unsigned int shift)
148{
149	int psize;
150
151	for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
152		if (mmu_psize_defs[psize].shift == shift)
153			return psize;
154	return -1;
155}
156
157static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
158{
159	if (mmu_psize_defs[mmu_psize].shift)
160		return mmu_psize_defs[mmu_psize].shift;
161	BUG();
162}
163
164#endif /* __ASSEMBLY__ */
165
166/*
167 * Segment sizes.
168 * These are the values used by hardware in the B field of
169 * SLB entries and the first dword of MMU hashtable entries.
170 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
171 */
172#define MMU_SEGSIZE_256M	0
173#define MMU_SEGSIZE_1T		1
174
175/*
176 * encode page number shift.
177 * in order to fit the 78 bit va in a 64 bit variable we shift the va by
178 * 12 bits. This enable us to address upto 76 bit va.
179 * For hpt hash from a va we can ignore the page size bits of va and for
180 * hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
181 * we work in all cases including 4k page size.
182 */
183#define VPN_SHIFT	12
184
185/*
186 * HPTE Large Page (LP) details
187 */
188#define LP_SHIFT	12
189#define LP_BITS		8
190#define LP_MASK(i)	((0xFF >> (i)) << LP_SHIFT)
191
192#ifndef __ASSEMBLY__
193
194static inline int slb_vsid_shift(int ssize)
195{
196	if (ssize == MMU_SEGSIZE_256M)
197		return SLB_VSID_SHIFT;
198	return SLB_VSID_SHIFT_1T;
199}
200
201static inline int segment_shift(int ssize)
202{
203	if (ssize == MMU_SEGSIZE_256M)
204		return SID_SHIFT;
205	return SID_SHIFT_1T;
206}
207
208/*
209 * The current system page and segment sizes
210 */
211extern int mmu_linear_psize;
212extern int mmu_virtual_psize;
213extern int mmu_vmalloc_psize;
214extern int mmu_vmemmap_psize;
215extern int mmu_io_psize;
216extern int mmu_kernel_ssize;
217extern int mmu_highuser_ssize;
218extern u16 mmu_slb_size;
219extern unsigned long tce_alloc_start, tce_alloc_end;
220
221/*
222 * If the processor supports 64k normal pages but not 64k cache
223 * inhibited pages, we have to be prepared to switch processes
224 * to use 4k pages when they create cache-inhibited mappings.
225 * If this is the case, mmu_ci_restrictions will be set to 1.
226 */
227extern int mmu_ci_restrictions;
228
229/*
230 * This computes the AVPN and B fields of the first dword of a HPTE,
231 * for use when we want to match an existing PTE.  The bottom 7 bits
232 * of the returned value are zero.
233 */
234static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
235					     int ssize)
236{
237	unsigned long v;
238	/*
239	 * The AVA field omits the low-order 23 bits of the 78 bits VA.
240	 * These bits are not needed in the PTE, because the
241	 * low-order b of these bits are part of the byte offset
242	 * into the virtual page and, if b < 23, the high-order
243	 * 23-b of these bits are always used in selecting the
244	 * PTEGs to be searched
245	 */
246	v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
247	v <<= HPTE_V_AVPN_SHIFT;
248	v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
249	return v;
250}
251
252/*
253 * This function sets the AVPN and L fields of the HPTE  appropriately
254 * using the base page size and actual page size.
