1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Synthesize TLB refill handlers at runtime.
7 *
8 * Copyright (C) 2004, 2005, 2006, 2008	 Thiemo Seufer
9 * Copyright (C) 2005, 2007, 2008, 2009	 Maciej W. Rozycki
10 * Copyright (C) 2006  Ralf Baechle (ralf@linux-mips.org)
11 * Copyright (C) 2008, 2009 Cavium Networks, Inc.
12 * Copyright (C) 2011  MIPS Technologies, Inc.
13 *
14 * ... and the days got worse and worse and now you see
15 * I've gone completly out of my mind.
16 *
17 * They're coming to take me a away haha
18 * they're coming to take me a away hoho hihi haha
19 * to the funny farm where code is beautiful all the time ...
20 *
21 * (Condolences to Napoleon XIV)
22 */
23
24#include <linux/bug.h>
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/smp.h>
28#include <linux/string.h>
29#include <linux/cache.h>
30
31#include <asm/cacheflush.h>
32#include <asm/cpu-type.h>
33#include <asm/pgtable.h>
34#include <asm/war.h>
35#include <asm/uasm.h>
36#include <asm/setup.h>
37
38static int __cpuinitdata mips_xpa_disabled;
39
40static int __init xpa_disable(char *s)
41{
42	mips_xpa_disabled = 1;
43
44	return 1;
45}
46
47__setup("noxpa", xpa_disable);
48
49/*
50 * TLB load/store/modify handlers.
51 *
52 * Only the fastpath gets synthesized at runtime, the slowpath for
53 * do_page_fault remains normal asm.
54 */
55extern void tlb_do_page_fault_0(void);
56extern void tlb_do_page_fault_1(void);
57
58struct work_registers {
59	int r1;
60	int r2;
61	int r3;
62};
63
64struct tlb_reg_save {
65	unsigned long a;
66	unsigned long b;
67} ____cacheline_aligned_in_smp;
68
69static struct tlb_reg_save handler_reg_save[NR_CPUS];
70
71static inline int r45k_bvahwbug(void)
72{
73	/* XXX: We should probe for the presence of this bug, but we don't. */
74	return 0;
75}
76
77static inline int r4k_250MHZhwbug(void)
78{
79	/* XXX: We should probe for the presence of this bug, but we don't. */
80	return 0;
81}
82
83static inline int __maybe_unused bcm1250_m3_war(void)
84{
85	return BCM1250_M3_WAR;
86}
87
88static inline int __maybe_unused r10000_llsc_war(void)
89{
90	return R10000_LLSC_WAR;
91}
92
93static int use_bbit_insns(void)
94{
95	switch (current_cpu_type()) {
96	case CPU_CAVIUM_OCTEON:
97	case CPU_CAVIUM_OCTEON_PLUS:
98	case CPU_CAVIUM_OCTEON2:
99	case CPU_CAVIUM_OCTEON3:
100		return 1;
101	default:
102		return 0;
103	}
104}
105
106static int use_lwx_insns(void)
107{
108	switch (current_cpu_type()) {
109	case CPU_CAVIUM_OCTEON2:
110	case CPU_CAVIUM_OCTEON3:
111		return 1;
112	default:
113		return 0;
114	}
115}
116#if defined(CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE) && \
117    CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE > 0
118static bool scratchpad_available(void)
119{
120	return true;
121}
122static int scratchpad_offset(int i)
123{
124	/*
125	 * CVMSEG starts at address -32768 and extends for
126	 * CAVIUM_OCTEON_CVMSEG_SIZE 128 byte cache lines.
127	 */
128	i += 1; /* Kernel use starts at the top and works down. */
129	return CONFIG_CAVIUM_OCTEON_CVMSEG_SIZE * 128 - (8 * i) - 32768;
130}
131#else
132static bool scratchpad_available(void)
133{
134	return false;
135}
136static int scratchpad_offset(int i)
137{
138	BUG();
139	/* Really unreachable, but evidently some GCC want this. */
140	return 0;
141}
142#endif
143/*
144 * Found by experiment: At least some revisions of the 4kc throw under
145 * some circumstances a machine check exception, triggered by invalid
146 * values in the index register.  Delaying the tlbp instruction until
147 * after the next branch,  plus adding an additional nop in front of
148 * tlbwi/tlbwr avoids the invalid index register values. Nobody knows
149 * why; it's not an issue caused by the core RTL.
150 *
151 */
152static int m4kc_tlbp_war(void)
153{
154	return (current_cpu_data.processor_id & 0xffff00) ==
155	       (PRID_COMP_MIPS | PRID_IMP_4KC);
156}
157
158/* Handle labels (which must be positive integers). */
159enum label_id {
160	label_second_part = 1,
161	label_leave,
162	label_vmalloc,
163	label_vmalloc_done,
164	label_tlbw_hazard_0,
165	label_split = label_tlbw_hazard_0 + 8,
166	label_tlbl_goaround1,
167	label_tlbl_goaround2,
168	label_nopage_tlbl,
169	label_nopage_tlbs,
170	label_nopage_tlbm,
171	label_smp_pgtable_change,
172	label_r3000_write_probe_fail,
173	label_large_segbits_fault,
174#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
175	label_tlb_huge_update,
176#endif
177};
178
179UASM_L_LA(_second_part)
180UASM_L_LA(_leave)
181UASM_L_LA(_vmalloc)
182UASM_L_LA(_vmalloc_done)
183/* _tlbw_hazard_x is handled differently.  */
184UASM_L_LA(_split)
185UASM_L_LA(_tlbl_goaround1)
186UASM_L_LA(_tlbl_goaround2)
187UASM_L_LA(_nopage_tlbl)
188UASM_L_LA(_nopage_tlbs)
189UASM_L_LA(_nopage_tlbm)
190UASM_L_LA(_smp_pgtable_change)
191UASM_L_LA(_r3000_write_probe_fail)
192UASM_L_LA(_large_segbits_fault)
193#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
194UASM_L_LA(_tlb_huge_update)
195#endif
196
197static int hazard_instance;
198
199static void uasm_bgezl_hazard(u32 **p, struct uasm_reloc **r, int instance)
200{
201	switch (instance) {
202	case 0 ... 7:
203		uasm_il_bgezl(p, r, 0, label_tlbw_hazard_0 + instance);
204		return;
205	default:
206		BUG();
207	}
208}
209
210static void uasm_bgezl_label(struct uasm_label **l, u32 **p, int instance)
211{
212	switch (instance) {
213	case 0 ... 7:
214		uasm_build_label(l, *p, label_tlbw_hazard_0 + instance);
215		break;
216	default:
217		BUG();
218	}
219}
220
221/*
222 * pgtable bits are assigned dynamically depending on processor feature
223 * and statically based on kernel configuration.  This spits out the actual
224 * values the kernel is using.	Required to make sense from disassembled
225 * TLB exception handlers.
226 */
227static void output_pgtable_bits_defines(void)
228{
229#define pr_define(fmt, ...)					\
230	pr_debug("#define " fmt, ##__VA_ARGS__)
231
232	pr_debug("#include <asm/asm.h>\n");
233	pr_debug("#include <asm/regdef.h>\n");
234	pr_debug("\n");
235
236	pr_define("_PAGE_PRESENT_SHIFT %d\n", _PAGE_PRESENT_SHIFT);
237	pr_define("_PAGE_READ_SHIFT %d\n", _PAGE_READ_SHIFT);
238	pr_define("_PAGE_WRITE_SHIFT %d\n", _PAGE_WRITE_SHIFT);
239	pr_define("_PAGE_ACCESSED_SHIFT %d\n", _PAGE_ACCESSED_SHIFT);
240	pr_define("_PAGE_MODIFIED_SHIFT %d\n", _PAGE_MODIFIED_SHIFT);
241#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
242	pr_define("_PAGE_HUGE_SHIFT %d\n", _PAGE_HUGE_SHIFT);
243	pr_define("_PAGE_SPLITTING_SHIFT %d\n", _PAGE_SPLITTING_SHIFT);
244#endif
245#if defined(CONFIG_CPU_MIPSR2) || defined(CONFIG_CPU_MIPSR6)
246	if (cpu_has_rixi) {
247#ifdef _PAGE_NO_EXEC_SHIFT
248		pr_define("_PAGE_NO_EXEC_SHIFT %d\n", _PAGE_NO_EXEC_SHIFT);
249		pr_define("_PAGE_NO_READ_SHIFT %d\n", _PAGE_NO_READ_SHIFT);
250#endif
251	}
252#endif
253	pr_define("_PAGE_GLOBAL_SHIFT %d\n", _PAGE_GLOBAL_SHIFT);
254	pr_define("_PAGE_VALID_SHIFT %d\n", _PAGE_VALID_SHIFT);
255	pr_define("_PAGE_DIRTY_SHIFT %d\n", _PAGE_DIRTY_SHIFT);
256	pr_define("_PFN_SHIFT %d\n", _PFN_SHIFT);
257	pr_debug("\n");
258}
259
260static inline void dump_handler(const char *symbol, const u32 *handler, int count)
261{
262	int i;
263
264	pr_debug("LEAF(%s)\n", symbol);
265
266	pr_debug("\t.set push\n");
267	pr_debug("\t.set noreorder\n");
268
269	for (i = 0; i < count; i++)
270		pr_debug("\t.word\t0x%08x\t\t# %p\n", handler[i], &handler[i]);
271
272	pr_debug("\t.set\tpop\n");
273
274	pr_debug("\tEND(%s)\n", symbol);
275}
276
277/* The only general purpose registers allowed in TLB handlers. */
278#define K0		26
279#define K1		27
280
281/* Some CP0 registers */
282#define C0_INDEX	0, 0
283#define C0_ENTRYLO0	2, 0
284#define C0_TCBIND	2, 2
285#define C0_ENTRYLO1	3, 0
286#define C0_CONTEXT	4, 0
287#define C0_PAGEMASK	5, 0
288#define C0_BADVADDR	8, 0
289#define C0_ENTRYHI	10, 0
290#define C0_EPC		14, 0
291#define C0_XCONTEXT	20, 0
292
293#ifdef CONFIG_64BIT
294# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_XCONTEXT)
295#else
296# define GET_CONTEXT(buf, reg) UASM_i_MFC0(buf, reg, C0_CONTEXT)
297#endif
298
299/* The worst case length of the handler is around 18 instructions for
300 * R3000-style TLBs and up to 63 instructions for R4000-style TLBs.
301 * Maximum space available is 32 instructions for R3000 and 64
302 * instructions for R4000.
303 *
304 * We deliberately chose a buffer size of 128, so we won't scribble
305 * over anything important on overflow before we panic.
