1/*
2 * Initialize MMU support.
3 *
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 *	David Mosberger-Tang <davidm@hpl.hp.com>
6 */
7#include <linux/kernel.h>
8#include <linux/init.h>
9
10#include <linux/bootmem.h>
11#include <linux/efi.h>
12#include <linux/elf.h>
13#include <linux/memblock.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
16#include <linux/module.h>
17#include <linux/personality.h>
18#include <linux/reboot.h>
19#include <linux/slab.h>
20#include <linux/swap.h>
21#include <linux/proc_fs.h>
22#include <linux/bitops.h>
23#include <linux/kexec.h>
24
25#include <asm/dma.h>
26#include <asm/io.h>
27#include <asm/machvec.h>
28#include <asm/numa.h>
29#include <asm/patch.h>
30#include <asm/pgalloc.h>
31#include <asm/sal.h>
32#include <asm/sections.h>
33#include <asm/tlb.h>
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
36#include <asm/mca.h>
37#include <asm/paravirt.h>
38
39extern void ia64_tlb_init (void);
40
41unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
42
43#ifdef CONFIG_VIRTUAL_MEM_MAP
44unsigned long VMALLOC_END = VMALLOC_END_INIT;
45EXPORT_SYMBOL(VMALLOC_END);
46struct page *vmem_map;
47EXPORT_SYMBOL(vmem_map);
48#endif
49
50struct page *zero_page_memmap_ptr;	/* map entry for zero page */
51EXPORT_SYMBOL(zero_page_memmap_ptr);
52
53void
54__ia64_sync_icache_dcache (pte_t pte)
55{
56	unsigned long addr;
57	struct page *page;
58
59	page = pte_page(pte);
60	addr = (unsigned long) page_address(page);
61
62	if (test_bit(PG_arch_1, &page->flags))
63		return;				/* i-cache is already coherent with d-cache */
64
65	flush_icache_range(addr, addr + (PAGE_SIZE << compound_order(page)));
66	set_bit(PG_arch_1, &page->flags);	/* mark page as clean */
67}
68
69/*
70 * Since DMA is i-cache coherent, any (complete) pages that were written via
71 * DMA can be marked as "clean" so that lazy_mmu_prot_update() doesn't have to
72 * flush them when they get mapped into an executable vm-area.
73 */
74void
75dma_mark_clean(void *addr, size_t size)
76{
77	unsigned long pg_addr, end;
78
79	pg_addr = PAGE_ALIGN((unsigned long) addr);
80	end = (unsigned long) addr + size;
81	while (pg_addr + PAGE_SIZE <= end) {
82		struct page *page = virt_to_page(pg_addr);
83		set_bit(PG_arch_1, &page->flags);
84		pg_addr += PAGE_SIZE;
85	}
86}
87
88inline void
89ia64_set_rbs_bot (void)
90{
91	unsigned long stack_size = rlimit_max(RLIMIT_STACK) & -16;
92
93	if (stack_size > MAX_USER_STACK_SIZE)
94		stack_size = MAX_USER_STACK_SIZE;
95	current->thread.rbs_bot = PAGE_ALIGN(current->mm->start_stack - stack_size);
96}
97
98/*
99 * This performs some platform-dependent address space initialization.
100 * On IA-64, we want to setup the VM area for the register backing
101 * store (which grows upwards) and install the gateway page which is
102 * used for signal trampolines, etc.
103 */
104void
105ia64_init_addr_space (void)
106{
107	struct vm_area_struct *vma;
108
109	ia64_set_rbs_bot();
110
111	/*
112	 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
113	 * the problem.  When the process attempts to write to the register backing store
114	 * for the first time, it will get a SEGFAULT in this case.
115	 */
116	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
117	if (vma) {
118		INIT_LIST_HEAD(&vma->anon_vma_chain);
119		vma->vm_mm = current->mm;
120		vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
121		vma->vm_end = vma->vm_start + PAGE_SIZE;
122		vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
123		vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
124		down_write(&current->mm->mmap_sem);
125		if (insert_vm_struct(current->mm, vma)) {
126			up_write(&current->mm->mmap_sem);
127			kmem_cache_free(vm_area_cachep, vma);
128			return;
129		}
130		up_write(&current->mm->mmap_sem);
131	}
132
133	/* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
134	if (!(current->personality & MMAP_PAGE_ZERO)) {
135		vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
136		if (vma) {
137			INIT_LIST_HEAD(&vma->anon_vma_chain);
138			vma->vm_mm = current->mm;
139			vma->vm_end = PAGE_SIZE;
140			vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
141			vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO |
142					VM_DONTEXPAND | VM_DONTDUMP;
143			down_write(&current->mm->mmap_sem);
144			if (insert_vm_struct(current->mm, vma)) {
145				up_write(&current->mm->mmap_sem);
146				kmem_cache_free(vm_area_cachep, vma);
147				return;
148			}
149			up_write(&current->mm->mmap_sem);
150		}
151	}
152}
153
154void
155free_initmem (void)
156{
157	free_reserved_area(ia64_imva(__init_begin), ia64_imva(__init_end),
158			   -1, "unused kernel");
159}
160
161void __init
162free_initrd_mem (unsigned long start, unsigned long end)
163{
164	/*
165	 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
166	 * Thus EFI and the kernel may have different page sizes. It is
167	 * therefore possible to have the initrd share the same page as
168	 * the end of the kernel (given current setup).
