1/*
2 * Copyright 2007-2008 Analog Devices Inc.
3 *              Philippe Gerum <rpm@xenomai.org>
4 *
5 * Licensed under the GPL-2 or later.
6 */
7
8#include <linux/linkage.h>
9#include <asm/blackfin.h>
10#include <asm/cache.h>
11#include <asm/asm-offsets.h>
12#include <asm/rwlock.h>
13#include <asm/cplb.h>
14
15.text
16
17.macro coreslot_loadaddr reg:req
18	\reg\().l = _corelock;
19	\reg\().h = _corelock;
20.endm
21
22.macro safe_testset addr:req, scratch:req
23#if ANOMALY_05000477
24	cli \scratch;
25	testset (\addr);
26	sti \scratch;
27#else
28	testset (\addr);
29#endif
30.endm
31
32/*
33 * r0 = address of atomic data to flush and invalidate (32bit).
34 *
35 * Clear interrupts and return the old mask.
36 * We assume that no atomic data can span cachelines.
37 *
38 * Clobbers: r2:0, p0
39 */
40ENTRY(_get_core_lock)
41	r1 = -L1_CACHE_BYTES;
42	r1 = r0 & r1;
43	cli r0;
44	coreslot_loadaddr p0;
45.Lretry_corelock:
46	safe_testset p0, r2;
47	if cc jump .Ldone_corelock;
48	SSYNC(r2);
49	jump .Lretry_corelock
50.Ldone_corelock:
51	p0 = r1;
52	/* flush core internal write buffer before invalidate dcache */
53	CSYNC(r2);
54	flushinv[p0];
55	SSYNC(r2);
56	rts;
57ENDPROC(_get_core_lock)
58
59/*
60 * r0 = address of atomic data in uncacheable memory region (32bit).
61 *
62 * Clear interrupts and return the old mask.
63 *
64 * Clobbers: r0, p0
65 */
66ENTRY(_get_core_lock_noflush)
67	cli r0;
68	coreslot_loadaddr p0;
69.Lretry_corelock_noflush:
70	safe_testset p0, r2;
71	if cc jump .Ldone_corelock_noflush;
72	SSYNC(r2);
73	jump .Lretry_corelock_noflush
74.Ldone_corelock_noflush:
75	/*
76	 * SMP kgdb runs into dead loop without NOP here, when one core
77	 * single steps over get_core_lock_noflush and the other executes
78	 * get_core_lock as a slave node.
79	 */
80	nop;
81	CSYNC(r2);
82	rts;
83ENDPROC(_get_core_lock_noflush)
84
85/*
86 * r0 = interrupt mask to restore.
87 * r1 = address of atomic data to flush and invalidate (32bit).
88 *
89 * Interrupts are masked on entry (see _get_core_lock).
90 * Clobbers: r2:0, p0
91 */
92ENTRY(_put_core_lock)
93	/* Write-through cache assumed, so no flush needed here. */
94	coreslot_loadaddr p0;
95	r1 = 0;
96	[p0] = r1;
97	SSYNC(r2);
98	sti r0;
99	rts;
100ENDPROC(_put_core_lock)
101
102#ifdef __ARCH_SYNC_CORE_DCACHE
103
104ENTRY(___raw_smp_mark_barrier_asm)
105	[--sp] = rets;
106	[--sp] = ( r7:5 );
107	[--sp] = r0;
108	[--sp] = p1;
109	[--sp] = p0;
110	call _get_core_lock_noflush;
111
112	/*
113	 * Calculate current core mask
114	 */
115	GET_CPUID(p1, r7);
116	r6 = 1;
117	r6 <<= r7;
118
119	/*
120	 * Set bit of other cores in barrier mask. Don't change current core bit.