306 */
307static u32 tlb_handler[128];
308
309/* simply assume worst case size for labels and relocs */
310static struct uasm_label labels[128];
311static struct uasm_reloc relocs[128];
312
313static int check_for_high_segbits;
314
315static unsigned int kscratch_used_mask;
316
317static inline int __maybe_unused c0_kscratch(void)
318{
319	switch (current_cpu_type()) {
320	case CPU_XLP:
321	case CPU_XLR:
322		return 22;
323	default:
324		return 31;
325	}
326}
327
328static int allocate_kscratch(void)
329{
330	int r;
331	unsigned int a = cpu_data[0].kscratch_mask & ~kscratch_used_mask;
332
333	r = ffs(a);
334
335	if (r == 0)
336		return -1;
337
338	r--; /* make it zero based */
339
340	kscratch_used_mask |= (1 << r);
341
342	return r;
343}
344
345static int scratch_reg;
346static int pgd_reg;
347enum vmalloc64_mode {not_refill, refill_scratch, refill_noscratch};
348
349static struct work_registers build_get_work_registers(u32 **p)
350{
351	struct work_registers r;
352
353	if (scratch_reg >= 0) {
354		/* Save in CPU local C0_KScratch? */
355		UASM_i_MTC0(p, 1, c0_kscratch(), scratch_reg);
356		r.r1 = K0;
357		r.r2 = K1;
358		r.r3 = 1;
359		return r;
360	}
361
362	if (num_possible_cpus() > 1) {
363		/* Get smp_processor_id */
364		UASM_i_CPUID_MFC0(p, K0, SMP_CPUID_REG);
365		UASM_i_SRL_SAFE(p, K0, K0, SMP_CPUID_REGSHIFT);
366
367		/* handler_reg_save index in K0 */
368		UASM_i_SLL(p, K0, K0, ilog2(sizeof(struct tlb_reg_save)));
369
370		UASM_i_LA(p, K1, (long)&handler_reg_save);
371		UASM_i_ADDU(p, K0, K0, K1);
372	} else {
373		UASM_i_LA(p, K0, (long)&handler_reg_save);
374	}
375	/* K0 now points to save area, save $1 and $2  */
376	UASM_i_SW(p, 1, offsetof(struct tlb_reg_save, a), K0);
377	UASM_i_SW(p, 2, offsetof(struct tlb_reg_save, b), K0);
378
379	r.r1 = K1;
380	r.r2 = 1;
381	r.r3 = 2;
382	return r;
383}
384
385static void build_restore_work_registers(u32 **p)
386{
387	if (scratch_reg >= 0) {
388		UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
389		return;
390	}
391	/* K0 already points to save area, restore $1 and $2  */
392	UASM_i_LW(p, 1, offsetof(struct tlb_reg_save, a), K0);
393	UASM_i_LW(p, 2, offsetof(struct tlb_reg_save, b), K0);
394}
395
396#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
397
398/*
399 * CONFIG_MIPS_PGD_C0_CONTEXT implies 64 bit and lack of pgd_current,
400 * we cannot do r3000 under these circumstances.
401 *
402 * Declare pgd_current here instead of including mmu_context.h to avoid type
403 * conflicts for tlbmiss_handler_setup_pgd
404 */
405extern unsigned long pgd_current[];
406
407/*
408 * The R3000 TLB handler is simple.
409 */
410static void build_r3000_tlb_refill_handler(void)
411{
412	long pgdc = (long)pgd_current;
413	u32 *p;
414
415	memset(tlb_handler, 0, sizeof(tlb_handler));
416	p = tlb_handler;
417
418	uasm_i_mfc0(&p, K0, C0_BADVADDR);
419	uasm_i_lui(&p, K1, uasm_rel_hi(pgdc)); /* cp0 delay */
420	uasm_i_lw(&p, K1, uasm_rel_lo(pgdc), K1);
421	uasm_i_srl(&p, K0, K0, 22); /* load delay */
422	uasm_i_sll(&p, K0, K0, 2);
423	uasm_i_addu(&p, K1, K1, K0);
424	uasm_i_mfc0(&p, K0, C0_CONTEXT);
425	uasm_i_lw(&p, K1, 0, K1); /* cp0 delay */
426	uasm_i_andi(&p, K0, K0, 0xffc); /* load delay */
427	uasm_i_addu(&p, K1, K1, K0);
428	uasm_i_lw(&p, K0, 0, K1);
429	uasm_i_nop(&p); /* load delay */
430	uasm_i_mtc0(&p, K0, C0_ENTRYLO0);
431	uasm_i_mfc0(&p, K1, C0_EPC); /* cp0 delay */
432	uasm_i_tlbwr(&p); /* cp0 delay */
433	uasm_i_jr(&p, K1);
434	uasm_i_rfe(&p); /* branch delay */
435
436	if (p > tlb_handler + 32)
437		panic("TLB refill handler space exceeded");
438
439	pr_debug("Wrote TLB refill handler (%u instructions).\n",
440		 (unsigned int)(p - tlb_handler));
441
442	memcpy((void *)ebase, tlb_handler, 0x80);
443	local_flush_icache_range(ebase, ebase + 0x80);
444
445	dump_handler("r3000_tlb_refill", (u32 *)ebase, 32);
446}
447#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
448
449/*
450 * The R4000 TLB handler is much more complicated. We have two
451 * consecutive handler areas with 32 instructions space each.
452 * Since they aren't used at the same time, we can overflow in the
453 * other one.To keep things simple, we first assume linear space,
454 * then we relocate it to the final handler layout as needed.
455 */
456static u32 final_handler[64];
457
458/*
459 * Hazards
460 *
461 * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0:
462 * 2. A timing hazard exists for the TLBP instruction.
463 *
464 *	stalling_instruction
465 *	TLBP
466 *
467 * The JTLB is being read for the TLBP throughout the stall generated by the
468 * previous instruction. This is not really correct as the stalling instruction
469 * can modify the address used to access the JTLB.  The failure symptom is that
470 * the TLBP instruction will use an address created for the stalling instruction
471 * and not the address held in C0_ENHI and thus report the wrong results.
472 *
473 * The software work-around is to not allow the instruction preceding the TLBP
474 * to stall - make it an NOP or some other instruction guaranteed not to stall.
475 *
476 * Errata 2 will not be fixed.	This errata is also on the R5000.
477 *
478 * As if we MIPS hackers wouldn't know how to nop pipelines happy ...
479 */
480static void __maybe_unused build_tlb_probe_entry(u32 **p)
481{
482	switch (current_cpu_type()) {
483	/* Found by experiment: R4600 v2.0/R4700 needs this, too.  */
484	case CPU_R4600:
485	case CPU_R4700:
486	case CPU_R5000:
487	case CPU_NEVADA:
488		uasm_i_nop(p);
489		uasm_i_tlbp(p);
490		break;
491
492	default:
493		uasm_i_tlbp(p);
494		break;
495	}
496}
497
498/*
499 * Write random or indexed TLB entry, and care about the hazards from
500 * the preceding mtc0 and for the following eret.
501 */
502enum tlb_write_entry { tlb_random, tlb_indexed };
503
504static void build_tlb_write_entry(u32 **p, struct uasm_label **l,
505				  struct uasm_reloc **r,
506				  enum tlb_write_entry wmode)
507{
508	void(*tlbw)(u32 **) = NULL;
509
510	switch (wmode) {
511	case tlb_random: tlbw = uasm_i_tlbwr; break;
512	case tlb_indexed: tlbw = uasm_i_tlbwi; break;
513	}
514
515	if (cpu_has_mips_r2_r6) {
516		if (cpu_has_mips_r2_exec_hazard)
517			uasm_i_ehb(p);
518		tlbw(p);
519		return;
520	}
521
522	switch (current_cpu_type()) {
523	case CPU_R4000PC:
524	case CPU_R4000SC:
525	case CPU_R4000MC:
526	case CPU_R4400PC:
527	case CPU_R4400SC:
528	case CPU_R4400MC:
529		/*
530		 * This branch uses up a mtc0 hazard nop slot and saves
531		 * two nops after the tlbw instruction.
532		 */
533		uasm_bgezl_hazard(p, r, hazard_instance);
534		tlbw(p);
535		uasm_bgezl_label(l, p, hazard_instance);
536		hazard_instance++;
537		uasm_i_nop(p);
538		break;
539
540	case CPU_R4600:
541	case CPU_R4700:
542		uasm_i_nop(p);
543		tlbw(p);
544		uasm_i_nop(p);
545		break;
546
547	case CPU_R5000:
548	case CPU_NEVADA:
549		uasm_i_nop(p); /* QED specifies 2 nops hazard */
550		uasm_i_nop(p); /* QED specifies 2 nops hazard */
551		tlbw(p);
552		break;
553
554	case CPU_R4300:
555	case CPU_5KC:
556	case CPU_TX49XX:
557	case CPU_PR4450:
558	case CPU_XLR:
559		uasm_i_nop(p);
560		tlbw(p);
561		break;
562
563	case CPU_R10000:
564	case CPU_R12000:
565	case CPU_R14000:
566	case CPU_R16000:
567	case CPU_4KC:
568	case CPU_4KEC:
569	case CPU_M14KC:
570	case CPU_M14KEC:
571	case CPU_SB1:
572	case CPU_SB1A:
573	case CPU_4KSC:
574	case CPU_20KC:
575	case CPU_25KF:
576	case CPU_BMIPS32:
577	case CPU_BMIPS3300:
578	case CPU_BMIPS4350:
579	case CPU_BMIPS4380:
580	case CPU_BMIPS5000:
581	case CPU_LOONGSON2:
582	case CPU_LOONGSON3:
583	case CPU_R5500:
584		if (m4kc_tlbp_war())
585			uasm_i_nop(p);
586	case CPU_ALCHEMY:
587		tlbw(p);
588		break;
589
590	case CPU_RM7000:
591		uasm_i_nop(p);
592		uasm_i_nop(p);
593		uasm_i_nop(p);
594		uasm_i_nop(p);
595		tlbw(p);
596		break;
597
598	case CPU_VR4111:
599	case CPU_VR4121:
600	case CPU_VR4122:
601	case CPU_VR4181:
602	case CPU_VR4181A:
603		uasm_i_nop(p);
604		uasm_i_nop(p);
605		tlbw(p);
606		uasm_i_nop(p);
607		uasm_i_nop(p);
608		break;
609
610	case CPU_VR4131:
611	case CPU_VR4133:
612	case CPU_R5432:
613		uasm_i_nop(p);
614		uasm_i_nop(p);
615		tlbw(p);
616		break;
617
618	case CPU_JZRISC:
619		tlbw(p);
620		uasm_i_nop(p);
621		break;
622
623	default:
624		panic("No TLB refill handler yet (CPU type: %d)",
625		      current_cpu_type());
626		break;
627	}
628}
629
630static __maybe_unused void build_convert_pte_to_entrylo(u32 **p,
631							unsigned int reg)
632{
633	if (cpu_has_rixi) {
634		UASM_i_ROTR(p, reg, reg, ilog2(_PAGE_GLOBAL));
635	} else {
636#ifdef CONFIG_PHYS_ADDR_T_64BIT
637		uasm_i_dsrl_safe(p, reg, reg, ilog2(_PAGE_GLOBAL));
638#else
639		UASM_i_SRL(p, reg, reg, ilog2(_PAGE_GLOBAL));
640#endif
641	}
642}
643
644#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
645
646static void build_restore_pagemask(u32 **p, struct uasm_reloc **r,
647				   unsigned int tmp, enum label_id lid,
648				   int restore_scratch)
649{
650	if (restore_scratch) {
651		/* Reset default page size */
652		if (PM_DEFAULT_MASK >> 16) {
653			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
654			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
655			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
656			uasm_il_b(p, r, lid);
657		} else if (PM_DEFAULT_MASK) {
658			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
659			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
660			uasm_il_b(p, r, lid);
661		} else {
662			uasm_i_mtc0(p, 0, C0_PAGEMASK);
663			uasm_il_b(p, r, lid);
664		}
665		if (scratch_reg >= 0)
666			UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
667		else
668			UASM_i_LW(p, 1, scratchpad_offset(0), 0);
669	} else {
670		/* Reset default page size */
671		if (PM_DEFAULT_MASK >> 16) {
672			uasm_i_lui(p, tmp, PM_DEFAULT_MASK >> 16);
673			uasm_i_ori(p, tmp, tmp, PM_DEFAULT_MASK & 0xffff);
674			uasm_il_b(p, r, lid);
675			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
676		} else if (PM_DEFAULT_MASK) {
677			uasm_i_ori(p, tmp, 0, PM_DEFAULT_MASK);
678			uasm_il_b(p, r, lid);
679			uasm_i_mtc0(p, tmp, C0_PAGEMASK);
680		} else {
681			uasm_il_b(p, r, lid);
682			uasm_i_mtc0(p, 0, C0_PAGEMASK);
683		}
684	}
685}
686
687static void build_huge_tlb_write_entry(u32 **p, struct uasm_label **l,
688				       struct uasm_reloc **r,
689				       unsigned int tmp,
690				       enum tlb_write_entry wmode,
691				       int restore_scratch)
692{
693	/* Set huge page tlb entry size */
694	uasm_i_lui(p, tmp, PM_HUGE_MASK >> 16);
695	uasm_i_ori(p, tmp, tmp, PM_HUGE_MASK & 0xffff);
696	uasm_i_mtc0(p, tmp, C0_PAGEMASK);
697
698	build_tlb_write_entry(p, l, r, wmode);
699
700	build_restore_pagemask(p, r, tmp, label_leave, restore_scratch);
701}
702
703/*
704 * Check if Huge PTE is present, if so then jump to LABEL.