255 */
256static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
257					  int actual_psize, int ssize)
258{
259	unsigned long v;
260	v = hpte_encode_avpn(vpn, base_psize, ssize);
261	if (actual_psize != MMU_PAGE_4K)
262		v |= HPTE_V_LARGE;
263	return v;
264}
265
266/*
267 * This function sets the ARPN, and LP fields of the HPTE appropriately
268 * for the page size. We assume the pa is already "clean" that is properly
269 * aligned for the requested page size
270 */
271static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
272					  int actual_psize)
273{
274	/* A 4K page needs no special encoding */
275	if (actual_psize == MMU_PAGE_4K)
276		return pa & HPTE_R_RPN;
277	else {
278		unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
279		unsigned int shift = mmu_psize_defs[actual_psize].shift;
280		return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
281	}
282}
283
284/*
285 * Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
286 */
287static inline unsigned long hpt_vpn(unsigned long ea,
288				    unsigned long vsid, int ssize)
289{
290	unsigned long mask;
291	int s_shift = segment_shift(ssize);
292
293	mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
294	return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
295}
296
297/*
298 * This hashes a virtual address
299 */
300static inline unsigned long hpt_hash(unsigned long vpn,
301				     unsigned int shift, int ssize)
302{
303	int mask;
304	unsigned long hash, vsid;
305
306	/* VPN_SHIFT can be atmost 12 */
307	if (ssize == MMU_SEGSIZE_256M) {
308		mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
309		hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
310			((vpn & mask) >> (shift - VPN_SHIFT));
311	} else {
312		mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
313		vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
314		hash = vsid ^ (vsid << 25) ^
315			((vpn & mask) >> (shift - VPN_SHIFT)) ;
316	}
317	return hash & 0x7fffffffffUL;
318}
319
320#define HPTE_LOCAL_UPDATE	0x1
321#define HPTE_NOHPTE_UPDATE	0x2
322
323extern int __hash_page_4K(unsigned long ea, unsigned long access,
324			  unsigned long vsid, pte_t *ptep, unsigned long trap,
325			  unsigned long flags, int ssize, int subpage_prot);
326extern int __hash_page_64K(unsigned long ea, unsigned long access,
327			   unsigned long vsid, pte_t *ptep, unsigned long trap,
328			   unsigned long flags, int ssize);
329struct mm_struct;
330unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
331extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
332			unsigned long access, unsigned long trap,
333			unsigned long flags);
334extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
335		     unsigned long dsisr);
336int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
337		     pte_t *ptep, unsigned long trap, unsigned long flags,
338		     int ssize, unsigned int shift, unsigned int mmu_psize);
339#ifdef CONFIG_TRANSPARENT_HUGEPAGE
340extern int __hash_page_thp(unsigned long ea, unsigned long access,
341			   unsigned long vsid, pmd_t *pmdp, unsigned long trap,
342			   unsigned long flags, int ssize, unsigned int psize);
343#else
344static inline int __hash_page_thp(unsigned long ea, unsigned long access,
345				  unsigned long vsid, pmd_t *pmdp,
346				  unsigned long trap, unsigned long flags,
347				  int ssize, unsigned int psize)
348{
349	BUG();
350	return -1;
351}
352#endif
353extern void hash_failure_debug(unsigned long ea, unsigned long access,
354			       unsigned long vsid, unsigned long trap,
355			       int ssize, int psize, int lpsize,
356			       unsigned long pte);
357extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
358			     unsigned long pstart, unsigned long prot,
359			     int psize, int ssize);
360int htab_remove_mapping(unsigned long vstart, unsigned long vend,
361			int psize, int ssize);
362extern void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
363extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
364
365extern void hpte_init_native(void);
366extern void hpte_init_lpar(void);
367extern void hpte_init_beat(void);
368extern void hpte_init_beat_v3(void);
369
370extern void slb_initialize(void);
371extern void slb_flush_and_rebolt(void);
372
373extern void slb_vmalloc_update(void);
374extern void slb_set_size(u16 size);
375#endif /* __ASSEMBLY__ */
376
377/*
378 * VSID allocation (256MB segment)
379 *
380 * We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
381 * from mmu context id and effective segment id of the address.
382 *
383 * For user processes max context id is limited to ((1ul << 19) - 5)
384 * for kernel space, we use the top 4 context ids to map address as below
385 * NOTE: each context only support 64TB now.
386 * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
387 * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
388 * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
389 * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
390 *
391 * The proto-VSIDs are then scrambled into real VSIDs with the
392 * multiplicative hash:
393 *
394 *	VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
395 *
396 * VSID_MULTIPLIER is prime, so in particular it is
397 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
398 * Because the modulus is 2^n-1 we can compute it efficiently without
399 * a divide or extra multiply (see below). The scramble function gives
400 * robust scattering in the hash table (at least based on some initial
401 * results).
402 *
403 * We also consider VSID 0 special. We use VSID 0 for slb entries mapping
404 * bad address. This enables us to consolidate bad address handling in
405 * hash_page.
406 *
407 * We also need to avoid the last segment of the last context, because that
408 * would give a protovsid of 0x1fffffffff. That will result in a VSID 0
409 * because of the modulo operation in vsid scramble. But the vmemmap
410 * (which is what uses region 0xf) will never be close to 64TB in size
411 * (it's 56 bytes per page of system memory).