169	 *
170	 * To avoid freeing/using the wrong page (kernel sized) we:
171	 *	- align up the beginning of initrd
172	 *	- align down the end of initrd
173	 *
174	 *  |             |
175	 *  |=============| a000
176	 *  |             |
177	 *  |             |
178	 *  |             | 9000
179	 *  |/////////////|
180	 *  |/////////////|
181	 *  |=============| 8000
182	 *  |///INITRD////|
183	 *  |/////////////|
184	 *  |/////////////| 7000
185	 *  |             |
186	 *  |KKKKKKKKKKKKK|
187	 *  |=============| 6000
188	 *  |KKKKKKKKKKKKK|
189	 *  |KKKKKKKKKKKKK|
190	 *  K=kernel using 8KB pages
191	 *
192	 * In this example, we must free page 8000 ONLY. So we must align up
193	 * initrd_start and keep initrd_end as is.
194	 */
195	start = PAGE_ALIGN(start);
196	end = end & PAGE_MASK;
197
198	if (start < end)
199		printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
200
201	for (; start < end; start += PAGE_SIZE) {
202		if (!virt_addr_valid(start))
203			continue;
204		free_reserved_page(virt_to_page(start));
205	}
206}
207
208/*
209 * This installs a clean page in the kernel's page table.
210 */
211static struct page * __init
212put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
213{
214	pgd_t *pgd;
215	pud_t *pud;
216	pmd_t *pmd;
217	pte_t *pte;
218
219	if (!PageReserved(page))
220		printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
221		       page_address(page));
222
223	pgd = pgd_offset_k(address);		/* note: this is NOT pgd_offset()! */
224
225	{
226		pud = pud_alloc(&init_mm, pgd, address);
227		if (!pud)
228			goto out;
229		pmd = pmd_alloc(&init_mm, pud, address);
230		if (!pmd)
231			goto out;
232		pte = pte_alloc_kernel(pmd, address);
233		if (!pte)
234			goto out;
235		if (!pte_none(*pte))
236			goto out;
237		set_pte(pte, mk_pte(page, pgprot));
238	}
239  out:
240	/* no need for flush_tlb */
241	return page;
242}
243
244static void __init
245setup_gate (void)
246{
247	void *gate_section;
248	struct page *page;
249
250	/*
251	 * Map the gate page twice: once read-only to export the ELF
252	 * headers etc. and once execute-only page to enable
253	 * privilege-promotion via "epc":
254	 */
255	gate_section = paravirt_get_gate_section();
256	page = virt_to_page(ia64_imva(gate_section));
257	put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
258#ifdef HAVE_BUGGY_SEGREL
259	page = virt_to_page(ia64_imva(gate_section + PAGE_SIZE));
260	put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
261#else
262	put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
263	/* Fill in the holes (if any) with read-only zero pages: */
264	{
265		unsigned long addr;
266
267		for (addr = GATE_ADDR + PAGE_SIZE;
268		     addr < GATE_ADDR + PERCPU_PAGE_SIZE;
269		     addr += PAGE_SIZE)
270		{
271			put_kernel_page(ZERO_PAGE(0), addr,
272					PAGE_READONLY);
273			put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
274					PAGE_READONLY);
275		}
276	}
277#endif
278	ia64_patch_gate();
279}
280
281static struct vm_area_struct gate_vma;
282
283static int __init gate_vma_init(void)
284{
285	gate_vma.vm_mm = NULL;
286	gate_vma.vm_start = FIXADDR_USER_START;
287	gate_vma.vm_end = FIXADDR_USER_END;
288	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
289	gate_vma.vm_page_prot = __P101;
290
291	return 0;
292}
293__initcall(gate_vma_init);
294
295struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
296{
297	return &gate_vma;
298}
299
300int in_gate_area_no_mm(unsigned long addr)
301{
302	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
303		return 1;
304	return 0;
305}
306
307int in_gate_area(struct mm_struct *mm, unsigned long addr)
308{
309	return in_gate_area_no_mm(addr);
310}
311
312void ia64_mmu_init(void *my_cpu_data)
313{
314	unsigned long pta, impl_va_bits;
315	extern void tlb_init(void);
316
317#ifdef CONFIG_DISABLE_VHPT
318#	define VHPT_ENABLE_BIT	0
319#else
320#	define VHPT_ENABLE_BIT	1
321#endif
322
323	/*
324	 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
325	 * address space.  The IA-64 architecture guarantees that at least 50 bits of
326	 * virtual address space are implemented but if we pick a large enough page size
327	 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
328	 * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
329	 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
330	 * problem in practice.  Alternatively, we could truncate the top of the mapped
331	 * address space to not permit mappings that would overlap with the VMLPT.