121	 */
122	p1.l = _barrier_mask;
123	p1.h = _barrier_mask;
124	r7 = [p1];
125	r5 = r7 & r6;
126	r7 = ~r6;
127	cc = r5 == 0;
128	if cc jump 1f;
129	r7 = r7 | r6;
1301:
131	[p1] = r7;
132	SSYNC(r2);
133
134	call _put_core_lock;
135	p0 = [sp++];
136	p1 = [sp++];
137	r0 = [sp++];
138	( r7:5 ) = [sp++];
139	rets = [sp++];
140	rts;
141ENDPROC(___raw_smp_mark_barrier_asm)
142
143ENTRY(___raw_smp_check_barrier_asm)
144	[--sp] = rets;
145	[--sp] = ( r7:5 );
146	[--sp] = r0;
147	[--sp] = p1;
148	[--sp] = p0;
149	call _get_core_lock_noflush;
150
151	/*
152	 * Calculate current core mask
153	 */
154	GET_CPUID(p1, r7);
155	r6 = 1;
156	r6 <<= r7;
157
158	/*
159	 * Clear current core bit in barrier mask if it is set.
160	 */
161	p1.l = _barrier_mask;
162	p1.h = _barrier_mask;
163	r7 = [p1];
164	r5 = r7 & r6;
165	cc = r5 == 0;
166	if cc jump 1f;
167	r6 = ~r6;
168	r7 = r7 & r6;
169	[p1] = r7;
170	SSYNC(r2);
171
172	call _put_core_lock;
173
174	/*
175	 * Invalidate the entire D-cache of current core.
176	 */
177	sp += -12;
178	call _resync_core_dcache
179	sp += 12;
180	jump 2f;
1811:
182	call _put_core_lock;
1832:
184	p0 = [sp++];
185	p1 = [sp++];
186	r0 = [sp++];
187	( r7:5 ) = [sp++];
188	rets = [sp++];
189	rts;
190ENDPROC(___raw_smp_check_barrier_asm)
191
192/*
193 * r0 = irqflags
194 * r1 = address of atomic data
195 *
196 * Clobbers: r2:0, p1:0
197 */
198_start_lock_coherent:
199
200	[--sp] = rets;
201	[--sp] = ( r7:6 );
202	r7 = r0;
203	p1 = r1;
204
205	/*
206	 * Determine whether the atomic data was previously
207	 * owned by another CPU (=r6).
208	 */
209	GET_CPUID(p0, r2);
210	r1 = 1;
211	r1 <<= r2;
212	r2 = ~r1;
213
214	r1 = [p1];
215	r1 >>= 28;   /* CPU fingerprints are stored in the high nibble. */
216	r6 = r1 & r2;
217	r1 = [p1];
218	r1 <<= 4;
219	r1 >>= 4;
220	[p1] = r1;
221
222	/*
223	 * Release the core lock now, but keep IRQs disabled while we are
224	 * performing the remaining housekeeping chores for the current CPU.
225	 */
226	coreslot_loadaddr p0;
227	r1 = 0;
228	[p0] = r1;
229
230	/*
231	 * If another CPU has owned the same atomic section before us,
232	 * then our D-cached copy of the shared data protected by the
233	 * current spin/write_lock may be obsolete.
234	 */
235	cc = r6 == 0;
236	if cc jump .Lcache_synced
237
238	/*
239	 * Invalidate the entire D-cache of the current core.