705 */
706static void
707build_is_huge_pte(u32 **p, struct uasm_reloc **r, unsigned int tmp,
708		  unsigned int pmd, int lid)
709{
710	UASM_i_LW(p, tmp, 0, pmd);
711	if (use_bbit_insns()) {
712		uasm_il_bbit1(p, r, tmp, ilog2(_PAGE_HUGE), lid);
713	} else {
714		uasm_i_andi(p, tmp, tmp, _PAGE_HUGE);
715		uasm_il_bnez(p, r, tmp, lid);
716	}
717}
718
719static void build_huge_update_entries(u32 **p, unsigned int pte,
720				      unsigned int tmp)
721{
722	int small_sequence;
723
724	/*
725	 * A huge PTE describes an area the size of the
726	 * configured huge page size. This is twice the
727	 * of the large TLB entry size we intend to use.
728	 * A TLB entry half the size of the configured
729	 * huge page size is configured into entrylo0
730	 * and entrylo1 to cover the contiguous huge PTE
731	 * address space.
732	 */
733	small_sequence = (HPAGE_SIZE >> 7) < 0x10000;
734
735	/* We can clobber tmp.	It isn't used after this.*/
736	if (!small_sequence)
737		uasm_i_lui(p, tmp, HPAGE_SIZE >> (7 + 16));
738
739	build_convert_pte_to_entrylo(p, pte);
740	UASM_i_MTC0(p, pte, C0_ENTRYLO0); /* load it */
741	/* convert to entrylo1 */
742	if (small_sequence)
743		UASM_i_ADDIU(p, pte, pte, HPAGE_SIZE >> 7);
744	else
745		UASM_i_ADDU(p, pte, pte, tmp);
746
747	UASM_i_MTC0(p, pte, C0_ENTRYLO1); /* load it */
748}
749
750static void build_huge_handler_tail(u32 **p, struct uasm_reloc **r,
751				    struct uasm_label **l,
752				    unsigned int pte,
753				    unsigned int ptr)
754{
755#ifdef CONFIG_SMP
756	UASM_i_SC(p, pte, 0, ptr);
757	uasm_il_beqz(p, r, pte, label_tlb_huge_update);
758	UASM_i_LW(p, pte, 0, ptr); /* Needed because SC killed our PTE */
759#else
760	UASM_i_SW(p, pte, 0, ptr);
761#endif
762	build_huge_update_entries(p, pte, ptr);
763	build_huge_tlb_write_entry(p, l, r, pte, tlb_indexed, 0);
764}
765#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
766
767#ifdef CONFIG_64BIT
768/*
769 * TMP and PTR are scratch.
770 * TMP will be clobbered, PTR will hold the pmd entry.
771 */
772static void
773build_get_pmde64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
774		 unsigned int tmp, unsigned int ptr)
775{
776#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
777	long pgdc = (long)pgd_current;
778#endif
779	/*
780	 * The vmalloc handling is not in the hotpath.
781	 */
782	uasm_i_dmfc0(p, tmp, C0_BADVADDR);
783
784	if (check_for_high_segbits) {
785		/*
786		 * The kernel currently implicitely assumes that the
787		 * MIPS SEGBITS parameter for the processor is
788		 * (PGDIR_SHIFT+PGDIR_BITS) or less, and will never
789		 * allocate virtual addresses outside the maximum
790		 * range for SEGBITS = (PGDIR_SHIFT+PGDIR_BITS). But
791		 * that doesn't prevent user code from accessing the
792		 * higher xuseg addresses.  Here, we make sure that
793		 * everything but the lower xuseg addresses goes down
794		 * the module_alloc/vmalloc path.
795		 */
796		uasm_i_dsrl_safe(p, ptr, tmp, PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
797		uasm_il_bnez(p, r, ptr, label_vmalloc);
798	} else {
799		uasm_il_bltz(p, r, tmp, label_vmalloc);
800	}
801	/* No uasm_i_nop needed here, since the next insn doesn't touch TMP. */
802
803	if (pgd_reg != -1) {
804		/* pgd is in pgd_reg */
805		UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
806	} else {
807#if defined(CONFIG_MIPS_PGD_C0_CONTEXT)
808		/*
809		 * &pgd << 11 stored in CONTEXT [23..63].
810		 */
811		UASM_i_MFC0(p, ptr, C0_CONTEXT);
812
813		/* Clear lower 23 bits of context. */
814		uasm_i_dins(p, ptr, 0, 0, 23);
815
816		/* 1 0	1 0 1  << 6  xkphys cached */
817		uasm_i_ori(p, ptr, ptr, 0x540);
818		uasm_i_drotr(p, ptr, ptr, 11);
819#elif defined(CONFIG_SMP)
820		UASM_i_CPUID_MFC0(p, ptr, SMP_CPUID_REG);
821		uasm_i_dsrl_safe(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
822		UASM_i_LA_mostly(p, tmp, pgdc);
823		uasm_i_daddu(p, ptr, ptr, tmp);
824		uasm_i_dmfc0(p, tmp, C0_BADVADDR);
825		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
826#else
827		UASM_i_LA_mostly(p, ptr, pgdc);
828		uasm_i_ld(p, ptr, uasm_rel_lo(pgdc), ptr);
829#endif
830	}
831
832	uasm_l_vmalloc_done(l, *p);
833
834	/* get pgd offset in bytes */
835	uasm_i_dsrl_safe(p, tmp, tmp, PGDIR_SHIFT - 3);
836
837	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3);
838	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */
839#ifndef __PAGETABLE_PMD_FOLDED
840	uasm_i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */
841	uasm_i_ld(p, ptr, 0, ptr); /* get pmd pointer */
842	uasm_i_dsrl_safe(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */
843	uasm_i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3);
844	uasm_i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */
845#endif
846}
847
848/*
849 * BVADDR is the faulting address, PTR is scratch.
850 * PTR will hold the pgd for vmalloc.
851 */
852static void
853build_get_pgd_vmalloc64(u32 **p, struct uasm_label **l, struct uasm_reloc **r,
854			unsigned int bvaddr, unsigned int ptr,
855			enum vmalloc64_mode mode)
856{
857	long swpd = (long)swapper_pg_dir;
858	int single_insn_swpd;
859	int did_vmalloc_branch = 0;
860
861	single_insn_swpd = uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd);
862
863	uasm_l_vmalloc(l, *p);
864
865	if (mode != not_refill && check_for_high_segbits) {
866		if (single_insn_swpd) {
867			uasm_il_bltz(p, r, bvaddr, label_vmalloc_done);
868			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
869			did_vmalloc_branch = 1;
870			/* fall through */
871		} else {
872			uasm_il_bgez(p, r, bvaddr, label_large_segbits_fault);
873		}
874	}
875	if (!did_vmalloc_branch) {
876		if (uasm_in_compat_space_p(swpd) && !uasm_rel_lo(swpd)) {
877			uasm_il_b(p, r, label_vmalloc_done);
878			uasm_i_lui(p, ptr, uasm_rel_hi(swpd));
879		} else {
880			UASM_i_LA_mostly(p, ptr, swpd);
881			uasm_il_b(p, r, label_vmalloc_done);
882			if (uasm_in_compat_space_p(swpd))
883				uasm_i_addiu(p, ptr, ptr, uasm_rel_lo(swpd));
884			else
885				uasm_i_daddiu(p, ptr, ptr, uasm_rel_lo(swpd));
886		}
887	}
888	if (mode != not_refill && check_for_high_segbits) {
889		uasm_l_large_segbits_fault(l, *p);
890		/*
891		 * We get here if we are an xsseg address, or if we are
892		 * an xuseg address above (PGDIR_SHIFT+PGDIR_BITS) boundary.
893		 *
894		 * Ignoring xsseg (assume disabled so would generate
895		 * (address errors?), the only remaining possibility
896		 * is the upper xuseg addresses.  On processors with
897		 * TLB_SEGBITS <= PGDIR_SHIFT+PGDIR_BITS, these
898		 * addresses would have taken an address error. We try
899		 * to mimic that here by taking a load/istream page
900		 * fault.
901		 */
902		UASM_i_LA(p, ptr, (unsigned long)tlb_do_page_fault_0);
903		uasm_i_jr(p, ptr);
904
905		if (mode == refill_scratch) {
906			if (scratch_reg >= 0)
907				UASM_i_MFC0(p, 1, c0_kscratch(), scratch_reg);
908			else
909				UASM_i_LW(p, 1, scratchpad_offset(0), 0);
910		} else {
911			uasm_i_nop(p);
912		}
913	}
914}
915
916#else /* !CONFIG_64BIT */
917
918/*
919 * TMP and PTR are scratch.
920 * TMP will be clobbered, PTR will hold the pgd entry.
921 */
922static void __maybe_unused
923build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr)
924{
925	if (pgd_reg != -1) {
926		/* pgd is in pgd_reg */
927		uasm_i_mfc0(p, ptr, c0_kscratch(), pgd_reg);
928		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
929	} else {
930		long pgdc = (long)pgd_current;
931
932		/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */
933#ifdef CONFIG_SMP
934		uasm_i_mfc0(p, ptr, SMP_CPUID_REG);
935		UASM_i_LA_mostly(p, tmp, pgdc);
936		uasm_i_srl(p, ptr, ptr, SMP_CPUID_PTRSHIFT);
937		uasm_i_addu(p, ptr, tmp, ptr);
938#else
939		UASM_i_LA_mostly(p, ptr, pgdc);
940#endif
941		uasm_i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */
942		uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
943	}
944	uasm_i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */
945	uasm_i_sll(p, tmp, tmp, PGD_T_LOG2);
946	uasm_i_addu(p, ptr, ptr, tmp); /* add in pgd offset */
947}
948
949#endif /* !CONFIG_64BIT */
950
951static void build_adjust_context(u32 **p, unsigned int ctx)
952{
953	unsigned int shift = 4 - (PTE_T_LOG2 + 1) + PAGE_SHIFT - 12;
954	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1);
955
956	switch (current_cpu_type()) {
957	case CPU_VR41XX:
958	case CPU_VR4111:
959	case CPU_VR4121:
960	case CPU_VR4122:
961	case CPU_VR4131:
962	case CPU_VR4181:
963	case CPU_VR4181A:
964	case CPU_VR4133:
965		shift += 2;
966		break;
967
968	default:
969		break;
970	}
971
972	if (shift)
973		UASM_i_SRL(p, ctx, ctx, shift);
974	uasm_i_andi(p, ctx, ctx, mask);
975}
976
977static void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr)
978{
979	/*
980	 * Bug workaround for the Nevada. It seems as if under certain
981	 * circumstances the move from cp0_context might produce a
982	 * bogus result when the mfc0 instruction and its consumer are
983	 * in a different cacheline or a load instruction, probably any
984	 * memory reference, is between them.
985	 */
986	switch (current_cpu_type()) {
987	case CPU_NEVADA:
988		UASM_i_LW(p, ptr, 0, ptr);
989		GET_CONTEXT(p, tmp); /* get context reg */
990		break;
991
992	default:
993		GET_CONTEXT(p, tmp); /* get context reg */
994		UASM_i_LW(p, ptr, 0, ptr);
995		break;
996	}
997
998	build_adjust_context(p, tmp);
999	UASM_i_ADDU(p, ptr, ptr, tmp); /* add in offset */
1000}
1001
1002static void build_update_entries(u32 **p, unsigned int tmp, unsigned int ptep)
1003{
1004	/*
1005	 * 64bit address support (36bit on a 32bit CPU) in a 32bit
1006	 * Kernel is a special case. Only a few CPUs use it.