412 */
413
414#define CONTEXT_BITS		19
415#define ESID_BITS		18
416#define ESID_BITS_1T		6
417
418/*
419 * 256MB segment
420 * The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
421 * available for user + kernel mapping. The top 4 contexts are used for
422 * kernel mapping. Each segment contains 2^28 bytes. Each
423 * context maps 2^46 bytes (64TB) so we can support 2^19-1 contexts
424 * (19 == 37 + 28 - 46).
425 */
426#define MAX_USER_CONTEXT	((ASM_CONST(1) << CONTEXT_BITS) - 5)
427
428/*
429 * This should be computed such that protovosid * vsid_mulitplier
430 * doesn't overflow 64 bits. It should also be co-prime to vsid_modulus
431 */
432#define VSID_MULTIPLIER_256M	ASM_CONST(12538073)	/* 24-bit prime */
433#define VSID_BITS_256M		(CONTEXT_BITS + ESID_BITS)
434#define VSID_MODULUS_256M	((1UL<<VSID_BITS_256M)-1)
435
436#define VSID_MULTIPLIER_1T	ASM_CONST(12538073)	/* 24-bit prime */
437#define VSID_BITS_1T		(CONTEXT_BITS + ESID_BITS_1T)
438#define VSID_MODULUS_1T		((1UL<<VSID_BITS_1T)-1)
439
440
441#define USER_VSID_RANGE	(1UL << (ESID_BITS + SID_SHIFT))
442
443/*
444 * This macro generates asm code to compute the VSID scramble
445 * function.  Used in slb_allocate() and do_stab_bolted.  The function
446 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
447 *
448 *	rt = register continaing the proto-VSID and into which the
449 *		VSID will be stored
450 *	rx = scratch register (clobbered)
451 *
452 * 	- rt and rx must be different registers
453 * 	- The answer will end up in the low VSID_BITS bits of rt.  The higher
454 * 	  bits may contain other garbage, so you may need to mask the
455 * 	  result.
456 */
457#define ASM_VSID_SCRAMBLE(rt, rx, size)					\
458	lis	rx,VSID_MULTIPLIER_##size@h;				\
459	ori	rx,rx,VSID_MULTIPLIER_##size@l;				\
460	mulld	rt,rt,rx;		/* rt = rt * MULTIPLIER */	\
461									\
462	srdi	rx,rt,VSID_BITS_##size;					\
463	clrldi	rt,rt,(64-VSID_BITS_##size);				\
464	add	rt,rt,rx;		/* add high and low bits */	\
465	/* NOTE: explanation based on VSID_BITS_##size = 36		\
466	 * Now, r3 == VSID (mod 2^36-1), and lies between 0 and		\
467	 * 2^36-1+2^28-1.  That in particular means that if r3 >=	\
468	 * 2^36-1, then r3+1 has the 2^36 bit set.  So, if r3+1 has	\
469	 * the bit clear, r3 already has the answer we want, if it	\
470	 * doesn't, the answer is the low 36 bits of r3+1.  So in all	\
471	 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
472	addi	rx,rt,1;						\
473	srdi	rx,rx,VSID_BITS_##size;	/* extract 2^VSID_BITS bit */	\
474	add	rt,rt,rx
475
476/* 4 bits per slice and we have one slice per 1TB */
477#define SLICE_ARRAY_SIZE  (PGTABLE_RANGE >> 41)
478
479#ifndef __ASSEMBLY__
480
481#ifdef CONFIG_PPC_SUBPAGE_PROT
482/*
483 * For the sub-page protection option, we extend the PGD with one of
484 * these.  Basically we have a 3-level tree, with the top level being
485 * the protptrs array.  To optimize speed and memory consumption when
486 * only addresses < 4GB are being protected, pointers to the first
487 * four pages of sub-page protection words are stored in the low_prot
488 * array.
489 * Each page of sub-page protection words protects 1GB (4 bytes
490 * protects 64k).  For the 3-level tree, each page of pointers then
491 * protects 8TB.