240	 */
241	sp += -12;
242	call _resync_core_dcache
243	sp += 12;
244
245.Lcache_synced:
246	SSYNC(r2);
247	sti r7;
248	( r7:6 ) = [sp++];
249	rets = [sp++];
250	rts
251
252/*
253 * r0 = irqflags
254 * r1 = address of atomic data
255 *
256 * Clobbers: r2:0, p1:0
257 */
258_end_lock_coherent:
259
260	p1 = r1;
261	GET_CPUID(p0, r2);
262	r2 += 28;
263	r1 = 1;
264	r1 <<= r2;
265	r2 = [p1];
266	r2 = r1 | r2;
267	[p1] = r2;
268	r1 = p1;
269	jump _put_core_lock;
270
271#endif /* __ARCH_SYNC_CORE_DCACHE */
272
273/*
274 * r0 = &spinlock->lock
275 *
276 * Clobbers: r3:0, p1:0
277 */
278ENTRY(___raw_spin_is_locked_asm)
279	p1 = r0;
280	[--sp] = rets;
281	call _get_core_lock;
282	r3 = [p1];
283	cc = bittst( r3, 0 );
284	r3 = cc;
285	r1 = p1;
286	call _put_core_lock;
287	rets = [sp++];
288	r0 = r3;
289	rts;
290ENDPROC(___raw_spin_is_locked_asm)
291
292/*
293 * r0 = &spinlock->lock
294 *
295 * Clobbers: r3:0, p1:0
296 */
297ENTRY(___raw_spin_lock_asm)
298	p1 = r0;
299	[--sp] = rets;
300.Lretry_spinlock:
301	call _get_core_lock;
302	r1 = p1;
303	r2 = [p1];
304	cc = bittst( r2, 0 );
305	if cc jump .Lbusy_spinlock
306#ifdef __ARCH_SYNC_CORE_DCACHE
307	r3 = p1;
308	bitset ( r2, 0 ); /* Raise the lock bit. */
309	[p1] = r2;
310	call _start_lock_coherent
311#else
312	r2 = 1;
313	[p1] = r2;
314	call _put_core_lock;
315#endif
316	rets = [sp++];
317	rts;
318
319.Lbusy_spinlock:
320	/* We don't touch the atomic area if busy, so that flush
321	   will behave like nop in _put_core_lock. */
322	call _put_core_lock;
323	SSYNC(r2);
324	r0 = p1;
325	jump .Lretry_spinlock
326ENDPROC(___raw_spin_lock_asm)
327
328/*
329 * r0 = &spinlock->lock
330 *
331 * Clobbers: r3:0, p1:0
332 */
333ENTRY(___raw_spin_trylock_asm)
334	p1 = r0;
335	[--sp] = rets;
336	call _get_core_lock;
337	r1 = p1;
338	r3 = [p1];
339	cc = bittst( r3, 0 );
340	if cc jump .Lfailed_trylock
341#ifdef __ARCH_SYNC_CORE_DCACHE
342	bitset ( r3, 0 ); /* Raise the lock bit. */
343	[p1] = r3;
344	call _start_lock_coherent
345#else
346	r2 = 1;
347	[p1] = r2;
348	call _put_core_lock;
349#endif
350	r0 = 1;
351	rets = [sp++];
352	rts;
353.Lfailed_trylock:
354	call _put_core_lock;
355	r0 = 0;
356	rets = [sp++];
357	rts;
358ENDPROC(___raw_spin_trylock_asm)
359
360/*
361 * r0 = &spinlock->lock
362 *
363 * Clobbers: r2:0, p1:0
364 */
365ENTRY(___raw_spin_unlock_asm)
366	p1 = r0;
367	[--sp] = rets;
368	call _get_core_lock;
369	r2 = [p1];
370	bitclr ( r2, 0 );
371	[p1] = r2;
372	r1 = p1;
373#ifdef __ARCH_SYNC_CORE_DCACHE
374	call _end_lock_coherent
375#else
376	call _put_core_lock;
377#endif
378	rets = [sp++];
379	rts;
380ENDPROC(___raw_spin_unlock_asm)
381
382/*
383 * r0 = &rwlock->lock
384 *
385 * Clobbers: r2:0, p1:0
386 */
387ENTRY(___raw_read_lock_asm)
388	p1 = r0;
389	[--sp] = rets;
390	call _get_core_lock;
391.Lrdlock_try:
392	r1 = [p1];
393	r1 += -1;