332	 * --davidm 00/12/06
333	 */
334#	define pte_bits			3
335#	define mapped_space_bits	(3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
336	/*
337	 * The virtual page table has to cover the entire implemented address space within
338	 * a region even though not all of this space may be mappable.  The reason for
339	 * this is that the Access bit and Dirty bit fault handlers perform
340	 * non-speculative accesses to the virtual page table, so the address range of the
341	 * virtual page table itself needs to be covered by virtual page table.
342	 */
343#	define vmlpt_bits		(impl_va_bits - PAGE_SHIFT + pte_bits)
344#	define POW2(n)			(1ULL << (n))
345
346	impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
347
348	if (impl_va_bits < 51 || impl_va_bits > 61)
349		panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
350	/*
351	 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
352	 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
353	 * the test makes sure that our mapped space doesn't overlap the
354	 * unimplemented hole in the middle of the region.
355	 */
356	if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
357	    (mapped_space_bits > impl_va_bits - 1))
358		panic("Cannot build a big enough virtual-linear page table"
359		      " to cover mapped address space.\n"
360		      " Try using a smaller page size.\n");
361
362
363	/* place the VMLPT at the end of each page-table mapped region: */
364	pta = POW2(61) - POW2(vmlpt_bits);
365
366	/*
367	 * Set the (virtually mapped linear) page table address.  Bit
368	 * 8 selects between the short and long format, bits 2-7 the
369	 * size of the table, and bit 0 whether the VHPT walker is
370	 * enabled.
371	 */
372	ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
373
374	ia64_tlb_init();
375
376#ifdef	CONFIG_HUGETLB_PAGE
377	ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
378	ia64_srlz_d();
379#endif
380}
381
382#ifdef CONFIG_VIRTUAL_MEM_MAP
383int vmemmap_find_next_valid_pfn(int node, int i)
384{
385	unsigned long end_address, hole_next_pfn;
386	unsigned long stop_address;
387	pg_data_t *pgdat = NODE_DATA(node);
388
389	end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
390	end_address = PAGE_ALIGN(end_address);
391	stop_address = (unsigned long) &vmem_map[pgdat_end_pfn(pgdat)];
392
393	do {
394		pgd_t *pgd;
395		pud_t *pud;
396		pmd_t *pmd;
397		pte_t *pte;
398
399		pgd = pgd_offset_k(end_address);
400		if (pgd_none(*pgd)) {
401			end_address += PGDIR_SIZE;
402			continue;
403		}
404
405		pud = pud_offset(pgd, end_address);
406		if (pud_none(*pud)) {
407			end_address += PUD_SIZE;
408			continue;
409		}
410
411		pmd = pmd_offset(pud, end_address);
412		if (pmd_none(*pmd)) {
413			end_address += PMD_SIZE;
414			continue;
415		}
416
417		pte = pte_offset_kernel(pmd, end_address);
418retry_pte:
419		if (pte_none(*pte)) {
420			end_address += PAGE_SIZE;
421			pte++;
422			if ((end_address < stop_address) &&
423			    (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
424				goto retry_pte;
425			continue;
426		}
427		/* Found next valid vmem_map page */
428		break;
429	} while (end_address < stop_address);
430
431	end_address = min(end_address, stop_address);
432	end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
433	hole_next_pfn = end_address / sizeof(struct page);
434	return hole_next_pfn - pgdat->node_start_pfn;
435}
436
437int __init create_mem_map_page_table(u64 start, u64 end, void *arg)
438{
439	unsigned long address, start_page, end_page;
440	struct page *map_start, *map_end;
441	int node;
442	pgd_t *pgd;
443	pud_t *pud;
444	pmd_t *pmd;
445	pte_t *pte;
446
447	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
448	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
449
450	start_page = (unsigned long) map_start & PAGE_MASK;
451	end_page = PAGE_ALIGN((unsigned long) map_end);
452	node = paddr_to_nid(__pa(start));
453
454	for (address = start_page; address < end_page; address += PAGE_SIZE) {
455		pgd = pgd_offset_k(address);
456		if (pgd_none(*pgd))
457			pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