1007	 */
1008#ifdef CONFIG_PHYS_ADDR_T_64BIT
1009	if (cpu_has_64bits) {
1010		uasm_i_ld(p, tmp, 0, ptep); /* get even pte */
1011		uasm_i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1012		if (cpu_has_rixi) {
1013			UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1014			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1015			UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1016		} else {
1017			uasm_i_dsrl_safe(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1018			UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1019			uasm_i_dsrl_safe(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1020		}
1021		UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1022	} else {
1023		int pte_off_even = sizeof(pte_t) / 2;
1024		int pte_off_odd = pte_off_even + sizeof(pte_t);
1025#ifdef CONFIG_XPA
1026		const int scratch = 1; /* Our extra working register */
1027
1028		uasm_i_addu(p, scratch, 0, ptep);
1029#endif
1030		uasm_i_lw(p, tmp, pte_off_even, ptep); /* even pte */
1031		uasm_i_lw(p, ptep, pte_off_odd, ptep); /* odd pte */
1032		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1033		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1034		UASM_i_MTC0(p, tmp, C0_ENTRYLO0);
1035		UASM_i_MTC0(p, ptep, C0_ENTRYLO1);
1036#ifdef CONFIG_XPA
1037		uasm_i_lw(p, tmp, 0, scratch);
1038		uasm_i_lw(p, ptep, sizeof(pte_t), scratch);
1039		uasm_i_lui(p, scratch, 0xff);
1040		uasm_i_ori(p, scratch, scratch, 0xffff);
1041		uasm_i_and(p, tmp, scratch, tmp);
1042		uasm_i_and(p, ptep, scratch, ptep);
1043		uasm_i_mthc0(p, tmp, C0_ENTRYLO0);
1044		uasm_i_mthc0(p, ptep, C0_ENTRYLO1);
1045#endif
1046	}
1047#else
1048	UASM_i_LW(p, tmp, 0, ptep); /* get even pte */
1049	UASM_i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */
1050	if (r45k_bvahwbug())
1051		build_tlb_probe_entry(p);
1052	if (cpu_has_rixi) {
1053		UASM_i_ROTR(p, tmp, tmp, ilog2(_PAGE_GLOBAL));
1054		if (r4k_250MHZhwbug())
1055			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1056		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1057		UASM_i_ROTR(p, ptep, ptep, ilog2(_PAGE_GLOBAL));
1058	} else {
1059		UASM_i_SRL(p, tmp, tmp, ilog2(_PAGE_GLOBAL)); /* convert to entrylo0 */
1060		if (r4k_250MHZhwbug())
1061			UASM_i_MTC0(p, 0, C0_ENTRYLO0);
1062		UASM_i_MTC0(p, tmp, C0_ENTRYLO0); /* load it */
1063		UASM_i_SRL(p, ptep, ptep, ilog2(_PAGE_GLOBAL)); /* convert to entrylo1 */
1064		if (r45k_bvahwbug())
1065			uasm_i_mfc0(p, tmp, C0_INDEX);
1066	}
1067	if (r4k_250MHZhwbug())
1068		UASM_i_MTC0(p, 0, C0_ENTRYLO1);
1069	UASM_i_MTC0(p, ptep, C0_ENTRYLO1); /* load it */
1070#endif
1071}
1072
1073struct mips_huge_tlb_info {
1074	int huge_pte;
1075	int restore_scratch;
1076	bool need_reload_pte;
1077};
1078
1079static struct mips_huge_tlb_info
1080build_fast_tlb_refill_handler (u32 **p, struct uasm_label **l,
1081			       struct uasm_reloc **r, unsigned int tmp,
1082			       unsigned int ptr, int c0_scratch_reg)
1083{
1084	struct mips_huge_tlb_info rv;
1085	unsigned int even, odd;
1086	int vmalloc_branch_delay_filled = 0;
1087	const int scratch = 1; /* Our extra working register */
1088
1089	rv.huge_pte = scratch;
1090	rv.restore_scratch = 0;
1091	rv.need_reload_pte = false;
1092
1093	if (check_for_high_segbits) {
1094		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1095
1096		if (pgd_reg != -1)
1097			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1098		else
1099			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1100
1101		if (c0_scratch_reg >= 0)
1102			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1103		else
1104			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1105
1106		uasm_i_dsrl_safe(p, scratch, tmp,
1107				 PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
1108		uasm_il_bnez(p, r, scratch, label_vmalloc);
1109
1110		if (pgd_reg == -1) {
1111			vmalloc_branch_delay_filled = 1;
1112			/* Clear lower 23 bits of context. */
1113			uasm_i_dins(p, ptr, 0, 0, 23);
1114		}
1115	} else {
1116		if (pgd_reg != -1)
1117			UASM_i_MFC0(p, ptr, c0_kscratch(), pgd_reg);
1118		else
1119			UASM_i_MFC0(p, ptr, C0_CONTEXT);
1120
1121		UASM_i_MFC0(p, tmp, C0_BADVADDR);
1122
1123		if (c0_scratch_reg >= 0)
1124			UASM_i_MTC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1125		else
1126			UASM_i_SW(p, scratch, scratchpad_offset(0), 0);
1127
1128		if (pgd_reg == -1)
1129			/* Clear lower 23 bits of context. */
1130			uasm_i_dins(p, ptr, 0, 0, 23);
1131
1132		uasm_il_bltz(p, r, tmp, label_vmalloc);
1133	}
1134
1135	if (pgd_reg == -1) {
1136		vmalloc_branch_delay_filled = 1;
1137		/* 1 0	1 0 1  << 6  xkphys cached */
1138		uasm_i_ori(p, ptr, ptr, 0x540);
1139		uasm_i_drotr(p, ptr, ptr, 11);
1140	}
1141
1142#ifdef __PAGETABLE_PMD_FOLDED
1143#define LOC_PTEP scratch
1144#else
1145#define LOC_PTEP ptr
1146#endif
1147
1148	if (!vmalloc_branch_delay_filled)
1149		/* get pgd offset in bytes */
1150		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1151
1152	uasm_l_vmalloc_done(l, *p);
1153
1154	/*
1155	 *			   tmp		ptr
1156	 * fall-through case =	 badvaddr  *pgd_current
1157	 * vmalloc case	     =	 badvaddr  swapper_pg_dir
1158	 */
1159
1160	if (vmalloc_branch_delay_filled)
1161		/* get pgd offset in bytes */
1162		uasm_i_dsrl_safe(p, scratch, tmp, PGDIR_SHIFT - 3);
1163
1164#ifdef __PAGETABLE_PMD_FOLDED
1165	GET_CONTEXT(p, tmp); /* get context reg */
1166#endif
1167	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PGD - 1) << 3);
1168
1169	if (use_lwx_insns()) {
1170		UASM_i_LWX(p, LOC_PTEP, scratch, ptr);
1171	} else {
1172		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pgd offset */
1173		uasm_i_ld(p, LOC_PTEP, 0, ptr); /* get pmd pointer */
1174	}
1175
1176#ifndef __PAGETABLE_PMD_FOLDED
1177	/* get pmd offset in bytes */
1178	uasm_i_dsrl_safe(p, scratch, tmp, PMD_SHIFT - 3);
1179	uasm_i_andi(p, scratch, scratch, (PTRS_PER_PMD - 1) << 3);
1180	GET_CONTEXT(p, tmp); /* get context reg */
1181
1182	if (use_lwx_insns()) {
1183		UASM_i_LWX(p, scratch, scratch, ptr);
1184	} else {
1185		uasm_i_daddu(p, ptr, ptr, scratch); /* add in pmd offset */
1186		UASM_i_LW(p, scratch, 0, ptr);
1187	}
1188#endif
1189	/* Adjust the context during the load latency. */
1190	build_adjust_context(p, tmp);
1191
1192#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1193	uasm_il_bbit1(p, r, scratch, ilog2(_PAGE_HUGE), label_tlb_huge_update);
1194	/*
1195	 * The in the LWX case we don't want to do the load in the
1196	 * delay slot.	It cannot issue in the same cycle and may be
1197	 * speculative and unneeded.
1198	 */
1199	if (use_lwx_insns())
1200		uasm_i_nop(p);
1201#endif /* CONFIG_MIPS_HUGE_TLB_SUPPORT */
1202
1203
1204	/* build_update_entries */
1205	if (use_lwx_insns()) {
1206		even = ptr;
1207		odd = tmp;
1208		UASM_i_LWX(p, even, scratch, tmp);
1209		UASM_i_ADDIU(p, tmp, tmp, sizeof(pte_t));
1210		UASM_i_LWX(p, odd, scratch, tmp);
1211	} else {
1212		UASM_i_ADDU(p, ptr, scratch, tmp); /* add in offset */
1213		even = tmp;
1214		odd = ptr;
1215		UASM_i_LW(p, even, 0, ptr); /* get even pte */
1216		UASM_i_LW(p, odd, sizeof(pte_t), ptr); /* get odd pte */
1217	}
1218	if (cpu_has_rixi) {
1219		uasm_i_drotr(p, even, even, ilog2(_PAGE_GLOBAL));
1220		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1221		uasm_i_drotr(p, odd, odd, ilog2(_PAGE_GLOBAL));
1222	} else {
1223		uasm_i_dsrl_safe(p, even, even, ilog2(_PAGE_GLOBAL));
1224		UASM_i_MTC0(p, even, C0_ENTRYLO0); /* load it */
1225		uasm_i_dsrl_safe(p, odd, odd, ilog2(_PAGE_GLOBAL));
1226	}
1227	UASM_i_MTC0(p, odd, C0_ENTRYLO1); /* load it */
1228
1229	if (c0_scratch_reg >= 0) {
1230		UASM_i_MFC0(p, scratch, c0_kscratch(), c0_scratch_reg);
1231		build_tlb_write_entry(p, l, r, tlb_random);
1232		uasm_l_leave(l, *p);
1233		rv.restore_scratch = 1;
1234	} else if (PAGE_SHIFT == 14 || PAGE_SHIFT == 13)  {
1235		build_tlb_write_entry(p, l, r, tlb_random);
1236		uasm_l_leave(l, *p);
1237		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1238	} else {
1239		UASM_i_LW(p, scratch, scratchpad_offset(0), 0);
1240		build_tlb_write_entry(p, l, r, tlb_random);
1241		uasm_l_leave(l, *p);
1242		rv.restore_scratch = 1;
1243	}
1244
1245	uasm_i_eret(p); /* return from trap */
1246
1247	return rv;
1248}
1249
1250/*
1251 * For a 64-bit kernel, we are using the 64-bit XTLB refill exception
1252 * because EXL == 0.  If we wrap, we can also use the 32 instruction
1253 * slots before the XTLB refill exception handler which belong to the
1254 * unused TLB refill exception.