394	[p1] = r1;
395	cc = r1 < 0;
396	if cc jump .Lrdlock_failed
397	r1 = p1;
398#ifdef __ARCH_SYNC_CORE_DCACHE
399	call _start_lock_coherent
400#else
401	call _put_core_lock;
402#endif
403	rets = [sp++];
404	rts;
405
406.Lrdlock_failed:
407	r1 += 1;
408	[p1] = r1;
409.Lrdlock_wait:
410	r1 = p1;
411	call _put_core_lock;
412	SSYNC(r2);
413	r0 = p1;
414	call _get_core_lock;
415	r1 = [p1];
416	cc = r1 < 2;
417	if cc jump .Lrdlock_wait;
418	jump .Lrdlock_try
419ENDPROC(___raw_read_lock_asm)
420
421/*
422 * r0 = &rwlock->lock
423 *
424 * Clobbers: r3:0, p1:0
425 */
426ENTRY(___raw_read_trylock_asm)
427	p1 = r0;
428	[--sp] = rets;
429	call _get_core_lock;
430	r1 = [p1];
431	cc = r1 <= 0;
432	if cc jump .Lfailed_tryrdlock;
433	r1 += -1;
434	[p1] = r1;
435	r1 = p1;
436#ifdef __ARCH_SYNC_CORE_DCACHE
437	call _start_lock_coherent
438#else
439	call _put_core_lock;
440#endif
441	rets = [sp++];
442	r0 = 1;
443	rts;
444.Lfailed_tryrdlock:
445	r1 = p1;
446	call _put_core_lock;
447	rets = [sp++];
448	r0 = 0;
449	rts;
450ENDPROC(___raw_read_trylock_asm)
451
452/*
453 * r0 = &rwlock->lock
454 *
455 * Note: Processing controlled by a reader lock should not have
456 * any side-effect on cache issues with the other core, so we
457 * just release the core lock and exit (no _end_lock_coherent).
458 *
459 * Clobbers: r3:0, p1:0
460 */
461ENTRY(___raw_read_unlock_asm)
462	p1 = r0;
463	[--sp] = rets;
464	call _get_core_lock;
465	r1 = [p1];
466	r1 += 1;
467	[p1] = r1;
468	r1 = p1;
469	call _put_core_lock;
470	rets = [sp++];
471	rts;
472ENDPROC(___raw_read_unlock_asm)
473
474/*
475 * r0 = &rwlock->lock
476 *
477 * Clobbers: r3:0, p1:0
478 */
479ENTRY(___raw_write_lock_asm)
480	p1 = r0;
481	r3.l = lo(RW_LOCK_BIAS);
482	r3.h = hi(RW_LOCK_BIAS);
483	[--sp] = rets;
484	call _get_core_lock;
485.Lwrlock_try:
486	r1 = [p1];
487	r1 = r1 - r3;
488#ifdef __ARCH_SYNC_CORE_DCACHE
489	r2 = r1;
490	r2 <<= 4;
491	r2 >>= 4;
492	cc = r2 == 0;
493#else
494	cc = r1 == 0;
495#endif
496	if !cc jump .Lwrlock_wait
497	[p1] = r1;
498	r1 = p1;
499#ifdef __ARCH_SYNC_CORE_DCACHE
500	call _start_lock_coherent
501#else
502	call _put_core_lock;
503#endif
504	rets = [sp++];
505	rts;
506
507.Lwrlock_wait:
508	r1 = p1;
509	call _put_core_lock;
510	SSYNC(r2);
511	r0 = p1;
512	call _get_core_lock;
513	r1 = [p1];
514#ifdef __ARCH_SYNC_CORE_DCACHE
515	r1 <<= 4;
516	r1 >>= 4;
517#endif
518	cc = r1 == r3;
519	if !cc jump .Lwrlock_wait;
520	jump .Lwrlock_try
521ENDPROC(___raw_write_lock_asm)
522
523/*
524 * r0 = &rwlock->lock
525 *
526 * Clobbers: r3:0, p1:0
527 */
528ENTRY(___raw_write_trylock_asm)
529	p1 = r0;
530	[--sp] = rets;
531	call _get_core_lock;
532	r1 = [p1];
533	r2.l = lo(RW_LOCK_BIAS);
534	r2.h = hi(RW_LOCK_BIAS);
535	cc = r1 == r2;
536	if !cc jump .Lfailed_trywrlock;
537#ifdef __ARCH_SYNC_CORE_DCACHE
538	r1 >>= 28;
539	r1 <<= 28;