458		pud = pud_offset(pgd, address);
459
460		if (pud_none(*pud))
461			pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
462		pmd = pmd_offset(pud, address);
463
464		if (pmd_none(*pmd))
465			pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
466		pte = pte_offset_kernel(pmd, address);
467
468		if (pte_none(*pte))
469			set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
470					     PAGE_KERNEL));
471	}
472	return 0;
473}
474
475struct memmap_init_callback_data {
476	struct page *start;
477	struct page *end;
478	int nid;
479	unsigned long zone;
480};
481
482static int __meminit
483virtual_memmap_init(u64 start, u64 end, void *arg)
484{
485	struct memmap_init_callback_data *args;
486	struct page *map_start, *map_end;
487
488	args = (struct memmap_init_callback_data *) arg;
489	map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
490	map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
491
492	if (map_start < args->start)
493		map_start = args->start;
494	if (map_end > args->end)
495		map_end = args->end;
496
497	/*
498	 * We have to initialize "out of bounds" struct page elements that fit completely
499	 * on the same pages that were allocated for the "in bounds" elements because they
500	 * may be referenced later (and found to be "reserved").
501	 */
502	map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
503	map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
504		    / sizeof(struct page));
505
506	if (map_start < map_end)
507		memmap_init_zone((unsigned long)(map_end - map_start),
508				 args->nid, args->zone, page_to_pfn(map_start),
509				 MEMMAP_EARLY);
510	return 0;
511}
512
513void __meminit
514memmap_init (unsigned long size, int nid, unsigned long zone,
515	     unsigned long start_pfn)
516{
517	if (!vmem_map)
518		memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
519	else {
520		struct page *start;
521		struct memmap_init_callback_data args;
522
523		start = pfn_to_page(start_pfn);
524		args.start = start;
525		args.end = start + size;
526		args.nid = nid;
527		args.zone = zone;
528
529		efi_memmap_walk(virtual_memmap_init, &args);
530	}
531}
532
533int
534ia64_pfn_valid (unsigned long pfn)
535{
536	char byte;
537	struct page *pg = pfn_to_page(pfn);
538
539	return     (__get_user(byte, (char __user *) pg) == 0)
540		&& ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
541			|| (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
542}
543EXPORT_SYMBOL(ia64_pfn_valid);
544
545int __init find_largest_hole(u64 start, u64 end, void *arg)
546{
547	u64 *max_gap = arg;
548
549	static u64 last_end = PAGE_OFFSET;
550
551	/* NOTE: this algorithm assumes efi memmap table is ordered */
552
553	if (*max_gap < (start - last_end))
554		*max_gap = start - last_end;
555	last_end = end;
556	return 0;
557}
558
559#endif /* CONFIG_VIRTUAL_MEM_MAP */
560
561int __init register_active_ranges(u64 start, u64 len, int nid)
562{
563	u64 end = start + len;
564
565#ifdef CONFIG_KEXEC
566	if (start > crashk_res.start && start < crashk_res.end)
567		start = crashk_res.end;
568	if (end > crashk_res.start && end < crashk_res.end)
569		end = crashk_res.start;
570#endif
571
572	if (start < end)
573		memblock_add_node(__pa(start), end - start, nid);
574	return 0;
575}
576
577int
578find_max_min_low_pfn (u64 start, u64 end, void *arg)
579{
580	unsigned long pfn_start, pfn_end;
581#ifdef CONFIG_FLATMEM
582	pfn_start = (PAGE_ALIGN(__pa(start))) >> PAGE_SHIFT;
583	pfn_end = (PAGE_ALIGN(__pa(end - 1))) >> PAGE_SHIFT;
584#else
585	pfn_start = GRANULEROUNDDOWN(__pa(start)) >> PAGE_SHIFT;
586	pfn_end = GRANULEROUNDUP(__pa(end - 1)) >> PAGE_SHIFT;
587#endif
588	min_low_pfn = min(min_low_pfn, pfn_start);
589	max_low_pfn = max(max_low_pfn, pfn_end);
590	return 0;
591}
592
593/*
594 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
595 * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
596 * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
597 * useful for performance testing, but conceivably could also come in handy for debugging
598 * purposes.