1255 */
1256#define MIPS64_REFILL_INSNS 32
1257
1258static void build_r4000_tlb_refill_handler(void)
1259{
1260	u32 *p = tlb_handler;
1261	struct uasm_label *l = labels;
1262	struct uasm_reloc *r = relocs;
1263	u32 *f;
1264	unsigned int final_len;
1265	struct mips_huge_tlb_info htlb_info __maybe_unused;
1266	enum vmalloc64_mode vmalloc_mode __maybe_unused;
1267
1268	memset(tlb_handler, 0, sizeof(tlb_handler));
1269	memset(labels, 0, sizeof(labels));
1270	memset(relocs, 0, sizeof(relocs));
1271	memset(final_handler, 0, sizeof(final_handler));
1272
1273	if (IS_ENABLED(CONFIG_64BIT) && (scratch_reg >= 0 || scratchpad_available()) && use_bbit_insns()) {
1274		htlb_info = build_fast_tlb_refill_handler(&p, &l, &r, K0, K1,
1275							  scratch_reg);
1276		vmalloc_mode = refill_scratch;
1277	} else {
1278		htlb_info.huge_pte = K0;
1279		htlb_info.restore_scratch = 0;
1280		htlb_info.need_reload_pte = true;
1281		vmalloc_mode = refill_noscratch;
1282		/*
1283		 * create the plain linear handler
1284		 */
1285		if (bcm1250_m3_war()) {
1286			unsigned int segbits = 44;
1287
1288			uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1289			uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1290			uasm_i_xor(&p, K0, K0, K1);
1291			uasm_i_dsrl_safe(&p, K1, K0, 62);
1292			uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1293			uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1294			uasm_i_or(&p, K0, K0, K1);
1295			uasm_il_bnez(&p, &r, K0, label_leave);
1296			/* No need for uasm_i_nop */
1297		}
1298
1299#ifdef CONFIG_64BIT
1300		build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
1301#else
1302		build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
1303#endif
1304
1305#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1306		build_is_huge_pte(&p, &r, K0, K1, label_tlb_huge_update);
1307#endif
1308
1309		build_get_ptep(&p, K0, K1);
1310		build_update_entries(&p, K0, K1);
1311		build_tlb_write_entry(&p, &l, &r, tlb_random);
1312		uasm_l_leave(&l, p);
1313		uasm_i_eret(&p); /* return from trap */
1314	}
1315#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1316	uasm_l_tlb_huge_update(&l, p);
1317	if (htlb_info.need_reload_pte)
1318		UASM_i_LW(&p, htlb_info.huge_pte, 0, K1);
1319	build_huge_update_entries(&p, htlb_info.huge_pte, K1);
1320	build_huge_tlb_write_entry(&p, &l, &r, K0, tlb_random,
1321				   htlb_info.restore_scratch);
1322#endif
1323
1324#ifdef CONFIG_64BIT
1325	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1, vmalloc_mode);
1326#endif
1327
1328	/*
1329	 * Overflow check: For the 64bit handler, we need at least one
1330	 * free instruction slot for the wrap-around branch. In worst
1331	 * case, if the intended insertion point is a delay slot, we
1332	 * need three, with the second nop'ed and the third being
1333	 * unused.
1334	 */
1335	switch (boot_cpu_type()) {
1336	default:
1337		if (sizeof(long) == 4) {
1338	case CPU_LOONGSON2:
1339		/* Loongson2 ebase is different than r4k, we have more space */
1340			if ((p - tlb_handler) > 64)
1341				panic("TLB refill handler space exceeded");
1342			/*
1343			 * Now fold the handler in the TLB refill handler space.
1344			 */
1345			f = final_handler;
1346			/* Simplest case, just copy the handler. */
1347			uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1348			final_len = p - tlb_handler;
1349			break;
1350		} else {
1351			if (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 1)
1352			    || (((p - tlb_handler) > (MIPS64_REFILL_INSNS * 2) - 3)
1353				&& uasm_insn_has_bdelay(relocs,
1354							tlb_handler + MIPS64_REFILL_INSNS - 3)))
1355				panic("TLB refill handler space exceeded");
1356			/*
1357			 * Now fold the handler in the TLB refill handler space.
1358			 */
1359			f = final_handler + MIPS64_REFILL_INSNS;
1360			if ((p - tlb_handler) <= MIPS64_REFILL_INSNS) {
1361				/* Just copy the handler. */
1362				uasm_copy_handler(relocs, labels, tlb_handler, p, f);
1363				final_len = p - tlb_handler;
1364			} else {
1365#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1366				const enum label_id ls = label_tlb_huge_update;
1367#else
1368				const enum label_id ls = label_vmalloc;
1369#endif
1370				u32 *split;
1371				int ov = 0;
1372				int i;
1373
1374				for (i = 0; i < ARRAY_SIZE(labels) && labels[i].lab != ls; i++)
1375					;
1376				BUG_ON(i == ARRAY_SIZE(labels));
1377				split = labels[i].addr;
1378
1379				/*
1380				 * See if we have overflown one way or the other.
1381				 */
1382				if (split > tlb_handler + MIPS64_REFILL_INSNS ||
1383				    split < p - MIPS64_REFILL_INSNS)
1384					ov = 1;
1385
1386				if (ov) {
1387					/*
1388					 * Split two instructions before the end.  One
1389					 * for the branch and one for the instruction
1390					 * in the delay slot.
1391					 */
1392					split = tlb_handler + MIPS64_REFILL_INSNS - 2;
1393
1394					/*
1395					 * If the branch would fall in a delay slot,
1396					 * we must back up an additional instruction
1397					 * so that it is no longer in a delay slot.
1398					 */
1399					if (uasm_insn_has_bdelay(relocs, split - 1))
1400						split--;
1401				}
1402				/* Copy first part of the handler. */
1403				uasm_copy_handler(relocs, labels, tlb_handler, split, f);
1404				f += split - tlb_handler;
1405
1406				if (ov) {
1407					/* Insert branch. */
1408					uasm_l_split(&l, final_handler);
1409					uasm_il_b(&f, &r, label_split);
1410					if (uasm_insn_has_bdelay(relocs, split))
1411						uasm_i_nop(&f);
1412					else {
1413						uasm_copy_handler(relocs, labels,
1414								  split, split + 1, f);
1415						uasm_move_labels(labels, f, f + 1, -1);
1416						f++;
1417						split++;
1418					}
1419				}
1420
1421				/* Copy the rest of the handler. */
1422				uasm_copy_handler(relocs, labels, split, p, final_handler);
1423				final_len = (f - (final_handler + MIPS64_REFILL_INSNS)) +
1424					    (p - split);
1425			}
1426		}
1427		break;
1428	}
1429
1430	uasm_resolve_relocs(relocs, labels);
1431	pr_debug("Wrote TLB refill handler (%u instructions).\n",
1432		 final_len);
1433
1434	memcpy((void *)ebase, final_handler, 0x100);
1435	local_flush_icache_range(ebase, ebase + 0x100);
1436
1437	dump_handler("r4000_tlb_refill", (u32 *)ebase, 64);
1438}
1439
1440extern u32 handle_tlbl[], handle_tlbl_end[];
1441extern u32 handle_tlbs[], handle_tlbs_end[];
1442extern u32 handle_tlbm[], handle_tlbm_end[];
1443extern u32 tlbmiss_handler_setup_pgd_start[], tlbmiss_handler_setup_pgd[];
1444extern u32 tlbmiss_handler_setup_pgd_end[];
1445
1446static void build_setup_pgd(void)
1447{
1448	const int a0 = 4;
1449	const int __maybe_unused a1 = 5;
1450	const int __maybe_unused a2 = 6;
1451	u32 *p = tlbmiss_handler_setup_pgd_start;
1452	const int tlbmiss_handler_setup_pgd_size =
1453		tlbmiss_handler_setup_pgd_end - tlbmiss_handler_setup_pgd_start;
1454#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1455	long pgdc = (long)pgd_current;
1456#endif
1457
1458	memset(tlbmiss_handler_setup_pgd, 0, tlbmiss_handler_setup_pgd_size *
1459					sizeof(tlbmiss_handler_setup_pgd[0]));
1460	memset(labels, 0, sizeof(labels));
1461	memset(relocs, 0, sizeof(relocs));
1462	pgd_reg = allocate_kscratch();
1463#ifdef CONFIG_MIPS_PGD_C0_CONTEXT
1464	if (pgd_reg == -1) {
1465		struct uasm_label *l = labels;
1466		struct uasm_reloc *r = relocs;
1467
1468		/* PGD << 11 in c0_Context */
1469		/*
1470		 * If it is a ckseg0 address, convert to a physical
1471		 * address.  Shifting right by 29 and adding 4 will
1472		 * result in zero for these addresses.
1473		 *
1474		 */
1475		UASM_i_SRA(&p, a1, a0, 29);
1476		UASM_i_ADDIU(&p, a1, a1, 4);
1477		uasm_il_bnez(&p, &r, a1, label_tlbl_goaround1);
1478		uasm_i_nop(&p);
1479		uasm_i_dinsm(&p, a0, 0, 29, 64 - 29);
1480		uasm_l_tlbl_goaround1(&l, p);
1481		UASM_i_SLL(&p, a0, a0, 11);
1482		uasm_i_jr(&p, 31);
1483		UASM_i_MTC0(&p, a0, C0_CONTEXT);
1484	} else {
1485		/* PGD in c0_KScratch */
1486		uasm_i_jr(&p, 31);
1487		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1488	}
1489#else
1490#ifdef CONFIG_SMP
1491	/* Save PGD to pgd_current[smp_processor_id()] */
1492	UASM_i_CPUID_MFC0(&p, a1, SMP_CPUID_REG);
1493	UASM_i_SRL_SAFE(&p, a1, a1, SMP_CPUID_PTRSHIFT);
1494	UASM_i_LA_mostly(&p, a2, pgdc);
1495	UASM_i_ADDU(&p, a2, a2, a1);
1496	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1497#else
1498	UASM_i_LA_mostly(&p, a2, pgdc);
1499	UASM_i_SW(&p, a0, uasm_rel_lo(pgdc), a2);
1500#endif /* SMP */
1501	uasm_i_jr(&p, 31);
1502
1503	/* if pgd_reg is allocated, save PGD also to scratch register */
1504	if (pgd_reg != -1)
1505		UASM_i_MTC0(&p, a0, c0_kscratch(), pgd_reg);
1506	else
1507		uasm_i_nop(&p);
1508#endif
1509	if (p >= tlbmiss_handler_setup_pgd_end)
1510		panic("tlbmiss_handler_setup_pgd space exceeded");
1511
1512	uasm_resolve_relocs(relocs, labels);
1513	pr_debug("Wrote tlbmiss_handler_setup_pgd (%u instructions).\n",
1514		 (unsigned int)(p - tlbmiss_handler_setup_pgd));
1515
1516	dump_handler("tlbmiss_handler", tlbmiss_handler_setup_pgd,
1517					tlbmiss_handler_setup_pgd_size);
1518}
1519
1520static void
1521iPTE_LW(u32 **p, unsigned int pte, unsigned int ptr)
1522{
1523#ifdef CONFIG_SMP
1524# ifdef CONFIG_PHYS_ADDR_T_64BIT
1525	if (cpu_has_64bits)
1526		uasm_i_lld(p, pte, 0, ptr);
1527	else
1528# endif
1529		UASM_i_LL(p, pte, 0, ptr);
1530#else
1531# ifdef CONFIG_PHYS_ADDR_T_64BIT
1532	if (cpu_has_64bits)
1533		uasm_i_ld(p, pte, 0, ptr);
1534	else
1535# endif
1536		UASM_i_LW(p, pte, 0, ptr);
1537#endif
1538}
1539
1540static void
1541iPTE_SW(u32 **p, struct uasm_reloc **r, unsigned int pte, unsigned int ptr,
1542	unsigned int mode)
1543{
1544#ifdef CONFIG_PHYS_ADDR_T_64BIT
1545	unsigned int hwmode = mode & (_PAGE_VALID | _PAGE_DIRTY);
1546
1547	if (!cpu_has_64bits) {
1548		const int scratch = 1; /* Our extra working register */
1549
1550		uasm_i_lui(p, scratch, (mode >> 16));
1551		uasm_i_or(p, pte, pte, scratch);
1552	} else
1553#endif
1554	uasm_i_ori(p, pte, pte, mode);
1555#ifdef CONFIG_SMP
1556# ifdef CONFIG_PHYS_ADDR_T_64BIT
1557	if (cpu_has_64bits)
1558		uasm_i_scd(p, pte, 0, ptr);
1559	else
1560# endif
1561		UASM_i_SC(p, pte, 0, ptr);
1562
1563	if (r10000_llsc_war())
1564		uasm_il_beqzl(p, r, pte, label_smp_pgtable_change);
1565	else
1566		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1567
1568# ifdef CONFIG_PHYS_ADDR_T_64BIT
1569	if (!cpu_has_64bits) {
1570		/* no uasm_i_nop needed */
1571		uasm_i_ll(p, pte, sizeof(pte_t) / 2, ptr);
1572		uasm_i_ori(p, pte, pte, hwmode);
1573		uasm_i_sc(p, pte, sizeof(pte_t) / 2, ptr);
1574		uasm_il_beqz(p, r, pte, label_smp_pgtable_change);
1575		/* no uasm_i_nop needed */
1576		uasm_i_lw(p, pte, 0, ptr);
1577	} else
1578		uasm_i_nop(p);
1579# else
1580	uasm_i_nop(p);
1581# endif
1582#else
1583# ifdef CONFIG_PHYS_ADDR_T_64BIT
1584	if (cpu_has_64bits)
1585		uasm_i_sd(p, pte, 0, ptr);
1586	else
1587# endif
1588		UASM_i_SW(p, pte, 0, ptr);
1589
1590# ifdef CONFIG_PHYS_ADDR_T_64BIT
1591	if (!cpu_has_64bits) {
1592		uasm_i_lw(p, pte, sizeof(pte_t) / 2, ptr);
1593		uasm_i_ori(p, pte, pte, hwmode);
1594		uasm_i_sw(p, pte, sizeof(pte_t) / 2, ptr);
1595		uasm_i_lw(p, pte, 0, ptr);
1596	}
1597# endif
1598#endif
1599}
1600
1601/*
1602 * Check if PTE is present, if not then jump to LABEL. PTR points to
1603 * the page table where this PTE is located, PTE will be re-loaded
1604 * with it's original value.