540#else
541	r1 = 0;
542#endif
543	[p1] = r1;
544	r1 = p1;
545#ifdef __ARCH_SYNC_CORE_DCACHE
546	call _start_lock_coherent
547#else
548	call _put_core_lock;
549#endif
550	rets = [sp++];
551	r0 = 1;
552	rts;
553
554.Lfailed_trywrlock:
555	r1 = p1;
556	call _put_core_lock;
557	rets = [sp++];
558	r0 = 0;
559	rts;
560ENDPROC(___raw_write_trylock_asm)
561
562/*
563 * r0 = &rwlock->lock
564 *
565 * Clobbers: r3:0, p1:0
566 */
567ENTRY(___raw_write_unlock_asm)
568	p1 = r0;
569	r3.l = lo(RW_LOCK_BIAS);
570	r3.h = hi(RW_LOCK_BIAS);
571	[--sp] = rets;
572	call _get_core_lock;
573	r1 = [p1];
574	r1 = r1 + r3;
575	[p1] = r1;
576	r1 = p1;
577#ifdef __ARCH_SYNC_CORE_DCACHE
578	call _end_lock_coherent
579#else
580	call _put_core_lock;
581#endif
582	rets = [sp++];
583	rts;
584ENDPROC(___raw_write_unlock_asm)
585
586/*
587 * r0 = ptr
588 * r1 = value
589 *
590 * Add a signed value to a 32bit word and return the new value atomically.
591 * Clobbers: r3:0, p1:0
592 */
593ENTRY(___raw_atomic_update_asm)
594	p1 = r0;
595	r3 = r1;
596	[--sp] = rets;
597	call _get_core_lock;
598	r2 = [p1];
599	r3 = r3 + r2;
600	[p1] = r3;
601	r1 = p1;
602	call _put_core_lock;
603	r0 = r3;
604	rets = [sp++];
605	rts;
606ENDPROC(___raw_atomic_update_asm)
607
608/*
609 * r0 = ptr
610 * r1 = mask
611 *
612 * Clear the mask bits from a 32bit word and return the old 32bit value
613 * atomically.
614 * Clobbers: r3:0, p1:0
615 */
616ENTRY(___raw_atomic_clear_asm)
617	p1 = r0;
618	r3 = ~r1;
619	[--sp] = rets;
620	call _get_core_lock;
621	r2 = [p1];
622	r3 = r2 & r3;
623	[p1] = r3;
624	r3 = r2;
625	r1 = p1;
626	call _put_core_lock;
627	r0 = r3;
628	rets = [sp++];
629	rts;
630ENDPROC(___raw_atomic_clear_asm)
631
632/*
633 * r0 = ptr
634 * r1 = mask
635 *
636 * Set the mask bits into a 32bit word and return the old 32bit value
637 * atomically.
638 * Clobbers: r3:0, p1:0
639 */
640ENTRY(___raw_atomic_set_asm)
641	p1 = r0;
642	r3 = r1;
643	[--sp] = rets;
644	call _get_core_lock;
645	r2 = [p1];
646	r3 = r2 | r3;
647	[p1] = r3;
648	r3 = r2;
649	r1 = p1;
650	call _put_core_lock;
651	r0 = r3;
652	rets = [sp++];
653	rts;
654ENDPROC(___raw_atomic_set_asm)
655
656/*
657 * r0 = ptr
658 * r1 = mask
659 *
660 * XOR the mask bits with a 32bit word and return the old 32bit value
661 * atomically.
662 * Clobbers: r3:0, p1:0
663 */
664ENTRY(___raw_atomic_xor_asm)
665	p1 = r0;
666	r3 = r1;
667	[--sp] = rets;
668	call _get_core_lock;
669	r2 = [p1];
670	r3 = r2 ^ r3;
671	[p1] = r3;
672	r3 = r2;
673	r1 = p1;
674	call _put_core_lock;
675	r0 = r3;
676	rets = [sp++];
677	rts;
678ENDPROC(___raw_atomic_xor_asm)
679
680/*
681 * r0 = ptr
682 * r1 = mask
683 *
684 * Perform a logical AND between the mask bits and a 32bit word, and
685 * return the masked value. We need this on this architecture in
686 * order to invalidate the local cache before testing.