599 */
600
601static int nolwsys __initdata;
602
603static int __init
604nolwsys_setup (char *s)
605{
606	nolwsys = 1;
607	return 1;
608}
609
610__setup("nolwsys", nolwsys_setup);
611
612void __init
613mem_init (void)
614{
615	int i;
616
617	BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
618	BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
619	BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
620
621#ifdef CONFIG_PCI
622	/*
623	 * This needs to be called _after_ the command line has been parsed but _before_
624	 * any drivers that may need the PCI DMA interface are initialized or bootmem has
625	 * been freed.
626	 */
627	platform_dma_init();
628#endif
629
630#ifdef CONFIG_FLATMEM
631	BUG_ON(!mem_map);
632#endif
633
634	set_max_mapnr(max_low_pfn);
635	high_memory = __va(max_low_pfn * PAGE_SIZE);
636	free_all_bootmem();
637	mem_init_print_info(NULL);
638
639	/*
640	 * For fsyscall entrpoints with no light-weight handler, use the ordinary
641	 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
642	 * code can tell them apart.
643	 */
644	for (i = 0; i < NR_syscalls; ++i) {
645		extern unsigned long sys_call_table[NR_syscalls];
646		unsigned long *fsyscall_table = paravirt_get_fsyscall_table();
647
648		if (!fsyscall_table[i] || nolwsys)
649			fsyscall_table[i] = sys_call_table[i] | 1;
650	}
651	setup_gate();
652}
653
654#ifdef CONFIG_MEMORY_HOTPLUG
655int arch_add_memory(int nid, u64 start, u64 size)
656{
657	pg_data_t *pgdat;
658	struct zone *zone;
659	unsigned long start_pfn = start >> PAGE_SHIFT;
660	unsigned long nr_pages = size >> PAGE_SHIFT;
661	int ret;
662
663	pgdat = NODE_DATA(nid);
664
665	zone = pgdat->node_zones +
666		zone_for_memory(nid, start, size, ZONE_NORMAL);
667	ret = __add_pages(nid, zone, start_pfn, nr_pages);
668
669	if (ret)
670		printk("%s: Problem encountered in __add_pages() as ret=%d\n",
671		       __func__,  ret);
672
673	return ret;
674}
675
676#ifdef CONFIG_MEMORY_HOTREMOVE
677int arch_remove_memory(u64 start, u64 size)
678{
679	unsigned long start_pfn = start >> PAGE_SHIFT;
680	unsigned long nr_pages = size >> PAGE_SHIFT;
681	struct zone *zone;
682	int ret;
683
684	zone = page_zone(pfn_to_page(start_pfn));
685	ret = __remove_pages(zone, start_pfn, nr_pages);
686	if (ret)
687		pr_warn("%s: Problem encountered in __remove_pages() as"
688			" ret=%d\n", __func__,  ret);
689
690	return ret;
691}
692#endif
693#endif
694
695/**
696 * show_mem - give short summary of memory stats
697 *
698 * Shows a simple page count of reserved and used pages in the system.
699 * For discontig machines, it does this on a per-pgdat basis.
700 */
701void show_mem(unsigned int filter)
702{
703	int total_reserved = 0;
704	unsigned long total_present = 0;
705	pg_data_t *pgdat;
706
707	printk(KERN_INFO "Mem-info:\n");
708	show_free_areas(filter);
709	printk(KERN_INFO "Node memory in pages:\n");
710	for_each_online_pgdat(pgdat) {
711		unsigned long present;
712		unsigned long flags;
713		int reserved = 0;
714		int nid = pgdat->node_id;
715		int zoneid;
716
717		if (skip_free_areas_node(filter, nid))
718			continue;
719		pgdat_resize_lock(pgdat, &flags);
720
721		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
722			struct zone *zone = &pgdat->node_zones[zoneid];
723			if (!populated_zone(zone))
724				continue;
725
726			reserved += zone->present_pages - zone->managed_pages;
727		}
728		present = pgdat->node_present_pages;
729
730		pgdat_resize_unlock(pgdat, &flags);
731		total_present += present;
732		total_reserved += reserved;
733		printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, ",
734		       nid, present, reserved);
735	}
736	printk(KERN_INFO "%ld pages of RAM\n", total_present);
737	printk(KERN_INFO "%d reserved pages\n", total_reserved);
738	printk(KERN_INFO "Total of %ld pages in page table cache\n",
739	       quicklist_total_size());
740	printk(KERN_INFO "%ld free buffer pages\n", nr_free_buffer_pages());
741}
742