1605 */
1606static void
1607build_pte_present(u32 **p, struct uasm_reloc **r,
1608		  int pte, int ptr, int scratch, enum label_id lid)
1609{
1610	int t = scratch >= 0 ? scratch : pte;
1611
1612	if (cpu_has_rixi) {
1613		if (use_bbit_insns()) {
1614			uasm_il_bbit0(p, r, pte, ilog2(_PAGE_PRESENT), lid);
1615			uasm_i_nop(p);
1616		} else {
1617			uasm_i_srl(p, t, pte, _PAGE_PRESENT_SHIFT);
1618			uasm_i_andi(p, t, t, 1);
1619			uasm_il_beqz(p, r, t, lid);
1620			if (pte == t)
1621				/* You lose the SMP race :-(*/
1622				iPTE_LW(p, pte, ptr);
1623		}
1624	} else {
1625		uasm_i_srl(p, t, pte, _PAGE_PRESENT_SHIFT);
1626		uasm_i_andi(p, t, t, 3);
1627		uasm_i_xori(p, t, t, 3);
1628		uasm_il_bnez(p, r, t, lid);
1629		if (pte == t)
1630			/* You lose the SMP race :-(*/
1631			iPTE_LW(p, pte, ptr);
1632	}
1633}
1634
1635/* Make PTE valid, store result in PTR. */
1636static void
1637build_make_valid(u32 **p, struct uasm_reloc **r, unsigned int pte,
1638		 unsigned int ptr)
1639{
1640	unsigned int mode = _PAGE_VALID | _PAGE_ACCESSED;
1641
1642	iPTE_SW(p, r, pte, ptr, mode);
1643}
1644
1645/*
1646 * Check if PTE can be written to, if not branch to LABEL. Regardless
1647 * restore PTE with value from PTR when done.
1648 */
1649static void
1650build_pte_writable(u32 **p, struct uasm_reloc **r,
1651		   unsigned int pte, unsigned int ptr, int scratch,
1652		   enum label_id lid)
1653{
1654	int t = scratch >= 0 ? scratch : pte;
1655
1656	uasm_i_srl(p, t, pte, _PAGE_PRESENT_SHIFT);
1657	uasm_i_andi(p, t, t, 5);
1658	uasm_i_xori(p, t, t, 5);
1659	uasm_il_bnez(p, r, t, lid);
1660	if (pte == t)
1661		/* You lose the SMP race :-(*/
1662		iPTE_LW(p, pte, ptr);
1663	else
1664		uasm_i_nop(p);
1665}
1666
1667/* Make PTE writable, update software status bits as well, then store
1668 * at PTR.
1669 */
1670static void
1671build_make_write(u32 **p, struct uasm_reloc **r, unsigned int pte,
1672		 unsigned int ptr)
1673{
1674	unsigned int mode = (_PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID
1675			     | _PAGE_DIRTY);
1676
1677	iPTE_SW(p, r, pte, ptr, mode);
1678}
1679
1680/*
1681 * Check if PTE can be modified, if not branch to LABEL. Regardless
1682 * restore PTE with value from PTR when done.
1683 */
1684static void
1685build_pte_modifiable(u32 **p, struct uasm_reloc **r,
1686		     unsigned int pte, unsigned int ptr, int scratch,
1687		     enum label_id lid)
1688{
1689	if (use_bbit_insns()) {
1690		uasm_il_bbit0(p, r, pte, ilog2(_PAGE_WRITE), lid);
1691		uasm_i_nop(p);
1692	} else {
1693		int t = scratch >= 0 ? scratch : pte;
1694		uasm_i_srl(p, t, pte, _PAGE_WRITE_SHIFT);
1695		uasm_i_andi(p, t, t, 1);
1696		uasm_il_beqz(p, r, t, lid);
1697		if (pte == t)
1698			/* You lose the SMP race :-(*/
1699			iPTE_LW(p, pte, ptr);
1700	}
1701}
1702
1703#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
1704
1705
1706/*
1707 * R3000 style TLB load/store/modify handlers.
1708 */
1709
1710/*
1711 * This places the pte into ENTRYLO0 and writes it with tlbwi.
1712 * Then it returns.
1713 */
1714static void
1715build_r3000_pte_reload_tlbwi(u32 **p, unsigned int pte, unsigned int tmp)
1716{
1717	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1718	uasm_i_mfc0(p, tmp, C0_EPC); /* cp0 delay */
1719	uasm_i_tlbwi(p);
1720	uasm_i_jr(p, tmp);
1721	uasm_i_rfe(p); /* branch delay */
1722}
1723
1724/*
1725 * This places the pte into ENTRYLO0 and writes it with tlbwi
1726 * or tlbwr as appropriate.  This is because the index register
1727 * may have the probe fail bit set as a result of a trap on a
1728 * kseg2 access, i.e. without refill.  Then it returns.
1729 */
1730static void
1731build_r3000_tlb_reload_write(u32 **p, struct uasm_label **l,
1732			     struct uasm_reloc **r, unsigned int pte,
1733			     unsigned int tmp)
1734{
1735	uasm_i_mfc0(p, tmp, C0_INDEX);
1736	uasm_i_mtc0(p, pte, C0_ENTRYLO0); /* cp0 delay */
1737	uasm_il_bltz(p, r, tmp, label_r3000_write_probe_fail); /* cp0 delay */
1738	uasm_i_mfc0(p, tmp, C0_EPC); /* branch delay */
1739	uasm_i_tlbwi(p); /* cp0 delay */
1740	uasm_i_jr(p, tmp);
1741	uasm_i_rfe(p); /* branch delay */
1742	uasm_l_r3000_write_probe_fail(l, *p);
1743	uasm_i_tlbwr(p); /* cp0 delay */
1744	uasm_i_jr(p, tmp);
1745	uasm_i_rfe(p); /* branch delay */
1746}
1747
1748static void
1749build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte,
1750				   unsigned int ptr)
1751{
1752	long pgdc = (long)pgd_current;
1753
1754	uasm_i_mfc0(p, pte, C0_BADVADDR);
1755	uasm_i_lui(p, ptr, uasm_rel_hi(pgdc)); /* cp0 delay */
1756	uasm_i_lw(p, ptr, uasm_rel_lo(pgdc), ptr);
1757	uasm_i_srl(p, pte, pte, 22); /* load delay */
1758	uasm_i_sll(p, pte, pte, 2);
1759	uasm_i_addu(p, ptr, ptr, pte);
1760	uasm_i_mfc0(p, pte, C0_CONTEXT);
1761	uasm_i_lw(p, ptr, 0, ptr); /* cp0 delay */
1762	uasm_i_andi(p, pte, pte, 0xffc); /* load delay */
1763	uasm_i_addu(p, ptr, ptr, pte);
1764	uasm_i_lw(p, pte, 0, ptr);
1765	uasm_i_tlbp(p); /* load delay */
1766}
1767
1768static void build_r3000_tlb_load_handler(void)
1769{
1770	u32 *p = handle_tlbl;
1771	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1772	struct uasm_label *l = labels;
1773	struct uasm_reloc *r = relocs;
1774
1775	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1776	memset(labels, 0, sizeof(labels));
1777	memset(relocs, 0, sizeof(relocs));
1778
1779	build_r3000_tlbchange_handler_head(&p, K0, K1);
1780	build_pte_present(&p, &r, K0, K1, -1, label_nopage_tlbl);
1781	uasm_i_nop(&p); /* load delay */
1782	build_make_valid(&p, &r, K0, K1);
1783	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1784
1785	uasm_l_nopage_tlbl(&l, p);
1786	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
1787	uasm_i_nop(&p);
1788
1789	if (p >= handle_tlbl_end)
1790		panic("TLB load handler fastpath space exceeded");
1791
1792	uasm_resolve_relocs(relocs, labels);
1793	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
1794		 (unsigned int)(p - handle_tlbl));
1795
1796	dump_handler("r3000_tlb_load", handle_tlbl, handle_tlbl_size);
1797}
1798
1799static void build_r3000_tlb_store_handler(void)
1800{
1801	u32 *p = handle_tlbs;
1802	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
1803	struct uasm_label *l = labels;
1804	struct uasm_reloc *r = relocs;
1805
1806	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
1807	memset(labels, 0, sizeof(labels));
1808	memset(relocs, 0, sizeof(relocs));
1809
1810	build_r3000_tlbchange_handler_head(&p, K0, K1);
1811	build_pte_writable(&p, &r, K0, K1, -1, label_nopage_tlbs);
1812	uasm_i_nop(&p); /* load delay */
1813	build_make_write(&p, &r, K0, K1);
1814	build_r3000_tlb_reload_write(&p, &l, &r, K0, K1);
1815
1816	uasm_l_nopage_tlbs(&l, p);
1817	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1818	uasm_i_nop(&p);
1819
1820	if (p >= handle_tlbs_end)
1821		panic("TLB store handler fastpath space exceeded");
1822
1823	uasm_resolve_relocs(relocs, labels);
1824	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
1825		 (unsigned int)(p - handle_tlbs));
1826
1827	dump_handler("r3000_tlb_store", handle_tlbs, handle_tlbs_size);
1828}
1829
1830static void build_r3000_tlb_modify_handler(void)
1831{
1832	u32 *p = handle_tlbm;
1833	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
1834	struct uasm_label *l = labels;
1835	struct uasm_reloc *r = relocs;
1836
1837	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
1838	memset(labels, 0, sizeof(labels));
1839	memset(relocs, 0, sizeof(relocs));
1840
1841	build_r3000_tlbchange_handler_head(&p, K0, K1);
1842	build_pte_modifiable(&p, &r, K0, K1,  -1, label_nopage_tlbm);
1843	uasm_i_nop(&p); /* load delay */
1844	build_make_write(&p, &r, K0, K1);
1845	build_r3000_pte_reload_tlbwi(&p, K0, K1);
1846
1847	uasm_l_nopage_tlbm(&l, p);
1848	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
1849	uasm_i_nop(&p);
1850
1851	if (p >= handle_tlbm_end)
1852		panic("TLB modify handler fastpath space exceeded");
1853
1854	uasm_resolve_relocs(relocs, labels);
1855	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
1856		 (unsigned int)(p - handle_tlbm));
1857
1858	dump_handler("r3000_tlb_modify", handle_tlbm, handle_tlbm_size);
1859}
1860#endif /* CONFIG_MIPS_PGD_C0_CONTEXT */
1861
1862/*
1863 * R4000 style TLB load/store/modify handlers.