687 *
688 * Clobbers: r3:0, p1:0
689 */
690ENTRY(___raw_atomic_test_asm)
691	p1 = r0;
692	r3 = r1;
693	r1 = -L1_CACHE_BYTES;
694	r1 = r0 & r1;
695	p0 = r1;
696	/* flush core internal write buffer before invalidate dcache */
697	CSYNC(r2);
698	flushinv[p0];
699	SSYNC(r2);
700	r0 = [p1];
701	r0 = r0 & r3;
702	rts;
703ENDPROC(___raw_atomic_test_asm)
704
705/*
706 * r0 = ptr
707 * r1 = value
708 *
709 * Swap *ptr with value and return the old 32bit value atomically.
710 * Clobbers: r3:0, p1:0
711 */
712#define	__do_xchg(src, dst) 		\
713	p1 = r0;			\
714	r3 = r1;			\
715	[--sp] = rets;			\
716	call _get_core_lock;		\
717	r2 = src;			\
718	dst = r3;			\
719	r3 = r2;			\
720	r1 = p1;			\
721	call _put_core_lock;		\
722	r0 = r3;			\
723	rets = [sp++];			\
724	rts;
725
726ENTRY(___raw_xchg_1_asm)
727	__do_xchg(b[p1] (z), b[p1])
728ENDPROC(___raw_xchg_1_asm)
729
730ENTRY(___raw_xchg_2_asm)
731	__do_xchg(w[p1] (z), w[p1])
732ENDPROC(___raw_xchg_2_asm)
733
734ENTRY(___raw_xchg_4_asm)
735	__do_xchg([p1], [p1])
736ENDPROC(___raw_xchg_4_asm)
737
738/*
739 * r0 = ptr
740 * r1 = new
741 * r2 = old
742 *
743 * Swap *ptr with new if *ptr == old and return the previous *ptr
744 * value atomically.
745 *
746 * Clobbers: r3:0, p1:0
747 */
748#define	__do_cmpxchg(src, dst) 		\
749	[--sp] = rets;			\
750	[--sp] = r4;			\
751	p1 = r0;			\
752	r3 = r1;			\
753	r4 = r2;			\
754	call _get_core_lock;		\
755	r2 = src;			\
756	cc = r2 == r4;			\
757	if !cc jump 1f;			\
758	dst = r3;			\
759     1: r3 = r2;			\
760	r1 = p1;			\
761	call _put_core_lock;		\
762	r0 = r3;			\
763	r4 = [sp++];			\
764	rets = [sp++];			\
765	rts;
766
767ENTRY(___raw_cmpxchg_1_asm)
768	__do_cmpxchg(b[p1] (z), b[p1])
769ENDPROC(___raw_cmpxchg_1_asm)
770
771ENTRY(___raw_cmpxchg_2_asm)
772	__do_cmpxchg(w[p1] (z), w[p1])
773ENDPROC(___raw_cmpxchg_2_asm)
774
775ENTRY(___raw_cmpxchg_4_asm)
776	__do_cmpxchg([p1], [p1])
777ENDPROC(___raw_cmpxchg_4_asm)
778
779/*
780 * r0 = ptr
781 * r1 = bitnr
782 *
783 * Set a bit in a 32bit word and return the old 32bit value atomically.
784 * Clobbers: r3:0, p1:0
785 */
786ENTRY(___raw_bit_set_asm)
787	r2 = r1;
788	r1 = 1;
789	r1 <<= r2;
790	jump ___raw_atomic_set_asm
791ENDPROC(___raw_bit_set_asm)
792
793/*
794 * r0 = ptr
795 * r1 = bitnr
796 *
797 * Clear a bit in a 32bit word and return the old 32bit value atomically.