492 */
493struct subpage_prot_table {
494	unsigned long maxaddr;	/* only addresses < this are protected */
495	unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
496	unsigned int *low_prot[4];
497};
498
499#define SBP_L1_BITS		(PAGE_SHIFT - 2)
500#define SBP_L2_BITS		(PAGE_SHIFT - 3)
501#define SBP_L1_COUNT		(1 << SBP_L1_BITS)
502#define SBP_L2_COUNT		(1 << SBP_L2_BITS)
503#define SBP_L2_SHIFT		(PAGE_SHIFT + SBP_L1_BITS)
504#define SBP_L3_SHIFT		(SBP_L2_SHIFT + SBP_L2_BITS)
505
506extern void subpage_prot_free(struct mm_struct *mm);
507extern void subpage_prot_init_new_context(struct mm_struct *mm);
508#else
509static inline void subpage_prot_free(struct mm_struct *mm) {}
510static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
511#endif /* CONFIG_PPC_SUBPAGE_PROT */
512
513typedef unsigned long mm_context_id_t;
514struct spinlock;
515
516typedef struct {
517	mm_context_id_t id;
518	u16 user_psize;		/* page size index */
519
520#ifdef CONFIG_PPC_MM_SLICES
521	u64 low_slices_psize;	/* SLB page size encodings */
522	unsigned char high_slices_psize[SLICE_ARRAY_SIZE];
523#else
524	u16 sllp;		/* SLB page size encoding */
525#endif
526	unsigned long vdso_base;
527#ifdef CONFIG_PPC_SUBPAGE_PROT
528	struct subpage_prot_table spt;
529#endif /* CONFIG_PPC_SUBPAGE_PROT */
530#ifdef CONFIG_PPC_ICSWX
531	struct spinlock *cop_lockp; /* guard acop and cop_pid */
532	unsigned long acop;	/* mask of enabled coprocessor types */
533	unsigned int cop_pid;	/* pid value used with coprocessors */
534#endif /* CONFIG_PPC_ICSWX */
535#ifdef CONFIG_PPC_64K_PAGES
536	/* for 4K PTE fragment support */
537	void *pte_frag;
538#endif
539} mm_context_t;
540
541
542#if 0
543/*
544 * The code below is equivalent to this function for arguments
545 * < 2^VSID_BITS, which is all this should ever be called
546 * with.  However gcc is not clever enough to compute the
547 * modulus (2^n-1) without a second multiply.
548 */
549#define vsid_scramble(protovsid, size) \
550	((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
551
552#else /* 1 */
553#define vsid_scramble(protovsid, size) \
554	({								 \
555		unsigned long x;					 \
556		x = (protovsid) * VSID_MULTIPLIER_##size;		 \
557		x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
558		(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
559	})
560#endif /* 1 */
561
562/* Returns the segment size indicator for a user address */
563static inline int user_segment_size(unsigned long addr)
564{
565	/* Use 1T segments if possible for addresses >= 1T */
566	if (addr >= (1UL << SID_SHIFT_1T))
567		return mmu_highuser_ssize;
568	return MMU_SEGSIZE_256M;
569}
570
571static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
572				     int ssize)
573{
574	/*
575	 * Bad address. We return VSID 0 for that
576	 */
577	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE)
578		return 0;
579
580	if (ssize == MMU_SEGSIZE_256M)
581		return vsid_scramble((context << ESID_BITS)
582				     | (ea >> SID_SHIFT), 256M);
583	return vsid_scramble((context << ESID_BITS_1T)
584			     | (ea >> SID_SHIFT_1T), 1T);
585}
586
587/*
588 * This is only valid for addresses >= PAGE_OFFSET
589 *
590 * For kernel space, we use the top 4 context ids to map address as below
591 * 0x7fffc -  [ 0xc000000000000000 - 0xc0003fffffffffff ]
592 * 0x7fffd -  [ 0xd000000000000000 - 0xd0003fffffffffff ]
593 * 0x7fffe -  [ 0xe000000000000000 - 0xe0003fffffffffff ]
594 * 0x7ffff -  [ 0xf000000000000000 - 0xf0003fffffffffff ]
595 */
596static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
597{
598	unsigned long context;
599
600	/*
601	 * kernel take the top 4 context from the available range
602	 */
603	context = (MAX_USER_CONTEXT) + ((ea >> 60) - 0xc) + 1;
604	return get_vsid(context, ea, ssize);
605}
606#endif /* __ASSEMBLY__ */
607
608#endif /* _ASM_POWERPC_MMU_HASH64_H_ */
609