1864 */
1865static struct work_registers
1866build_r4000_tlbchange_handler_head(u32 **p, struct uasm_label **l,
1867				   struct uasm_reloc **r)
1868{
1869	struct work_registers wr = build_get_work_registers(p);
1870
1871#ifdef CONFIG_64BIT
1872	build_get_pmde64(p, l, r, wr.r1, wr.r2); /* get pmd in ptr */
1873#else
1874	build_get_pgde32(p, wr.r1, wr.r2); /* get pgd in ptr */
1875#endif
1876
1877#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
1878	/*
1879	 * For huge tlb entries, pmd doesn't contain an address but
1880	 * instead contains the tlb pte. Check the PAGE_HUGE bit and
1881	 * see if we need to jump to huge tlb processing.
1882	 */
1883	build_is_huge_pte(p, r, wr.r1, wr.r2, label_tlb_huge_update);
1884#endif
1885
1886	UASM_i_MFC0(p, wr.r1, C0_BADVADDR);
1887	UASM_i_LW(p, wr.r2, 0, wr.r2);
1888	UASM_i_SRL(p, wr.r1, wr.r1, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2);
1889	uasm_i_andi(p, wr.r1, wr.r1, (PTRS_PER_PTE - 1) << PTE_T_LOG2);
1890	UASM_i_ADDU(p, wr.r2, wr.r2, wr.r1);
1891
1892#ifdef CONFIG_SMP
1893	uasm_l_smp_pgtable_change(l, *p);
1894#endif
1895	iPTE_LW(p, wr.r1, wr.r2); /* get even pte */
1896	if (!m4kc_tlbp_war()) {
1897		build_tlb_probe_entry(p);
1898		if (cpu_has_htw) {
1899			/* race condition happens, leaving */
1900			uasm_i_ehb(p);
1901			uasm_i_mfc0(p, wr.r3, C0_INDEX);
1902			uasm_il_bltz(p, r, wr.r3, label_leave);
1903			uasm_i_nop(p);
1904		}
1905	}
1906	return wr;
1907}
1908
1909static void
1910build_r4000_tlbchange_handler_tail(u32 **p, struct uasm_label **l,
1911				   struct uasm_reloc **r, unsigned int tmp,
1912				   unsigned int ptr)
1913{
1914	uasm_i_ori(p, ptr, ptr, sizeof(pte_t));
1915	uasm_i_xori(p, ptr, ptr, sizeof(pte_t));
1916	build_update_entries(p, tmp, ptr);
1917	build_tlb_write_entry(p, l, r, tlb_indexed);
1918	uasm_l_leave(l, *p);
1919	build_restore_work_registers(p);
1920	uasm_i_eret(p); /* return from trap */
1921
1922#ifdef CONFIG_64BIT
1923	build_get_pgd_vmalloc64(p, l, r, tmp, ptr, not_refill);
1924#endif
1925}
1926
1927static void build_r4000_tlb_load_handler(void)
1928{
1929	u32 *p = handle_tlbl;
1930	const int handle_tlbl_size = handle_tlbl_end - handle_tlbl;
1931	struct uasm_label *l = labels;
1932	struct uasm_reloc *r = relocs;
1933	struct work_registers wr;
1934
1935	memset(handle_tlbl, 0, handle_tlbl_size * sizeof(handle_tlbl[0]));
1936	memset(labels, 0, sizeof(labels));
1937	memset(relocs, 0, sizeof(relocs));
1938
1939	if (bcm1250_m3_war()) {
1940		unsigned int segbits = 44;
1941
1942		uasm_i_dmfc0(&p, K0, C0_BADVADDR);
1943		uasm_i_dmfc0(&p, K1, C0_ENTRYHI);
1944		uasm_i_xor(&p, K0, K0, K1);
1945		uasm_i_dsrl_safe(&p, K1, K0, 62);
1946		uasm_i_dsrl_safe(&p, K0, K0, 12 + 1);
1947		uasm_i_dsll_safe(&p, K0, K0, 64 + 12 + 1 - segbits);
1948		uasm_i_or(&p, K0, K0, K1);
1949		uasm_il_bnez(&p, &r, K0, label_leave);
1950		/* No need for uasm_i_nop */
1951	}
1952
1953	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
1954	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
1955	if (m4kc_tlbp_war())
1956		build_tlb_probe_entry(&p);
1957
1958	if (cpu_has_rixi && !cpu_has_rixiex) {
1959		/*
1960		 * If the page is not _PAGE_VALID, RI or XI could not
1961		 * have triggered it.  Skip the expensive test..
1962		 */
1963		if (use_bbit_insns()) {
1964			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
1965				      label_tlbl_goaround1);
1966		} else {
1967			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
1968			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround1);
1969		}
1970		uasm_i_nop(&p);
1971
1972		uasm_i_tlbr(&p);
1973
1974		switch (current_cpu_type()) {
1975		default:
1976			if (cpu_has_mips_r2_exec_hazard) {
1977				uasm_i_ehb(&p);
1978
1979		case CPU_CAVIUM_OCTEON:
1980		case CPU_CAVIUM_OCTEON_PLUS:
1981		case CPU_CAVIUM_OCTEON2:
1982				break;
1983			}
1984		}
1985
1986		/* Examine  entrylo 0 or 1 based on ptr. */
1987		if (use_bbit_insns()) {
1988			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
1989		} else {
1990			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
1991			uasm_i_beqz(&p, wr.r3, 8);
1992		}
1993		/* load it in the delay slot*/
1994		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
1995		/* load it if ptr is odd */
1996		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
1997		/*
1998		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
1999		 * XI must have triggered it.
2000		 */
2001		if (use_bbit_insns()) {
2002			uasm_il_bbit1(&p, &r, wr.r3, 1, label_nopage_tlbl);
2003			uasm_i_nop(&p);
2004			uasm_l_tlbl_goaround1(&l, p);
2005		} else {
2006			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2007			uasm_il_bnez(&p, &r, wr.r3, label_nopage_tlbl);
2008			uasm_i_nop(&p);
2009		}
2010		uasm_l_tlbl_goaround1(&l, p);
2011	}
2012	build_make_valid(&p, &r, wr.r1, wr.r2);
2013	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2014
2015#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2016	/*
2017	 * This is the entry point when build_r4000_tlbchange_handler_head
2018	 * spots a huge page.
2019	 */
2020	uasm_l_tlb_huge_update(&l, p);
2021	iPTE_LW(&p, wr.r1, wr.r2);
2022	build_pte_present(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbl);
2023	build_tlb_probe_entry(&p);
2024
2025	if (cpu_has_rixi && !cpu_has_rixiex) {
2026		/*
2027		 * If the page is not _PAGE_VALID, RI or XI could not
2028		 * have triggered it.  Skip the expensive test..
2029		 */
2030		if (use_bbit_insns()) {
2031			uasm_il_bbit0(&p, &r, wr.r1, ilog2(_PAGE_VALID),
2032				      label_tlbl_goaround2);
2033		} else {
2034			uasm_i_andi(&p, wr.r3, wr.r1, _PAGE_VALID);
2035			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2036		}
2037		uasm_i_nop(&p);
2038
2039		uasm_i_tlbr(&p);
2040
2041		switch (current_cpu_type()) {
2042		default:
2043			if (cpu_has_mips_r2_exec_hazard) {
2044				uasm_i_ehb(&p);
2045
2046		case CPU_CAVIUM_OCTEON:
2047		case CPU_CAVIUM_OCTEON_PLUS:
2048		case CPU_CAVIUM_OCTEON2:
2049				break;
2050			}
2051		}
2052
2053		/* Examine  entrylo 0 or 1 based on ptr. */
2054		if (use_bbit_insns()) {
2055			uasm_i_bbit0(&p, wr.r2, ilog2(sizeof(pte_t)), 8);
2056		} else {
2057			uasm_i_andi(&p, wr.r3, wr.r2, sizeof(pte_t));
2058			uasm_i_beqz(&p, wr.r3, 8);
2059		}
2060		/* load it in the delay slot*/
2061		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO0);
2062		/* load it if ptr is odd */
2063		UASM_i_MFC0(&p, wr.r3, C0_ENTRYLO1);
2064		/*
2065		 * If the entryLo (now in wr.r3) is valid (bit 1), RI or
2066		 * XI must have triggered it.
2067		 */
2068		if (use_bbit_insns()) {
2069			uasm_il_bbit0(&p, &r, wr.r3, 1, label_tlbl_goaround2);
2070		} else {
2071			uasm_i_andi(&p, wr.r3, wr.r3, 2);
2072			uasm_il_beqz(&p, &r, wr.r3, label_tlbl_goaround2);
2073		}
2074		if (PM_DEFAULT_MASK == 0)
2075			uasm_i_nop(&p);
2076		/*
2077		 * We clobbered C0_PAGEMASK, restore it.  On the other branch
2078		 * it is restored in build_huge_tlb_write_entry.
2079		 */
2080		build_restore_pagemask(&p, &r, wr.r3, label_nopage_tlbl, 0);
2081
2082		uasm_l_tlbl_goaround2(&l, p);
2083	}
2084	uasm_i_ori(&p, wr.r1, wr.r1, (_PAGE_ACCESSED | _PAGE_VALID));
2085	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2086#endif
2087
2088	uasm_l_nopage_tlbl(&l, p);
2089	build_restore_work_registers(&p);
2090#ifdef CONFIG_CPU_MICROMIPS
2091	if ((unsigned long)tlb_do_page_fault_0 & 1) {
2092		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_0));
2093		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_0));
2094		uasm_i_jr(&p, K0);
2095	} else
2096#endif
2097	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff);
2098	uasm_i_nop(&p);
2099
2100	if (p >= handle_tlbl_end)
2101		panic("TLB load handler fastpath space exceeded");
2102
2103	uasm_resolve_relocs(relocs, labels);
2104	pr_debug("Wrote TLB load handler fastpath (%u instructions).\n",
2105		 (unsigned int)(p - handle_tlbl));
2106
2107	dump_handler("r4000_tlb_load", handle_tlbl, handle_tlbl_size);
2108}
2109
2110static void build_r4000_tlb_store_handler(void)
2111{
2112	u32 *p = handle_tlbs;
2113	const int handle_tlbs_size = handle_tlbs_end - handle_tlbs;
2114	struct uasm_label *l = labels;
2115	struct uasm_reloc *r = relocs;
2116	struct work_registers wr;
2117
2118	memset(handle_tlbs, 0, handle_tlbs_size * sizeof(handle_tlbs[0]));
2119	memset(labels, 0, sizeof(labels));
2120	memset(relocs, 0, sizeof(relocs));
2121
2122	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2123	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2124	if (m4kc_tlbp_war())
2125		build_tlb_probe_entry(&p);
2126	build_make_write(&p, &r, wr.r1, wr.r2);
2127	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2128
2129#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2130	/*
2131	 * This is the entry point when
2132	 * build_r4000_tlbchange_handler_head spots a huge page.
2133	 */
2134	uasm_l_tlb_huge_update(&l, p);
2135	iPTE_LW(&p, wr.r1, wr.r2);
2136	build_pte_writable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbs);
2137	build_tlb_probe_entry(&p);
2138	uasm_i_ori(&p, wr.r1, wr.r1,
2139		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2140	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2141#endif
2142
2143	uasm_l_nopage_tlbs(&l, p);
2144	build_restore_work_registers(&p);
2145#ifdef CONFIG_CPU_MICROMIPS
2146	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2147		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2148		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2149		uasm_i_jr(&p, K0);
2150	} else
2151#endif
2152	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2153	uasm_i_nop(&p);
2154
2155	if (p >= handle_tlbs_end)
2156		panic("TLB store handler fastpath space exceeded");
2157
2158	uasm_resolve_relocs(relocs, labels);
2159	pr_debug("Wrote TLB store handler fastpath (%u instructions).\n",
2160		 (unsigned int)(p - handle_tlbs));
2161
2162	dump_handler("r4000_tlb_store", handle_tlbs, handle_tlbs_size);
2163}
2164
2165static void build_r4000_tlb_modify_handler(void)
2166{
2167	u32 *p = handle_tlbm;
2168	const int handle_tlbm_size = handle_tlbm_end - handle_tlbm;
2169	struct uasm_label *l = labels;
2170	struct uasm_reloc *r = relocs;
2171	struct work_registers wr;
2172
2173	memset(handle_tlbm, 0, handle_tlbm_size * sizeof(handle_tlbm[0]));
2174	memset(labels, 0, sizeof(labels));
2175	memset(relocs, 0, sizeof(relocs));
2176
2177	wr = build_r4000_tlbchange_handler_head(&p, &l, &r);
2178	build_pte_modifiable(&p, &r, wr.r1, wr.r2, wr.r3, label_nopage_tlbm);
2179	if (m4kc_tlbp_war())
2180		build_tlb_probe_entry(&p);
2181	/* Present and writable bits set, set accessed and dirty bits. */
2182	build_make_write(&p, &r, wr.r1, wr.r2);
2183	build_r4000_tlbchange_handler_tail(&p, &l, &r, wr.r1, wr.r2);
2184
2185#ifdef CONFIG_MIPS_HUGE_TLB_SUPPORT
2186	/*
2187	 * This is the entry point when
2188	 * build_r4000_tlbchange_handler_head spots a huge page.