798 * Clobbers: r3:0, p1:0
799 */
800ENTRY(___raw_bit_clear_asm)
801	r2 = r1;
802	r1 = 1;
803	r1 <<= r2;
804	jump ___raw_atomic_clear_asm
805ENDPROC(___raw_bit_clear_asm)
806
807/*
808 * r0 = ptr
809 * r1 = bitnr
810 *
811 * Toggle a bit in a 32bit word and return the old 32bit value atomically.
812 * Clobbers: r3:0, p1:0
813 */
814ENTRY(___raw_bit_toggle_asm)
815	r2 = r1;
816	r1 = 1;
817	r1 <<= r2;
818	jump ___raw_atomic_xor_asm
819ENDPROC(___raw_bit_toggle_asm)
820
821/*
822 * r0 = ptr
823 * r1 = bitnr
824 *
825 * Test-and-set a bit in a 32bit word and return the old bit value atomically.
826 * Clobbers: r3:0, p1:0
827 */
828ENTRY(___raw_bit_test_set_asm)
829	[--sp] = rets;
830	[--sp] = r1;
831	call ___raw_bit_set_asm
832	r1 = [sp++];
833	r2 = 1;
834	r2 <<= r1;
835	r0 = r0 & r2;
836	cc = r0 == 0;
837	if cc jump 1f
838	r0 = 1;
8391:
840	rets = [sp++];
841	rts;
842ENDPROC(___raw_bit_test_set_asm)
843
844/*
845 * r0 = ptr
846 * r1 = bitnr
847 *
848 * Test-and-clear a bit in a 32bit word and return the old bit value atomically.
849 * Clobbers: r3:0, p1:0
850 */
851ENTRY(___raw_bit_test_clear_asm)
852	[--sp] = rets;
853	[--sp] = r1;
854	call ___raw_bit_clear_asm
855	r1 = [sp++];
856	r2 = 1;
857	r2 <<= r1;
858	r0 = r0 & r2;
859	cc = r0 == 0;
860	if cc jump 1f
861	r0 = 1;
8621:
863	rets = [sp++];
864	rts;
865ENDPROC(___raw_bit_test_clear_asm)
866
867/*
868 * r0 = ptr
869 * r1 = bitnr
870 *
871 * Test-and-toggle a bit in a 32bit word,
872 * and return the old bit value atomically.
873 * Clobbers: r3:0, p1:0
874 */
875ENTRY(___raw_bit_test_toggle_asm)
876	[--sp] = rets;
877	[--sp] = r1;
878	call ___raw_bit_toggle_asm
879	r1 = [sp++];
880	r2 = 1;
881	r2 <<= r1;
882	r0 = r0 & r2;
883	cc = r0 == 0;
884	if cc jump 1f
885	r0 = 1;
8861:
887	rets = [sp++];
888	rts;
889ENDPROC(___raw_bit_test_toggle_asm)
890
891/*
892 * r0 = ptr
893 * r1 = bitnr
894 *
895 * Test a bit in a 32bit word and return its value.
896 * We need this on this architecture in order to invalidate
897 * the local cache before testing.
898 *
899 * Clobbers: r3:0, p1:0
900 */
901ENTRY(___raw_bit_test_asm)
902	r2 = r1;
903	r1 = 1;
904	r1 <<= r2;
905	jump ___raw_atomic_test_asm
906ENDPROC(___raw_bit_test_asm)
907
908/*
909 * r0 = ptr
910 *
911 * Fetch and return an uncached 32bit value.
912 *
913 * Clobbers: r2:0, p1:0
914 */
915ENTRY(___raw_uncached_fetch_asm)
916	p1 = r0;
917	r1 = -L1_CACHE_BYTES;
918	r1 = r0 & r1;
919	p0 = r1;
920	/* flush core internal write buffer before invalidate dcache */
921	CSYNC(r2);
922	flushinv[p0];
923	SSYNC(r2);
924	r0 = [p1];
925	rts;
926ENDPROC(___raw_uncached_fetch_asm)
927