2189	 */
2190	uasm_l_tlb_huge_update(&l, p);
2191	iPTE_LW(&p, wr.r1, wr.r2);
2192	build_pte_modifiable(&p, &r, wr.r1, wr.r2,  wr.r3, label_nopage_tlbm);
2193	build_tlb_probe_entry(&p);
2194	uasm_i_ori(&p, wr.r1, wr.r1,
2195		   _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY);
2196	build_huge_handler_tail(&p, &r, &l, wr.r1, wr.r2);
2197#endif
2198
2199	uasm_l_nopage_tlbm(&l, p);
2200	build_restore_work_registers(&p);
2201#ifdef CONFIG_CPU_MICROMIPS
2202	if ((unsigned long)tlb_do_page_fault_1 & 1) {
2203		uasm_i_lui(&p, K0, uasm_rel_hi((long)tlb_do_page_fault_1));
2204		uasm_i_addiu(&p, K0, K0, uasm_rel_lo((long)tlb_do_page_fault_1));
2205		uasm_i_jr(&p, K0);
2206	} else
2207#endif
2208	uasm_i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff);
2209	uasm_i_nop(&p);
2210
2211	if (p >= handle_tlbm_end)
2212		panic("TLB modify handler fastpath space exceeded");
2213
2214	uasm_resolve_relocs(relocs, labels);
2215	pr_debug("Wrote TLB modify handler fastpath (%u instructions).\n",
2216		 (unsigned int)(p - handle_tlbm));
2217
2218	dump_handler("r4000_tlb_modify", handle_tlbm, handle_tlbm_size);
2219}
2220
2221static void flush_tlb_handlers(void)
2222{
2223	local_flush_icache_range((unsigned long)handle_tlbl,
2224			   (unsigned long)handle_tlbl_end);
2225	local_flush_icache_range((unsigned long)handle_tlbs,
2226			   (unsigned long)handle_tlbs_end);
2227	local_flush_icache_range((unsigned long)handle_tlbm,
2228			   (unsigned long)handle_tlbm_end);
2229	local_flush_icache_range((unsigned long)tlbmiss_handler_setup_pgd,
2230			   (unsigned long)tlbmiss_handler_setup_pgd_end);
2231}
2232
2233static void print_htw_config(void)
2234{
2235	unsigned long config;
2236	unsigned int pwctl;
2237	const int field = 2 * sizeof(unsigned long);
2238
2239	config = read_c0_pwfield();
2240	pr_debug("PWField (0x%0*lx): GDI: 0x%02lx  UDI: 0x%02lx  MDI: 0x%02lx  PTI: 0x%02lx  PTEI: 0x%02lx\n",
2241		field, config,
2242		(config & MIPS_PWFIELD_GDI_MASK) >> MIPS_PWFIELD_GDI_SHIFT,
2243		(config & MIPS_PWFIELD_UDI_MASK) >> MIPS_PWFIELD_UDI_SHIFT,
2244		(config & MIPS_PWFIELD_MDI_MASK) >> MIPS_PWFIELD_MDI_SHIFT,
2245		(config & MIPS_PWFIELD_PTI_MASK) >> MIPS_PWFIELD_PTI_SHIFT,
2246		(config & MIPS_PWFIELD_PTEI_MASK) >> MIPS_PWFIELD_PTEI_SHIFT);
2247
2248	config = read_c0_pwsize();
2249	pr_debug("PWSize  (0x%0*lx): GDW: 0x%02lx  UDW: 0x%02lx  MDW: 0x%02lx  PTW: 0x%02lx  PTEW: 0x%02lx\n",
2250		field, config,
2251		(config & MIPS_PWSIZE_GDW_MASK) >> MIPS_PWSIZE_GDW_SHIFT,
2252		(config & MIPS_PWSIZE_UDW_MASK) >> MIPS_PWSIZE_UDW_SHIFT,
2253		(config & MIPS_PWSIZE_MDW_MASK) >> MIPS_PWSIZE_MDW_SHIFT,
2254		(config & MIPS_PWSIZE_PTW_MASK) >> MIPS_PWSIZE_PTW_SHIFT,
2255		(config & MIPS_PWSIZE_PTEW_MASK) >> MIPS_PWSIZE_PTEW_SHIFT);
2256
2257	pwctl = read_c0_pwctl();
2258	pr_debug("PWCtl   (0x%x): PWEn: 0x%x  DPH: 0x%x  HugePg: 0x%x  Psn: 0x%x\n",
2259		pwctl,
2260		(pwctl & MIPS_PWCTL_PWEN_MASK) >> MIPS_PWCTL_PWEN_SHIFT,
2261		(pwctl & MIPS_PWCTL_DPH_MASK) >> MIPS_PWCTL_DPH_SHIFT,
2262		(pwctl & MIPS_PWCTL_HUGEPG_MASK) >> MIPS_PWCTL_HUGEPG_SHIFT,
2263		(pwctl & MIPS_PWCTL_PSN_MASK) >> MIPS_PWCTL_PSN_SHIFT);
2264}
2265
2266static void config_htw_params(void)
2267{
2268	unsigned long pwfield, pwsize, ptei;
2269	unsigned int config;
2270
2271	/*
2272	 * We are using 2-level page tables, so we only need to
2273	 * setup GDW and PTW appropriately. UDW and MDW will remain 0.
2274	 * The default value of GDI/UDI/MDI/PTI is 0xc. It is illegal to
2275	 * write values less than 0xc in these fields because the entire
2276	 * write will be dropped. As a result of which, we must preserve
2277	 * the original reset values and overwrite only what we really want.
2278	 */
2279
2280	pwfield = read_c0_pwfield();
2281	/* re-initialize the GDI field */
2282	pwfield &= ~MIPS_PWFIELD_GDI_MASK;
2283	pwfield |= PGDIR_SHIFT << MIPS_PWFIELD_GDI_SHIFT;
2284	/* re-initialize the PTI field including the even/odd bit */
2285	pwfield &= ~MIPS_PWFIELD_PTI_MASK;
2286	pwfield |= PAGE_SHIFT << MIPS_PWFIELD_PTI_SHIFT;
2287	/* Set the PTEI right shift */
2288	ptei = _PAGE_GLOBAL_SHIFT << MIPS_PWFIELD_PTEI_SHIFT;
2289	pwfield |= ptei;
2290	write_c0_pwfield(pwfield);
2291	/* Check whether the PTEI value is supported */
2292	back_to_back_c0_hazard();
2293	pwfield = read_c0_pwfield();
2294	if (((pwfield & MIPS_PWFIELD_PTEI_MASK) << MIPS_PWFIELD_PTEI_SHIFT)
2295		!= ptei) {
2296		pr_warn("Unsupported PTEI field value: 0x%lx. HTW will not be enabled",
2297			ptei);
2298		/*
2299		 * Drop option to avoid HTW being enabled via another path
2300		 * (eg htw_reset())
2301		 */
2302		current_cpu_data.options &= ~MIPS_CPU_HTW;
2303		return;
2304	}
2305
2306	pwsize = ilog2(PTRS_PER_PGD) << MIPS_PWSIZE_GDW_SHIFT;
2307	pwsize |= ilog2(PTRS_PER_PTE) << MIPS_PWSIZE_PTW_SHIFT;
2308
2309	/* If XPA has been enabled, PTEs are 64-bit in size. */
2310	if (read_c0_pagegrain() & PG_ELPA)
2311		pwsize |= 1;
2312
2313	write_c0_pwsize(pwsize);
2314
2315	/* Make sure everything is set before we enable the HTW */
2316	back_to_back_c0_hazard();
2317
2318	/* Enable HTW and disable the rest of the pwctl fields */
2319	config = 1 << MIPS_PWCTL_PWEN_SHIFT;
2320	write_c0_pwctl(config);
2321	pr_info("Hardware Page Table Walker enabled\n");
2322
2323	print_htw_config();
2324}
2325
2326static void config_xpa_params(void)
2327{
2328#ifdef CONFIG_XPA
2329	unsigned int pagegrain;
2330
2331	if (mips_xpa_disabled) {
2332		pr_info("Extended Physical Addressing (XPA) disabled\n");
2333		return;
2334	}
2335
2336	pagegrain = read_c0_pagegrain();
2337	write_c0_pagegrain(pagegrain | PG_ELPA);
2338	back_to_back_c0_hazard();
2339	pagegrain = read_c0_pagegrain();
2340
2341	if (pagegrain & PG_ELPA)
2342		pr_info("Extended Physical Addressing (XPA) enabled\n");
2343	else
2344		panic("Extended Physical Addressing (XPA) disabled");
2345#endif
2346}
2347
2348void build_tlb_refill_handler(void)
2349{
2350	/*
2351	 * The refill handler is generated per-CPU, multi-node systems
2352	 * may have local storage for it. The other handlers are only
2353	 * needed once.
2354	 */
2355	static int run_once = 0;
2356
2357	output_pgtable_bits_defines();
2358
2359#ifdef CONFIG_64BIT
2360	check_for_high_segbits = current_cpu_data.vmbits > (PGDIR_SHIFT + PGD_ORDER + PAGE_SHIFT - 3);
2361#endif
2362
2363	switch (current_cpu_type()) {
2364	case CPU_R2000:
2365	case CPU_R3000:
2366	case CPU_R3000A:
2367	case CPU_R3081E:
2368	case CPU_TX3912:
2369	case CPU_TX3922:
2370	case CPU_TX3927:
2371#ifndef CONFIG_MIPS_PGD_C0_CONTEXT
2372		if (cpu_has_local_ebase)
2373			build_r3000_tlb_refill_handler();
2374		if (!run_once) {
2375			if (!cpu_has_local_ebase)
2376				build_r3000_tlb_refill_handler();
2377			build_setup_pgd();
2378			build_r3000_tlb_load_handler();
2379			build_r3000_tlb_store_handler();
2380			build_r3000_tlb_modify_handler();
2381			flush_tlb_handlers();
2382			run_once++;
2383		}
2384#else
2385		panic("No R3000 TLB refill handler");
2386#endif
2387		break;
2388
2389	case CPU_R6000:
2390	case CPU_R6000A:
2391		panic("No R6000 TLB refill handler yet");
2392		break;
2393
2394	case CPU_R8000:
2395		panic("No R8000 TLB refill handler yet");
2396		break;
2397
2398	default:
2399		if (!run_once) {
2400			scratch_reg = allocate_kscratch();
2401			build_setup_pgd();
2402			build_r4000_tlb_load_handler();
2403			build_r4000_tlb_store_handler();
2404			build_r4000_tlb_modify_handler();
2405			if (!cpu_has_local_ebase)
2406				build_r4000_tlb_refill_handler();
2407			flush_tlb_handlers();
2408			run_once++;
2409		}
2410		if (cpu_has_local_ebase)
2411			build_r4000_tlb_refill_handler();
2412		if (cpu_has_xpa)
2413			config_xpa_params();
2414		if (cpu_has_htw)
2415			config_htw_params();
2416	}
2417}
2418